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Fontos tudnivalók 

Tisztelt Vizsgázó! 

Jelen füzet a 2013/14/2. tanulmányi időszak Matematika szigorlatához lett kiadva. A füzet 

tartalmazza az intézmény által nyilvánosságra hozott tételjegyzéket, valamint azok kidolgo-

zott formáját is. 

A kiadvány két füzetre bontva jelenik meg, ezen II. összetevő a Diszkrét matematika és Line-

áris algebra, az I. összetevő pedig a Matematika analízis tantárgy tételeinek jegyzékét és azok 

kidolgozott formáját tartalmazza. 

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányos-

ságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladat-

megoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik. 

Eredményes felkészülést kívánunk! 

A kiadványt összeállította: 

Naszlady Márton Bese – 2014 

 

Ez a kiadvány a Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc alá tartozik. 

A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra. 

A kiadványban szereplő tartalmi elemek 

harmadik személytől származó véleményt, értesülést tükröznek. 

Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek 

kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!  
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Szóbeli vizsga tételjegyzék 

1A. Algebrai struktúrák. Művelet, műveleti tulajdonságok, inverzelem, egységelem fogalma. 

Csoport, kommutatív csoport, gyűrű, test, kapcsolatuk. Példák.  

1B. Lineárisan függetlenség összefüggőség. Vektorokból elvéve, hozzávéve, hogyan válto-

zik e tulajdonság (B). 

2A. Mátrix algebra. Műveletek (Inverz mátrix fogalma, számítási módszerei is). Egyenlet-

rendszerek megoldása inverz mátrix segítségével. Inverz mátrix képletének levezetése (B).   

2B. Homogén lineáris leképezések lineáris terének és a (megfelelő típusú) mátrixok line-

áris terének kapcsolata. 

3A. Mátrix rangja. Lineáris egyenletrendszerek megoldhatóságának kritériuma, mátrix 

rangja Az    - es mátrixok struktúrája. Mátrix rangja, determinánsa és inverz létezésének 

összefüggése.  

3B. Kiértékelési szabályok az ítéletkalkulusban. Modus ponens helyes következtetési séma 

(B) 

4A. Komplex számok. Komplex számok különböző alakjai, műveletek. Átszámolás az 

egyes alakok között. Hatványozás, Moivre-formula, gyökvonás (B). Konjugált. Egységgyök, 

primitív egységgyök fogalma, egységgyökök struktúrája. Komplex számokra vonatkozó 

Euler formula.  

4B. Az algebra alaptétele. Komplex együtthatós másodfokú egyenlet megoldása. 

5A. Relációk. Reláció általános fogalma. Bináris reláció, nevezetes bináris relációk és tu-

lajdonságaik. Ekvivalencia reláció és partíció kapcsolata. Hasonló transzformációk és tu-

lajdonságaik (B). Példa hasonló transzformációkra. Ekvivalencia reláció és partíció kapcso-

lata.  

5B. Altér fogalma. 

6A. Hálók. Háló kétfajta definíciója. Hasse diagram. Boole-algebra. Hálóelméleti fixpont 

tétel (Tarski) (B). Komplementumos, egységelemes hálók. Példák hálóra.  

6B. Koordináta és koordináta mátrix fogalma. 

7A. Halmazalgebra. Műveletek. Halmaz részhalmazainak száma. Szita formula. Komplex 

számok részhalmazai. Halmazelméleti azonosságok és bizonyítási módszer igazolásukra. 

Skatulya elv, példa. Halmaz részhalmazainak száma (B).  

7B. Skalárszorzat fogalma, skalárszorzat   -ben. 

8A. Számosságok. Egyenlő, kisebb/nagyobb számosságú halmazok. Természetes számok, 

racionális számok, valós számok számossága (B). Cantor-féle átlós eljárás. Cantor tétel 

(Halmaz és hatványhalmazának számossága közti összefüggés). Kontinuum hipotézis.   

8B. Vektortér fogalma.  

9A. Nagyságrend. Függvények növekedése, aszimptotikus közelítések, kis ordó, nagy ordó. 

Nagyságrend fogalma. Példa egyenlő nagyságrendekre. Exponenciális növekedés, ennek 

illusztrálása példával.  

9B. Gram-Schmidt ortogonalizáció (B) 

10A. Nulladrendű logika. Műveletek, kiértékelési szabályok, interpretációk. Logikai 

(szemantikai) következmény fogalma, példák. A rezolúció alapelve (B). Példák matemati-

kai bizonyítási módszerekre.  

10B. Szita formula.  
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11A. Elsőrendű logika. Szintaxis nullad-, és elsőrendben. Szemantika: kvantorok, interp-

retációk elsőrendben. Szemantikai következmény elsőrendben. Szintaktikai következmény 

fogalma. Rezolúció elsőrendben.  

11B. Sajátérték, sajátvektor fogalma. Sajátvektorok bázisában a transzf. mátrix (B). 

12A. Lineáris tér. Lineáris tér fogalma. Lineáris függetlenség, lineáris összefüggőség, en-

nek igazolási módszere. Generátorrendszer, bázis, koordináták, dimenzió. Dimenzió ek-

vivalens megfogalmazásai. Kicserélési tétel (B).  

12B. Komplex szám trigonometrikus és exponenciális alakja. 

13A. Vektoralgebra. A 3 dimenziós vektorok tere. Speciális műveletek: skaláris szorzat, 

vektoriális szorzat, vegyes szorzat, és erre vonatkozó tételek, geometriai jelentésük.  Sík 

normálvektoros egyenlete. Pont és sík távolsága. Vektor összetevőkre bontása és merőleges 

kiegészítő.  

13B. Dimenzió tétel. (B)  

14A. Lineáris leképezések. Lineáris leképezések összege, skalárszorosa, példák. Homogén 

lineáris leképezések lineáris tere. Áttérés más bázispárra.  

14B. Kromatikus szám fogalma. Sík gráfok kromatikus száma. Ötszín tétel (B). 

15A. Izomorfia. Izomorfia fogalma. Izomorfiára vonatkozó szükséges és elégséges feltétel. 

A vektorterek közti izomorfia ekvivalencia reláció. Mátrixok lineáris terének és a lineáris 

leképezések terének kapcsolata. Példa: az (   )     alakú komplex számok és a valós 

számok izomorfiája. Az      képlet magyarázata (B).  

15B. Kúpszeletek, mint mértani helyek.  

16A. Lineáris leképezés mátrixa. Lineáris leképezés mátrixának definíciója, szerepe (B), 

példák. Speciális lineáris leképezések mátrixai: vetítés, forgatás, skalárszorzat, mint lineáris 

leképezés. A legfeljebb (   )-edfokú polinomok tere, és a polinomok deriválása, integrá-

lása, mint lineáris leképezés, ezek mátrixai.  

16B. Fa fogalma, éleinek száma. 

17A. Altér. Altér fogalma. Szükséges és elégséges feltétel. Példák: magtér (B), képtér (B), 

adott sajátértékhez tartozó sajátvektorok tere, merőleges kiegészítő. Merőleges kiegészítő 

számítására vonatkozó tétel. Dimenziótétel.  

17B. Lineáris leképezés fogalma. 

18A. Sajátérték, sajátvektor. Sajátérték, sajátvektor fogalma. Példák. Speciális transzfor-

mációk mátrixai, sajátértékei, sajátvektorai. Sajátvektorok bázisában felírt transzformációs 

mátrix (B).  

18B. Lineáris függetlenség, összefüggőség fogalma. 

19A. Bilineáris formák. Kvadratikus alakok és szimmetrikus mátrixok. Főtengelytransz-

formáció és diagonalizálás. Kúpszeletek kanonikus alakja. A sajátvektorok bázisában (ha 

létezik) felírt mátrix.  

19B. Binomiális tétel (B). Binomiális együtthatók tulajdonságai. 

20A. Euklideszi tér. Euklideszi tér definíciója. Skalárszorzat, norma, metrika, és ezek 

kapcsolata euklideszi terekben. Ortogonalitás. CBS euklideszi terekben (B) és speciálisan
 

   -ben. Ortonormált rendszer létezése.  

20B. Transzformáció mátrixa, ha áttérünk másik bázisra. 
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21A. Lineáris egyenletrendszerek. Lineáris homogén, lineáris inhomogén egyenletrendszer 

fogalma. Gauss elimináció, az algoritmus pontos ismertetése. Lineáris egyenletrendszer 

megoldhatóságának feltétele és mátrix rangja. Egyenletrendszer megoldása inverz mát-

rixszal. Lineáris egyenletrendszerek néhány alkalmazása: vektorok függetlenségének, generá-

torrendszer és bázis megállapítására, Gauss elimináció és mátrix inverz számítása.  

21B. Euler poliéder tétele (B). 

22A. Determinánsok. Definíció, tulajdonságok. Vondermonde determináns. Gauss eliminá-

ció alkalmazása determinánsokra. Cramer szabály, inverz mátrix képlete (B), vegyes szor-

zat és geometriai jelentése.  

22B. Generátorrendszer és bázis. 

23A. Kombinatorikus módszerek. Összeg- és szorzatszabály, permutáció, variáció, kombi-

náció (B). Szita formula. Binomiális tétel. Binomiális együtthatók tulajdonságai.  

23B. Gauss elimináció alkalmazása determinánsokra. 

24A. Gráfok. Irányítatlan, irányított, súlyozott gráfok. Gráfok mátrixai. Élszám és fok-

szám összefüggése.  Speciális gráfok: fa, út, kör, teljes gráf. N pontú összefüggő gráfok 

élszámára, körök létezésére vonatkozó tételek (B). Részgráfok. Izomorfia. Összefüggő 

komponensek. Hamilton-kör/út, szükséges ill. elégséges feltételek (Dirac, Ore).  

24B. Komplex szám algebrai alakja. Az imaginárius egység hatványai.  

25A. Fák. Fa ekvivalens definíciói (B). N pontú fa éleinek száma. Prüfer kód ismertetése. 

Az n-pontú teljes gráf feszítő fáinak száma.   

25B. Inverz mátrix kiszámítási módjai. 

26A. Gráfok bejárása és súlyozott gráfok. Szélességi és mélységi keresés. Bináris fák bejárási 

módjai (műveleti fák). Súlyozott gráf fogalma. Kruskal, Prim, Dijkstra algoritmusok.  

26B. Determináns kifejtési és ferde (B) kifejtési tétele. 

27A. Sík gráfok és színezésük. Euler poliéder tétele (sík gráfok pontjainak, tartományainak, 

éleinek számára vonatkozó tétel). Kuratowski-tétel. Euler-kör/út és létezésére vonatkozó 

szükséges és elégséges feltételek. Kromatikus szám fogalma. Sík gráfok kromatikus szá-

ma.   
27B. Lineáris leképezés mátrixa (B) 

28A. Hálózati folyamok. Hálózat, folyam, vágás fogalma. Javító út. Ford-Fulkerson tétel.  

28B. Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség (B) általános, és   -ben használa-

tos alakja. 
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Kidolgozott tételek, tételvázlatok 

1A Algebrai struktúrák. Művelet, műveleti tulajdonságok, 

inverzelem, egységelem fogalma. Csoport, kommutatív 

csoport, gyűrű, test, kapcsolatuk. Példák. 

Műveletek 

Definíció Tekintsük matematikai objektumok egy   halmazát. A művelet olyan függvény, 
amely az adott objektumok halmazából vett objektum(ok)hoz egy (másik) hal-

mazbeli objektumot rendel. 

Egyváltozós (unáris) az       művelet, ha egy objektumhoz rendel egy (má-

sik) objektumot. 

Kétváltozós (bináris) az         művelet, ha két objektumhoz rendel hoz-
zá egy (másik) objektumot. 

Az   változós művelet        

Műveleti tulajdonságok 

Definíció Egy   halmazon értelmezett   bináris művetel asszociatív (csoportosítható), ha 

bármely         esetén   (   )  (   )    teljesül. 

Definíció Egy   halmazon értelmezett   bináris művelet kommutatív (felcserélhető), ha 

bármely       esetén         teljesül. 

Definíció Egy   halmazon értelmezett   művelet disztributív a   műveletre nézve, ha bár-

mely         esetén   (   )          és (   )           . 

Definíció Egy   halmazon értelmezett   bináris művelet bal oldali egységelemének egy 

olyan      elemet nevezünk, melyre      esetén        teljesül. 

 Egy   halmazon értelmezett   bináris művelet jobb oldali egységelemének egy 

olyan      elemet nevezünk, melyre      esetén        teljesül. 

Tétel Legyen értelmezve   halmazon egy   bináris művelet. Ha a kétoldali egységek 

léteznek, akkor        , vagyis az egység kétoldali és egyértelmű. 

Bizonyítás                

Definíció Az     elem a   bináris művelet egységeleme, ha mind bal-, mind jobboldali 

egységelem, azaz      esetén           teljesül. 

Definíció Az     elem   bináris műveletre vonatkozó bal oldali inverze egy olyan 

  
     elem, melyre   

      , ahol     elem a   művelet egységeleme. 

Az     elem   bináris műveletre vonatkozó jobb oldali inverze egy olyan 

  
     elem, melyre     

    , ahol     elem a   művelet egységeleme. 

Tétel Legyen értelmezve   halmazon egy   bináris, asszociatív művelet. Ha a kétolda-

li inverzek léteznek, akkor   
     

      , vagyis asszociatív műveletnél az 

inverz kétoldali és egyértelmű. 

Bizonyítás   
     

       
   (    

  )  (  
    )    
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Definíció Az     elem   bináris műveletre vonatkozó inverze egy olyan       elem, 

mely az   elemnek bal- és jobboldali inverze is, azaz              . 

Algebrai struktúrák 

Definíció Algebrai struktúra alatt olyan nem üres   halmazt értünk, melyben legalább egy 

  művelet van definiálva. Jelölés: ⟨ |  ⟩ több művelet esetén ⟨ |    ⟩. Az algeb-
rai struktúrában a művelet(ek) mellett szerepelhetnek függvények is. 

Csoport, félcsoport 

Definíció Egy   nemüres halmazt félcsoportnak nevezünk, ha értelmezve van rajta egy   

bináris művelet, amely asszociatív:          esetén   (   )  (   )    

Példa: ⟨    |  ⟩ (az    -es mátrixok a szorzásra nézve) 

Definíció Egy   nemüres halmazt csoportnak nevezünk, ha értelmezve van rajta egy   

bináris művelet, amely: 

1.) asszociatív:           esetén   (   )  (   )    

2.) van egységeleme:     , melyre            

3.) van inverze:      esetén       , melyre         

Definíció Az olyan csoportot, melyben a   művelet kommutatív, vagyis        esetén 

       , kommutatív vagy Abel-csoportnak nevezzük. 

Példa: ⟨ | ⟩ (valós számok összeadása), ⟨  |  ⟩ (pozitív racionális számok szorzása) 

Tétel Ha   csoport, akkor          esetén ha 

(1)        , akkor    , illetve ha 

(2)        , akkor    . 

Bizonyítás (1)                             

(2)                               

Tétel Ha   csoport, akkor          esetén, ha 

(1)      , akkor        , illetve ha 

(2)      , akkor        . 

Bizonyítás (1)       (     )        (   )        

(2)         (     )  (   )              

Gyűrű 

Definíció Egy   nemüres halmazt gyűrűnek nevezünk, ha értelmezve van rajta két műve-

let,   és  , melyekre teljesülnek a következő tulajdonságok: 

1.) a   művelet Abel-csoport 

2.) a   művelet félcsoport 

3.) a két műveletet a disztributív szabályok kötik össze, azaz          esetén: 

  (   )          
(   )            

A   műveletet összeadásnak, a   műveletet szorzásnak nevezzük. Ha a szorzás kommutatív, 
akkor kommutatív gyűrűről beszélünk. 

Példa: ⟨    |   ⟩ (az    -es mátrixok az összeadásra és szorzásra nézve gyűrű) 
⟨ |   ⟩ (a racionális számok az összeadásra, szorzásra nézve kommutatív gyűrű) 
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Test, ferdetest 

Definíció Egy   nemüres halmazt testnek nevezünk, ha értelmezve van rajta két művelet,   

és  , melyekre teljesülnek a következő tulajdonságok: 

1.) a   és a   művelet Abel-csoport 

2.) a   művelet egységelemének nincs a   műveletre vonatkozó inverze 

3.) a két műveletet a disztributív szabályok kötik össze, azaz          esetén: 

  (   )          
(   )            

Ha a   művelet nem kommutatív, akkor ferdetestről beszélünk. 

Példa: ⟨ |   ⟩ (a valós számok az összeadásra és szorzásra nézve testet alkotnak) 

1B Lineárisan függetlenség összefüggőség. Vektorokból el-

véve, hozzávéve, hogyan változik e tulajdonság (B). 

Lineárisan függetlenség összefüggőség 

Definíció A            vektorok lineárisan függetlenek, ha  

∑    

 

   

   

csak úgy lehetséges, hogy miden     . 

Definíció A             vektorok lineárisan összefüggők, ha  

∑    

 

   

   

lineáris kombinációban van olyan   , amelyre     . 

Vektorokból elvéve, hozzávéve, hogyan változik e tulajdonság (B) 

Tétel Ha a            vektorok lineárisan összefüggők, akkor tetszőleges vektort 

hozzávéve, továbbra is lineárisan összefüggők maradnak. 

Bizonyítás Tekintsük a nullvektort előállító lineáris kombinációt, melyben legyen     : 

                          

Vegyünk hozzá még egy      vektort e lineáris kombinációhoz úgy, hogy 

      , és az összes többi skalár ugyan az marad. Ekkor: 

                                   

Ebben az új lineáris kombinációban is     , hiszen így választottuk meg e má-

sodik lineáris kombinációt. Mivel így a nullvektort előállító lineáris kombináci-

óban az egyik skalár együttható nem nulla, ezért a vektorok továbbra is lineári-

san összefüggők.   

Tétel Ha a            vektorok lineárisan függetlenek, akkor tetszőleges vektort 
elhagyva a maradék vektorok függetlenek maradnak. 

Bizonyítás Az előző tétellel. Indirekt módon tegyük fel, hogy a független rendszerből már 

elhagytunk egy vektort és az így kapott rendszer összefüggő. Az előző tétel sze-

rint, ha ehhez az összefüggő rendszerhez hozzáveszünk egy vektort, akkor ösz-

szefüggő marad. Most vegyük vissza az eredetileg elhagyott vektort. Ekkor a 

rendszer összefüggő kéne legyen, ami ellentmond a kezdeti függetlenségnek.   

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight



    

 

Matematika szigorlat — PPKE ITK 

 

szóbeli vizsga, II. összetevő 10 / 76 2014. június 11. 

1411 

    
 

2A Mátrix algebra. Műveletek (Inverz mátrix fogalma, számí-

tási módszerei is). Egyenletrendszerek megoldása inverz 

mátrix segítségével. Inverz mátrix képletének levezetése 

(B). 

Mátrix algebra 

Definíció Legyen   a valós számok halmaza, és     természetes számok. Ekkor az   

feletti    -es mátrixon egy olyan téglalap alakú táblázatot értünk, amelynek 

  sora és   oszlopa van, elemei pedig valós számok. A mátrix típusa    . 

Definíció Tekintsük matematikai objektumok egy halmazát. A művelet olyan függvény, 

amely az adott halmaz elemeihez egy (másik) halmazbeli elemet rendel. Egyvál-

tozós (unáris) a művelet, ha egy elemhez rendel egy (másik) elemet. Kétváltozós 

(bináris) a művelet, ha két elemhez rendel egy (mások) elemet. 

Mátrixok összeadása 

Definíció Az   (   ) és   (   ) mátrixok összegén azt a   (   ) mátrixot értjük, 

amelynek adott pozíciójú elemét az   és   mátrixok megfelelő pozíciójú eleme-

inek összeadásával kapjuk:             

Tétel Mátrixok összeadásának tulajdonságai: 

1.) Kommutatív.         

2.) Asszociatív: (   )      (   ) 
3.) Van egységelem:       

4.) Van inverz elem:         

Mátrixok szorzata 

Definíció Az       típusú mátrix és a       típusú mátrix szorzata az a       tí-
pusú mátrix, melynek elemeit a következőképp számoljuk ki:  

    ∑      

 

   

 

Tétel Mátrixok szorzásának tulajdonságai: 

1.) Nem kommutatív.       

2.) Asszociatív: (  )   (  ) 
3.) Disztributív az összeadásra nézve: 

a.  (   )        

b. (   )        

Négyzetes mátrixok szorzásra vonatkozó egységeleme 

Definíció Az    -es mátrixok körében az    -es        (       ) egységmátrix 
a szorzás egysége, neve egységmátrix. 

Tétel Legyen       típusú mátrix. Ekkor           

Négyzetes mátrixok szorzásra vonatkozó inverze 

Definíció Legyen      -es mátrix. Azt az    -gyel jelölt    -es mátrixot, amelyre 

             az   mátrix inverzének nevezzük. 
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Tétel Ha az   mátrixnak van baloldali inverze és jobboldali inverze, akkor az egyér-

telmű összeadásra és szorzásra is. 

Tétel Az inverz mátrix tulajdonságai:  

1.) Ha az   mátrix invertálható, inverzének inverze önmaga. (   )     

2.) Ha az   és   mátrixok invertálhatók, akkor szorzatuk is invertálható, és in-

verze a tényezők inverzének fordított sorrendű szorzata. (  )          

3.) Ha a   mátrix invertálható (nem szinguláris), akkor a mátrixegyenletet lehet 
szokásos módon rendezni.  

          
          

Inverz mátrix kiszámítási módszere, képletének levezetése (B) 

Az   mátrix inverze többféle módon is kiszámolható. Egyrészt, tudva azt, hogy mátrixot az 

inverzével beszorozva az egységmátrix áll elő, felírható a következő egyenletrendszer: 

[

         

         

         

] [

         

         

         

]  [
   
   
   

] 

Ezt az egyenletrendszert Gauss-Jordan eliminációval megoldva az egységmátrix helyén előáll 

az   mátrix inverze, míg az   mátrix helyén az egységmátrix jelenik meg. 

A másik inverz számítási módszer az adjungált mátrix és a mátrix determinánsának használa-

tával történik. Ekkor az   mátrix inverzére vonatkozó kiszámítási képlet: 

    
 

   ( )
    ( ) 

Tétel Az    -es   mátrixot az adjungáltjával jobbról megszorozva az eredmény 

   ( )    . 

Bizonyítás A szóban forgó szorzat a következőképpen néz ki: 

[

       

   
       

] [
       

   
       

]  [
     
   
     

] 

Ekkor az eredménymátrix elemeit kiszámítva: 

                       ( ), mert ez az 1. sor szerinti kifejtés. 

  

       
   

             ( ), mert ez az  . sor szerinti kifejtés. 

A többi elem nulla, hiszen                      , mert az  -edik sor-

hoz tartozó elemek rendre a  -adik sorhoz tartozó aldeterminánsokkal vannak 

szorozva, és így a ferde kifejtés tétele miatt az összes ilyen     elem  .   

Tétel Ha   négyzetes mátrix, és    ( )   , akkor     
 

   ( )
    ( ), ahol    ( ) 

az   mátrix úgynevezett klasszikus adjungált mátrixa. 

Bizonyítás Mivel a mátrixok szorzása asszociatív, ezért pontosan egy inverz létezik. Ha 

tehát létezik egy mátrix, melyre       , akkor ez a   mátrix inverze  -nak. 

A fenti tétel szerint      ( )     ( )     . Ezt beszorozva 
 

   ( )
-val, igazo-

lódik a tétel állítása.   
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Egyenletrendszerek megoldása inverz mátrix segítségével. 

Legyen adott egy egyenletrendszer: 

{

                      
                      

 
                      

 

Ugyanez mátrix alakban 

  [

          

          

    
          

]    [

  

  

 
  

]    [

  
  

 
  

] 

ahol   az ismeretleneket tartalmazó vektor,   pedig adott vektor. Így az egyenletrendszer 

     

Ha az egyenletrendszernél     és    ( )   , akkor az egyenletrendszer inverz mátrix 
segítségével is megoldható: 

       

2B Homogén lineáris leképezések lineáris terének és a 

(megfelelő típusú) mátrixok lineáris terének kapcsolata. 

Ha adott egy    és egy    vektortér, melyek dimenziói    (  )    és    (  )   , akkor e 

két vektortér között bármely lineáris leképezés egyértelműen megfeleltethető egy    -es 
mátrixnak. Ez a tény lehetővé teszi, hogy a lineáris leképezéseket mátrixokkal adjuk meg, 

ugyanakkor minden mátrix egy lineáris leképezést is reprezentál. 

Hogy megadjunk egy ilyen leképezés-mátrix hozzárendelést, a kiindulási és a képtérben is 

rögzített báziskora van szükség. A leképezést reprezentáló mátrix e bázispárra vonatkoztatva 

egyértelmű. Ha ismerjük e mátrixot, akkor bármely vektor képe úgy kapható meg, hogy a 

vektort beszorozzuk a leképezés mátrixával. 

Képletben összefoglalva:    ( )    , ahol         a lineáris leképezés, az   mátrix 

pedig a leképezés mátrixa,      tetszőleges, ennek képe pedig     . 

Definíció Az         lineáris leképezés mátrixa  [[ ][ ]]  [  |  |  |  ], ahol 

    (  ). Azaz az   mátrix oszlopai a   -beli [ ] bázis    bázisvektorainak a 

  -beli [ ] bázisra vonatkozó képei. 

Tétel Legyen         a lineáris leképezés, az   mátrix a leképezés mátrixa, 

    tetszőleges, ennek képe pedig    ,    ( ). Ekkor     . 
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3A Mátrix rangja. Lineáris egyenletrendszerek megoldható-

ságának kritériuma, mátrix rangja Az    -es mátri-

xok struktúrája. Mátrix rangja, determinánsa és inverz léte-

zésének összefüggése. 

Lineáris egyenletrendszerek megoldhatóságának kritériuma, mátrix rangja 

Definíció Vektorrendszer rangján a vektorok által generált altér dimenzióját értjük. Mátrix 

sorrangján a sorvektorok rangját, mátrix oszloprangján az oszlopvektorok rang-

ját, determináns rangján pedig a belőle kiválasztható legnagyobb méretű nem 

nulla determináns méretét értjük. 

Tétel Ugyanazon mátrix sor-, oszlop-, és determinánsrangja megegyezik. 

Tétel Ha      -es mátrix, akkor az      egyenletnek akkor és csak akkor van 

megoldása, ha     ( )      ([ | ]), vagyis az együtthatómátrix rangja meg-
egyezik a kibővített mátrix rangjával. 

Tétel Ha az   mátrix rangja és a kibővített együtthatómátrix rangja egyenlő az isme-

retlenek számával, akkor az egyenletrendszernek pontosan egy megoldása van. 

Következmény 

Homogén lináris egyenletrendszernek akkor és csak akkor van triviálistól különböző megol-

dása, ha az együttható mátrix rangja az ismeretlenek számánál kisebb. 

Az    -es mátrixok struktúrája. 

Állítás Az    -es mátrixok az összeadásra nézve kommutatív (Abel) csoportot alkot-
nak. 

Állítás Az    -es mátrixok a valós számok/racionális számok teste fölött vektorteret 

alkotnak. Ebben a vektortérben az    -es mátrixok a vektorok. 

Mátrix rangja, determinánsa és inverz létezésének összefüggése. 

Állítás Ha a mátrix determinánsa nulla, azaz    ( )   , akkor az   mátrix szingulá-

ris (nincs inverze). 

Tétel Az      -es mátrix akkor és csak akkor reguláris (van inverze), ha rangja  . 

3B Kiértékelési szabályok az ítéletkalkulusban. Modus 

ponens helyes következtetési séma (B) 

Kiértékelési szabályok az ítéletkalkulusban 

Szemantika 

A  ,  ,   jelek az igazságértékeken értelmezett műveleteknek felelnek meg. E műveletek 

közül csak az egy-, és kétváltozós műveleteknek, és azok közül is csak néhánynak van gya-

korlati jelentősége. A műveletek definícióját szokás kiértékelésnek, kiértékelési szabálynak is 

nevezni. A kiértékelés az igazságtábla eredménynek megfelelő oszlopában van. 
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Műveletek 

Egyváltozós műveletek 

Negáció (tagadás) 

     

    
    

Kétváltozós műveletek 

Konjunkció (és) 

        

      
      
      
      

 

Diszjunkció (vagy) 

        

      
      
      
      

 

Implikáció (következtetés) 

        

      
      
      
      

 

Ekvivalencia 

Definíció     (   )  (   ) 

                

          
          
          
          

 

 

Modus ponens helyes következtetési séma (B) 

Definíció Azokat a következtetési sémákat tekintjük helyes következtetési sémának, ame-

lyekben a következmény valóban a feltételek (szemantikai) következménye. 

Modus ponens (leválasztási szabály) 

Azt kell vizsgálnunk, hogy ahol   és     igazak, ott a   igaz-e. Ha igen, akkor helyes, ha 

nem, akkor helytelen a következtetési séma. Csak az első interpretációban teljesül, hogy   és 

    igaz. Ebben az interpretációban   is igaz, tehát valóban {     }    . 

        

      
      
      
      

Tétel {          }     akkor és csak akkor, ha               

Bizonyítás Az           együttesen akkor és csak akkor igaz, ha            igaz. 

  

A fenti tétel miatt a    jel bal oldalát a továbbiakban egyszerű  -val jelöljük, ahol  -n mindig 

az              formulát értjük. 

Tétel      akkor és csak akkor, ha     tautológia. 
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Bizonyítás 1.) Lássuk be, hogy ha     , akkor     tautológia:  

Írjuk föl az igazságtáblázatot. A jelölt sort ez esetben nem lehet figyelembe ven-

ni, ugyanis akkor      nem teljesülne. A maradék sorokra pedig valóban az   
az igazságérték. 

         

       
        

       
       

2.) Lássuk be, hogy ha     tautológia, akkor     :  

Ha     tautológia, akkor a fenti igazságtáblában a jelölt sor nem szerepelhet, 

hanem csak a jelöletlen,   sorok. Ezekben a sorokban viszont valóban a   lega-

lább ott igaz, ahol   igaz.   

Tétel      akkor és csak akkor, ha      kontradikció. 

Bizonyítás Az      akkor és csak akkor, ha     tautológia, vagyis  (   ) kontra-

dikció. Ezt kifejtve:  (   )   (    )                
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4A Komplex számok. Komplex számok különböző alakjai, 

műveletek. Átszámolás az egyes alakok között. Hatvá-

nyozás, Moivre-formula, gyökvonás (B). Konjugált. Egy-

séggyök, primitív egységgyök fogalma, egységgyökök 

struktúrája. Komplex számokra vonatkozó Euler formu-

la. 

Komplex számok 

Definíció Legyen   a valós számpárok halmaza:   {(   )         }. A   halmazon 
két műveletet értelmezünk a következőképpen: 

 összeadás:  (   ) (   )    esetén (   )  (   )  (       )    

 szorzás:  (   ) (   )    esetén (   )  (   )  (           )    

 A   halmaz elemei a műveletekkel együtt alkotják a komplex számokat. 

Definíció Két komplex szám akkor és csak akkor egyenlő, ha első és második elemeik 

egymással páronként egyenlők: (     )  (     )        és      . 

Tétel A   {(   )         } alakú számok testet alkotnak a definícióban megadott 
műveletekre nézve. 

Komplex számok különböző alakjai, átszámolás az egyes alakok között 

Algebrai alak 

Tétel Minden komplex szám felírható olyan kéttagú összegként, ahol az első tag mind-

két tényezőjének van izomorf képe a valós számok között, a másodiknak pedig 

egy tényezője rendelkezik e tulajdonságokkal: (   )  (   )(   )  (   )(   ) 

Definíció A   (   ) komplex szám algebrai alakja   (   )      , ahol      . 

Definíció A        komplex szám abszolút értéke | |  √      

Trigonometrikus alak 

Definíció A   (   ) komplex szám trigonometrikus alakját kapjuk, ha a komplex szám-
síkon ábrázolt algebrai alak polárkoordinátáit adjuk meg. A polártengely a valós 

tengely pozitív félegyenese. Ekkor a   szám trigonometrikus alakja: 

   (   ( )       ( )) 

 ahol        ( ) és        ( ). 

Exponenciális alak 

Az Euler formulából kiindulva a trigonometrikus alak írható másképpen is. 

       ( )       ( ) 

Definíció A         alakot, ahol   a   komplex szám abszolút értéke, a   az argumen-
tuma, a komplex szám exponenciális alakjának nevezzük. 
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Műveletek 

Szorzás 

Algebrai alakban: 

(    )(    )                        (     )  

Trigonometrikus alakban: 

       (   (  )       (  ))    (   (  )       (  ))   

     ((   (  )    (  )     (  )    (  ))    (   (  )    (  )      (  )    (  ))   

     (   (     )       (     )) 

Exponenciális alakban: 

     (       )(       )                        (     ) 

Osztás 

Algebrai alakban: 

  
  

 
    

    
 

(    )(    )

(    )(    )
 

               

       
 

     

     
 

     

     
  

Trigonometrikus alakban: 
  
  

 
  (   (  )       (  ))

  (   (  )       (  ))
 

  
  

 
(   (  )       (  ))(   (  )       (  ))

(   (  )       (  ))(   (  )       (  ))
  

 
  
  

 
(   (  )       (  ))(   (  )       (  ))

    (  )         (  )
  

 
  
  

 ((   (  )    (  )     (  )    (  ))    (   (  )    (  )      (  )    (  ))   

 
  
  

 (   (     )       (     )) 

Exponenciális alakban: 

  
  

 
       

       
 

  
  

   (     ) 

Hatványozás, Moivre-formula, gyökvonás (B) 

Trigonometrikus alakban: 

Tétel (Moivre formula) A hatványozás trigonometrikus alakban elvégezhető a követke-

zőképp: 

     (   (  )       (  )) 

Bizonyítás Teljes indukcióval. Az     esetre nyilvánvalóan igaz. Tegyük fel, hogy eddig 

minden  -ra igazolást nyert az állítás. Ekkor       esetre vizsgálva: 

    (   ( )       ( ))        (   ( )       ( ))  (   ( )       ( ))   

     [   (  )       (  )](   ( )       ( ))   

     (   (  )    ( )     (  )    ( )    (   ( )    (  )     ( )    (  )))   

     (   ((   ) )       ((   ) )) 
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Exponenciális alakban: 

   (     )
 
         

Gyökvonás 

Definíció A   komplex számot a      komplex szám  -edik gyökének nevezzük, ha 

      

√   
          

Trigonometrikus alakban: 

A trigonometrikus alakban fölírt    (   ( )       ( )) komplex szám összes  -edik 

gyökét a következőképpen lehet megtalálni: 

Legyen    (   ( )       ( )) és      (   (  )       (  )). A két trigonometrikus 
egyenlőségből a következőt kapjuk: 

     (   (  )       (  ))    (   (  )       (  )) 

        √   
 és               

      

 
, ahol               

Egy képletben összefoglalva: 

√ 
 

 √ 
 

 (   (
     

 
)       (

     

 
))                

Konjugált 

Definíció A        komplex szám konjugáltja a  ̅       komplex szám. 

Egységgyök, primitív egységgyök fogalma, egységgyökök struktúrája 

Definíció A   komplex számot  -edik (komplex) egységgyöknek nevezzük, ha     . 

Jelölés:       (
   

 
)       (

   

 
) 

Tétel Az összes  -edik egységgyök előáll az első;    egységgyök hatványaiként. 

Tétel Az  -edik egységgyökök csoportot alkotnak a komplex számok szokásos szorzá-
sára nézve. 

Definíció 1 Azt az     -edik egységgyököt, melynek hatványai az összes többi egységgyö-
köt előállítják, primitív egységgyöknek nevezzük. 

Definíció 2 Az az egységgyök, amelynek  -edik hatványa  , és semelyik ennél kisebb hat-

ványa nem  , primitív egységgyök. 

Definíció 3 Ha     -edik egységgyök, továbbá   és   relatív prímek, akkor    primitív egy-
séggyök. 

Tétel (Definíció 2   Definíció 1) Legyen   az a legkisebb szám, amire     -edik egy-

séggyök. Mivel az egységgyökök csoportot alkotnak, mindegyik hatvány egység-

gyök. Mivel pontosan   különböző egységgyök van, ha a hatványok mind külön-
bözők, akkor elő is állítják a többi egységgyököt. 

Tétel (Definíció 1   Definíció 3) Ha     -edik primitív egységgyök, akkor   és   rela-
tív prímek. 

Tétel (Definíció 3   Definíció 2) Ha   és   relatív prímek, akkor     -edik primitív 

egységgyök. 
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A fenti tételek miatt beláttuk, hogy a három primitív egységgyök definíció ekvivalens. 

Komplex számokra vonatkozó Euler formula 

A   körüli Taylor sorfejtéssel a    ( ) és a    ( ) is fölírható, ezzel pedig kifejezhető    . A 
sorokat átrendezve, a konvergens tagokat átírva adódik az Euler formula: 

       ( )      ( ) 

4B Az algebra alaptétele. Komplex együtthatós másodfokú 

egyenlet megoldása. 

Az algebra alaptétele 

Az  -edfokú komplex együtthatós polinomnak van gyöke a komplex számok körében. Más-

képpen fogalmazva: multiplicitással számolva a gyököket, pontosan   darab komplex gyök 
van. 

Komplex együtthatós másodfokú egyenlet megoldása 

Tétel Ha a   komplex szám gyöke egy polinomnak, akkor konjugáltja is gyöke. 

A másodfokú egyenletre tanult megoldóképlet komplex számokra is érvényes. A   diszkri-
mináns segítségével a következő eseteket különböztetjük meg: 

   , két különböző valós gyök 

   , egy valós, kétszeres multiplicitású gyök 

   , két komplex konjugált gyök. 

A másodfokú egyenleteknek multiplicitással számolva pontosan két gyöke van a komplex 

számok körében. 
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5A Relációk. Reláció általános fogalma. Bináris reláció, ne-

vezetes bináris relációk és tulajdonságaik. Ekvivalencia 

reláció és partíció kapcsolata. Hasonló transzformációk 

és tulajdonságaik (B). Példa hasonló transzformációkra.  

Relációk 

Definíció A            direkt szorzat bármely részhalmazát relációnak nevezzük. 

Bináris reláció, nevezetes bináris relációk és tulajdonságaik 

Definíció Az   bináris reláció   halmazon, ha       {(   ) |        } 

Állítás A bináris reláció tulajdonságai 

1.) reflexív, ha (   )    

2.a) szimmetrikus, ha (   )    (   )    

2.b) antiszimmetrikus, ha (   )    és (   )    csakis úgy lehet, ha     

3.) tranzitív, ha (   )    és (   )    esetén (   )    

Példák: Oszthatóság, háromszögek hasonlósága. 

Ekvivalencia reláció 

Definíció Az   bináris reláció a   halmazon ekvivalencia reláció, ha reflexív, szimmetri-
kus és tranzitív. 

Definíció A partíció a   halmaz olyan részhalmaz rendszere, amelyre         és  

⋃  

 

   

   

Tétel Ha az   bináris reláció a   halmazon ekvivalencia reláció, akkor a   azon 

részhalmazai, amelyek egymással relációban álló elemeket tartalmaznak, azok a 

  halmaz egy partícióját adják. 

Tétel (az előző megfordítása) Ha a    halmazrendszer a   halmaz egy partíciója, 

akkor ez a  -n ekvivalencia relációt határoz meg, ha (   )    akkor és csak 

akkor, ha      és     . 

Hasonló transzformációk és tulajdonságaik (B) 

Minden lineáris transzformáció megvalósítható a vektor egy alkalmas mátrixszal való szorzá-

sával. Így a hasonlóság felfogható a négyzetes mátrixok körében bevezetett relációként: két 

mátrix relációban áll egymással, ha hasonlók. 

Tétel A hasonlóság az    -es mátrixok körében ekvivalencia reláció. 

Bizonyítás Az ekvivalencia reláció tulajdonságait kell bizonyítani: 

 Reflexív:     akkor és csak akkor, ha         (tehát a hasonlóság definí-

cióját adó képletben az egységmátrixot választjuk). 

 Szimmetrikus: Ha    , akkor    . Felírva a hasonlóság definícióját: 

       . Ezt balról  -vel, jobbról    -gyel beszorozva:         

 Tranzitív: Ha     és    , akkor    . Felírva a hasonlóság definícióit: 

       
       

}     (     )  (  )   (  )   
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Példa hasonló transzformációkra. 

Olyan transzformációk, melyek mátrixai hasolók. 

5B Altér fogalma. 

Altér fogalma 

Definíció Ha ⟨ |  ⟩ és     -ra is ⟨  |  ⟩, akkor azt mondjuk, hogy    részstruktúrája 

 -nak. 

Elnevezés Ha a struktúra vektortér, akkor a részstruktúrát altérnek nevezzük. 

Példa Az    -es mátrixok vektorterében a diagonális mátrixok alteret alkotnak. 
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6A Hálók. Háló kétfajta definíciója. Hasse diagram. Boole-

algebra. Hálóelméleti fixpont tétel (Tarski) (B). 

Komplementumos, egységelemes hálók. Példák hálóra. 

Hálók, háló kétfajta definíciója 

Definíció 1 A   részben rendezett halmaz háló, ha bármely véges részhalmazának van 

infimuma és supremuma. A   háló teljes, ha bármely részhalmazának van 

infimuma és supremuma. 

Definíció 2 A   halmaz háló, ha értelmezve van rajta két,   és   által jelölt művelet, melyek-

re          esetén teljesülnek az alábbi tulajdonságok: 

1.) (   )      (   ) (   )      (   ) 

2.)                 

3.) elnyelési tulajdonság 

  (   )    

  (   )    

Tétel A háló kétfajta definíciója ekvivalens egymással. 

Hasse diagram 

A Hasse-diagramban a halmaz elemeit lerajzoljuk úgy, hogy a diagramban feljebb rajzoljuk 

azokat az elemeket, amelyeknél vannak kisebbek. Az elemeket akkor kötjük össze, ha azok az 

adott rendezés szerint közvetlenül összehasonlíthatók. Nem kötjük össze sem a reflexív, sem a 

tranzitív tulajdonság miatt relációban álló elemeket. 

Boole-algebra 

A komplementumos disztributív hálókat Boole-hálónak nevezzük. A Bool-algebrában a 

komplementer képzés egyváltozós műveletként van értelmezve, így ebben a struktúrában nem 

kettő, hanem három művelet van. 

Példa A halmazok az unió és metszet műveletekkel Boole-hálót alkotnak. A kivonás 

(komplementer kijelöléssel) műveletet hozzávéve a struktúra Boole algebra lesz. 

Hálóelméleti fixpont tétel (Tarski) (B) 

Definíció Valamely   rendezett halmazon értelmezett       függvény monoton (ren-

dezéstartó), ha minden   halmazbeli      -re  (  )   (  ). A     fix-

pontja  -nek, ha  ( )   . 

Tétel (Tarski fixpont tétele) Teljes hálón értelmezett monoton (rendezéstartó)   függ-

vénynek van legkisebb és legnagyobb fixpontja. 

Bizonyítás Legyen   azon elemek halmaza, melyekre  ( )   . Ennek alsó határa, vagyis 

     ( ) lesz a legkisebb fixpont. 

Egyrészt    , ugyanis    ( )   . Ezért  ( )   ( ( ))   ( )   , 

vagyis  ( ) is alsó korlát. Mivel   a legnagyobb alsó korlát, ezért  ( )   , te-

hát    . 

Másrészt   fixpont, vagyis    ( ). Mivel  ( )   , ezért  ( ( ))   ( ), 

vagyis  ( )   . De akkor   alsó korlát volta miatt    ( ). A rendezési re-

láció antiszimmetrikus tulajdonága miatt    ( ). 

asszociatív
kommutatív
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Harmadrészt   legkisebb fixpont. Legyen    a fixpontok halmaza,    
   (  ). Mivel     , ezért     ; továbbá mivel    infimuma   -nak, és   

is   -beli, ezért     . A két egyenlőtlenségből az antiszimmetrikus tulajdon-

ság miatt     , vagyis   valóban a legkisebb fixpont.   

Komplementumos, egységelemes hálók 

Definíció Ha egy hálónak van legkisebb és legnagyobb eleme, melyeket  -val és  -gyel 

jelölünk, és e két elem a két művelet egysége, azaz       és      , ak-
kor egységelemes hálóról beszélünk. 

Definíció Az     elem komplementer eleme az az      elem, melyre        és 

      . 

Példák hálóra 

Példa A természetes számok halmazán az oszthatóság mint részbenrendezési reláció, 

hálót alkot. 

Nemüres halmaz részhalmazai hálót alkotnak a metszet és unió műveletekkel. 

6B Koordináta és koordináta mátrix fogalma. 

Tétel (Síkbeli felbontási tétel) Ha adott a síkben két nem párhuzamos vektor,   és  , 

akkor minden más   síkbeli vektor felírható az   és   vektorokal párhuzamos 

összetevőkre, melyek összege adja a   vektort. 

              

Ez a felbontás egyértelmű. 

Definíció Legyenek       valós számok. Az   vektor lineáris kombinációja az    kifeje-

zés. Az   és   vektorok lineáris kombinációja az      , az  ,   és   vektoro-

ké pedig az          kifejezés. 

Definíció Bázisnak nevezzük azokat a független vektorokat, melyek lineáris kombináció-

jával az összes vektor előállítható. 

Definíció Legyenek  ,   és   ugyanazon síkbeli vektorok, melyek közül   és   bázist al-

kot. Ekkor a         lineáris kombinációban szereplő   és   valós számo-

kat a   vektor     bázisra vonatkozó koordinátáinak nevezzük. 

Definíció Legyen a sík egy bázisa   (     ). Ha            , akkor az 

[
  

  
]
[ ]

 [     ][ ]
  

oszlopvektort a   vektor koordináta-mátrixa. Ha a bázis a     egymásra merőle-

ges, jobbrendszert alkotó egységvektorokból áll, akkor a jobb alsó indexet nem 

írjuk ki. 
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7A Halmazalgebra. Műveletek. Halmaz részhalmazainak 

száma. Szita formula. Komplex számok részhalmazai. 

Halmazelméleti azonosságok és bizonyítási módszer igazo-

lásukra. Skatulya elv, példa. Halmaz részhalmazainak szá-

ma (B). 

Halmazalgebra 

Definíció Az   és   halmazok egyenlők, ha ugyanazok az elemeik. Jelölés:     

Definíció Azt a halmazt, amely egy elemet sem tartalmaz, üres halmaznak nevezzük. 

Jele:   

Definíció Az   halmaz részhalmaza a   halmaznak, ha   minden eleme  -nek is eleme. 

Jelölés:    . Ha     és    , akkor azt mondjuk, hogy   valódi részhal-

maza  -nek. Ennek jelölése:     

    tulajdonságai 

     (reflexív) 

     és    , akkor     (tranzitív) 

          (nem kommutatív) 

     és    , akkor     (antiszimmetrikus) 

Műveletek 

Definíció Az   és   halmazok egyesítése (uniója, összege) az az    -vel jelölt halmaz, 

amelynek elemei  -nak vagy  -nek elemei. 

    {  |     vagy    } 

Definíció Az   és   halmazok közös része (metszete, szorzata) az az    -vel jelölt hal-

maz, amelynek elemei  -nak és  -nek elemei. 

    {  |     és    } 

Definíció Az   és   halmazok különbsége, vagy a   halmaz   halmazra vonatkozó komp-

lementere   azon elemeinek halmaza, amelyek nincsenek  -ben. 

       {  |     és    } 

Definíció Legyenek           adott halmazok. E halmazok Descartes (direkt) szorzata 

           {(          ) |            } 

Halmaz részhalmazainak száma (B) 

Definíció Az   halmaz  ( ) hatványhalmazán az   részhalmazainak halmazát értjük. 

Definíció A halmaz számosságán a halmaz elemeinek számát értjük. Jelölés: | | Ha a 

halmaz számossága véges, akkor az   halmazt végesnek nevezzük; ellenkező 

esetben az   halmaz végtelen. 

Tétel Az   elemű halmaz részhalmazainak száma   . 

Bizonyítás Mivel a halmaz elemeinek száma véges, sorszámozhatjuk az elemeket  -től  -ig. 

Ha az  -edik elemet kiválasztjuk a részhalmazba, akkor ehhez a sorszámhoz ren-

deljünk  -et, különben  -t. Így minden részhalmazhoz egy   hosszúságú,     
számjegyekből álló számsort lehet kölcsönösen hozzárendelni. Az összes lehető-

rendezési reláció 
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séget ismétléses variációval kapjuk meg. Így egy   elemű halmaz esetén    

részhalmaz van.   

Szita formula 

A halmazokba rendezés valamilyen közös tulajdonság alapján végzett csoportosítást jelent. A 

logikai szita (más néven szita formula) a halmazokkal kapcsolatos feladatoknál alkalmazható 

eljárás. A logikai szita kapcsolatot teremt a halmazok uniójának elemszáma és a metszetek 

elemszáma között. 

A logikai szitát olyan feladatoknál használjuk általában, ahol unióba vont halmazokról meg 

kell adni azon elemek számát, amelyek egy adott tulajdonsággal nem rendelkeznek. A logikai 

szita elve az, hogy több halmaz uniójának elemszáma egyenlő az egyes részhalmazok elem-

számának összege és a metszetek elemszámának különbségével. Erre felírható egy általános 

képlet: 

|⋃  

 

   

|  (∑|  |

 

   

)  ( ∑ |     |

       

)  ( ∑ |        |

           

)    |       | 

Komplex számok részhalmazai 

Komplex szám akkor és csak akkor  , ha algebrai alakjában,     -ben mind az  , mind a   

szám nulla. 

     -ra a komplex számok részhalmaza a nullát tartalmazó halmaz. 

   -ra a komplex számok részhalmaza az imaginárius számok. 

   -ra a komplex számok részhalmaza a valós számok. 

Halmazelméleti azonosságok és bizonyítási módszer igazolásukra 

Halmazelméleti azonosságok 

1.a)         

2.a) (   )      (   ) 
3.a)   (   )  (   )  (   ) 

4.a)    ̅̅ ̅̅ ̅̅ ̅      

1.b)         

2.b) (   )      (   ) 
3.b)   (   )  (   )  (   ) 

4.b)    ̅̅ ̅̅ ̅̅ ̅      

Bizonyítási módszer igazolásukra 

Az azonosságok a kétoldali tartalmazás módszerével láthatók be, melynek lényege, hogy oda-

vissza igazoljuk azt, hogy ha egy elem az egyenlőség egyik oldalán lévő halmazban benne 

van, akkor szükségszerűen a másik oldali halmaz is tartalmazza ezt az elemet. 

Skatulya elv, példa 

A skatulya elv azt állítja, hogy ha   dolgot szétosztunk   csoportba, és    , akkor lega-
lább két dolog azonos csoportba fog kerülni. 

Példa Egy osztályba 30 gyerek jár. Igazoljuk, hogy biztosan van 3 olyan tanuló, akik 

ugyanabban a hónapban születtek. 

Megoldás Kezdjük el „szétosztani” a tanulókat születési hónapjaik szerinti csoportokba 

úgy, hogy lehetőleg ne kerüljön 3 gyerek egy csoportba. Mivel 12 hónap van, 

ezért legfeljebb 24 tanulót lehet úgy hónapok szerint rendezni, hogy egy cso-

portban se legyen legalább 3 gyerek. A 25. tanulót már mindenképpen olyan 

csoportba kell rakni, ahol rajta kívül legalább ketten vannak, és így az állítás 

igazolást nyert. 

kommutatív
asszociatív

disztributív

De Morgan
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7B Skalárszorzat fogalma, skalárszorzat   -ben. 

Skalárszorzat fogalma 

Definíció Az 〈   〉       függvényt, melynek függvényértékét  (   )  〈   〉-ként 
jelöljük, skalárszorzatnak nevezzük, ha teljesülnek rá a következő tulajdonsá-

gok: 

1.)      esetén 〈   〉    és 〈   〉    pontosan akkor, ha     
(pozitív definit) 

2.)        esetén 〈   〉  〈   〉 (szimmetrikus) 

3.)        és     esetén 〈    〉   〈   〉 (homogén) 

4.)          esetén 〈(   )  〉  〈   〉  〈   〉 (lineáris) 

Szokásos skalárszorzat 

Két geometriai vektor skaláris szorzatán az     | || |      számot értjük. 

Két tetszőleges,   dimenziós   és   vektor skaláris szorzatán a következő számot értjük: 

    ∑    

 

   

 

ahol    és    a vektorok megfelelő koordinátái. 
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8A Számosságok. Egyenlő, kisebb/nagyobb számosságú 

halmazok. Természetes számok, racionális számok, valós 

számok számossága (B). Cantor-féle átlós eljárás. Cantor 

tétel (Halmaz és hatványhalmazának számossága közti 

összefüggés). Kontinuum hipotézis. 

Egyenlő, kisebb/nagyobb számosságú halmazok 

Definíció Egy   és egy   halmaz egyenlő számosságú, ha létezik       függvény, 
amely a két halmaz elemei között kölcsönösen egyértelmű megfeleltetést létesít. 

Jelölés: | |  | | 

Definíció Egy   halmaz számossága legalább akkora, mint   számossága, ha létezik 

     részhalmaz, amely   halmazzal egyenlő számosságú. Jelölés: | |  | | 

Definíció Egy   halmaz véges számosságú, ha van olyan véges     szám, amelyre az 

{         } halmaz és az   halmaz egyenlő számosságú. 

Definíció Egy halmaz megszámlálhatóan végtelen számosságú (vagy röviden megszámlál-

ható), ha a természetes számok   {     } halmazával egyenlő számosságú. 

Állítás Ha   megszámlálható és a tőle diszjunkt   halmaz véges, akkor     is meg-

számlálható. 

Állítás A diszjunkt     halmazok egyesítésének   számossága csak   és   számosságá-

tól függ, vagyis ha   és   helyére a velük egyenlő számosságú    és    halma-

zokat tesszük úgy, hogy    és    diszjunktak, akkor       számossága is  . 

Állítás Véges sok (  darab) diszjunkt, megszámlálható    halmaz uniója       
    is 

megszámlálható. 

Állítás Megszámlálhatóan sok diszjunkt    halmaz, melyek mindegyike megszámlálható, 

egyesítve megszámlálható halmazt alkotnak, vagyis       
    halmaz meg-

számlálható. 

Állítás A (   ) intervallumba tartozó összes valós szám   halmaza megszámlálhatónál 
nagyobb számosságú. 

Állítás Legye   egy véges vagy megszámlálhatóan végtelen halmaz,   pedig egy tőle 

diszjunkt, kontinuum számosságú halmaz. Ekkor |   |  | |. 

Bizonyítás Ez a | | számosság leaglább megszámlálható, hiszen   tartalmazza például a 

nyilvánvalóan megszámlálható {
 

 
 
 

 
 
 

 
  } részhalmazt. Indirekt módon tegyük 

fel, hogy   megszámlálható, vagyis elemeit valamilyen         sorrendbe ren-

dezhetjük. Minden ilyen    egy   és   közötti valós szám, felírható tehát végte-

len tizedestörtként,             . (az egyértelműség miatt           , ha 

      végződésű számot kizárunk a halmazból). Az indirekt feltevés sze-

rint tehát a következő sorozat   minden elemét tartalmazná: 
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 A táblázat „átlója” mentén végighaladva készítsünk olyan   valós számot, 

melynek             tizedestört alakjához a következőképp jutunk: 

   {
             
             

 

 Ez a   szám biztosan nem szerepelhet a fenti táblázatban, hisz bármely  -re el-

mondható, hogy a    szám  -edik tizedesjegye különbözik a   szám  -edik 

tizedesjegyétől. Mivel így nem minden   és   közötti valós szám szerepel a fel-

sorolásban, ellentmondáshoz jutunk, tehát | | nem lehet megszámlálható.   

Cantor-féle átlós eljárás 

A fenti bizonyítás az ún. Cantor-féle átlós eljárást használja. Leggyakrabban a rekurzív függ-

vények matematikájában alkalmazzák olyan esetben, amikor azt szeretnék igazolni, hogy egy 

univerzális kiszámítási tulajdonsággal rendelkező függvény nem eleme annak a függvényosz-

tálynak, melynek kiszámítására hivatott. 

Természetes számok, racionális számok, valós számok számossága (B) 

Természetes számok 

A megszámlálhatóan végtelen számosság definíciójából következően az   halmaz számossá-
ga megszámlálható. 

Racionális számok 

Állítás A racionális számok   halmaza megszámlálható. 

Bizonyítás Helyezzük az    {             } halmazba az összes egész számot, az 

   {
 

 
  

 

 
 
 

 
  

 

 
  } halmazba az összes olyan törtet, melynek a nevezője   

és már nem egyszerűsíthető; az    {
 

 
  

 

 
 
 

 
  

 

 
 
 

 
  

 

 
  } halmazba az ösz-

szes olyan törtet, melynek a nevezője   és már nem egyszerűsíthető és így to-

vább. Ezek az    halmazok megszámlálhatóak, hisz elemeiket föl tudjuk sorolni. 

Így megszámlálható sok diszjunkt halmazhoz jutunk, melyek egyesítése szintén 

megszámlálható, és kiadja   halmazt.   

Valós számok 

Mivel a valós számok halmazának része a (   ) intervallum, melyről már korábban beláttuk, 

hogy kontinuum számosságú, így a fenti állításból következik, hogy   számossága kontinu-

um. 

Cantor tétel (Halmaz és hatványhalmazának számossága közti összefüggés) 

Tétel Ha   halmaz, akkor nincs olyan  -n értelmezett   függvény, mely ráképez a   

hatványlahmazára, azaz | |  |  |. 

Kontinuum hipotézis 

A kontinuumhipotézis szerint nincs olyan halmaz, amelynek számossága a valós számok 

számossága (kontinuum-számosság) és a természetes számok számossága (megszámlálhatóan 

végtelen) közé esne. 

Jelölje a továbbiakban a számosságokat az   (alef) jel. A megszámolható számosság jele   , a 

rákövetkező    és rekurzívan, minden   esetén az   -ra rákövetkezőt      jelölje. 

A kontinuumhipotézis szerint:        
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Az általánosított kontinuumhipotézis szerint tetszőleges  -ra teljesül, hogy ha   számossága 

  , akkor |  |       

8B Vektortér fogalma.  

Vektortér 

Definíció A   nemüres halmazt vektortérnek nevezzük a   test felett, ha az alábbi tulaj-

donságok teljesülnek. 

A   halmazon értelmezve van egy összeadás művelet, bármely         

elemhez hozzárendel egy  -beli elemet, amelyet      -vel jelölünk. Az ösz-
szeadás kommutatív csoport. 

A   test és a   halmaz között értelmezve van a skalárral való szorzás 

(skalárszoros): bármely     skalárhoz és bármely     vektorhoz egyértel-

műen hozzárendelünk egy  -beli elemet, melyet   -vel jelölünk. A skalárszoros 
a következő tuljadonságokkal rendelkezik: 

Bármely       és          esetén teljesül: 

     , ahol   a   test szorzásra vonatkozó egységeleme. 

 a vegyes asszociatív szabály: (  )   (  ) 

 a vegyes disztributív szabályok: 

(   )        

 (     )          
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9A Nagyságrend. Függvények növekedése, aszimptotikus kö-

zelítések, kis ordó, nagy ordó. Nagyságrend fogalma. 

Példa egyenlő nagyságrendekre. Exponenciális növeke-

dés, ennek illusztrálása példával. 

Függvények növekedése, aszimptotikus közelítések, kis ordó, nagy ordó 

Definíció Legyen két függvény,   és  , melyek a valós vagy az egész számok halmazából 

képeznek a valós számok halmazába. Azt mondjuk, hogy  ( )   ( ( )) 

(nagy-ordó), ha létezik olyan     pozitív konstans, amelyekre: 

| ( )|    | ( )|      

 Ekkor azt mondjuk, hogy  ( ) aszimptotikus felső korlátja  ( )-nek. 

Példa  ( )        esetén  ( )   ( ( )), ahol  ( )             

Definíció Legyen két függvény,   és  , melyek a valós vagy az egész számok halmazából 

képeznek a valós számok halmazába. Azt mondjuk, hogy  ( )   ( ( )) 

(nagy-omega), ha létezik olyan     pozitív konstans, amelyekre: 

| ( )|    | ( )|      

 Ekkor azt mondjuk, hogy  ( ) aszimptotikus felső korlátja    ( )-nek. 

Példa  ( )  
  

 
   esetén  ( )   ( ( )), ahol  ( )       

 

 
     

Nagyságrend fogalma 

Definíció Legyenek   és  , a valós vagy egész számok halmazából a valós vagy az egész 

számok halmazába képező függvények. Azt mondjuk, hogy  ( )   ( ( )) 

(nagy-teta), ha teljesül: 

 ( )   ( ( )) és 

 ( )   ( ( )) 

 Ekkor azt mondjuk, hogy a két függvény nagyságrendje megegyezik. 

Példa egyenlő nagyságrendekre 

 

 

Nagy ordó „rendezés”: 

 ( )   ( ( ))    

(   ( ))   ( )      

    (  )      

Függvények nagyságrendje: 

1.) konstans 

2.) logaritmus 

3.) elsőfokú polinomok 

4.) hatvány logaritmusok 

5.) polinomok 

6.) exponenciális 

7.) faktoriális 
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Exponenciális növekedés, ennek illusztrálása példával 

Az exponenciálisan növekvő mennyiségek minél nagyobbak, annál gyorsabban növekednek. 

A növekedés mértéke arányos a mennyiség nagyságával. Az exponenciálisan növekvő meny-

nyiségek változását exponenciális függvény írja le. 

Az időben lezajló exponenciális növekedés képlete:  ( )         

Példa Egy papírlap hajtogatása során minden félbehajtásnál a papír vastagsága meg-

duplázódik. 

9B Gram-Schmidt ortogonalizáció (B) 

Tétel Minden altérben van ortogonális bázis. 

Bizonyítás Konstruktív, azt bizonyítjuk, hogy bármely független rendszerből kiindulva, így 

bázisból is, tudunk ugyanolyan elemszámú ortogonális rendszert konstruálni. Az 

alkalmazott eljárás neve Gram-Schmidt ortogonalizáció. 

Legyen            a független rendszer. Ebből            ortogonális rend-

szer a következőképpen kapható: 

      

            

Vegyük mindkét oldal skalárszorzatát   -gyel, és válasszuk a 〈     〉 skalár-

szorzatot nullának, így lesznek ortogonálisak e vektorok. Ebből: 

    
〈      〉

〈     〉
, így       

〈     〉

〈     〉
   

Ehhez hasonlóan általában a definiáló egyenletnek rendre vegyük a skalárszorza-

tát a              vektorokkal, az együtthatókra a következőt kapjuk: 

                               

    
〈      〉

〈     〉
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10A Nulladrendű logika. Műveletek, kiértékelési szabályok, 

interpretációk. Logikai (szemantikai) következmény fo-

galma, példák. A rezolúció alapelve (B). Példák matema-

tikai bizonyítási módszerekre. 

Műveletek 

Egyváltozós műveletek 

Negáció (tagadás) 

     

    
    

Kétváltozós műveletek 

Konjunkció (és) 

        

      
      
      
      

 

Diszjunkció (vagy) 

        

      
      
      
      

 

Implikáció (következtetés) 

        

      
      
      
      

 

Ekvivalencia 

Definíció     (   )  (   ) 

                

          
          
          
          

 

Definíciók 

Definíció Az a formula, amely minden interpretációban igaz, tautológia. 

Definíció Az a formula, amely minden interpretációban hamis, kontradikció. 

Definíció Azt az interpretációt, amelyben a formula igaz, modellnek nevezzük. 

Definíció Adott két formula    . A két formula ekvivalens, ha minden interpretációban 

ugyan az az igazságértékük. Jelölése:     

Fontos ekvivalens formulák 

1.)          

2.)  (   )        (De Morgan azonosság 1.) 

3.)  (   )        (De Morgan azonosság 2.) 

Lemma    és   akkor és csak akkor ekvivalens, ha     tautológia. 

Tétel Ha   tautológia, akkor az ítéletváltozók helyébe formulákat írva tautológiát ka-
punk. 
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Tétel Ha   tautológia, akkor bármely részformula helyett azzal ekvivalens formulát 

írva tautológiát kapunk. 

Tétel Az ekvivalens nulladrendű formulák az összes formulák partícióit adják.  

  ha     {
   
          
              

vagyis ekvivalencia reláció. 

Logikai következmény 

Definíció Modellelméleti vagy szemantikus következményfogalom: Azt mondjuk, hogy az 
{          } formulahalmaz következménye  , ha minden olyan interpretáci-

óban, amelyben az           formulák igazak,   is igaz. 

Más szavakkal: az {          } formulahalmaz következménye  , ha   lega-

lább akkor igaz, amikor az   -k igazak. 

Jelölése: {          }     

Példa Ha elfogy a benzin, az autó leáll. Elfogyott a benzin.    Az autó leáll. 

Helyes következtetési sémák 

Definíció Azokat a következtetési sémákat tekintjük helyes következtetési sémának, ame-

lyekben a következmény valóban a feltételek (szemantikai) következménye. 

Tétel {          }     akkor és csak akkor, ha               

Bizonyítás Az           együttesen akkor és csak akkor igaz, ha            igaz. 

  

A fenti tétel miatt a    jel bal oldalát a továbbiakban egyszerű  -val jelöljük, ahol  -n mindig 

az              formulát értjük. 

Tétel      akkor és csak akkor, ha     tautológia. 

Bizonyítás 1.) Lássuk be, hogy ha     , akkor     tautológia:  

Írjuk föl az igazságtáblázatot. A jelölt sort ez esetben nem lehet figyelembe ven-

ni, ugyanis akkor      nem teljesülne. A maradék sorokra pedig valóban az   
az igazságérték. 

         

       
        

       
       

2.) Lássuk be, hogy ha     tautológia, akkor     :  

Ha     tautológia, akkor a fenti igazságtáblában a jelölt sor nem szerepelhet, 

hanem csak a jelöletlen,   sorok. Ezekben a sorokban viszont valóban a   lega-

lább ott igaz, ahol   igaz.   

Tétel      akkor és csak akkor, ha      kontradikció. 

Bizonyítás Az      akkor és csak akkor, ha     tautológia, vagyis  (   ) kontra-

dikció. Ezt kifejtve:  (   )   (    )                
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Rezolúció 

Tétel (a rezolúció alapelve) {        }       

Bizonyítás (igazságtáblával) 

                         

                 
                  

                 
                 
                 
                  
                  
                  

A jelölt sorokban a feltétel nem teljesül, így a következmény teljesülését nem 

vizsgáljuk. A jelöletlen sorokban viszony a következmény legalább ott igaz, ahol 

a feltétel igaz, tehát ez egy helyes következtetési séma.   

Tétel (helyesség) Legyen   tetszőleges klózhalmaz. Ha  -ből levezethető az üres klóz, 

akkor   kielégíthetetlen. 

Lemma Legyen   tetszőleges klózhalmaz és a           klózsorozat rezolúciós leveze-

tés  -ből. Ekkor    minden         -re tautológikus következménye az   

halmaznak, azaz      . 

Bizonyítás Teljes indukcióval.  

1.) A levezetés első klóza,    biztosan eleme  -nek, tehát      . 

2.) Tegyük fel, hogy minden    -re igazoltuk már, hogy      . 

3.) Belátjuk, hogy     -re is igaz az állítás. Ha       , akkor 

       . Ha      valamely       klózok rezolvense, akkor 
{     }       . Az indukciós feltevés miatt       és      . 

Ebből        .   

Bizonyítás Tegyük fel, hogy van olyan   interpretáció, ami kielégíti  -et. A lemma szerint 

 -ből való rezolúciós levezetésbeli bármely    klózra     , tehát   kielégíti a 

rezolúciós levezetés minden klózát is. De az üres klóz kielégíthetetlen, tehát nem 

lehet eleme a levezetésnek. Így tehát ha  -ből levezethető az üres klóz, akkor   

kielégíthetetlen.   

Tétel (teljesség) Ha az   véges klózhalmaz kielégíthetetlen, akkor  -ből levezethető az 
üres klóz. 

Példák matematikai bizonyítási módszerekre 

Direkt bizonyítás, dedukció: „Tegyük fel, hogy A igaz”. 

Indirekt bizonyítás: „tegyük fel, hogy A mégis igaz”; „Lehetetlen, hogy A igaz legyen, így 

 A igaz.” 

10B Szita formula 

A szita formulát lásd a 7A. tételben a 25. oldalon! 
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11A Elsőrendű logika. Szintaxis nullad-, és elsőrendben. Sze-

mantika: kvantorok, interpretációk elsőrendben. Sze-

mantikai következmény elsőrendben. Szintaktikai követ-

kezmény fogalma. Rezolúció elsőrendben. 

Szintaxis 

Nulladrendű logika 

Jelkészlet 

1.) betűk 

2.)  ,  ,  ,   atomok 

3.)  ,   

4.) zárójelek 

Formula 

Minden atom formula. 

Ha   és   formulák, akkor   ,    ,    ,     is formulák. 

A fenti két szabály véges sokszori alkalmazásával kapjuk a formulákat. Az atomi formulákat 

latin, az összetett formulákat görög betűvel jelöljük. 

Elsőrendű logika 

Jelkészlet 

1.) változószimbólumok:         

2.) konstansszimbólumok:         

3.) prédikátumszimbólumok:         

4.) függvényszimbólumok:         

5.) logikai összekötő jelek (műveletek jelei):  ,  ,  ,   

6.) kvantorok:  ,   
7.) zárójelek 

Kifejezés (term) 

Minden individuumváltozó és konstans kifejezés. Ha            kifejezés és    -változós 

függvény szimbólum, akkor  (          ) is kifejezés. 

A fentiek szerint a függvény argumentumaiba írhatunk változókat, konstansokat, de beágyaz-

hatók más, vagy saját függvényértékek is. A kifejezések vagy prédikátumszimbólumok argu-

mentumaiban, vagy függvények argumentumaiban fordulhatnak elő, önállóan nem.  

Atomi formulák 

Ha    -argumentumú prédikátumszimbólum és            kifejezések, akkor  (          ) 
atomi formula. 

Formula 

Minden atom formula. 

Ha   és   formulák, akkor   ,    ,    ,     is formulák. 

   ( )    ( ) is formula. 

A fenti három szabály véges sokszori alkalmazásával kapjuk a formulákat. 
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Szemantika 

Kvantorok hatásköre 

Megállapodás szerint a kvantor hatásköre a mögötte álló változó utáni atomi formula vagy 

zárójelben megadott formula. Az ezekben szereplő változó előfordulásokat kötöttnek nevez-

zük, a változó egyéb előfordulásait szabadnak. 

Interpretáció 

Az elsőrendű nyelvben is valamely formula igazságértékét csak úgy tudjuk megmondani, ha 

interpretáljuk a formulát. Az interpretáció több részből áll. Meg kell adni az alaphalmazt, 

aminek elemeire vonatkoznak a formulák. Ahogyan nulladrendben is tettük, itt is meg kell 

mondani az atomi formulák igazságértékét. Ezen túlmenően, a függvényeket is interpretálni 

kell, meg kell mondani, hogy az egyes individuumokon mi a felvett függvényérték (ami szin-

tén az univerzum egy eleme, vagyis egy individuum).  

Ezután az elsőrendben tanult kvantorok jelentése, és a műveletek nulladrendben tanult jelen-

tése alapján kiértékelhető a formula. 

Definíciók 

Definíció Az elsőrendű mondat kielégíthető, ha van olyan interpretáció, amelyikben igaz. 

Ezt az interpretációt a formula modelljének nevezzük.  

Definíció Az elsőrendű mondat érvényes, ha minden interpretációban igaz.  

Definíció Az elsőrendű mondat kontradikció/kielégíthetetlen, ha minden interpretációban 

hamis.  

Definíció Adott két formula    . A két formula ekvivalens, ha minden interpretációban 

ugyan az az igazságértékük. Jelölése:     

Szemantikai következmény 

Definíció Modellelméleti vagy szemantikus következményfogalom: Azt mondjuk, hogy az 
{          } formulahalmaz szemantikai következménye  , ha minden olyan 

interpretációban, amelyben az           formulák igazak,   is igaz. 

Más szavakkal: az {          } formulahalmaz következménye  , ha   lega-

lább akkor igaz, amikor az   -k igazak. 

Jelölése: {          }     

Helyes következtetési sémák 

Definíció Azokat a következtetési sémákat tekintjük helyes következtetési sémának, ame-

lyekben a következmény valóban a feltételek (szemantikai) következménye. 

Rezolúció 

Az elsőrendű rezolúció alapjai 

A Skólem normálformát feltételezve, prenex elhagyható, csak megjegyezzük, hogy valóban, 

minden változó univerzálisan kvantált volt. Tehát a maradék részre, az ún. a mátrixra lehet 

alkalmazni a rezolúciót. A nulladrendhez képest különbséget jelent az, hogy a literálokat he-

lyettesíteni kell. 

A változó/term rendezett párokat tartalmazó   {               } halmazt helyettesítésnek 

nevezzük, ha           egymástól különböző változókat jelölnek, és       (     ). 
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Legáltalánosabb egységesítő helyettesítésnek nevezzük az              kifejezéseknek egy   

egységesítő helyettesítését, ha bármely   egyesítő helyettesítés előállítható       formában 

(   egy alkalmas helyettesítés). 

(Legáltalánosabb) egységesítő helyettesítés alapelvei: 

Változóba szabad konstanst vagy másik változót helyettesíteni.  

Változóba szabad olyan függvényt is helyettesíteni, amelynek argumentumában más válto-

zó, vagy konstansok szerepelnek. (függvénybe is, a termek képzésének szabályai szerint 

helyettesíthetők változók, illetve konstansok, illetve újabb függvények.)  

 

A rezolúcióhoz a formulát és a következmény tagadását Skólem normálformára alakítjuk. 

Nevezzük át a változókat úgy, hogy a változónevek különbözőek legyenek a klózokban. A 

rezolúció tehát csak akkor alkalmazható, ha az egységesítés elvégezhető. Ekkor pedig rezolú-

ció alapelvét adó következtetési sémát alkalmazzuk, és akárcsak nulladrendben, elvégezzük a 

rezolúciót. 

11B Sajátérték, sajátvektor fogalma. Sajátvektorok bázisá-

ban a transzformáció mátrix (B). 

Sajátérték, sajátvektor 

Definíció A   szám sajátértéke az   transzformációnak, ha van olyan nem nulla vektor, 

melyre  ( )    . Ez a nem nulla   vektor az   transzformáció   sajátértékéhez 

tartozó sajátvektora. 

Sajátvektorok bázisában a transzformáció mátrix (B) 

Tétel Tegyük fel, hogy egy       homogén lineáris transzformáció (különböző 
sajátértékhez tartozó) sajátvektorai bázist alkotnak. Ekkor a transzformáció 

mátrixa e bázisra vonathozóan diagonális, és a főátlóban rendre a megfelelő sa-

játértékek állnak. 

Bizonyítás A transzformáció mátrixának oszlopvektorai a bázisvektorok képei. Sajátvektor 

képe önmaga sajátértékszerese. Ezért az  -edik sajátvektor,    mátrixos alakja a 

sajátvektorok bázisában egy olyan oszlopvektor, melynek  -edik koordinátája   , 

az összes többi koordináta pedig  . 

Mivel ezek az oszlopvektorok alkotják a transzformáció mátrixát, az első osz-

lopvektorban pedig az első helyen stb. áll a sajátérték, a kapott mátrix valóban 

diagonális lesz.   

  

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight

Tamás
Highlight



    

 

Matematika szigorlat — PPKE ITK 

 

szóbeli vizsga, II. összetevő 38 / 76 2014. június 11. 

1411 

    
 

12A Lineáris tér. Lineáris tér fogalma. Lineáris függetlenség, 

lineáris összefüggőség, ennek igazolási módszere. Gene-

rátorrendszer, bázis, koordináták, dimenzió. Dimenzió 

ekvivalens megfogalmazásai. Kicserélési tétel (B). 

Lineáris tér fogalma 

A vektortér, vagy más néven lineáris tér a lineáris algebra egyik legalapvetőbb fogalma, 

melyhez a geometriában is használatos vektor fogalmának általánosítása vezet. 

 

Definíció A   nemüres halmazt vektortérnek nevezzük a   test felett, ha az alábbi tulaj-
donságok teljesülnek. 

A   halmazon értelmezve van egy összeadás művelet, bármely         

elemhez hozzárendel egy  -beli elemet, amelyet      -vel jelölünk. Az ösz-
szeadás kommutatív csoport. 

A   test és a   halmaz között értelmezve van a skalárral való szorzás 

(skalárszoros): bármely     skalárhoz és bármely     vektorhoz egyértel-

műen hozzárendelünk egy  -beli elemet, melyet   -vel jelölünk. A skalárszoros 
a következő tuljadonságokkal rendelkezik: 

Bármely       és          esetén teljesül: 

     , ahol   a   test szorzásra vonatkozó egységeleme. 

 a vegyes asszociatív szabály: (  )   (  ) 

 a vegyes disztributív szabályok: 

(   )        

 (     )          

Lineáris függetlenség, lineáris összefüggőség, ennek igazolási módszere 

Definíció A            vektorok lineárisan függetlenek, ha  

∑    

 

   

   

csak úgy lehetséges, hogy miden     . 

Definíció A             vektorok lineárisan összefüggők, ha  

∑    

 

   

   

lineáris kombinációban van olyan   , amelyre     . 

A lineáris függőség megállapításához azt kell eldönteni, hogy miként állítható elő a   vektor. 
Ha az egyenletrendszernek csak triviális megoldása létezik, akkor az adott vektorok lineárisan 

függetlenek. 

Generátorrendszer, bázis, koordináták, dimenzió 

Definíció Azok a vektorok, melyek lineáris kombinációjaként a vektortér minden eleme 

előáll, generátorrendszert alkotnak. 
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Definíció A   vektortér lineárisan független vektorokat tartalmazó generátorrendszerét 

bázisnak nevezzük. 

Definíció Legyen a   vektortér egy bázisa [ ]            . A     vektor e bázis-

vektorokkal való felírásában a                    lineáris kombiná-

cióban szereplő            skalárokat a   vektor [ ] bázisra vonatkozó koor-
dinátáinak nevezzük. 

Definíció A   vektortér dimenzióján bármely bázisának elemszámát értjük. 

Dimenzió ekvivalens megfogalmazásai 

A „hétköznapi” értelemben is a független irányok számát tekintjük dimenziónak, a konkrét 

irányok nem lényegesek. 

Kicserélési tétel (B) 

Tétel Az         független vektorokból álló rendszer bármely    vektorához találha-

tó a         generátorrendszerből olyan    vektor, amellyel   -t kicserélve az 

                       vektorokból álló rendszer független. 

Bizonyítás Indirekt módon bizonyítunk. Tegyük fel, hogy   -hez nem jó egyik    sem. Va-

gyis minden egyes   -re a            vektorok lineárisan összefüggők. Az 

        vektorok függetlenek voltak, (mivel független rendszerből vektort el-

hagyva az független marad). Mivel a függetlenség    hozzátételével szűnt, meg, 

ezért    kifejezhető az         vektorokkal: 

   ∑     

 

   

 

Ugyanakkor, mivel a    vektorok generátorrendszert alkotnak, ezért a tér min-

den vektora, vagyis    is kifejezhető segítségükkel: 

   ∑     

 

   

 ∑   (∑     

 

   

)

 

   

 

Tehát az         vektorok lineáris kombinációja előállítja az    vektort. Ez azt 

jelenti, hogy az         vektorok lineárisan összefüggőek lennének, azonban 

ez ellentmondás.   

12B Komplex szám trigonometrikus és exponenciális alakja. 

A komplex számok trigonometrikus és exponenciális alakját lásd a 4A. tételben a 16. oldalon! 
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13A Vektoralgebra. A 3 dimenziós vektorok tere. Speciális mű-

veletek: skaláris szorzat, vektoriális szorzat, vegyes 

szorzat, és erre vonatkozó tételek, geometriai jelenté-

sük. Sík normálvektoros egyenlete. Pont és sík távolsága. 

Vektor összetevőkre bontása és merőleges kiegészítő. 

A háromdimenziós vektorok tere 

Definíció Az irányított szakaszt vektornak nevezzük. 

Definíció Két vektor egyenlő, ha hosszuk és irányuk is megegyezik. 

Speciális műveletek és geometriai jelentéseik 

Skaláris szorzat 

Definíció Két vektor,   és   skalárszorzatán azt az    -vel jelölt számot értjük, amelyre 

    | || |    ( ), ahol   a két vektor által bezárt szög. 

Tétel Az     skalárszorzat geometria jelentése a   vektor  -ra vett előjeles merőle-

ges vetületének | |-szerese. 

Tétel A skalárszorzat tulajdonságai: 

1.) pozitív definit:                 

2.) szimmetrikus:         

3.) homogén:  (   )  (  )    

4.) lineáris:   (   )          

Tétel Két vektor skalárszorzata akkor és csak akkor  , ha a vektorok merőlegesek. 

Vektoriális szorzat 

Definíció Az       vektorok jobbrendszert alkotnak, ha közös kezdőpontból ábrázolva a   

vektor irányából nézve az   vektort  -nél kisebb szögű pozitív forgatással tud-

juk   vektor irányába vinni. 

Definíció Az     vektorok vektoriális szorzata az az    -vel jelölt vektor, melyre 

    | || |    ( )  , ahol         | |    és       vektorok jobb-
rendszert alkotnak. 

Tétel A vektoriális szorzat geometriai jelentése az   és   vektorok által kifeszített pa-

ralelogramma területe. 

Tétel Az   és   vektorok vektoriális szorzata akkor és csak akkor nullvektor, ha a vek-
torok párhuzamosak. 

Vegyes szorzat 

Definíció Az (   )    valós számot az       vektorok vegyes szorzatának nevezzük. Az 

eddigi definíciókat felhasználva: (   )    (| || |    ( ))| |    ( ) 

Tétel Az       vektorok vegyes szorzatának jelentése a vektorok által meghatározott 
paralelepipedon előjeles térfogata. 

Sík normálvektoros egyenlete 

Definíció Ha az   vektor merőleges az   síkra, akkor az   az   sík normálvektora. 
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Tétel Ha az   sík egy normálvektora  , egy adott pontja   , ebbe mutató helyvektor 

  , tetszőleges pontja  , az ebbe mutató helyvektor  , akkor a sík egyenlete: 

   (    )    

Pont és sík távolsága 

Ha adott egy   sík, melynek ismerjük az   normálvektorát és egy    pontját, akkor a nem 

síkbeli   pont távolságát a síktól az alábbi képlet adja meg: 

     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   
 

| |
 

Vektor összetevőkre bontása és merőleges kiegészítő 

Tétel Adottak az   és   vektorok. Az   vektor fölírható a   vektorral párhuzamos    

és a   vektorra merőleges    vektorok összegeként: 

           (   )           

ahol    vektor a   vektorral egyirányú egységvektor. 

13B Dimenzió tétel. (B) 

Dimenzió tétel (B) 

Tétel Legyen   valamely     lineáris leképezés. Ekkor 

   (   ( ))     (  ( ))     ( ) 

Bizonyítás Bizonyítandó, hogy a leképezés magterének és képterének dimenziójának össze-

ge éppen a kiindulási tér dimenziójával egyenlő. 

Mivel    ( ) altér, így van bázisa. Legyen az a bázis           . Egészítsük 

ki ezt a független rendszer úgy, hogy                      legyen   bázi-
sa. 

Azt kell bizonyítani, hogy           képei bázist alkotnak  -ben. Ezzel a té-

tel bizonyítása kész, hiszen a dimenzió a báziselemek száma, és így az 

    (   ) képlet, ahol   a kiindulási tér,   a magtér, (   ) pedig a 
képtér dimenziója, éppen a tétel állítása. 

Először azt látjuk be, hogy az  (    )    (  ) vektorok   ( )-ben generá-
torrendszert alkotnak, majd azt, hogy függetlenek. E két tulajdonság biztosítja, 

hogy  (    )    (  ) az   ( ) egy bázisa. 

Tekintsük   ( ) tetszőleges   vektorát. Ehhez van olyan    , melyre 

   ( ). A   vektortér bázisával az   vektort kifejezve és erre alkalmazva az   
lineáris leképezést: 

                                   

 ( )   (                                )   

    (  )     (  )       (  )       (    )       (  )   

              (    )       (  ) 

Vagyis valóban,   ( ) vektorai felírhatók az  (    )     (  ) vektorok 
lineáris kombinációiként, tehát ezek a vektorok generátorrendszert alkotnak. 
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A függetlenség bizonyításához felírjuk a definíciót: 

       (    )       (  ) 

Mivel   lineáris leképezés, ezért  

   (               ) 

Eszerint az                    vektor benne van a magtérben, így 
felírható a magtérbeli bázis vektorainak lineáris kombinációjával: 

                               

amiből 

                              

Mivel a   bázisát alkotó                      vektorok függetlenek, ezért 

a   vektort csak úgy tudják előállítani, ha minden     .   
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14A Lineáris leképezések. Lineáris leképezések összege, 

skalárszorosa, példák. Homogén lineáris leképezések lineá-

ris tere. Áttérés más bázispárra. 

Lineáris leképezések 

Definíció Legyenek   és   vektorterek, valamint        és    . Azt az       
függvényt, amely a következő két tulajdonsággal rendelkezik, homogén lineáris 

leképezésnek nevezzük. 

1. lineáris tulajdonság:  (   )   ( )   ( ) 

2. homogén tulajdonság:  (  )    ( ) 

Ha    , akkor a leképezést lineáris transzformációnak hívjuk. 

Leképezések összege, skalárszorosa, példák 

Definíció Legyenek   és   ugyanazon   test feletti vektorterek, és           lineá-

ris leképezések. Legyen továbbá egy     vektor. Az   és   lineáris leképezé-

sek összege: (   )( )   ( )   ( ) 

Definíció Legyenek   és   ugyanazon   test feletti vektorterek, és         lineáris 

leképezés. Legyenek továbbá     vektor és   szám. Az   lineáris leképezés 

számszorosa (skalárszorosa): (  )( )    ( ) 

Tétel A fent definiált összeg és számszoros valóban homogén lineáris leképezés. 

Példa Legyen adott az  , origó körüli pozitív irányú    -os forgatás, és a     tengely-
re tükrözés leképezések. Az ábrán látható e leképezések összege és 

skalárszorosa. 

 

Homogén lineáris leképezések lineáris tere 

Tétel A       lineáris leképezések halmaza a fent definiált összegre és számszo-

rosra nézve     dimenziós vektorteret alkot. 

Tétel A       lineáris leképezések vektortere izomorf a     típusú mátrixok 

vektorterével. 

Áttérés más bázispárra 

Tétel Legyen   { }   dimenziós vektortér, [ ] és [ ] két bázis  -ben. Ha a   tér   

vektorának koordináta mátrixa  [ ]  [          ][ ]
  az [ ] bázisra vonatko-

zik, akkor ugyanazon   vektor [ ] bázisra vonatkozó koordinátái az alábbi kép-

letből számolhatók: 

𝑦 

𝑎 

𝑥 

𝐴(𝑎) 

𝐵(𝑎) 
(𝐴  𝐵)(𝑎) 

 𝐴(𝑎) 
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 [ ]  [

          

          

    
          

] [

  

  

 
  

]      [ ] 

ahol az   mátrix oszlopai az [ ] bázis vektorainak [ ] bázisra vonatkozó koor-

dinátamátrixai. Az   mátrixot áttérési mátrixnak nevezzük. 

14B Kromatikus szám fogalma. Sík gráfok kromatikus szá-

ma. Ötszín tétel (B). 

Kromatikus szám fogalma 

Definíció A  ( ) a   gráf kromatikus száma, vagyis az a szám, amely megmutatja, legke-
vesebb hány szín kell a gráf csúcsainak olyan kiszínezéséhez, hogy a szomszé-

dos csúcsok más színűek legyenek. 

Sík gráfok kromatikus száma 

Definíció Egy egyszerű gráf  -színezhető, ha minden csúcsához hozzárendelhető úgy egy 
szín hogy két szomszédos csúcshoz rendelt szín különböző. 

Állítás Teljesül az alábbi összefüggés:  ( )   ( )   ( )   , ahol  ( ) a   gráf-

ban található legnagyobb fokszámú teljes gráf és  ( ) a legnagyobb fokszám. 

Ötszín tétel (B) 

Tétel Ha   gráf síkba rajzolható, akkor  ( )   . 

Bizonyítás Teljes indukcióval. Ha a gráfnak legfeljebb   csúcsa van, akkor biztosan kiszí-

nezhető   (vagy kevesebb) színnel. Tegyük fel, hogy eddig minden   csúcsú 

gráfra igazoltuk a tétel állítását. Tekintsük most az    -edik esetet, mikor is a 

  gráf     csúcsú. 

Mivel síkgráfokra       , ezért van olyan csúcs, melynek fokszámának 

maximuma  . 

Ha   fokszáma  , akkor  -et elhagyva a csúcsok száma eggyel csökken, így az 

indukciós feltevés miatt kiszínezhető   színnel. Visszatéve ezt a csúcsot, a 

szomszédjait legfeljebb   színnel színezhetjük, tehát   kapja az ötödik színt. 

Ha   fokszáma  , akkor minden szomszédja nem lehet összekötve egymással, 

mert akkor    részgráf lenne, ami nem síkgráf. Legyen   és   az   olyan 
szomszédai, melyek nincsenek összekötve, ezeket vonjuk össze egy ponttá és 

hagyjuk el  -et. Az indukciós feltevés miatt ekkor az egész gráf kiszínezhető   

színnel. Visszatéve  -et és szétszedve az   és   csúcsokat, ezek kiszínezhetők 

legfeljebb   színnel, hiszen  -nek öt szomszédja közül három színe rögzített, vi-

szont   és   azonos színűek, így   számára marad az ötödik szín.   
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15A Izomorfia. Izomorfia fogalma. Izomorfiára vonatkozó 

szükséges és elégséges feltétel. A vektorterek közti 

izomorfia ekvivalencia reláció. Mátrixok lineáris terének 

és a lineáris leképezések terének kapcsolata. Példa: az 

(   ) (   ) alakú komplex számok és a valós számok 

izomorfiája. Az      képlet magyarázata (B). 

Izomorfia fogalma 

Definíció Az egy-egy értelmű       lineáris leképezést izomorf leképezésnek nevez-

zük. Az izomorf vektorterek jelölése:     

Izomorfiára vonatkozó szükséges és elégséges feltétel 

Tétel Két vektortér akkor és csak akkor izomorf, ha dimenziójuk egyenlő. 

A vektorterek közti izomorfia ekvivalencia reláció 

Tétel A vektorterek körében az izomorfia ekvivalencia reláció. 

Mátrixok lineáris terének és a lineáris leképezések terének kapcsolata 

Tétel A       lineáris leképezések vektortere izomorf a     típusú mátrixok 
vektorterével. 

Az      képlet magyarázata (B) 

Példa: az (   ) (   ) alakú komplex, és a valós számok izomorfak 

Tétel Az (   ) komplex számok és a valós számok között egy-egy értelmű, művelettar-

tó leképezés létesíthető, vagyis az (   ) komplex számok izomorfak a valós szá-
mokkal. 

Bizonyítás Konstruktív módon, megadva az izomorfiát biztosító egy-egy értelmű leképe-

zést: (   )       . 

 A kommutatív és asszociatív tulajdonságok a komplex számokra is teljesülnek, 

így elegendő annak bizonyítása, hogy mind az összeadásra, mind a szorzásra 

nézve is zárt a halmaz: két ilyen komplex szám szorzata és összege is ugyanilyen 

típusú komplex szám. Szükséges még az inverz és az egységelem létezésének 

bizonyítása is. 

 Az összeadás nem vezet ki az {(   )     } halmazból, mivelhogy 

(   )  (   )  (     ) 

 Az összeadás egysége (   ). Erre vonatkozó inverz: (   )  (    )  (   ) 

 A szorzás nem vezet ki az {(   )     } halmazból, mivelhogy 
(   )  (   )  (           )  (    ) 

 A szorzás egysége (   ). Erre vonatkozó inverz: (   )  (
 

 
  )  (   )   

Tétel Minden komplex szám felírható olyan kéttagú összegként, ahol az első tag mind-

két tényezőjének van izomorf képe a valós számok között, a másodiknak pedig 

egy tényezője rendelkezik e tulajdonságokkal: (   )  (   )(   )  (   )(   ) 
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Bizonyítás Az (   ) neve valós egység, valós megfelelője  . A (   ) neve képzetes egység, 

jelöljük őt  -vel. Az   komplex számnak nincs valós megfelelője! 

 Ekkor   minden eleme      alakban írható, ahol      .   

Megjegyzés Az   komplex szám négyzete    (   )(   )  (    ). 

15B Kúpszeletek, mint mértani helyek 

Definíció Az ellipszis azon pontok mértani helye a síkban, amelyek két adott ponttól mért 

távolságának összege állandó, mely állandó nagyobb az adott pontok távolságá-

nál. 

Definíció A hiperbola azon pontok mértani helye a síkban, amelyek két adott ponttól mért 

távolságának különbsége állandó, mely állandó kisebb az adott pontok távolsá-

gánál. 

Definíció A parabola azon pontok mértani helye a síkban, amik egy adott egyenestől és 

egy adott, az egyenesre nem illeszkedő ponttól egyenlő távolságra vannak. 

Kúpszeletek és az ellipszis, hiperbola, parabola ekvivalenciája 

Ellipszis 

Legyen   a síkmetszet egy tetszőleges pontja. Illesszünk a 
kúpba olyan gömböket, amik érintik a kúpot és a metszősíkot 

is. A    gömb a kúp palástját    körben, a síkot    pontban 

érinti. A    gömb a kúpot    körben, a metszősíkot    pontban 

érinti.   ponton áthaladó alkotó a    és    köröket a    és    

pontokban metszi. Teljesül rájuk, hogy         és     
   , mivel ezek a szakaszok a gömbhöz húzott érintőszakaszok 

egy külső pontból. Ugyanakkor     és     egy közös alkotón 
vannak és ezek hosszának összege a forgásszimmetria miatt 

állandó. Tehát egy tetszőleges   pontnak a fókuszoktól vett 

távolságainak összege állandó, ezért ez ellipszis. 

 

Hiperbola 

Legyen   a síkmetszet egy tetszőleges pontja. Illesszünk a 
kúpba olyan gömböket, amik érintik a kúpot és a metszősíkot 

is. A    gömb a kúp palástját    körben, a síkot    pontban 

érinti. A    gömb a kúpot    körben, a metszősíkot    pontban 

érinti. A   ponton áthaladó alkotó a    és    köröket a    és    

pontokban metszi. Teljesül rájuk, hogy         és     
   , mivel ezek a szakaszok a gömbhöz húzott érintőszakaszok 

egy külső pontból. Ugyanakkor     és     egy közös alkotón 

vannak és a forgásszimmetria miatt      szakasz hossza állan-

dó és   ugyanazon az egyenesen van, ezért     és     szaka-

szok különbségének abszolút értéke állandó. Tehát egy tetsző-

leges   pontnak a fókuszoktól vett távolságainak különbségé-
nek abszolút értéke állandó, ezért ez hiperbola. 

 

𝑘  

𝑘  

𝐴 

𝐵 

𝐺  

𝐺  

𝑃  

𝑃  

𝐹  

𝐹  

𝑃 
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Parabola 

Legyen   a síkmetszet egy tetszőleges pontja. Illesszünk a kúpba egy olyan érintőgömböt  , 

ami egyúttal a síkot is érinti. A kúpot   körben, a síkot   pontban érinti a   gömb.  -ből a 

gömbhöz húzott érintőszakaszok    és    , amik egyenlő hosszúságúak. A metszősík és   

síkja   egyenesben metszik egymást.  -ből merőlegest állítva  -re és   síkjára kapjuk a   és 

a    talppontokat.    a metszősíkban van és párhuzamos azzal az alkotóval, amivel a sík is 

párhuzamos. Így a      és a       szög is váltószöge egy-egy olyan szögnek, melynek 

egyik szára a kúp tengelye, másik szára pedig egy alkotó; a két szög tehát egyenlő. Ezért a 

kapott       derékszögű háromszög egybevágó a      derékszögű háromszöggel (egy olda-

luk közös és a rajta fekvő szögeik egyenlők). Tehát az átfogók egyenlő hosszúak:       , 

másrészről       . Tehát egy tetszőleges   pont távolsága a fókusztól és a vezéregyenes-

től egyenlő, ezért ez parabola. 

 

Kanonikus alakok 

Vegyünk fel egy koordinátarendszert úgy, hogy    (    ) és    (   ) legyen, vagyis a 

fókuszok távolsága   . Jelölje a definícióban szereplő állandót   . 

 
Állítás Egy megfelelően választott koordinátarendszerben a kúpszeleteket fel lehet írni a 

következő (kanonikus) egyenletekkel: 

Ellipszis Hiperbola Parabola 

  

  
 

  

  
   

  

  
 

  

  
          

ahol   és   az ellipszis 
nagy és kis féltengelye. 

ahol   és   a hiperbola 
valós és képzetes félten-

gelye. 

ahol   a parabola pa-
ramétere. 
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16A Lineáris leképezés mátrixa. Lineáris leképezés mátrixá-

nak definíciója, szerepe (B), példák.  Speciális lineáris 

leképezések mátrixai: vetítés, forgatás,  skalárszorzat, mint 

lineáris leképezés.  A legfeljebb (n-1)-edfokú polinomok 

tere, és a polinomok deriválása, integrálása, mint lineá-

ris leképezés, ezek mátrixai. 

Lineáris leképezés mátrixa 

Ha adott egy    és egy    vektortér, melyek dimenziói    (  )    és    (  )   , akkor e 

két vektortér között bármely lineáris leképezés egyértelműen megfeleltethető egy    -es 

mátrixnak. Ez a tény lehetővé teszi, hogy a lineáris leképezéseket mátrixokkal adjuk meg, 

ugyanakkor minden mátrix egy lineáris leképezést is reprezentál. 

Hogy megadjunk egy ilyen leképezés-mátrix hozzárendelést, a kiindulási és a képtérben is 

rögzített báziskora van szükség. A leképezést reprezentáló mátrix e bázispárra vonatkoztatva 

egyértelmű. Ha ismerjük e mátrixot, akkor bármely vektor képe úgy kapható meg, hogy a 

vektort beszorozzuk a leképezés mátrixával. 

Képletben összefoglalva:    ( )    , ahol         a lineáris leképezés, az   mátrix 

pedig a leképezés mátrixa,      tetszőleges, ennek képe pedig     . 

Lineáris leképezés mátrixának definíciója, szerepe (B), példák 

Definíció Az         lineáris leképezés mátrixa  [[ ][ ]]  [  |  |  |  ], ahol 

    (  ). Azaz az   mátrix oszlopai a   -beli [ ] bázis    bázisvektorainak a 

  -beli [ ] bázisra vonatkozóan. 

Tétel Legyen         a lineáris leképezés, az   mátrix a leképezés mátrixa, 

    tetszőleges, ennek képe pedig    ,    ( ). Ekkor     . 

Bizonyítás Konstruktív, a bizonyítás során meg is adjuk a kérdéses mátrixot. Legyen    

bázisa [ ]         ,    bázisa [ ]         . A tétel állítása szerint a ki-
indulási tér bázisvektorait kell fölírnunk: 

 (  )                         

 (  )                         

  

 (  )                         

Egyszerűbben ezt így írhatjuk át 

 (  )  ∑     

 

   

 

Tetszőleges vektort a kiindulási térben az [ ] bázisra vonatkozó koordinátákkal 
fölírva: 

                   ∑    
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A vektor képe: 

 ( )   (                )   (∑    

 

   

)  ∑   (  )

 

   

 

Behelyettesítve az  (  ) bázisvektorok képeinek előállítását: 

 ( )  ∑   (  )

 

   

 ∑  (∑     

 

   

)

 

   

 ∑(∑       

 

   

)

 

   

 

Ezt kifejtve: 

 ( )  (                   )     (                   )   

A felírásból látszik, hogyha           skalárokat egy mátrix  -edik sorának te-

kintjük, akkor   képének   -kból álló koordináta vektorát e mátrix segítségével 
egyszerű szorzással számíthatjuk: 

[

          

          

    
          

] [

  

  

 
  

]

[ ]

 [

  
  

 
  

]

[ ]

 

A tétel állításában szereplő  [ ][ ] mátrix oszlopai valóban a kiindulási   -bli 

[ ] bázis    vektorainak képei a   -beli [ ] bázisra vonatkozóan.   

Speciális lineáris leképezések mátrixai: vetítés, forgatás, skalárszorzat, mint li-

neáris leképezés 

Vetítés 

 Vetítés az     síkra Vetítés az     síkra Vetítés a     síkra 

   [
   
   
   

]   [
   
   
   

]   [
   
   
   

] 

Forgatás 

Két dimenzióban, az origó körül   szöggel való pozitív forgatás mátrixa: 

  [
   ( )     ( )

   ( )     ( )
] 

A legfeljebb (n-1)-edfokú polinomok tere, és a polinomok deriválása, integrá-

lása, mint lineáris leképezés, ezek mátrixai 

Az    -ed fokú polinomok a következő alakban írhatók: 

            
       

    

Az ilyen alakú polinomok vektorteret alkotnak. Ha ebben a vektortérben rendre az          

ismeretleneket tekintjük bázisvektoroknak, akkor a fenti egyenlet koordinátás alakja: 

  [

  

  

 
  

] 
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A deriválás és integrálás ezen a vektortéren lineáris leképezés, ezért fölírható mátrixszal. A 

leképezés mátrixába a bázisvektorok képei kerülnek, tehát: 

Deriválás 

A deriválás     
         leképezés, melynek    mátrixa: 

   [

     
     
     
       

] 

ahol    egy (   )   -es mátrix. 

Integrálás 

Az integrálás     
       leképezés, melynek    mátrixa: 

  

[
 
 
 
 
 
    

 
 ⁄    

  
 ⁄   

    

    
 ⁄ ]
 
 
 
 
 

 

ahol    egy (   )   -es mátrix. 

16B Fa fogalma, éleinek száma. 

Definíció Ha egy gráf összefüggő és nem tartalmaz kört, akkor azt fagráfnak (fának) ne-

vezzük. 

Tétel Az   csúcsú,     élű összefüggő gráfok fák. 

Tétel Az   csúcsú fagráf éleinek száma    . 

Definíció Egy gráf minden csúcsát tartalmazó fát a gráf feszítőfájának nevezzük. 

Tétel Minden (összefüggő) gráfnak van feszítőfája. 
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17A Altér. Altér fogalma. Szükséges és elégséges feltétel. Pél-

dák: magtér (B), képtér (B), adott sajátértékhez tartozó 

sajátvektorok tere, merőleges kiegészítő. Merőleges ki-

egészítő számítására vonatkozó tétel. Dimenziótétel. 

Altér fogalma 

Definíció Ha ⟨ |  ⟩ és     -ra is ⟨  |  ⟩, akkor azt mondjuk, hogy    részstruktúrája 

 -nak. 

Elnevezés Ha a struktúra vektortér, akkor a részstruktúrát altérnek nevezzük. 

Példa Az    -es mátrixok vektorterében a diagonális mátrixok alteret alkotnak. 

Szükséges és elégséges feltétel 

Tétel Legyen   vektortér valamely   test felett, és    .   akkor és csak akkor alt-

ere  -nek, ha minden         és    -re         és       

Példák: magtér (B), képtér (B), adott sajátértékhez tartozó sajátvektorok 

tere, merőleges kiegészítő 

Definíció Legyen   valamely     lineáris leképezés. Azon vektorok összességét  -
ben, amelyek képe a nullvektor, a leképezés magterének nevezzük. Jelölése 

   ( ) 

Definíció Legyen   valamely     lineáris leképezés. Azon vektorok összességét  -

ben, amelyek valamely  -beli vektorok képei, a leképezés képterének nevezzük. 

Jelölése   ( ) 

Tétel Legyen   valamely     lineáris leképezés   felett.    ( ) altere  -nek. 

Bizonyítás Legyenek   és   a magtér vektorai, vagyis  ( )   ( )      

 (   )   ( )   ( )       , összegük magtérbeli 

 (  )    ( )       , skalárszorosuk magtérbeli 

A fenti két tulajdonság miatt a magtár zárt a műveletekre, tehát a magtér altér.   

Tétel Legyen   valamely     lineáris leképezés   felett.   ( ) altere  -nek. 

Bizonyítás hasonlóan 

Merőleges kiegészítő számítására vonatkozó tétel (?) 

 

 

 

Dimenziótétel 

A dimenziótételt (bizonyítással együtt) lásd a 13B. tételben a 41. oldalon! 

17B Lineáris leképezés fogalma 

A lineáris leképezés fogalmát lásd a 14A. tételben a 43. oldalon! 
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18A Sajátérték, sajátvektor. Sajátérték, sajátvektor fogalma. 

Példák. Speciális transzformációk mátrixai, sajátértékei, 

sajátvektorai. Sajátvektorok bázisában felírt transzformáci-

ós mátrix (B). 

Sajátérték, sajátvektor fogalma, sajátvektorok bázisában felírt transzformációs 

mátrix (B). Példák. 

A címben összefoglaltakat lásd a 11B. tételben a 37. oldalon! 

Speciális transzformációk mátrixai, sajátértékei, sajátvektorai. 

Valós speciális mátrixok Komplex speciális mátrixok 

Szimmetrikus, azaz      Hermitikus, azaz    
 
 

Antiszimmetrikus, azaz       Ferdén hermitikus, azaz     
 
 

Ortogonális, azaz       Unitér, azaz      
 
 

 

Tétel Hermitikus mátrix sajátértékei valósak. 

Tétel Ferdén hermitikus mátrix sajátértékei tisztán képzetesek vagy nullák. 

Tétel Unitér mátrix sajátértékeinek abszolút értéke  . 

18B Lineáris függetlenség, összefüggőség fogalma. 

A lineáris függőséget és függetlenséget lásd a 1B. tételben a 9. oldalon! 
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19A Bilineáris formák. Kvadratikus alakok és szimmetrikus 

mátrixok. Főtengelytranszformáció és diagonalizálás. 

Kúpszeletek kanonikus alakja. A sajátvektorok bázisában 

(ha létezik) felírt mátrix. 

Bilineáris függvények 

Definíció Legyen a   vektortér a valós test felett. Az         leképezést 

bilineárisnak nevezzük, ha mindkét változójában lineáris. Az   minden (     ) 
vektorpárhoz egyértelműen hozzárendel egy valós számot, melyet  (     )-vel 
jelölünk. Tulajdonságai: 

1.a)  (        )   (     )   (     ) 

1.b)  (        )   (     )   (     ) 

2.a)  (      )    (     ) 

2.b)  (      )    (     ) 

Definíció Az   bilineáris függvények a [ ]         bázis szerinti   mátrixán azt az 

   -es mátrixot értjük, melyben az  -edig sor  -edik eleme      (     ) 

Tétel Ha         bilineáris függvény, akkor  (   )      , ahol       és   

a bilineáris függvény mátrixa. 

Definíció Az   bilineáris függvény szimmetrikus, ha  (     )   (     ). 

Tétel Az   bilineáris függvény akkor és csak akkor szimmetrikus, ha mátrixa szimmet-
rikus. 

Kvadratikus alakok 

Definíció Az         szimmetrikus bilineáris függvényhez tartozó        leké-

pezést   kvadratikus alakjának nevezzük, ha teljesül  ( )   (   ), minden 

    esetén. 

Definíció A   mátrix ortogonális, ha       , ahol   a megfelelő típusú egységmátrix. 

Másképpen,   ortogonális, ha transzponáltja inverze is (      ). 

Tétel Szimmetrikus mátrix különböző sajátértékeihez tartozó sajátvektorai merőlege-

sek. 

Definíció Az   mátrix ortogonálisan diagonalizálható, ha        , ahol   ortogonális, 

  diagonális mátrix. 

Tétel (Főtengely tétel) A        kvadratikus alakhoz tekintsük az   ortogonális 

transzformációt, amelynek   mátrixában az oszlopok   szimmetrikus mátrix 
ortonormált sajátvektorai. Áttérve ezen ortonormált sajátvektorok bázisára, va-

gyis alkalmazva az      koordinátatranszformációt, a   kvadratikus alak a 
következőképpen írható: 

            ∑    
 

 

 

ahol   -k az   mátrix sajátértékei. Ezt a transzformációt főtengely transzformá-

ciónak nevezzük. 

Definíció A        kvadratikus alak        szimmetrikus mátrixának   különböző 

sajátértékéhez tartozó sajátaltereit a   kvadratikus alak főtengelyeinek nevezzük. 
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Definíció A   kvadratikus alak pozitív definit, ha minden     helyettesítésre    . 

A   kvadratikus alak pozitív szemidefinit, ha minden  -re    . 

A   kvadratikus alak indefinit, ha pozitív és negatív értékeket egyaránt fölvesz. 

Tétel Az    -es   mátrix akkor és csak akkor pozitív definit, ha minden sajátértéke 
pozitív. 

Az    -es   mátrix akkor és csak akkor pozitív szemidefinit, ha minden saját-
értéke pozitív vagy nulla. 

Tétel   akkor és csak akkor pozitív definit, ha a bal felső négyzetes mátrixok aldeter-

minánsai mind pozitívak. (Bizonyítás nélkül.) 

Tétel (Spektrál tétel) Valamely négyzetes mátrix akkor és csak akkor diagonalizálható 

ortogonálisan, ha szimmetrikus. (Bizonyítás nélkül.) 

Diagonalizálás 

Definíció Az   mátrix hasonló a   mátrixhoz, ha létezik olyan   mátrix, mellyel fennáll, 

hogy        . 

Definíció Az   mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz. 

Tétel Hasonló mátrixok sajátértékei páronként egyenlők. Továbbá, ha   hasonló  -

hez, azaz        , és   sajátvektora  , akkor   ugyanazon sajátértékhez 

tartozó sajátvektora   . 

Tétel Ha a transzformáció sajátvektorai bázist alkotnak, akkor áttérve e bázisra, a 

bázistranszformáció eredménye az a diagonális mátrix, melynek főátlójában a 

sajátértékek állnak. 

Tétel Az   mátrix akkor és csak akkor diagonalizálható, ha van sajátvektorokból álló 
bázisa. 

Tétel (Diagonalizálhatóság elégséges feltétele) Ha valamely   kvadratikus    -es 

mátrix sajátértékei mind különbözők, akkor a mátrix diagonalizálható. 

Tétel (Diagonalizálhatóság szükséges és elégséges feltétele) Ha valamely      -es 
mátrix sajátértékei által meghatározott alterek (sajátalterek) dimenzióinak ösz-

szege pontosan  , akkor a mátrix diagonalizálható. 

Kúpszeletek kanonikus alakjai 

Állítás Egy megfelelően választott koordinátarendszerben a kúpszeleteket fel lehet írni a 

következő (kanonikus) egyenletekkel: 

Ellipszis Hiperbola Parabola 

  

  
 

  

  
   

  

  
 

  

  
          

ahol   és   az ellipszis 

nagy és kis féltengelye. 

ahol   és   a hiperbola 

valós és képzetes félten-

gelye. 

ahol   a parabola pa-

ramétere. 
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19B Binomiális tétel (B). Binomiális együtthatók tulajdonsá-

gai. 

Binomiális tétel 

Tétel Kéttagú kifejezés (binom) bármely nemnegatív egész kitevőjű hatványa poli-

nommá alakítható a következőképp:  

(   )  (
 
 
)   (

 
 
)        (

 
 
)   ∑(

 
 
)

 

   

       

ahol     és      . 

Bizonyítás Tudjuk, hogy bármely kommutatív gyűrűben a több tag szorzását több taggal oly 

módon végezhetjük el, hogy minden tagot szorzunk minden taggal. Írjuk fel az   

tényezős (   )(   ) (   ) szorzatot. Ha mindegyik tényezőből az  -

kat szorozzuk össze,   -t kapjuk. Ha (   ) tényezőből az  -kat és egy ténye-

zőből a  -t választjuk, ezt   féleképp tehetjük meg, így       -t kapunk. Ha 

(   ) tényezőből az  -kat és 2 tényezőből a  -ket választjuk, amit (
 
 
) féle-

képp tehetünk meg, akkor (
 
 
)        lesz az eredmény. Így folytatva, az összes 

eset előáll.   

Pascal háromszög 

Írjuk fel a binomiális együtthatókat az alábbi formában: 

         (
 
 
)            1      

        (
 
 
)  (

 
 
)          1  1     

       (
 
 
)  (

 
 
)  (

 
 
)        1  2  1    

      (
 
 
)  (

 
 
)  (

 
 
)  (

 
 
)      1  3  3  1   

     (
 
 
)  (

 
 
)  (

 
 
)  (

 
 
)  (

 
 
)    1  4  6  4  1  

    (
 
 
)  (

 
 
) 

 (
 
 
) 

 (
 
 
)  (

 
 
) 

 (
 
 
)  1  5  10  10  5  1 

Tétel Legyen   nemnegatív egész szám és legyen         szintén egész. Ekkor 

fennállnak a következő összefüggések: 

1.) szimmetria tulajdonság 

(
 
 
)  (

 
   

) 

2.) összegzés 

(
 
 
)  (

 
   

)  (
   
   

) 

3.) kettőhatvány 

(
 
 
)  (

 
 
)    (

 
 
)     

4.)  

(
 
 
)  (

 
 
)  (

 
 
)    (  ) (

 
 
)  {
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20A Euklideszi tér. Euklideszi tér definíciója. Skalárszorzat, 

norma, metrika, és ezek kapcsolata euklideszi terekben. 

Ortogonalitás. CBS euklideszi terekben (B) és speciálisan
 

   -ben. Ortonormált rendszer létezése. 

Skalárszorzat 

Definíció Az 〈   〉       függvényt, melynek függvényértékét  (   )  〈   〉-ként 
jelöljük, skalárszorzatnak nevezzük, ha teljesülnek rá a következő tulajdonsá-

gok: 

5.)      esetén 〈   〉    és 〈   〉    pontosan akkor, ha     
(pozitív definit) 

6.)        esetén 〈   〉  〈   〉 (szimmetrikus) 

7.)        és     esetén 〈    〉   〈   〉 (lineáris) 

8.)          esetén 〈(   )  〉  〈   〉  〈   〉 

Definíció A skalárszorzattal ellátott tereket Euklideszi tereknek nevezzük. 

Tétel Minden, véges dimenziós térben megadható skalárszorzat. 

Metrika 

Definíció A   halmazt metrikus térnek nevezzük, ha van rajta olyan, metrikának nevezett 

         { } függvény, melyre teljesülnek a következők: 

1.)       -ra  (   )    és  (   )    pontosan akkor, ha     
(pozitív definit) 

2.)       -ra  (   )   (   ) (szimmetrikus) 

3.)         -ra  (   )   (   )   (   ) (háromszög-egyenlőtlenség) 

Norma 

Definíció A   vektortér normált térnek nevezzük, ha van rajta olyan, normának nevezett 

       { } függvény, melyre teljesülnek a következők: 

1.)        esetén  ( )    és  ( )    pontosan akkor, ha     
(pozitív definit) 

2.)      és     esetén  (  )  | |   ( ) 

3.)        esetén  (   )   ( )   ( ) (háromszög-egyenlőtlenség) 

Tétel Minden normált tér metrikus tér. 

Tétel Minden skalárszorzatos tér normált tér. 

Tétel Minden Euklideszi tér metrikus tér. 

Cauchy-Bunyakovszkij-Schwarz egyenlőség 

Tétel (Cauchy-Bunyakovszkij-Schwarz egyenlőség) |〈   〉|  〈   〉〈   〉 

Bizonyítás Tekintsük az 〈         〉 skalárszorzatot. A pozitív definit tulajdonság 

miatt   〈         〉. Fejtsük ki ezt a következőképp: 
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  〈         〉  〈   〉  〈    〉  〈    〉  〈     〉   

 〈   〉    〈   〉    〈   〉 

Ez  -ra nézve egy másodfokú egyenlőtlenség:           . 

Mivel e függvénynek legfeljebb egy gyöke lehet, a diszkrimináns nem pozitív, 

azaz         . A megfelelő értékeket behelyettesítve: 

( 〈   〉)   (〈   〉〈   〉) 

〈   〉  〈   〉〈   〉 

  

A norma függvény bevezetésével az egyenlőség a következőképp írható: |〈   〉|  ‖ ‖  ‖ ‖ 

Ortogonalitás 

Definíció Euklideszi térben két vektor, az   és   által bezárt   szöget a következőképpen 

lehet értelmezni. Legyen 〈   〉 egy skalárszorzat  -ben, és ‖ ‖  √〈   〉 va-

lamely   vektor normája. Ekkor 

   ( )  
〈   〉

‖ ‖  ‖ ‖
 

Definíció Azt mondjuk, hogy az   vektor ortogonális a   vektrorra, ha 〈   〉   . 

Tétel Ortogonális, nem nulla vektorok lineárisan függetlenek. 

Tétel Minden altérben van ortogonális bázis. 

Definíció Ortonormált a vektorrendszer, ha páronként ortogonális, és minden elemének 

normája  . 

Tétel Minden euklideszi térnek van ortonormált bázisa. 

Tétel Az euklideszi tér valamely bázisa akkor és csak akkor ortonormált, ha egy vektor 

koordinátáját a következőképpen kapjuk meg: 

  ∑    

 

   

    〈    〉 

20B Transzformáció mátrixa, ha áttérünk másik bázisra. 

Lineáris leképezések mátrixa bázisváltás esetén 

Tétel Ha az         lineáris leképezés mátrixa rögzített [ ]     és [ ]     

bázisokra  [ ][ ], akkor ugyanezen leképezés  [  ][  ] mátrixa az [  ]     és 

[  ]     bázisokra az áttérési formulával számolható: 

 [  ][  ]      [ ][ ]  

ahol   a képtér,   a kiindulási tér áttérési mátrixa. 

Tétel Ha az         lineáris leképezés mátrixa rögzített [ ]     bázisra  [ ], 

akkor ugyanezen leképezés  [  ] mátrixa az [  ]     bázisora az áttérési for-

mulával számolható:  [  ]      [ ]  

  a kiindulási tér áttérési mátrixa.  
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21A Lineáris egyenletrendszerek. Lineáris homogén, lineáris 

inhomogén egyenletrendszer fogalma. Gauss elimináció, 

az algoritmus pontos ismertetése. Lineáris egyenlet-

rendszer megoldhatóságának feltétele és mátrix rangja. 

Egyenletrendszer megoldása inverz mátrixszal. Lineáris 

egyenletrendszerek néhány alkalmazása: vektorok függet-

lenségének, generátorrendszer és bázis megállapítására, 

Gauss elimináció és mátrix inverz számítása. 

Lineáris homogén, lineáris inhomogén egyenletrendszer fogalma 

Definíció A lineáris egyenletrendszer lineáris egyenletekből áll. Egy egyenletet lineárisnak 

nevezünk, ha a benne szereplő ismeretlenek legfeljebb első hatványon vannak. 

Definíció Az egyenletrendszer lépcsős alakjában az  -edik egyenlet tartalmazza az    is-

meretlent, de nem tartalmazhatja az              ismeretleneket. 

Definíció Ekvivalens az egyenletrendszer átalakítása, ha az átalakítás után keletkező 

egyenletrendszernek ugyanaz a megoldása, mint az eredetinek. 

Egyenletrendszer megoldása inverz mátrixszal 

A megoldási módszert lásd a 2A. tételben a 12. oldalon! 

Lineáris egyenletrendszer megoldhatóságának feltétele és mátrix rangja 

A feltételt lásd a 3A. tételben a 13. oldalon! 

Gauss elimináció, az algoritmus pontos ismertetése 

Algoritmus Lépcsős alak kialakítása Gauss eliminációval 

1. lépés 

Legyen    . 

2. lépés 

Vizsgáljuk meg:      ? Ha igen, az egyenletek cseréjével érjük el, hogy 

     . Ha nem, rátérünk a 3. lépésre. 

3. lépés 

Az  -edik ismeretlent kiküszöböljük a  -adik (             ) egyenlet-

ből úgy, hogy az  -edik egyenlet ( 
   

   
)-szeresét hozzáadjuk a  -adik egyenlet-

hez. 

a. Ha ezáltal a  -adik egyenlet többi együtthatója is, és konstans tagja is nulla, 

az egyenletet elhagyjuk. 

b. Ha ezáltal a  -adik egyenlet együtthatói nullák, de a konstans tag nem, akkor 
nyilván nem lehet olyan számokat találni, amiket behelyettesítve a bal és jobb 

oldal egyenlő. Ez az egyenlet ellentmondást tartalmaz. Az ilyen egyenlet el-

lentmondást tartalmaz, ezért röviden „tilos” egyenletnek nevezzük. Ekkor az 

eljárás befejeződött, az egyenletrendszernek nincsen megoldása. 
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c. Ha a fenti két eset nem fordul elő, és még van (   )-edik egyenlet, akkor 

növeljük meg   értékét eggyel, és ezzel az új  -vel végezzük el rendre a 2., 3. 
lépéseket. Ha nincsen már több egyenlet, akkor az eljárás véget ért, a lépcsős 

alak létrejött. 

Lineáris egyenletrendszerek néhány alkalmazása: vektorok függetlenségének, 

generátorrendszer és bázis megállapítására, Gauss elimináció és mátrix inverz 

számítása 

Ha az Olvasó az eddigi tételeket kimerítően áttanulmányozta, akkor erre mind látott példát. 

21B Euler poliéder tétele (B) 

Euler poliéder tétele (B) 

Tétel (Euler-féle poliéder tétel) A   összefüggő, egyszerű síkgráf esetében, ha   a gráf 

szögpontjainak száma,   a gráf éleinek száma és   a gráf által létrehozott terüle-

tek száma a végtelen területet is számolva, akkor        . 

Bizonyítás Az adott gráfot lépésenként újra lerajzoljuk: 

 1. lépés:   csúcs, igaz az állítás:         

2. lépés:   csúcs, igaz az állítás:         

n. lépés: Tegyük fel, hogy (   ) esetre igazoltuk a formulát:        . A 
következő lépés kétféle lehet: 

 a) Vagy meglévő csúcsokat kötünk össze egy új éllel, ekkor az élek és területek 

száma eggyel növekszik, a pontok száma változatlan. Az állítás igaz:  

          (   )  (   )    

 b) Egy új csúcsot rajzolunk be a rá illeszkedő éllel együtt, amelynek szomszédjai 

már a meglévő lerajzolt gráfban vannak. Ekkor a csúcsok és élek száma eggyel 

nő, míg a területek száma változatlan. Az állítás igaz:  

        (   )  (   )      
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22A Determinánsok. Definíció, tulajdonságok. Vondermonde 

determináns. Gauss elimináció alkalmazása determinánsok-

ra. Cramer szabály, inverz mátrix képlete (B), vegyes 

szorzat és geometriai jelentése. 

Definíció, tulajdonságok 

Definíció Az    -es   mátrix     eleméhez tartozó minormátrixának nevezzük és    -

val jelöljük azt az (   )-ed rendű mátrixot, melyet úgy kapunk  -búl, hogy 

annak  -edik sorát és  -adik oszlopát elhagyjuk. 

Definíció Ha az (   )-edrendű mátrix determinánsát már értelmeztük, akkor az  -ed 

rendű   mátrix determinánsának nevezzük a következő számot: 

|

          

          

    
          

|  ∑    (  )       (   )

 

   

 

Tulajdonságok 

1. A determináns egy sorát   számmal beszorozva a determináns az eredeti  -szorosa lesz. 

2. Ha a determináns  -edik sorának minden eleme egy kéttagú összeg, akkor két olyan deter-

minánsra bontható fel, mely elsőben az  -edik sor összegeinek első; másodikban a második 
tagjai szerepelnek, a többi elem pedig változatlan. 

3. Ha a determináns egy sora csupa nulla elemet tartalmaz, akkor értéke  . 

4. Ha egy determináns két sorát felcseréljük, akkor értéke (  )-szerese lesz. 

5. Ha egy determináns két sora megegyezik, akkor a determináns  . 

6. Ha egy determináns valamely sorához hozzáadjuk valamely sorának  -szorosát, akkor a 
determináns nem változik. 

7. Egy alsó (felső) háromszög-determináns értéke a főátlóbeli elemek szorzata. 

8. A determinánst ferdén kifejtve az eredmény  . 

9. A fenti, sorra vonatkozó tulajdonságok mindegyike igaz oszlopra is. 

Gauss elimináció alkalmazása determinánsokra 

A fenti tulajdonságok használatával elérhetjük, hogy a determináns háromszög-determináns 

legyen, és így értéke a főátlóból leolvasható. 

Vandermonde determináns 

A Vandermonde-determináns egy speciális, a lineáris algebrában és a matematika más ágai-

ban is gyakran használt nevezetes determináns. Alakja: 

 (       )  
|

|

     
    

   

     
    

   

     
    

   

     
     

    
   

|

|
 ∏(     )
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Cramer szabály 

Tétel Ha az   négyzetes mátrix, és      ( )   , akkor az      egyenletrend-

szernek pontosan egy megoldása van. A megoldásban        , ahol    de-

terminánst úgy kapjuk, hogy  -ben a  -edik oszlop helyére a jobb oldali kons-

tansokat, azaz   vektor komponenseit tesszük. 

Inverz mátrix képlete (B) 

Inverz mátrix kiszámítási képletét lásd a 2A. tételben a 11. oldalon. 

Vegyes szorzat és geometriai jelentése 

A vegyes szorzat koordinátákkal adott esetben, az       ortonormált, jobbrendszert alkotó 
bázison determinánssal is kiszámolható. 

Tétel Ha   (           ),   (           ),   (           ), 
vektorok adottak, akkor e három vektor vegyes szorzata kiszámítható a következő 

módon: 

(   )    |

      
      

      

| 

Tétel Az       vektorok vegyes szorzatának jelentése a vektorok által meghatározott 
paralelepipedon előjeles térfogata. 

22B Generátorrendszer és bázis. 

Generátorrendszerekről és bázisokról bővebben a 12A. tétel szól a 38. oldalon! 
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23A Kombinatorikus módszerek. Összeg- és szorzatszabály, 

permutáció, variáció, kombináció (B). Szita formula. Bi-

nomiális tétel. Binomiális együtthatók tulajdonságai. 

Permutáció 

Ismétlés nélküli permutáció 

Definíció Adott   elem. Az elemek egy meghatározott sorrendjét az adott   elem egy is-
métlés nélküli permutációjának nevezzük.  

Jele:    

Tétel Az   különböző elem permutációinak száma      , ahol            és 

    . 

Bizonyítás Az első helyen az         elem bármelyike állhat, utána a maradék (   ) 

elem összes lehetséges sorrendje következik. És így tovább, az utolsó elemig. Az 

összefüggéseket visszafelé fölírva adódik az állítás.  

          
     (   )     

  
     

  
     (   )  (   )         

   

Ismétléses permutáció 

Definíció Adott   elem, melyek között    darab egyenlő, másik    darab is egyenlő, …    

darab is egyenlő, ahol     , ha         , és             . Az 

adott   elem egy meghatározott sorrendjét ezen elemek egy ismétléses permutá-
ciójának nevezzük.  

Jele:   
(          ) 

Tétel Adott  ,   és           esetén az ismétléses permutációk száma  

  
(         )  

  

             
 

Bizonyítás Tekintsük az   elem egy tetszőleges permutációját. Ekkor 

   azonos elemhez     különböző indexet rendelhetünk; 

   azonos elemhez     különböző indexet rendelhetünk; 

  
   azonos elemhez     különböző indexet rendelhetünk. 
Ekkor fennáll az alábbi összefüggés: 

                
(          )        

   

Variáció 

Ismétlés nélküli variáció 

Definíció Adott   különböző elem. Ha   elem közül   elemet (     ) úgy választunk 
ki, hogy mindegyik elem csak egyszer szerepel, és a kiválasztás sorrendje is 
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számít, akkor az   elem  -ad osztályú ismétlés nélküli variációját kapjuk. 

Jele:   
  

Tétel Az   különböző elem  -ad osztályú ismétlés nélküli variációinak száma  

  
  

  

(   ) 
   (   )    (     ) 

Bizonyítás Rögzített   mellett,   szerinti teljes indukcióval bizonyítjuk.  

    esetén az állítás igaz, mert   elemből  -et pontosan   féleképpen lehet ki-
választani. 

Tételezzük fel, hogy  -ra teljesedik, és igazoljuk (   )-re. Bármelyik 
(          )  -ad osztályú variációhoz (   ) elem közül választhatunk egy 

    -ediket, hogy egy (              ) (   )-ed osztályú variációt kap-

junk. Azaz igaz a következő összefüggés:   
  (   )    

   .   

Ismétléses variáció 

Definíció Adott   különböző elem. Ha   elem közül   elemet úgy választunk ki, hogy egy 

elemet többször is választhatunk és a kiválasztás sorrendje is számít, akkor   

elem  -ad osztályú ismétléses variációját kapjuk.  

Jele:   
   

. 

Tétel Az   különböző elem  -ad osztályú ismétléses variációinak száma   
      . 

Bizonyítás Írjuk föl a kiválasztott elemeket, sorrendben. Az első helyre az adott   elem 

bármelyikét választhatjuk, így   
     . A másodosztályú ismétléses variációkat 

az első osztályúból úgy nyerjük, hogy azok mindegyikéhez hozzáírjuk az   elem 
bármelyikét, hiszen az elemeknek nem kell feltétlenül különbözniük egymástól. 

Így minden első osztályú ismétléses variációból újabb   darab másodosztályú 

ismétléses variációt kapuk. Ezek száma tehát   
      . Hasonlóan tovább: 

  
       

   

Kombináció 

Ismétlés nélküli kombináció 

Definíció Adott   különböző elem. Ha   elem közül         elemet úgy választunk 
ki, hogy mindegyik csak egyszer szerepelhet, és a kiválasztás sorrendje nem 

számít, akkor az   elem  -ad osztályú ismétlés nélküli kombinációját kapjuk. 

Jele:   
  

Tétel Az   különböző elem  -ad osztályú ismétlés nélküli kombinációinak száma  

  
  

  

(   )    
 

  (   )    (     )

  
 (

 
 
) 

Bizonyítás Az   elem  -ad osztályú ismétlés nélküli kombinációinak száma megegyezik a 

  darab kiválasztott és az (   ) ki nem választott elem ismétléses permutáció-

inak számával.  

  
    

(  (   ))
 

  

   (   ) 
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Definíció Az (
 
 
) kifejezést binomiális együtthatónak nevezzük. Megállapodás szerint: 

(
 
 
)    (

 
 
)    

A binomiális együttható fogalma általánosítható tetszőleges valós számra:  

(
 
 
)  

  (   )    (     )

  
         

Ismétléses kombináció 

Definíció Adott   különböző elem. Ha   elem közül   elemet úgy választunk ki, hogy egy 

elem többször is sorra kerülhet, és a kiválasztás sorrendje nem számít, akkor az 

  elem  -ad osztályú ismétléses kombinációját kapjuk.  

Jele:   
   

 

Tétel Az   különböző elem  -ad osztályú ismétléses kombinációinak száma  

  
          

  (
     

 
) 

Bizonyítás Az   elem  -ad osztályú ismétléses kombinációinak száma megegyezik 

      elemből   kiválasztott elem és     ki nem választott elem ismétlé-
ses permutációinak számával.  

  
          

(     )  
(     ) 

   (   ) 
 

   

Szita formula 

A szita formulát lásd a 7A. tételben a 25. oldalon! 

Binomiális tétel. Binomiális együtthatók tulajdonságai. 

A binomiális tételt és az együtthatók tulajdonságai lásd a 19B. tételben az 55. oldalon! 

23B Gauss elimináció alkalmazása determinánsokra. 

A módszert lásd a 22A. tételben a 60. oldalon! 
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24A Gráfok. Irányítatlan, irányított, súlyozott gráfok. Gráfok 

mátrixai. Élszám és fokszám összefüggése.  Speciális grá-

fok: fa, út, kör, teljes gráf. N pontú összefüggő gráfok 

élszámára, körök létezésére vonatkozó tételek (B). 

Részgráfok. Izomorfia. Összefüggő komponensek. Hamil-

ton-kör/út, szükséges ill. elégséges feltételek (Dirac, Ore). 

Gráfelmélet alapjai 

Definíció Egy   {     } gráf  

- szögpontok (pontok, csúcsok) egy   halmazából,  

- élek egy   halmazából, és  

- egy   függvényből áll, amely minden egyes     élnek egy (   )  (   ) 
rendezett párt feleltet meg, ahol       szögpontok, melyeket az   él végpont-
jainak nevezünk. 

Definíció Ha az     élnek egy (   ) rendezett pár felel meg, akkor az élt irányított él-
nek, különben irányítatlan élnek nevezzük. 

Definíció Ha egy gráf minden éle irányított, akkor a gráfot irányított gráfnak, különben ha 

minden éle irányítatlan, akkor irányítatlan gráfnak nevezzük. 

Definíció Két gráf izomorf, ha egyikük pontjai és élei kölcsönösen egyértelmű és illeszke-

déstartó módon megfeleltethetők a másik pontjainak és éleinek. 

Definíció A gráf   pontjához illeszkedő élvégek számát   fokszámának (fokának) nevez-

zük. Jelölése:  ( ) 

Definíció Egy gráfot egyszerű gráfnak nevezünk, ha sem hurokélt, sem többszörös élt nem 

tartalmaz. 

Definíció Ha egy gráfban bármely két csúcs úttal elérhető, akkor a gráfot összefüggőnek 

nevezzük. 

Tétel (Handshaking tétel) Minden gráfban a fokszámok összege az élek számának két-

szeresével egyenlő. 

Bizonyítás Tegyük fel, hogy az   él az   és   csúcsokhoz illeszkedik, azaz   és   az   él két 

végpontja. Ekkor, ha    , akkor az   élt  ( )-nál és  ( )-nél is számoltuk. 

Ha pedig    , akkor az   él hurokél, és így  ( )-nál számoltuk kétszer. Tehát 
a gráf összes csúcsainak fokszámát összeadva az élek számának kétszeresét kap-

juk.   

Tétel Minden gráfban a páratlan fokszámú csúcsok száma páros. 

Bizonyítás Minden gráfban a fokszámok összege páros, amely a páros és páratlan fokszá-

mok összegéből tevődik össze. A páros fokszámok összege nyilván páros, hiszen 

páros számok összege páros. Így a páratlan fokszámok összegének is párosnak 

kell lenni, ami csak úgy valósulhat meg, hogy ha a páratlan fokszámú csúcsok 

száma páros.   

Tétel Az   csúcsú összefüggő egyszerű gráf éleinek száma legalább    . 

Bizonyítás Teljes indukcióval. Az állítás     esetén nyilvánvalóan igaz. Tegyük fel, hogy 

valamely     esetén minden   csúcsú gráfnak van     éle. Belátjuk, hogy 
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akkor minden     csúcsú összefüggő gráfnak van   éle. Legyen   egy     

csúcsú összefüggő gráf. Ha  -nek kevesebb éle van, mint    , akkor van első-

fokú csúcsa. Ugyanis mivel   összefüggő, így izolált csúcsa nincs. Vegyük ezt 

az elsőfokú csúcsot, és a hozzátartozó éllel együtt töröljük a gráfból. Ekkor   

csúcsú összefüggő gráfot kapunk minimum     éllel, tehát teljesült az induk-

ciós feltevés. A törölt élt újra hozzáadva következik, hogy  -nek nimimum   éle 

van. Ha nem lenne elsőfokú csúcsa, akkor minden csúcsának fokszáma legalább 

  lenne, így a fokszámok összege legalább  (   ), amiből következik, hogy 

az élek száma    .   

Tétel Bármely egyszerű gráfban van két olyan pont, amelyek fokszáma egyenlő. 

Bizonyítás A lehetséges fokszámok            , vagyis   darab fokszám. Egyszerre 

azonban nem teljesülhet, hogy van   és     fokszámú csúcs, mivel az     
fokszámúból az összes csúcsba kell él vezessen, ami ellentmond annak, hogy 

van olyan csúcs, amibe nem vezet él. Ekkor már csak     féle fokszám közül 
választhatunk, amit a skatulya-elv miatt csak úgy osztatunk szét, hogy ha van le-

galább kettő csúcs, aminek ugyan az a fokszám jut.   

Tétel Ha egy gráfban minden csúcs fokszáma legalább  , akkor a gráfban van kör. 

Bizonyítás Alkalmazzuk a leghosszabb út módszerét. Legyen   hosszúságú   út a   gráf 

egy leghosszabb útja, és ennek egy végpontja  . Tekintsük most  -nek  -hez il-

leszkedő éleit. Ezek közül bármelyiknek a végpontja  -hez tartozik, ugyanis el-

lenkező esetben   hossza  -nél nagyobb lenne, ami ellentmond annak, hogy   a 

leghosszabb út. Ha   minden pontjának foka legalább  , akkor illeszkedik  -hez 

egy   él is. Ha   hurokél, akkor ez   egy körét kijelöli. Ha   nem hurokél, akkor 

 -ak  -től különböző   végpontja  -ben van, tehát  -nek a   és   pontokat ösz-

szekötő része  -vel együtt   egy körét alkotja.   

Tétel Ha egy   csúcsú gráfnak legalább   éle van, akkor van benne kör. 

Bizonyítás Teljes indukcióval. Az állatás     esetén nyilvánvalóan igaz. Tegyük fel, 

hogy valamely    -re minden   csúcsú és legalább   élű gráfban van kör. Le-

gyen   egy     csúcsú gráf, amelynek legalább     éle van. Visszatérve a 

bizonyításra, vegyük   egy   leghosszabb útját. Ha   valamelyik végpontja  -

nek nem elsőfokú csúcsai, akkor az előzőek szerint  -ben van kör. Ellenkező 

esetben töröljük  -nek egy elsőfokú csúcsát a hozzátartozó éllel együtt. Ekkor a 

kapott gráfnak   éle és   csúcsa van, tehát az indukciós feltevés miatt tartalmaz 

kört, amit   is tartalmaz.   

Gráfok felírása mátrixokkal 

 

Szomszédsági mátrix Illeszkedési mátrix (nem irányított) 
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Hamilton-kör, Hamilton-út 

Definíció Egy   kör egy   (   ) gráfban Hamilton-kör, ha   a   összes elemét (a gráf 

csúcsait) pontosan egyszer tartalmazza. Hamilton-útról akkor beszélünk, ha   

kör helyett út. 

Tétel (Szükséges feltétel Hamilton-kör létezésére) Ha egy gráfban   pontot elhagyva 

 -nál több komponens keletkezik, akkor nem tartalmazhat Hamilton-kört. 

Tétel (Ore tétele) Ha a   gráfra teljesül, hogy bármely két nem szomszédos     csúcs 

fokának összege nagyobb egyenlő   fokszámánál (   ( )     ( )   ), akkor 

 -nek van Hamilton-köre. 

Ore tételének speciális esete Dirac tétele. 

Tétel (Dirac tétele) Ha az      csúcspontú   egyszerű gráf bármely pontjának a 

foka legalább  , akkor vany  -nek Hamilton-köre. 

24B Komplex szám algebrai alakja. Az imaginárius egység 

hatványai. 

A témakör bővebb tárgyalását lásd a 4A. tételben a 16. oldalon! 
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25A Fák. Fa ekvivalens definíciói (B). N pontú fa éleinek 

száma. Prüfer kód ismertetése. Az n-pontú teljes gráf feszí-

tő fáinak száma. 

Fák 

Definíció Ha egy gráf összefüggő és nem tartalmaz kört, akkor azt fagráfnak (fának) ne-

vezzük. 

Tétel Az   csúcsú,     élű összefüggő gráfok fák. 

Bizonyítás Tegyük fel, hogy a   gráf nem fa, azaz tartalmaz kört. Ha a kör egy élét töröljük, 

akkor   csúcsú,       élű összefüggő gráfot kapunk, ami ellentmond annak, 

hogy egy   csúcsú összefüggő gráfnak legalább       éle van. Be kell még lát-
nunk, hogy ha egy összefüggő gráf valamely körének egy tetszőleges élét töröl-

jük, akkor ismét összefüggő gráfot kapunk. Tegyük fel ehhez, hogy a törölt él 

nem hurokél, hiszen hurokél törlése nem szünteti meg az összefüggőséget. Tö-

röljük a   gráf   körének (   ) élét. A   gráfban az  -ból a  -be most is el tu-

dunk jutni a   kör megmaradt élein keresztül, azaz az (   ) törlése után is eljut-

hatunk bármelyik pontból bármelyik pontba, tehát a kapott gráf is összefüggő.   

Tétel Az   csúcsú fagráf éleinek száma    . 

Bizonyítás Tudjuk, hogy minden   csúcsú gráfnak legalább     éle van. Mivel ha az   

csúcsú gráfban legalább   él van, akkor van benne kör, ezért mivel a fa körmen-

tes, összefüggő gráf, pontosan     éle kell legyen.   

Az előzőek alapján a fák négy tulajdonsága, hogy összefüggőek, csúcsaik száma  , éleik 

száma    , nem tartalmaznak kört. 

Prüfer kód 

A Prüfer kód fák tárolására alkalmas. A fa   csúcsát          számokkal tetszőlegesen 

címkézzük. A Prüfer kód alkalmazásához tudjuk, hogy minden legalább két csúcsú fában van 

legalább két csúcs, amelyek fokszáma  . 

Algoritmus (A Prüfer kód előállítása) Kiindulásként meg van adva egy fa (ábrával, mátrix-

szal stb.) Első lépésként sorszámozzuk a csúcsokat  -től  -ig. A következő lé-
pésben megkeressük a legkisebb sorszámú csúcsot a (maradék) fán. Hagyjuk el 

ezt a csúcsot a rá illeszkedő éllel együtt, és fűzzük a lista végéhez az él másik 

végén található csúcs sorszámát. Ezt a lépést addig ismételve, míg a fából csak 

egy csúcs marad, kapjuk a Prüfer kódot. 

Tétel Az     db számból álló         számokból készített kódok és a fák között 

egy-egy értelmű megfeleltetés (bijekció) van. (Nem bizonyítjuk.) 

Tétel (Caeley tétel) Feszítőfák száma   csúcsú teljes gráfban     . 

Bizonyítás Prüfer kód segítségével,     hosszú különböző sztringek száma   számjegy 

ismételt felhasználása esetén     .   

25B Inverz mátrix kiszámítási módjai. 

A módszereket lásd a 2A. tételben a 11. oldalon! 
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26A Gráfok bejárása és súlyozott gráfok. Szélességi és mélységi 

keresés. Bináris fák bejárási módjai (műveleti fák). Súlyo-

zott gráf fogalma. Kruskal, Prim, Dijkstra algoritmusok. 

Minimális feszítőfa keresése 

A probléma lényege, hogy egy élsúlyozott összefüggő egyszerű gráfban keressük a legkisebb 

élsúlyösszegű feszítőfát. 

Algoritmus (Prim algoritmus) Választunk egy kiindulási csúcsot. Az ebből kiinduló élek 

közül a legkisebb súlyú mentén választjuk a következő csúcsot. A legkisebb sú-

lyú élhez fűzzük a rá illeszkedő legkisebb súlyú élet, ha az nem alkot kört az ed-

dig vizsgált élekkel. Ha már van     él, akkor készen vagyunk. 

Algoritmus (Kruskal algoritmus) Az éleket súlyuk szerint növekvő sorrendbe rendezzük. A 

legkisebbtől kezdve vesszük őket (nem feltétlenül illeszkedően) úgy, hogy ne 

képezzenek kört. Ha már van     él, akkor készen vagyunk. 

Adott csúcsból a legrövidebb út keresése a többi csúcsba 

Algoritmus (Dijkstra algoritmus) Választunk egy kiindulási csúcsot. Mindegyik csúcshoz 

rendeljük hozzá azt, hogy mekkora volt az élsúlyok összege, amik mentén a 

csúcsba eljutottunk. Kezdetben mindegyik végtelen. Válasszuk a kiindulási csú-

csunkhoz illeszkedő éleket, és az élek másik végén lévő csúcsokhoz rendeljük 

hozzá az élsúlyok összegét, amin eljutunk a csúcsba. Ezt követően minden lé-

pésben a legkisebb összegű csúcsból indulunk ki, és nézzük meg a többi csúcsba 

vezető élek súlyösszegét. Ha ez kevesebb, mint az adott csúcshoz hozzárendelt 

érték, akkor erre módosítjuk, ha nagyobb, akkor változatlanul hagyjuk. Végül, 

ha már nem találunk semelyik csúcshoz sem kisebb összeget, végeztünk. 

Gráfbejárások 

Adott gráfban keresünk szisztematikusan adott tulajdonságú (pl. címkéjű) csúcsot. A sziszté-

ma sokféle lehet, a két alap a szélességi és a mélységi keresés.  

Szélességi keresés (Breadth-First Search = BFD) 

Algoritmus Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. 

Aztán e szomszédok összes olyan szomszédját, ahol még nem jártunk, és így to-

vább. Berakjuk az épp meglátogatott csúcsot, hogy majd a megfelelő időben a 

szomszédjaira is sort keríthessünk.  

Általános lépés: vesszük a sor elején levő   csúcsot, töröljük a sorból, megláto-

gatjuk azokat az   szomszédait, amelyeket eddig még nem láttunk, majd ezeket 

az   csúcsokat a sor végére tesszük. 

Mélységi keresés (Depth-First Search = DFS) 

Algoritmus Tetszés szerinti csúcstól elindulva egy úton addig megyünk „mélyre”, ameddig 

lehet: vagy nincsen további szomszédos csúcs, vagy már jártunk ott. Ha így 

megakadunk, akkor visszalépünk (backtrack) az előző csúcshoz, ha onnan tu-

dunk továbbmenni, akkor megint elindulunk, és a lehető legmélyebbre együnk, 

ha nem, akkor visszalépünk. 
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Fabejárás 

Megkülönböztetünk egy csúcsot, ezt gyökérnek nevezzük. A gyökér őse (szülője) a szomszé-

dos csúcsainak, és ezek a csúcsok az ősök (szülők) utódai (gyerekei). Az az utód, aki nem 

szülő, a fa levele. A fában egy út nevezhető „ág”-nak is. 

Definíció Ha egy fában minden csúcsnak legfeljebb két gyereke van, akkor a fát bináris 

fának nevezzük. 

Preorder, inorder, postorder bejárások 

Algoritmus Preorder bejárás: azaz a gyökér elem majd a bal oldali részfa preorder bejárása, 

végül a jobboldali részfa preorder bejárása. 

Algoritmus Inorder bejárás: azaz először a bal részfa inorder bejárása, majd a gyökérelem, 

végül a jobboldali részfa inorder bejárása. 

Algoritmus Postorder bejárás: azaz először a bal részfa posztorder bejárása, majd a jobbolda-

li részfa posztorder bejárása, végül a gyökérelem feldolgozása. 

26B Determináns kifejtési és ferde (B) kifejtési tétele. 

Definíció Az     elem előjeles aldeterminánsán értjük a     (  )       (   ) számot. 

Tétel (Kifejtési tétel) Egy  -ed rendű determináns tetszőleges sora van oszlopa szerint 
kifejthető, és 

   ( )  ∑       

 

   

 ∑       

 

   

 

Tétel (Ferde kifejtés tétele) Ha egy determináns egyik sorának elemeit rendre vala-

mely másik sorhoz tartozó aldeterminánsokkal szorzunk meg, majd ezeket a 

szorzatokat összeadjuk, az eredmény  . 

Bizonyítás Ezt a tételt    -as determinánsra bizonyítjuk. Szorozzuk meg az első sor ele-
meit a második sor elemeihez tartozó aldeterminánsokkal: 

|

         

         

         

|      |
      

      
|      |

      

      
|      |

      

      
|  |

         

         

         

| 

Az így kapott determináns két sora megegyezik, tehát értéke nulla.   
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27A Sík gráfok és színezésük. Euler poliéder tétele (sík gráfok 

pontjainak, tartományainak, éleinek számára vonatkozó té-

tel). Kuratowski-tétel. Euler-kör/út és létezésére vonat-

kozó szükséges és elégséges feltételek. Kromatikus szám 

fogalma. Sík gráfok kromatikus száma. 

Euler poliéder tétele 

Euler poliéder tételét lásd a 21B. tételben az 59. oldalon! 

Kuratowski-tétel 

Tétel (Kuratowski tétel) Valamely gráf akkor és csak akkor sík gráf, ha nem tar-

talmaz   -tel vagy     -mal izomorf/homeomorf részgráfot. 

Euler-kör/út és létezésére vonatkozó szükséges és elégséges feltételek 

Definíció A   gráf Euler-köre olyan zárt élsorozat, mely   összes élét pontosan egyszer 
tartalmazza. Euler-útról akkor beszélünk, hogyha az élsorozat nem feltétlenül 

zárt. 

Tétel (Szükséges és elégséges feltétel Euler-kör létezésére) Egy összefüggő   gráfban 

akkor és csak akkor létezik Euler-kör, ha minden csúcsának fokszáma páros. 

Tétel (Szükséges és elégséges feltétel Euler-út létezésére) Egy összefüggő gráf akkor 

és csak akkor tartalmaz Euler-utat, ha a páratlan fokszámú csúcsok száma   

vagy  . 

Tétel (Szükséges és elégséges feltétel irányított gráfokra) Egy összefüggő, irányított 

gráfban pontosan akkor van Euler-kör, ha minden csúcsnál a bemenő és kimenő 

élek száma megegyezik. 

Egy összefüggő, irányított gráfban pontosan akkor van Euler-út, ha van benne 

Euler-kör, vagy ha két csúcs kivételével a bemenő és kimenő élek száma minden 

csúcsban megegyezik, a kivételeknél pedig az egyik (kiindulási) csúcsban a ki-

menő élek száma eggyel több, a másik (érkezési) csúcsban pedig a bemenő élek 

száma több eggyel. 

Kromatikus szám fogalma. Sík gráfok kromatikus száma 

Síkgráfok kromatikus számát lásd a 14B. tételben a 44. oldalon! 

27B Lineáris leképezés mátrixa (B) 

A témakört lásd a 16A. tételben a 48. oldalon! 
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28A Hálózati folyamok. Hálózat, folyam, vágás fogalma. Ja-

vító út. Ford-Fulkerson tétel. 

Fogalmak 

Definíció Adott egy   (   ) irányított gráf, és ennek két különböző pontja,   és  , me-
lyeket forrásnak és nyelőnek nevezünk. (A forrásból csak kifelé, a nyelőbe meg 

csak befelé mutatnak élek.) Adott továbbá az éleken értelmezett        

nemnegatív értékű kapacitásfüggvény. 

 Ekkor   (   ) gráfot a   függvénnyel együtt (   ) hálózatnak nevezzük. 

Definíció Az       függvényt folyamnak hívjuk, ha teljesülnek a következők: 

 (     )    (     )  (     )            
 (     )   (     )  (     )    

Definíció Legyen   (   ) egy hálózat   forrással és   nyelővel. Legye         egy 

partíciója  -nek, vagyis         és        . Legyen továbbá      

és     . Ekkor az       halmazt    -vágásnak hívjuk. Az       kapacitásán  

 (     )  ∑  (     )

           

 

számot értjük. 

Definíció Adott   (   ) hálózat   forrással és   nyelővel. Jelölje       a maradék-

kapacitás-függvényt, ahol          esetén  (     )   (     )   (     ). 
Az   folyamhoz tartozó javító gráf a    (    ) az élein értelmezett maradék-

kapacitás-függvénnyel, ahol    {(     )           (     )   } 

 A   -beli irányított     utakat javító utaknak hívjuk. 

Tételek hálózatokra 

Tétel A folyam értéke egyenlő bármelyik vágáson átfolyó folyammal. 

A folyam értéke nem lehet nagyobb, mint bármelyik vágás kapacitása. 

Tétel Ha            , akkor a folyam akkor és csak akkor maximális, ha nin-
csen javító út. 

Tétel (Ford-Fulkerson tétel) Legyen   (   ) hálózat. Ekkor a maximális folyamér-

ték egyenlő a minimális vágással. 

28B Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség (B) ál-

talános, és   -ben használatos alakja. 

Az egyenlőséget lásd a 20A. tételben az 56. oldalon! 
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Jegyzetek 
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Félév végi eredmények Diszkrét matematika és Lineáris algebra tárgyakból 

  
kredit érdemjegy 

Diszkrét 

matematika és 

Lineáris algeb-

ra érdemjegyek 

Diszkrét matematika I. 2  

Lineáris algebra I. 5  

Diszkrét matematika II. 3  

Lineáris algebra II. 5  

Összesen 15  

 
Érdemjegyek kreditértékkel súlyozott átlaga: 

 

 

A Matematika szigorlat tárgyra való jelentkezés előfeltétele, hogy a hallgató rendelkezzen az 

alábbi tárgyakból elégségesnél jobb osztályzattal: 

Matematikai analízis I. Matematikai analízis II. 

Lineáris algebra I. Lineáris algebra II. 

Diszkrét matematika I. Diszkrét matematika II. 

Amennyiben a tárgyak kreditértékkel súlyozott jegyátlaga a 4,0-t eléri vagy meghaladja, a 

hallgató (kérése alapján) mentesül a szigorlat írásbeli részének teljesítése alól. 

 

Összesített érdemjegyátlag 

  
kredit átlag 

I. Matematikai analízis 13  

II. Diszkrét matematika és Lineáris algebra 15  

 
Érdemjegyek kreditértékkel súlyozott átlaga: 

 

 




