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Fontos tudnivalók 

Tisztelt Vizsgázó! 

Jelen füzet a 2013/14/2. tanulmányi időszak Matematika szigorlatához lett kiadva. A füzet 

tartalmazza az intézmény által nyilvánosságra hozott tételjegyzéket, valamint azok kidolgo-

zott formáját is. 

A kiadvány két füzetre bontva jelenik meg, ezen I. összetevő a Matematika analízis, a II. ösz-

szetevő pedig a Diszkrét matematika és Lineáris algebra tárgyak tételeinek jegyzékét és azok 

kidolgozott formáját tartalmazza. 

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányos-

ságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladat-

megoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik. 

Eredményes felkészülést kívánunk! 

A kiadványt összeállította: 

Naszlady Márton Bese – 2014 

 

Ez a kiadvány a Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc alá tartozik. 

A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra. 

A kiadványban szereplő tartalmi elemek 

harmadik személytől származó véleményt, értesülést tükröznek. 

Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek 

kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!  
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Szóbeli vizsga tételjegyzék 

1A. Cantor féle közös-pont tétel. Teljes indukció. Alapegyenlőtlenségek. (Számtani és mér-

tani közép-, Háromszög-, Bernioulli-egyenlőtlenség) Infimum és supremum (létezés: B)  

1B. Polárkoordináták. Implicit függvény tétel. Implicit függvény deriválása. 

2A. Számsorozat határértéke. Divergens sorozatok, típusai. Konvergencia Cauchy feltéte-

le. (B) Bolzano-Weierstrass tétel.  

2B. Kétváltozós függvények folytonossága. Egyenletes- és Lipschitz-folytonosság. Másod-

rendű Taylor formula többváltozós valós függvényekre.(B) 

3A. Összehasonlító kritériumok sorozatokra. Rendőrelv sorozatokra (B). Számsorozat tor-

lódási pontja. Az   szám: sorozat határértéke ill. sor összege. Számtani átlag sorozat.  

3B. Kétváltozós függvény határértéke. Átviteli elv. Parciális deriváltak. Geometriai jelentés. 

4A. Végtelen számsor összege. Divergencia teszt. Hányados- és gyökkritérium (B). Abszo-

lút- és feltételes konvergencia.  

4B. Magasabb rendű parciális deriváltak. Parciális deriválások sorrendje, felcserélhetősé-

ge. DE rendszerek. Állandó együtthatós lineáris DER.  

5A. Végtelen mértani sor. Leibniz-sor (B). Függvény folytonosság, sorozatfolytonosság.  

5B. Komplex függvény, kanonikus alak. Az    és   ( ) függvények kiterjesztése komplex 
argumentumra. 

6A. Valós függvény határértéke véges pontban. Egyoldali határértékek. Átviteli elv. Sza-

kadási helyek osztályozása.   

6B. Fourier sor, valós- és komplex alak. Trigonometrikus rendszer ortogonalitása (B). Deri-

vált függvény Fourier sora. 

7A. Valós függvény határérték kiterjesztése. Inverz függvény létezése. Bolzano tétel (B).  

7B. Szükséges ill. elégséges feltétel lokális szélsőértékre magasabb dimenzióban. (B) Sta-

cionárius pont, nyeregpont. Lagrange-féle középérték tétel kétváltozós függvényre. (B)  

8A. Korlátos és zárt intervallumon folytonos függvényekre vonatkozó tételek: Weierstrass I. 

II. és Heine tétel. (egyikre B)  

8B. Hatványsor, konvergencia-tartománya, ennek jellemzése. Hatványsor konvergencia 

sugarának meghatározása.(B). Gömbi polárkoordináták, Jacobi determinánsa (B)  

9A. Differenciálhányados. Geometriai jelentés. Folytonosság és differenciálhatóság.(B)   

9B. Függvény rendszer, koordináta-transzformáció. Jacobi mátrix. Vektormező invertálható-

sága. Hengerkoordináták, Jacobi determinánsa (B)  

10A. Differenciálási szabályok: szorzat, hányados, összetett függvény, inverz. (B)  

10B. Kétváltozós függvény integrálása téglalapon. Integrálás normál tartományon. Kétvál-

tozós valós értékű függvény integrálja vonal mentén. 

11A. Középértéktételek: Rolle-(B), Lagrange-(B), Cauchy tétel. Integrálszámítás alaptétele 

(B).   

11B. Integrál transzformáció polárkoordinátákkal. Helyettesítés általános koordináta-

transzformációval kettős integrálban.  

12A. Taylor polinom, tulajdonságai. (B) Lagrange-féle maradéktag.  

12B. Komplex vonalintegrál, kiszámítása. Cauchy-féle alaptétel. Általánosítás. 
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13A. Monoton függvények jellemzése. Magasabb rendű deriváltak. L'Hopital szabály. (B)  

13B. Vektormező integrálja görbe mentén. Potenciálkeresés. Potenciál létezésének szüksé-

ges (B) és elégséges feltétele. 

14A. Egyváltozós valós függvény lokális szélsőértékének szükséges (B) ill. elégséges felté-

tele.   

14B. Kétváltozós függvény felszínének kiszámítása. 

15A. Primitív függvény. Alaptulajdonságok.  Konvex és konkáv függvények, ezek jellemzé-

se.  

15B. Kétváltozós függvény teljes differenciálhatósága adott pontban. Érintősík. Iránymenti 

derivált kiszámítása (B). 

16A. Riemann-integrál definíció. Elégséges feltételek integrálhatóságra. Newton-Leibniz 

tétel. (B)   

16B. Fourier transzformáció. Alaptulajdonságok. Derivált függvény Fourier transzformált-

ja.(B)  

17A. Integrálfüggvény. Integrálszámítás II. alaptétele (B).   

17B. Magasabb rendű homogén lineáris DE megoldásai. Állandó együtthatós HLDE 

alapmegoldásai (B). Karakterisztikus polinom. 

18A. Helyettesítés integrálban. Parciális integrálás(B), alapesetek.  

18B. Inverz Fourier transzformáció. Parseval egyenlőség.(B)  

19A. Integrál középértéktétel (B). Valós függvény gráfjának hossza. Forgástest térfogata.  

19B. Magasabb rendű inhomogén lineáris DE-k megoldásai. Állandók variálása. Próba-

függvény  

20A. Majoráns és minoráns kritériumok valós improprius integrálokra. Az  ( )      hat-

vány-függvény integrálja (   ]-ben ill. [   )-ben. (B)  
20B. Komplex függvény differenciálhatósága. Cauchy-Riemann egyenletek. (B).  

21A. Szeparábilis differenciálegyenlet megoldása (B).   

21B. Feltételes szélsőérték kétváltozós függvényre (feladat kitűzése). Lagrange-féle multip-

likátor szabály. 

22A. Homogén lineáris (elsőrendű) DE megoldása.(B) Inhomogén LDE egyenlet megoldá-

sa.  

22B. Cauchy-féle integrálformula. Taylor sorfejtés analitikus függvényre. Laurent sorfejtés. 

Zérus és pólus.  

23A. Valós függvény Taylor sora. Elemi függvények Taylor sora:   ,    ( ),    ( ). (B)   
23B. Láncszabály többváltozós függvényekre. Speciális esetek.  
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Kidolgozott tételek, tételvázlatok 

1A Cantor féle közös-pont tétel. Teljes indukció. Alapegyen-

lőtlenségek. (Számtani és mértani közép-, Háromszög-, 

Bernioulli-egyenlőtlenség) Infimum és supremum (léte-

zés: B) 

Cantor-féle közös-pont tétel 

Tétel Tegyük fel, hogy a Cantor-féle axióma feltételei teljesülnek. Ezen kívül tegyük 

fel, hogy minden    -hoz létezik olyan    intervallum, mely az adott  -nál rö-

videbb, azaz |  |         . Ekkor a közös pont egyértelmű. 

Teljes indukció 

A természetes számok halmazán ( ) két művelet van értelmezve, ezek az összeadás ( ) va-

lamint a szorzás ( ). Értelmezve van még a   rendezési reláció. A természetes számok halma-

zának tulajdonságai: 

 Létezik legkisebb elem:   (egység) 

 Minden elem után van közvetlenül rákövetkező:        

A fenti két tulajdonság alapján kimondható a teljes indukciós bizonyítás elve:  

Cél, hogy belássuk valamely           tulajdonságok teljesülését, ahol   tetszőle-

ges természetes szám. 

Ha    teljesül, és 

       esetén az    tulajdonságból következik     , 

akkor a fenti tulajdonság minden   esetén teljesül. 

Alapegyenlőtlenségek 

Számtani és mértani közép közti összefüggés 

Tekintsünk két, nemnegatív valós számot,      . Ezek számtani közepe (számtani átlaga) 

  
   

 
 

és mértani közepe (mértani átlaga) 

  √   

Állítás Tetszőleges       valós számok esetén 
   

 
 √  , és egyenlőség pontosan 

akkor teljesül, ha    . 

Háromszög egyenlőtlenség 

Állítás Tetszőleges     valós számokra |   |  | |  | |. 

Bernoulli egyenlőtlenség 

Tétel Tetszőleges     természetes szám és      valós szám esetén teljesül az 
alábbi összefüggés:  

(   )       
A fenti kifejezésben egyenlőség csakis akkor teljesül, ha     vagy     vagy 

   . 
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Infimum és supremum, ezek létezése (B) 

Definíció Legyen   egy alulról korlátos, nem üres halmaz. Ekkor létezik az alsó korlátok 

között legnagyobb, vagyis     ,             és     . Ez a halmaz 

infimuma. Jele:     ( ) 

Definíció Legyen   egy felülről korlátos, nem üres halmaz. Ekkor létezik a felső korlátok 

között legkisebb, vagyis     ,             és     . Ez a halmaz 

supremuma. Jele:     ( ) 

Tétel Tetszőleges nem üres, alulról korlátos halmaznak létezik infimuma. 

Bizonyítás Konstruktív bizonyítás: A halmaz alulról korlátos, tehát létezik az    alsó korlát. 

Ha     , akkor ez minimális elem, egyben infimum is.  

Ha     , akkor legyen      tetszőleges elem,      . Legyen továbbá 

   [     ], és    
     

 
  

Két eset lehetséges:  

 1.) Ha    alsó korlát, akkor legyen      , és      .  

 2.) Ha    nem alsó korlát, akkor legyen      , és      .  

Látható, hogy az    [     ] intervallum hossza épp fele    hosszának, ahol    

alsó korlát, és     .  

Ezt a konstrukciót folytatva egy    intervallumsorozatot kapunk az alábbi tulaj-
donságokkal:  

 i)    [     ] zárt, és          

 ii)    hossza    |  |  

 iii)    alsó korlát,      minden  -ra 

Az i) és ii) tulajdonságok miatt az intervallum-sorozat teljesíti a Cantor-féle kö-

zös-pont tétel feltételeit, tehát létezik egyetlen közös pont, legyen ez  . 

Belátjuk, hogy   alsó korlát, mivel ha lenne egy olyan    , amelyre     tel-

jesülne, akkor a ii) tulajdonság miatt találhatnánk egy olyan    intervallumot, 

melyre        lenne, ami ellentmond annak, hogy    alsó korlát. 

Belátjuk, hogy   infimum, azaz nincs nála nagyobb alsó korlát. Ha ugyanis indi-

rekt módon feltesszük, hogy létezik       alsó korlát, akkor találunk kell egy 

   intervallumot, melyre        . De mivel      minden  -ra, így ez nem 

lehetséges.   

1B Polárkoordináták. Implicit függvény tétel. Implicit függ-

vény deriválása. 

Polárkoordináták 

Definíció Egy adott (   )     pont polárkoordinátái (   ), melyeket így definiálunk: 

 : a pont origótól vett távolsága 

 : az origóból az adott pontba mutató vektornak az   tengely pozitív részével 
bezárt szöge. 

Így tehát a polárkoordinátákra      { } és   [    ). 
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Implicit függvény tétel, implicit függvény deriválása 

Tétel (Implicit függvény tétel) Tegyük fel, hogy az   kétváltozós függvény differenciál-

ható az (     ) pont egy környezetében, és ebben a pontban  (     )   . 

Ezen felül feltesszük, hogy   
 (     )    (azaz az érintősík nem párhuzamos az 

   síkkal). Ekkor létezik egy kétdimenziós intervallum 

        (         )  (         ) 

hogy minden      esetén az  (   )    egyenletnek pontosan egy    ( ) 
megoldása van, és     . Tehát létezik egy         valós függvény, mely a 
következő tulajdonságokkal rendelkezik: 

  (  )     

  ( )           

  (   ( ))          

   
 (   ( ))          

Továbbá   differenciálható   -ben, és deriváltja: 

  ( )   
  

 (   ( ))

   (   ( ))
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2A Számsorozat határértéke. Divergens sorozatok, típusai. 

Konvergencia Cauchy feltétele. (B) Bolzano-Weierstrass 

tétel. 

Számsorozat határértéke 

Definíció Számsorozaton egy olyan hozzárendelést értünk, melyben minden     termé-

szetes számhoz hozzárendelünk egy valós számot. Az ( ) sorozat  -edik 

elekmét    jelöli, az egész sorozatot (  )-nel jelöljük. 

Definíció Legyen (  ) egy sorozat. Azt mondjuk, hogy az (  ) sorozat konvergens, és 

határértéke az   szám, ha ez rendelkezik a következő tulajdonsággal: minden 

   -hoz létezik    ( ) epszilontól függő küszöbindex, melyre minden 

    esetén |    |   . Ezt így jelöljük:           . 

Divergens sorozatok, típusai 

Definíció Ha (  ) nem konvergens, akkor divergens. 

1.)       

Definíció Az (  ) sorozat a   -be divergál („   minden határon túl nő”), ha minden 

    korláthoz megadható    ( ) küszöbindex, hogy ha    , akkor 

    . Ezt így jelöljük:  

   
   

      

Definíció Az (  ) sorozat a   -be divergál („   minden határon túl csökken”), ha min-

den     korláthoz megadható    ( ) küszöbindex, hogy ha    , akkor 

    . Ezt így jelöljük:  

   
   

      

2.)    (  )  

Az ilyen típusú sorozatok több pont körül torlódnak, például az    (  )  sorozat elemei 

rendre       Ez nyilván nem konvergens. 

Konvergencia Cauchy feltétele (B) 

Definíció Az (  ) sorozat teljesíti a Cauchy feltételt, ha minden    -hoz létezik 

   ( ) epszilontól függő küszöbindex, melyre teljesül, hogy minden 

      esetén |     |   . Ha egy sorozat teljesíti a Cauchy feltételt, ak-
kor a sorozatot Cauchy sorozatnak nevezzük. 

Tétel Ha (  ) konvergens, akkor Cauchy sorozat. 

Bizonyítás Legyen            és legyen     tetszőleges. Ekkor az 
 

 
 számhoz létezik 

egy   küszöbindex, melyre      és     esetén |    |  
 

 
, valamint 

|    |  
 

 
. Ekkor a háromszög-egyenlőtlenség miatt  

|     |  |(    )  (    )|  |    |  |    |  
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Tétel Ha (  ) Cauchy sorozat, akkor konvergens. 

1. Lemma Ha (  ) eleget tesz a Cauchy kritériumnak, akkor korlátos. 

Bizonyítás Az    -hez létezik   index, melyre minden     esetén 

   (         ). Az intervallumon kívül csak véges sok 
eleme van a sorozatnak, ezért van legnagyobb és legkisebb elem 

közöttük. Tehát      {|  |   |    |} korlátja a sorozatnak.   

2. Lemma Ha egy (  ) Cauchy sorozatnak van (   
) konvergens részsorozata, és 

         
  , akkor a sorozat is konvergens, és           . 

Bizonyítás Legyen     tetszőleges. Ekkor a részsorozat konvergenciája mi-

att létezik    index, melyre 

|   
  |  

 

 
,  ha      . 

Mivel (  ) Cauchy sorozat, ezért létezik    index, melyre 

|     |  
 

 
, ha       . 

Legyen      {     }. Ekkor minden     esetén létezik 

      , így 

|    |  |(      
)  (   

  )|  |      
|  |   

  | 

|      
|  |   

  |  
 

 
 

 

 
     

Bizonyítás (A tétel bizonyítása.) Az (  ) Cauchy sorozat, tehát korlátos (1. lemma). A 

Bolzano-Weierstrass tétel miatt létezik (   
 ) konvergens részsorozat, és ekkor 

az eredeti sorozat is konvergens (2. lemma).   

Bolzano-Weierstrass tétel 

Tétel Minden korlátos (  ) sorozatnak van konvergens részsorozata. 

2B Kétváltozós függvények folytonossága. Egyenletes- és 

Lipschitz-folytonosság. Másodrendű Taylor formula több-

változós valós függvényekre.(B) 

Kétváltozós függvények folytonossága 

Definíció Legyen    (     ) az   függvény értelmezési tartományának egy pontja. Az 

  függvény folytonos az (     ) pontban, ha tetszőleges    -hoz létezik egy 

    szám, melyre 

 (   )     √(    )  (    )    

esetén teljesül, hogy 

| (   )   (     )|    

Definíció Ha egy függvény értelmezési tartományának egy pontjában nem folytonos, ak-

kor ott szakadása van. 
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Egyenletes- és Lipschitz-folytonosság 

Definíció Legyen       adott függvény,      tartomány. Azt mondjuk, hogy   

egyenletesen folytonos  -ben, ha tetszőleges     –hoz     , hogy ha 

       pontokra ‖    ‖   , akkor | ( )   (  )|   . 

A    ( ) számot az  -hoz tartozó folytonossági modulusnak hívjuk. 

Definíció Az       kétváltozós függvény Lipschitz-folytonos, ha létezik egy olyan 

    szám, melyre | ( )   (  )|    ‖    ‖ teljesül minden        

pontra. 

Az   számot Lipschitz-konstansnak hívjuk. 

Állítás Ha   egyenletesen folytonos  -en, akkor   minden pontjában folytonos. Ha   
Lipschitz-folytonos egy tartományban, akkor ott egyenletesen is folytonos. 

Másodrendű Taylor formula többváltozós valós függvényekre (B) 

Legyen       kétváltozós függvény, amely elegendően sokszor differenciálható valamely 
(     ) pontban. Adjunk becslést az  (   )   (     ) különbségre az (     ) pontbéli 

deriváltak felhasználásával. 

A fenti feladatra egy megoldást az érintő sík alapján tudunk adni, eszerint 

 (   )   (     )    
 (     )(    )    

 (     )(    ) 

Ez megfelel az elsőfokú Taylor polinomnak. 

Magasabb fokú Taylor polinomot úgy adjuk meg, hogy visszavezetjük feladatot az egyválto-

zós esetre. 

Legyen 

 ( )   (             ) 

ahol 

                

Ekkor   [   ]    elegendően sokszor differenciálható valós függvény,  ( )   (     ), 
 ( )   (   ). Az   függvény     pont körüli Taylor formuláját fogjuk használni. Ehhez 
szükségünk lesz a deriváltakra: 

 ( )     (     ) 

  ( )     
 (             )     

 (             )   

   ( )     
  (             )(  )      

  (             )      

                 
  (             )(  )  

Ekkor a másodrendű Taylor formula így írható: 

 (   )   (     )        (     )  (
  
  

)  
 

 
(     )   (     )  (

  
  

)     

ahol   a Hesse-mátrix. 
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3A Összehasonlító kritériumok sorozatokra. Rendőrelv soro-

zatokra (B). Számsorozat torlódási pontja. Az   szám: so-

rozat határértéke ill. sor összege. Számtani átlag sorozat. 

Összehasonlító kritériumok sorozatokra 

Állítás (Összehasonlító kritériumok) 

1. Tegyük fel, hogy (  ) nullsorozat, (  ) olyan sorozat, melyre (|  |)  (|  |) 
minden  -re (rögzített   mellett minden    -re). Ekkor 

   
   

     

2. Tegyük fel, hogy (  ) a  -be divergál, és    index, hogy ha    , akkor 

     . Ekkor 

   
   

      

Rendőrelv sorozatokra (B) 

Tétel Tegyük fel, hogy az (  ) és (  ) sorozatok közrefognak egy harmadik sorozatot 

              

Tegyük fel, hogy (  ) és (  ) konvergens sorozatok ugyanazzal a határértékek-

kel. 

   
   

      
   

     

Ekkor (  ) is konvergens, és  

   
   

     

Bizonyítás Legyen     tetszőleges. Ekkor létezik    küszöbindex, melyre |    |   , 

ha     . Speciálisan megfogalmazva       . Hasonlóan létezik   , 

melyre |    |   , speciálisan       . Ekkor       (     ) esetén 

                 

Ebből a konvergencia következik.   

Számsorozat torlódási pontja 

Definíció Legyen (  ) egy sorozat. A     valós szám torlódási pontja (  )-nek, ha   
bármely környezetében, azaz a        (       ) intervallumban végtelen 
sok tagja van a sorozatnak. 

Az   szám: sorozat határértéke ill. sor összege 

Definíció Az   szám a következő sorozat határértéke: 

     
   

(  
 

 
)
 

 

Definíció Az   szám a következő végtelen sor összege: 
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  ∑
 

  

 

   

 

Számtani átlag sorozat 

Állítás Adott (  ) nullsorozat. Legyen  

   
       

 
 

 

 
∑  

 

   

 

Ekkor           . 

3B Kétváltozós függvény határértéke. Átviteli elv. Parciális 

deriváltak. Geometriai jelentés. 

Kétváltozós függvény határértéke 

Definíció Legyen       kétváltozós valós függvény,    (     )     az értelmezési 

tartomány egy torlódási pontja. Azt mondjuk, hogy az   függvény határértéke a 

   (     ) pontban  , azaz 

   
(   ) (     )

 (   )    

ha minden    -hoz lézetik     szám, hogy ha  

(   )      √(    )  (    )    

akkor | (   )   |   . 

Átviteli elv 

Állítás  

   
(   ) (     )

 (   )    

pontosan akkor teljesül, ha     (     )   ,       sorozatra, melyre 

   
   

      

teljesül, hogy 

   
   

 (  )    

Parciális deriváltak 

Definíció Legyen       kétváltozós valós függvény. Legyen (     ) az   halmaz belső 
pontja. Ha létezik a  

   
    

 (    )   (     )

    
 

véges határérték, akkor ezt a mennyiséget a függvény   szerinti parciális deri-

váltjának nevezzük az (     ) pontban. Ezt így jelöljük:  

  
 (     ) 

 

  
 (     ) 

Ha létezik a  

   
    

 (    )   (     )
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véges határérték, akkor ezt a mennyiséget a függvény   szerinti parciális deri-

váltjának nevezzük az (     ) ponban. Ezt így jelöljük:  

  
 (     ) 

 

  
 (     ) 

Geometriai jelentés 

  ( )   (    ) egyváltozós függvényt. Ha (     )     ( ), akkor    belső pontja    ér-

telmezési tartományának. Ekkor   
 (     )    

 (  ). Ez hasonlóan igaz rögzített   -ra is. 

Az ilyen, rögzített    konstans menti parciális derivált geometriai jelentése a függvény felüle-

téből az   -ban átmenő, az   -síkra merőleges síkkal vett metszetének, – mely egy egyválto-

zós függvény – a deriváltja. A parciális deriváltak tehát a felületekhez   és   irányból húzott 

érintősíkok meredekségét adja meg. 
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4A Végtelen számsor összege. Divergencia teszt. Hányados- 

és gyökkritérium (B). Abszolút- és feltételes konvergencia. 

Végtelen számsor összege 

Végtelen sor alatt valós számok összegét értjük, ahol az összeadandók száma végtelen: 

                ∑  

 

   

 

Divergencia teszt 

Állítás Ha           , akkor a sor divergens. 

Hányados kritérium (B) 

Tétel 1.) Tegyük fel, hogy |
    

  
|        , ahol   (   )  -től független szám. 

Ekkor a (   ) sor abszolút konvergens. 

 2.) Tegyük fel, hogy |
    

  
|      . Ekkor a (   ) sor divergens. 

Bizonyítás 1.) A feltétel szerint 

|
  

  
|    

|
  

  
|    

  

|
    

  
|    

Ezeket összeszorozva azt kapjuk, hogy  

|
    

  
|     

azaz |    |  |  | 
 . Így a majoráns kritérium szerint az abszolútértékekből ál-

ló sor konvergens.  

2.) Ha |
    

  
|   , akkor |    |  |  |, tehát (  ) nem lehet nullsorozat.   

Gyengített változat 

Tétel Tegyük fel, hogy létezik a  

   
   

|
    

  
|    

határérték. Ekkor  

- ha    , akkor a sor abszolút konvergens, 

- ha    , akkor a sor divergens, 

- ha    , akkor a sor lehet konvergens és divergens is. 
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Gyökkritérium (B) 

Tétel 1.) Tegyük fel, hogy √|  |
          , ahol   (   )  -től független szám. 

Ekkor (   ) sor abszolút konvergens. 

 2.) Tegyük fel, hogy √|  |
        . Ekkor a (   ) sor divergens. 

Bizonyítás 1.) A feltétel szerint √|  |
 

  , ahol      , így igaz az is, hogy   

|  |          

 Mivel 

∑    

 

   

 

ezért a majoráns kritérium alkalmazásával ebből következik, hogy 

∑|  |   

 

   

 

Az abszolút konvergencia miatt a sor konvergens: 

∑  

 

   

   

 2.) Mivel √|  |
   , így emiatt |  |   , azaz (  ) nem nullsorozat, tehát  

∑  

 

   

 

sor nem konvergens.   

Gyengített változat 

Tétel Tegyük fel, hogy létezik a  

   
   

√|  |
 

   

határérték. Ekkor  

- ha    , akkor a sor abszolút konvergens, 

- ha    , akkor a sor divergens, 

- ha    , akkor a sor lehet konvergens és divergens is. 

Abszolút- és feltételes konvergencia. 

Definíció A (   ) végtelensor abszolút konvergens, ha az abszolútértékekből álló 
( |  |) sor konvergens. 

Állítás Ha (   ) abszolút konvergens, akkor konvergens is. 

Definíció A (   ) végtelen sor feltételesen konvergens, ha konvergens, de nem abszolút 
konvergens. 
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4B Magasabb rendű parciális deriváltak. Parciális deriválá-

sok sorrendje, felcserélhetősége. DE rendszerek. Állandó 

együtthatós lineáris DER. 

Magasabb rendű parciális deriváltak 

Ha a parciális deriváltfüggvényeknek létezik parciális deriváltja, akkor másodrendű parciális 

deriváltat kapunk: 

 

  
(

 

  
 (   ))  

  

    
 (   )     

  (   )     
   

  
 (     )    

 (   )

 
 

Parciális deriválások sorrendje, felcserélhetősége 

Tétel Legyen       kétváltozós valós függvény, (   )     ( ). Ha a pont egy 

környezetében léteznek az    
   és    

   másodrendű parciális deriváltak, és az 

adott pontban folytonosak is, akkor itt a deriválások sorrendje felcserélhető, 

azaz    
  (   )     

  (   ). 

DE rendszerek 

Elsőként csak kétdimenziós rendszerekkel foglakozunk. Keresünk olyan  ( ) és  ( ) függ-

vényeket, melyek kielégítenek egy ilyen típusú differenciálegyenlet-rendszert: 

  ( )   (   ( )  ( )) 

  ( )   (   ( )  ( )) 

ahol   és   adott háromváltozós függvények. 

Állandó együtthatós lineáris DER 

A könnyebb áttekinthetőség kedvéért három dimenzióban dolgozunk, de minden ugyanígy 

elmondható   dimenziós lineáris rendszerekre is. Tekintsük az alábbi háromdimenziós rend-
szert: 

  
                    

  
                    

  
                    

a hozzá tartozó kezdeti feltételekkel 

  ( )        ( )        ( )      

A keresett függvényt rendezzük el egy vektorba. Ezt deriváljuk, az együtthatókat pedig mát-

rixba gyűjtjük: 

 ( )  [

  ( )

  ( )

  ( )
]    ( )  [

  
 ( )

  
 ( )

  
 ( )

]    [

         

         

         

] 

A differenciálegyenlet-rendszer tehát kompakt alakban így írható: 

  ( )    ( )  ( )     

Tétel A fenti (kompakt alakban írt) lineáris egyenletrendszer megoldása 

 ( )         
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5A Végtelen mértani sor. Leibniz-sor (B). Függvény folyto-

nosság, sorozatfolytonosság. 

Végtelen mértani sor 

Legyen        . Kérdés, mennyi az alábbi összeg:             

Az első   tag összege                  
    

   
     

Így       {

 

   
 | |   

      
         

. 

Leibniz-sor (B) 

Definíció (   ) Leibniz-típusú sor, ha az (  ) sorozat rendelkezik az alábbi három tulaj-

donsággal: 

 1.) váltakozó előjelű, azaz         ,  

 2.) (|  |) monoton fogyó,  

 3.) (  ) nullsorozat. 

Tétel A Leibniz-típusú sor konvergens. 

Bizonyítás Feltehető, hogy     , ekkor a páratlan indexű tagokra  (    )   , a páros 

indexű tagokra       teljesül. Képezzük az alábbi sorozatokat: 

        

     
}        

              

           
}        

  

Másrészt az (  ) sorozat abszolútérték-monotonitása miatt  

                                    

A Cantor-féle közöspont tételt alkalmazzuk az    [     ]       [     ]   
intervallum-sorozatra. Könnyen látható, hogy  

–        , egymásba skatulyázott zárt intervallumok, 

– az intervallumok hossza |  |  |  | |  |  |  |  , ezért 

   
   

|  |    

Mivel a Cantor-tétel feltételei teljesülnek, ezért létezik egyetlen közös pont,  , 
melyre 
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Függvény folytonosság, sorozatfolytonosság 

Definíció Adott egy       függvény, és egy       pont. Azt mondjuk, hogy az   

folytonos az   -ban, ha     -hoz létezik olyan    , melyre teljesül, hogy 

      |    |    

esetén 

| ( )   (  )|    . 

Definíció Az   függvény az értelmezési tartományának egy    pontjában sorozatfolytonos, 

ha minden (  )     sorozatra, melyre  

   
   

      

teljesül, hogy  

   
   

 (  )   (  ) 

5B Komplex függvény, kanonikus alak. Az    és   ( ) függ-

vények kiterjesztése komplex argumentumra. 

Komplex függvény, kanonikus alak 

Legyen     egy tartomány a komplex számsíkon.       függvényt tekintjük. A függet-

len változót       , a függő változót        jelöli. Tehát a hozzárendelés    ( ). 

Legyen     tartomány és adott ezen egy hozzárendelés      , ami a   komplex szám-
hoz a következőt rendeli hozzá: 

   ( )    ( ( ))      ( ( )) 

A függvény kanonikus alakja két valós értékű kétváltozós függvény megadását jelenti, 

 ( )   (   )     (   ), ahol 

 (   )    ( (    ))  (   )    ( (    )) 

Az    és   ( ) függvények kiterjesztése komplex argumentumra 

Az  ( )     függvényt a komplex számok esetén így értelmezhetjük: 

           (   ( )      ( )) 

Az exponenciális függvény inverzét keressük. Mivel  ( )     értékkészletében a   nincsen 
benne, így ez nem lesz benne a logaritmusfüggvény értelmezési tartományában. Legyen 

     , és keressük azt a  -t, melyre     . Ha   trigonometrikus alakja        , 

akkor 

    ( )              

Mivel az exponenciális függvény    szerint periodikus, ezért a keresett   szám nem egyér-
telmű. Tehát: 

  ( )    (| |)   (   ( )     )     

sokértékű függvény. A    -hoz tartozó értéket főértéknek nevezzük, és jelölése 

  ( )    (| |)      ( ) 
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6A Valós függvény határértéke véges pontban. Egyoldali 

határértékek. Átviteli elv. Szakadási helyek osztályozása. 

Valós függvény határértéke véges pontban 

Definíció Adott       függvény, és     . Tegyük fel, hogy létezik olyan környezet 

  (         ), melyre minden          esetén     . Azt mond-

juk, hogy az   függvény határértéke   -ban  , ha minden    -hoz létezik 

   , melyre ha   |    |   , akkor | ( )   |   . Ezt így jelöljük: 

   
    

 ( )    

Egyoldali határértékek 

Definíció Az   függvény jobboldali határértéke   -ban    , ha minden    -hoz léte-

zik    , melyre ha                teljesül, akkor | ( )   |   . 

Ezt így jelöljük: 

   
     

 ( )    

Definíció Az   függvény baloldali határértéke   -ban    , ha minden    -hoz léte-

zik    , melyre ha                   teljesül, akkor | ( )   |   . 

Ezt így jelöljük: 

   
     

 ( )    

Átviteli elv 

1.)        
 ( )    akkor és csak akkor, ha minden (  ) sorozatra, melyre 

(  )        
   

            

teljesül, hogy  

   
   

 (  )    

 2.)          ( )    akkor és csak akkor, ha minden (  ) sorozatra, melyre 

(  )        
   

            

teljesül, hogy  

   
   

 (  )    

 3.)          ( )    akkor és cak akkor, ha minden (  ) sorozatra, melyre 

(  )        
   

            

teljesül, hogy  

   
   

 (  )    

Szakadási helyek osztályozása 

Elsőfajú szakadás 

Elsőfajú szakadás van   -ban, ha létezik 

   
     

 ( )       
     

 ( )    
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Megszüntethető szakadás 

Megszüntethető a szakadás, ha léteznek és megegyeznek a jobb- és baloldali határértékek, de 

   
    

 ( )    (  ) 

Másodfajú szakadás 

A szakadás másodfajú, ha nem elsőfajú. 

6B Fourier sor, valós- és komplex alak. Trigonometrikus 

rendszer ortogonalitása (B). Derivált függvény Fourier so-

ra. 

Fourier sor, valós- és komplex alak 

Valós alak 

Definíció Az   [    ]    függvény Fourier együtthatóit így definiáljuk: 

   
 

 
∫  ( )    (  )    

 

  

           

   
 

 
∫  ( )    (  )    

 

  

         

feltéve, hogy a fenti integrálok léteznek. 

Definíció Adott          szerint periodikus függvény. Tegyük fel, hogy   integrálható 

a [    ] intervallumon. Az  ( ) függvény Fourier sora (formálisan): 

  
  

 
 ∑(     (  )       (  ))

 

   

 

ahol    és    a most definiált Fourier együtthatók. 

Komplex alak 

Az Euler-formula szerint 

       ( )      ( ) 

Ebből következik, hogy 

       (  )     (  )      (  )     ( )      ( ) 

ezért a trigonometrikus függvények kifejezhetők komplex alakban: 

   ( )  
        

 
 

   ( )  
        

  
 

Az  -edik Fourier polinom: 

  ( )  
  

 
 ∑(     (  )       (  ))

 

   

 

Helyettesítsük be a trigonometrikus függvények komplex alakjait: 
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  ( )  
  

 
 ∑  

        

 
   

        

  

 

   

 ∑    
   

 

    

 

ahol az    együttható: 

   
      

 
     

   
      

 
     

Tétel Tegyük fel, hogy   előáll 

 ( )  ∑    
   

 

    

 

alakban. Ekkor: 

   
 

  
∫  ( )        

 

  

 

Trigonometrikus rendszer ortogonalitása (B) 

Lemma Tetszőleges     mellett 

∫   ( )  ( )
 

  

   

Bizonyítás Ha     vagy    , akkor 

∫    (  )    
 

  

   ∫    (  )    
 

  

   

Egyéb esetekben az alábbi trigonometrikus azonosságokat használjuk fel: 

   (  )    (  )  
   ((   ) )     ((   ) )

 
  

   (  )    (  )  
   ((   ) )     ((   ) )

 
  

   (  )    (  )  
   ((   ) )     ((   ) )

 
 

  

Megjegyzés Ez a tulajdonság azt jelenti, hogy a (  ) függvényrendszer ortogonális. 

Derivált függvény Fourier sora 

Tétel Legyen       valós függvény    szerint periodikus és tegyük fel, hogy a 
[    ] intervallumon a függvény véges sok pont kivételével folytonos. Ezenkívül 
tegyük fel, hogy a szakadási pontok elsőfajú szakadások, és hogy véges sok pont 

kivételével   differenciálható. Ekkor az    függvény Fourier sora tagonkénti de-
riválással kiszámítható: 

   ∑(         (  )          (  ))
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7A Valós függvény határérték kiterjesztése. Inverz függvény 

létezése. Bolzano tétel (B). 

Valós függvény határérték kiterjesztése 

Definíció („     ”) 

   
   

 ( )    

ha minden    -hoz létezik    , hogy minden          esetén teljesül, 

hogy | ( )   |   . Hasonlóan,  

   
    

 ( )    

ha minden    -hoz létezik    , hogy minden          esetén teljesül, 

hogy | ( )   |   . 

Definíció („    ”) 

   
    

 ( )     

ha minden    -hez létezik    , melyre minden |    |         ese-

tén teljesül, hogy  ( )   . Hasonlóan,  

   
    

 ( )     

ha minden    -hez létezik    , melyre minden |    |         ese-

tén teljesül, hogy  ( )   . 

Definíció („         ”) 

   
   

 ( )     

ha minden    -hez létezik    , hogy minden          esetén teljesül, 

hogy  ( )   . Hasonlóan,  

   
   

 ( )     

ha minden     esetén létezik    , hogy minden          esetén telje-

sül, hogy  ( )   . 

Inverz függvény létezése 

Ha a függvény bijektív, akkor létezik inverz függvénye:        , melyre    ( ( ))   , 

illetve hasonlóképpen,  (   ( ))    

Bolzano tétel (B) 

Tétel Legyen   [   ]    folytonos függvény. Tegyük fel, hogy  ( )   ( ) és le-

gyen   ( ( )  ( )). Ekkor létezik olyan   (   ), melyre  ( )   . 

Bizonyítás Meghatározzuk azt a   pontot, amiről a Bolzano tétel szól. Induljunk ki az 

   [     ] intervallumból. 

 Legyen    
     

 
.  

Ha  (  )   , akkor készen vagyunk.  

Ha  (  )   , akkor legyen             

Ha  (  )   , akkor legyen            

Ekkor az [     ] intervallum a következő tulajdonságú:  (  )     (  ) 
és[     ]  [   ] éppen a fele. 
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 Megkonstruáljuk az [     ] intervallumot úgy, hogy  (  )     (  ) 
teljesüljön, akárcsak az előbb. Stb… 

Ekkor két eset lehetséges: 

i) vagy véges sok lépésben vége van az iterációnak, ekkor megkapjuk   pontot 

ii) vagy „nincs vége”, ekkor a sorozatokra teljesül, hogy  

{
(  )   (  )   
(  )   (  )   

} 

Belátjuk, hogy  ( )   . Vegyük észre, hogy  

   
   

        
   

     

Valóban, [     ]  [     ]   , és az intervallumok hossza tart a nullá-

hoz. Ekkor a Cantor-féle közöspont-tétel szerint egyértelműen létezik a   

közös pont,   (   ). Mivel   folytonos  -ben, ezért minden (  ) sorozat-

ra, melyre  

   
   

(  )       
   

 (  )   ( ) 

ezért 

   
   

 (  )   ( )    
   

 (  )   ( ) 

Emiatt  ( )    és  ( )   , ezért  ( )   .   

7B Szükséges ill. elégséges feltétel lokális szélsőértékre ma-

gasabb dimenzióban. (B) Stacionárius pont, nyeregpont. 

Lagrange-féle középérték tétel kétváltozós függvényre. (B) 

Szükséges feltétel lokális szélsőértékre (B) 

Tétel (Szükséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az   függ-

vénynek (     )-ban lokális szélsőértéke van, és tegyük fel, hogy a függvény itt 

differenciálható. Ekkor       (     )  (   ), azaz 

  
 (     )      

 (     )    

Bizonyítás Jelölje   ( )   (    ) a kétváltozós függvény egyik metszetfüggvényét. Ekkor 

   lokális szélsőértéke   -nek, ezért   
 (  )   , másrészt   

 ( )    
 (    ).   

Elégséges feltétel lokális szélsőértékre 

Tétel (Elégséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az (     ) 
pont stacionárius pontja  -nek, és itt   kétszer differenciálható. Ha ebben a 
pontban 

   
  (     )   

  (     )  (   
  )

 
(     )    

akkor a pontban lokális szélsőérték van. Ha emellett    
  (     )   , akkor lo-

kális minimum, ha    
  (     )   , akkor lokális maximum van. Ha 

   
  (     )   

  (     )  (   
  )

 
(     )    

akkor nincs szélsőérték. Ha pedig 
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  (     )   

  (     )  (   
  )

 
(     )    

akkor a szélsőérték létezésének eldöntéséhez további vizsgálat szükséges. 

Bizonyítás A tételt nem bizonyítjuk. 

Stacionárius pont, nyeregpont 

Definíció Ha       (     )  (   ), akkor (     ) stacionárius pont. 

Definíció Azt a stacionárius pontot, melyben szélsőérték nincs, nyeregpontnak nevezzük. 

Lagrange-féle középérték tétel kétváltozós függvényre (B) 

Tétel (Lagrange féle középérték tétel) Adott      ,      függvény, és az 
(     )     ( ) pont. Tegyük fel, hogy létezik konvex   környezete (     )-
nak melyben   differenciálható. Legyen továbbá egy (     )    pont, és 

        ,         . Ekkor    (   ), amelyre 

 (     )   (     )        (     )  (
  
  

) 

ahol          , és           

Bizonyítás Vezessük be az alábbi egyváltozós függvényt: 

 ( )   (             ) 

Ekkor   [   ]    folytonos és differenciálható, továbbá  ( )   (     ) és 

 ( )   (   ). Erre a függvényre alkalmazva az egyváltozós Lagrange-féle 

középértéktételt; létezik   [   ], melyre 

 ( )   ( )    ( )    

Mivel a láncszabály alkalmazásával rögzített  -re 

  ( )    
 (             )     

 (             )   

ezért 

  ( )    
 (             )⏟              

(     )

     
 (             )   

amiből a tétel állítása következik.   
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8A Korlátos és zárt intervallumon folytonos függvényekre vo-

natkozó tételek: Weierstrass I. II. és Heine tétel. (egyikre 

B) 

Weierstrass I. II. (B) 

Tétel (Weierstrass I.) Legyen   [   ]    folytonos függvény. Ekkor   korlátos. 

Bizonyítás Indirekt módon tegyük fel, hogy   felülről nem korlátos, vagyis minden    -

hez létezik olyan    [   ], melyre  (  )   . Igaz, hogy       , ezért 

az (  ) sorozat korlátos. Ekkor a Bolzano-Weierstrass tétel miatt létezik (   
) 

konvergens részsorozata.  

   
    

   
    

 Az [   ] intervallum zárt, ezért    [   ]. Az   itt folytonos és 

sorozatfolytonos is, tehát:  

   
    

 (   
)   (  ) 

 Viszont az indirekt feltevés miatt  (   
)    , amiből az következik, hogy  

   
    

 (   
)    

Ez ellentmondás.   

Tétel (Weierstrass II.) Legyen   [   ]    folytonos függvén. Ekkor   fölveszi mi-

nimumát és maximumát, azaz  

     (  )     { ( )    [   ]} 
     (  )     { ( )    [   ]} 

Bizonyítás Igazoljuk mondjuk a maximum létezését. Legyen   { ( )    [   ]}. A 

W1 tétel miatt ez a halmaz korlátos. Ekkor      ( )   . Ez azt jelenti, 

hogy minden    -re létezik    [   ], melyre  

  
 

 
  (  )    

Erre a sorozatra (  )  [   ], ezért korlátos, vagyis létezik (   
) konvergens 

részsorozata. Erre a részsorozatra  

   
    

   
    

Az [   ] intervallum zárt, ezért    [   ]. Az   itt folytonos és 
sorozatfolytonos is, tehát egyrészt:  

   
    

 (   
)   (  ) 

másrészt 

  
 

 
  (   

)    

Ezért    (  )   , tehát valóban      ( ).   

Heine tétel 

Tétel Ha az   [   ]    függvény folytonos, akkor egyenletesen is folytonos. 
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8B Hatványsor, konvergencia-tartománya, ennek jellemzése. 

Hatványsor konvergencia sugarának meghatározása.(B). 

Gömbi polárkoordináták, Jacobi determinánsa (B) 

Hatványsor, konvergencia-tartománya, ennek jellemzése 

Definíció A hatványsor: 

∑  (    )
 

 

   

      

Ahol      rögzített. 

Definíció Adott egy hatványsor: 

∑   
 

 

   

 

Ennek konvergencia halmaza (konvergencia tartománya, „ahol konvergens”): 

  {    ∑    
 

 

   

   } 

Állítás A konvergencia halmaz tulajdonságai: 

1.)     

2.) Ha    , akkor minden  -re, melyre | |  | |, igaz, hogy    . 

3.) Ha    , akkor minden  -re, melyre | |  | |, igaz, hogy    . 

Hatványsor konvergencia sugarának meghatározása (B) 

Definíció Tegyük fel, hogy létezik    , melyre     és     . A hatványsor kon-

vergencia sugara      {| |     } 
Ha   { }, akkor    . 

Ha    , akkor     

Az      esetben a konvergencia sugár meghatározása a gyökkritériummal lehetséges, a 

„szereposztás”       
 .  

Állítás Tegyük fel, hogy a       √|  |
 

   határérték létezik (esetleg   ). Ekkor: 

 1.)     esetén    . A hatványsor mindenütt konvergens. 

 2.)     esetén    . 

 3.)       esetén   
 

 
. 

Bizonyítás 1.)       √|  |  | | 
    | |     

2.)       √|  |  | | 
         

3.)       √|  |  | | 
 

  | |   . Ezért | |  
 

 
 esetén  | |   . A sor kon-

vergens.   
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A konvergencia sugár meghatározható még a hányados kritérium módszerével is, hasonló 

szereposztással. 

Állítás Tegyük fel, hogy a       
|    |

|  |
   határérték létezik (esetleg   ). Ekkor: 

 1.)     esetén    . A hatványsor mindenütt konvergens. 

 2.)     esetén    . 

 3.)       esetén   
 

 
. 

Bizonyítás 

     
   

|
     

   

    
|  | |     

   

|    |

|  |
  | |  

{
 

      | |  
 

 
           

     | |  
 

 
          

 

  

Gömbi polárkoordináták, Jacobi determinánsa (B) 

Definíció Egy adott (     )     pont gömbi koordinátái (     ), melyeket a követke-

zőképp definiálunk: 

 : a pont origótól vett távolsága;   √         

 : a pontba mutató helyvektor és a   tengely pozitív része által bezárt szög 

  [   ] 

 : a pontba mutató helyvektor    síkra vett vetületének az   tengely pozitív ré-

szével bezárt szöge.   [    ) 

A gömbi koordinátákkal tehát az (     ) pont így írható le: 

      ( )    ( )        ( )    ( )        ( ) 

A gömbi koordináta-leképezés Jacobi determinánsa 

 (     )  |

   ( )    ( )     ( )    ( )      ( )    ( )

   ( )    ( )     ( )    ( )     ( )    ( )

   ( )      ( )  

|   

    ( )  |
    ( )    ( )      ( )    ( )

    ( )    ( )     ( )    ( )
|       ( )  |

   ( )    ( )      ( )    ( )

   ( )    ( )     ( )    ( )
|   

    |
   ( )    ( )     ( )    ( )

   ( )    ( )     ( )    ( )
|   

    ( )  (     ( )    ( )     ( )       ( )    ( )     ( ))   

     ( )  (     ( )     ( )       ( )     ( ))   

    ( )       ( )    ( ) (    ( )      ( ))⏞            
 

     ( )       ( ) (    ( )      ( ))⏟            
 

  

      ( ) (    ( )      ( ))⏟            
 

      ( ) 
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9A Differenciálhányados. Geometriai jelentés. Folytonosság 

és differenciálhatóság.(B) 

Differenciálhányados 

Definíció Adott egy       függvény és       értelmezési tartományának egy belső 

pontja (azaz (         )     valamely    -ra). Az   ponthoz tartozó 

differenciahányados: 
 ( )   (  )

    
      

A függvény differenciálható   -ban, ha a  

   
    

 ( )   (  )

    
 

határérték létezik és véges. Ennek a határértéknek a neve derivált, differenciál-

hányados. Jele:   (  ) 

Geometriai jelentés 

Geometriai jelentés: A differenciálhányados a függvény grafikonjának   (    (  )) 

pontjához tartozó érintőjének meredekségét ( iránytangensét) adja. 

Folytonosság és differenciálhatóság (B) 

Állítás Ha   differeniálhtó   -ban, akkor ott folytonos is. 

Bizonyítás Mivel 

   
    

 ( )   (  )

    
   

ezért tetszőleges    -hoz létezik    , hogy  

    
 ( )   (  )

    
     

ha |    |   . Vegyünk    -et. Azt jelenti, hogy  

    
 ( )   (  )

    
     

azaz 

|
 ( )   (  )

    
|    

valamilyen   mellett, ha   elég közel van   -hoz. Ezért itt  

| ( )   (  )|   |    | 

amiből a folytonosság következik. Legyen ugyanis     tetszőleges, ekkor vá-

lasszunk      -t. Ha |    |   , akkor | ( )   (  )|   .   
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9B Függvény rendszer, koordináta-transzformáció. Jacobi 

mátrix. Vektormező invertálhatósága. Hengerkoordináták, 

Jacobi determinánsa (B) 

Függvény rendszerek 

Ha egyszerre több függvényt tekintünk, akkor függvényrendszerekről beszélünk. Tekintsük 

most azt a speciális esetet, hogy a függvények száma megegyezik a változók számával. Le-

gyen      egy tartomány, ahol adott két függvény,        . A függvényrendszer, amit 

tekintünk: 

   (   ) 
   (   ) 

Ezt úgy értelmezhetjük, mint    térbeli leképezés, mely az (   ) ponthoz a (   )   (   ) 
pontot rendeli hozzá. Ezt a        leképezést szokás vektormezőnek is hívni. 

Koordináta-transzformáció 

A fenti függvényrendszerek koordináta-transzformációk. Az   függvény változói   és  , az   

függvény koordinátafüggvényei pedig   és  . Ekkor az   függvény az alábbi hozzárendelést 

valósítja meg: 

(   )  (   ) 

Példa 

A polárkoordinátákat Descartes koordinátákká képező függvényt függvényrendszerként így 

definiálhatjuk: 

(   )  (   ) 
ahol 

      ( )   (   ) 
      ( )   (   ) 

Jacobi mátrix 

Definíció A fenti rendszerhez tartozó Jacobi mátrixot így definiáljuk: 

 (   )  [
  

 (   )   
 (   )

  
 (   )   

 (   )
]  [

      (   )

      (   )
] 

A fenti mátrix determinánsát Jacobi determinánsnak hívjuk: 

 (   )    
 (   )  

 (   )    
 (   )  

 (   ) 

Vektormező invertálhatósága 

Az   -beli leképezés invertálható, ha a leképezés injektív, azaz különböző  -beli pontokhoz 

a képtérben különböző (   ) pontok tartoznak. Ekkor a fenti rendszer invertálható: 

   (   ) 
   (   ) 

Hengerkoordináták 

Definíció Egy adott (     )     pont hengerkoordinátái (     ), melyeket így definiá-

lunk: (   ) a pont    síkra vett vetületének polárkoordinátái,   pedig a harma-

dik Descartes koordináta: 

      ( )        ( )      
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Áttérés Jacobi determinánsa (B) 

A hengerkoordináta-leképezés Jacobi determinánsa 

 (     )  |
   ( )      ( )  
   ( )     ( )  

   

|   

   |
     ( )  
    ( )  

|    |
   ( )  
   ( )  

|    |
   ( )      ( )

   ( )     ( )
|   

      ( )       ( )    
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10A Differenciálási szabályok: szorzat, hányados, összetett 

függvény, inverz. (B)  

Differenciálási szabályok 

Tétel Legyenek   és   differenciálható függvények. Ekkor  

1.) (   ) ( )    ( )    ( ) 

2.) (  ) ( )      ( ) 

3.) (  ) ( )    ( ) ( )   ( )  ( ) 

4.) Tegyük fel, hogy  ( )   , ekkor 

(
 

 ( )
)
 

 
  ( )

  ( )
 

5.) Tegyük fel, hogy  ( )   , ekkor 

(
 ( )

 ( )
)

 

 
  ( ) ( )   ( )  ( )

  ( )
 

6.) Láncszabály (   ) ( )    ( ( ))    ( ) 

Bizonyítás 3.) 

(  ) ( )     
    

 ( ) ( )   (  ) (  )

    
  

    
    

 ( ) ( )   ( ) (  )   ( ) (  )   (  ) (  )

    
  

    
    

 ( )
 ( )   (  )

    
  (  )    

    

 ( )   (  )

    
 

Ahonnan fölhasználva   folytonosságát következik az állítás. 

 4.) 

(
 

 ( )
)
 

    
    

 
 ( )

 
 

 (  )

    
    

    

 (  )   ( )
 ( ) (  )

    
  

    
    

(
  

 ( ) (  )
 
 ( )   (  )

    
) 

 6.) 

(   ) ( )  ( ( ( )))
 

    
    

 ( ( ))   ( (  ))

    
  

    
    

 ( ( ))   ( (  ))

 ( )   (  )

 ( )   (  )

    
  

    
 ( )  (  )

 ( ( ))   ( (  ))

 ( )   (  )
    
    

 ( )   (  )
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Tétel Tegyük fel, hogy   [   ]    szigorúan monoton és differenciálható. Tegyük 

fel, hogy   ( )         . Ekkor     is differenciálható, és  

(   ) ( )  
 

  (   ( ))
 

Bizonyítás A differenciálhatóságot bizonyítás nélkül elfogadjuk. Induljunk ki az 

   ( ( ))     azonosságból, és deriváljuk   szerint, az összetett függvény de-

riválási szabályát alkalmazva. Ekkor 

(   ) ( ( ))    ( )  ( )  

(   ) ( ( ))    (   ( ( )))    

(   ) ( ( ))  
 

  (   ( ( )))
 

Mivel  ( )   , a tétel állítása ebből már következik.   

10B Kétváltozós függvény integrálása téglalapon. Integrálás 

normál tartományon. Kétváltozós valós értékű függvény 

integrálja vonal mentén. 

Kétváltozós függvény integrálása téglalapon 

A fenti tétel következménye, hogy téglalap alakú tartományon (intervallumon) az integrálás a 

következőképpen néz ki. 

Tétel Tegyük fel, hogy   [   ]  [   ],       integrálható függvény. Ekkor 

∬ (   )   
 

 ∫ (∫  (   )   
 

 

)    
 

 

 ∫ (∫  (   )   
 

 

)  
 

 

 

Integrálás normál tartományon 

Definíció Egy      részhalmaz   szerinti normáltartomány a síkon, ha   a következő 

tulajdonságokkal rendelkezik: 

 létezik egy [   ] intervallum, 

 léteznek       [   ]    szakaszonként folytonos függvények, melyekre 

   ( )    ( ) minden  -re és 

  {(   )          ( )      ( )} 

Hasonlóan,      részhalmaz   szerinti normáltartomány a síkon, ha létezik 

egy [   ] intervallum és léteznek       [   ]    szakaszonként folytonos 

függvények, melyekre   ( )    ( ) minden  -ra és 

  {(   )          ( )      ( )} 

 

Tétel Legyen    -szerinti (illetve   szerinti) normáltartomány a síkon. Tegyük fel, 

hogy az   függvény integrálható  -en. Ekkor 
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∬ (   )   
 

 ∫ ∫  (   )   
  ( )

  ( )

   
 

 

 

illetve 

∬ (   )   
 

 ∫ ∫  (   )   
  ( )

  ( )

   
 

 

 

Kétváltozós valós értékű függvény integrálja vonal mentén 

Legyen adott a síkban egy   Jordan görbe, melyet   függvénnyel paraméterezünk: 

  { ( )   [   ]} 

ahol  ( )  ( ( )  ( )),   [   ]. Feltesszük, hogy   sima görbe. Legyen      egy 

olyan tartomány, mely tartalmazza a   görbét. 

Definíció Az   függvény vonalintegrálját a   görbe mentén így értelmezzük: 

∫ (   )   
 

 ∫  ( ( )  ( ))  √   ( )     ( )   
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11A Középértéktételek: Rolle-(B), Lagrange-(B), Cauchy tétel. 

Integrálszámítás alaptétele (B). 

Középértéktételek (B) 

Rolle tétel 

Tétel Legyen   [   ]    függvény. Tegyük fel, hogy   folytonos és differenciálható 
[   ]-n. Tegyük fel továbbá, hogy  ( )   ( ). Ekkor    (   ), melyre 

  ( )   . 

Bizonyítás A Weierstrass II. tétel miatt létezik a függvénynek minimuma és maximuma. Ha 

   , akkor a függvény konstans, és deriváltja nulla. Ha    , akkor   , 

melyre  ( )    vagy  ( )   . Ekkor  -ben lokális szélsőérték van, és így itt 

a derivált nulla.   

Lagrange tétel 

Tétel Legyen   [   ]    függvény. Tegyük fel, hogy    

- folytonos [   ]-n,  

- differenciálható (   )-n.  

Ekkor létezik olyan   (   ), melyre  

  ( )  
 ( )   ( )

   
 

Bizonyítás Az (   ( )) és (   ( )) pontokat összekötő egyenes egyenlete  

 ( )   ( )  
 ( )   ( )

   
(   ) 

Legyen 

 ( )   ( )   ( ) 
Ekkor   differenciálható, és 

 ( )   ( )   ( )     ( )   ( )   ( )    

tehát  -re a Rolle-tételt alkalmazva azt kapjuk, hogy   , melyre   ( )   , azaz 

  ( )    ( )  
 ( )   ( )

   
 

   

Cauchy tétel 

Tétel Legyen   [   ]    függvény. Tegyük fel, hogy    

- folytonos [   ]-n,  

- differenciálható (   )-n.  

-  ( )   ( )  

-   ( )     

Ekkor létezik olyan   (   ), melyre  
 ( )   ( )

 ( )   ( )
 

  ( )

  ( )
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Integrálszámítás alaptétele (B) 

Tétel A     [   ]    differenciálható függvények, melyekre   ( )    ( ) teljesül 

minden   (   )-re. Ekkor  ( )   ( )       [   ] valamely     mel-

lett. 

Bizonyítás Legyen  ( )   ( )   ( ). Deriváljuk  -t:  

  ( )    ( )    ( ) 

A tétel föltevése alapján   ( )    ( ), amiből következik, hogy   ( )   . Ez 

csak akkor lehetséges, ha   konstans, vagyis létezik    ( )    .   

11B Integrál transzformáció polárkoordinátákkal. Helyette-

sítés általános koordináta-transzformációval kettős integ-

rálban. 

Integrál transzformáció polárkoordinátákkal 

Kettős integrálban a polárkoordinátákra való áttérés az általános helyettesítés egy speciális 

esete. Az áttéréshez szükség van a koordináta-transzformációra, mely polárkoordinátákra való 
áttérés esetén 

      ( ) 
      ( ) 

A Jacobi determináns: 

 (   )  |
   ( )      ( )

   ( )     ( )
|        ( )       ( )    

Így a megfelelő integrál-transzformáció 

∬ (   )  (   )
 

 ∬  (    ( )      ( ))      (   )
  

 

Helyettesítés általános koordináta-transzformációval kettős integrálban 

Tétel Adott egy       integrálható függvény, ahol   korlátos, zárt, mérhető tarto-
mány. Tekintsünk egy 

   (   ) 

   (   ) 

transzformációt, melyről feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, 

azaz 

 (   )  [
  

 (   )   
 (   )

  
 (   )   

 (   )
] 

jelöléssel     (   )     -ben. Legyen továbbá 

   {(   )  ( (   )  (   ))   } 

Ekkor 

∬ (   )  (   )
 

 ∬  ( (   )  (   ))   (   )  (   )
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12A Taylor polinom, tulajdonságai. (B) Lagrange-féle mara-

déktag. 

Taylor polinom, tulajdonságai (B) 

Egy  -ed rendű polinomot keresünk, mely olyan, mint   az   -ban: 

  (  )   (  ) 

  
 (  )    (  ) 

  

  
( )(  )   ( )(  ) 

Állítás Ilyen polinom egyértelműen létezik, a neve Taylor-polinom, jelölése   ( ). 

Definíció Az   függvény   -hoz tartozó  -ed rendű Taylor polinomja:  

  ( )   (  )    (  )(    )  
   (  )

 
(    )

    
 ( )(  )

  
(    )

  

  ( )  ∑
 ( )(  )

  
(    )

 

 

   

 

Bizonyítás Az egyértelműség triviális. Létezése a következőképp igazolható:  

  ( )   (  )    (  )(    )  
   (  )

 
(    )

    
 ( )(  )

  
(    )

  

  ( ) és deriváltjai   -ban: 

  (  )   (  )    (  )(     )    
 ( )(  )

  
(     )

   (  ) 

  
 (  )      (  )    

   (  )

 
 (     )    

 ( )(  )

  
 (     )

      (  ) 

  

  
( )(  )        

 ( )(  )

  
     

 ( )(  )

  
(     )

     ( )(  ) 

  

  
( )(  )        

 ( )(  )

  
    ( )(  )   

Lagrange-féle maradéktag 

Definíció A Lagrange-féle maradéktag: 

  ( )   ( )    ( ) 

Tétel Tegyük fel, hogy   (   )-szer differenciálható. Ekkor    (    ) vagy 

  (    ), melyre: 

  ( )  
 (   )( )

(   ) 
(    )
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12B Komplex vonalintegrál, kiszámítása. Cauchy-féle alapté-

tel. Általánosítás. 

Komplex vonalintegrál, kiszámítása 

Definíció A vonalintegrált az alábbi határérték definiálja, amennyiben létezik és véges: 

   
   
    

∑(       )   (  )

 

   

 ∫ ( )    
 

 

ahol       ( (       ̂ )        ). Ha   zárt görbe, akkor a vonalinteg-
rálra az alábbi jelölést használjuk: 

∮ ( )   
 

 

Tétel Legyen az   görbe paraméteres megadása: 

 ( )   ( )    ( )   ( )     ( )   [   ] 

Tegyük fel, hogy     illetve     folytonosan differenciálhatók. Ekkor 

∫ ( )   
 

 ∫  ( ( ))  ( )   
 

 

 

 ∫  ( ( )    ( ))(  ( )     ( ))   
 

 

 

 ∫  ( ( )     ( )) (  ( )     ( )    ( )     ( )  ( ))    
 

 

 

Tétel (Newton-Leibniz formula komplex vonalintegrálra) Legyen adott az       

függvény. Tegyük fel, hogy létezik olyan       függvény, melyre minden   

esetén   ( )   ( ). Legyen   és   a tartomány két pontja. Ekkor 

∫ ( )   
 

  ( )   ( ) 

minden olyan     Jordan görbe mentén, melynek végpontjai A és B. 

Cauchy-féle alaptétel 

Tétel (Cauchy-féle alaptétel vonalintegrálra) Legyen     egyszeresen összefüggő 

tartomány és ebben     egy sima, zárt görbe. Tegyük fel hogy az       
függvény analitikus. Ekkor 

∮ ( )   
 

   

Tétel (Cauchy-féle alaptétel általánosítása) Legyen adott egy     összefüggő tar-

tomány, melynek határa a     görbe. Feltesszük, hogy   nem egyszeresen 

összefüggő, jelölje         a lyukakat körbevevő görbéket, melyekről feltesz-

szük, hogy ugyanolyan irányításúak, mint  . Legyen       analitikus függ-
vény. Ekkor 

∮ ( )   
 

 ∑∮  ( )   
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13A Monoton függvények jellemzése. Magasabb rendű derivál-

tak. L'Hopital szabály. (B) 

Monoton függvények jellemzése 

Tétel Adott       függvény, ahol    . Ekkor  

  monoton növő akkor és csak akkor, ha   ( )   , minden    -re,  

  monoton fogyó akkor és csak akkor, ha   ( )   , minden    -re. 

Magasabb rendű deriváltak 

Definíció Ha    deriválható   -ban, akkor ennek a deriváltja az eredeti   függvény máso-
dik deriváltja  

   (  )  
  ( )    (  )

    
 

Hasonlóan, ha     is deriválható, akkor a harmadik derivált  

    (  )  
   ( )     (  )

    
 

   

   
 

… és így tovább. Az  -ed rendű derivált jelölése:  

 ( )  
   

   
 

L'Hopital szabály (B) 

Tétel Legyenek   és   differenciálható függvények, melyekre  

   
    

 ( )     
    

 ( )    

Keressük a függvények hányadosának határértékét. Ekkor ha létezik a deriváltak 

hányadosának határértéke, akkor a keresett határérték is létezik, mégpedig   

   
    

  ( )

  ( )
    

    

 ( )

 ( )
 

Bizonyítás A tétel állítása miatt  (  )   (  )   , azaz  

 ( )

 ( )
 

 ( )   (  )

 ( )   (  )
 

A Cauchy-féle középértéktétel szerint ekkor létezik egy   (    ), melyre  

 ( )   (  )

 ( )   (  )
 

  ( )

  ( )
 

Nyilvánvalóan 

   
    

  ( )

  ( )
    

    

  ( )

  ( )
    

    

 ( )   (  )

 ( )   (  )
    

    

 ( )

 ( )
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13B Vektormező integrálja görbe mentén. Potenciálkeresés. 

Potenciál létezésének szükséges (B) és elégséges feltétele. 

Vektormező integrálja görbe mentén 

Legyen   { ( )   [   ]} háromdimenziós Jordan görbe. Legyen továbbá   egy három-

dimenziós vektormező       , ahol     .   koordinátafüggvényeit jelölje       
      . 

 (     )  [

  (     )

  (     )

  (     )
] 

Feltesszük, hogy   differenciálható  -ben. Feltesszük azt is, hogy    . Az egyszerűség 

kedvéért jelöljük    pontjait röviden:   (     ) 

A görbe mentén vett vonalintegrál jelölése 

∫ ( )   
 

 

Tétel (Vonalintegrál kiszámítása) A fenti jelölésekkel és feltételekkel 

∫ ( )   
 

 ∫ 〈 ( ( ))  ̇( )〉   
 

 

 

ahol  ̇ jelöli a   függvény koordináták szerinti deriváltját. 

Potenciálkeresés 

Adott egy háromváltozós, valós értékű függvény      ,     . Ha a függvény differen-

ciálható a tartományban, akkor gradiense vektormező:            . Ennek „fordítottja”, 

hogy ha adott egy        vektormező, akkor vajon létezik-e olyan       differenciál-

ható függvény, melyre         . 

Definíció Az   vektormező potenciálos (konzervatív), ha létezik   differenciálható skalár-

függvény, melyre         . 

Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal) 

Tétel Adott az   vektormező egy      egyszeresen összefüggő tartományon.  -nek 

pontosan akkor létezik potenciálja, ha minden  -beli zárt görbe mentén az   

vektormező vonalintegrálja  . 

Bizonyítás A bizonyítás során csak azt igazoljuk, hogy ha van potenciál, akkor tetszőleges 

zárt görbe mentén integrálva az integrál értéke nulla. 

∫ ( )   
 

 ∫ 〈 ( ( ))  ̇( )〉   
 

 

 ∫ 〈      ( ( ))  ̇( )〉   
 

 

  

 ∫
 

  
 ( ( ))   

 

 

  ( ( ))   ( ( )) 

Ha a görbe zárt, akkor ez azt jelenti, hogy     és így  ( )   ( ), vagyis az 

integrál valóban nulla.   
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14A Egyváltozós valós függvény lokális szélsőértékének 

szükséges (B) ill. elégséges feltétele. 

Lokális szélsőérték létezésének szükséges feltétele (B) 

Tétel Legyen       differenciálható függvény, és legyen  -nek   -ban lokális 

szélsőértéke. Ekkor   (  )   . 

Bizonyítás Tegyük fel, hogy   -ban mondjuk lokális maximum van. A derivált definíciója 
szerint: 

  (  )     
    

 ( )   (  )

    
 

A lokális maximum tulajdonsága miatt létezik   (         ) környezet, 

hogy ha    , akkor  ( )   (  ). Így ha   (       ), vagyis     , 

akkor  
 ( )   (  )

    
 

  

  
   (  )    

Hasonlóan, ha   (       ), vagyis     , akkor  

 ( )   (  )

    
 

  

  
   (  )    

A fentiekből következik, hogy   (  )   .   

Lokális szélsőérték létezésének elégséges feltétele 

Tétel Ha az   függvény   -ban kétszer differenciálható, és   (  )   , azaz    staci-

onárius pont, akkor: 

- ha    (  )   , akkor    lokális minimum, 

- ha    (  )   , akkor    lokális maximum, 

- ha    (  )   , akkor ebből nem eldönthető, vajon   -ban szélsőértéke van-e. 

14B Kétváltozós függvény felszínének kiszámítása. 

Kétváltozós függvény felszínének kiszámítása 

Legyen adott egy        függvény,     . Ennek felülete egy 3 dimenziós felület: 

  {(     (   ))  (   )   }     

Ennek nagysága a következőképp számolható: 

 ( )  ∬ √     
 (   )     

 (   )  (   )
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15A Primitív függvény. Alaptulajdonságok.  Konvex és konkáv 

függvények, ezek jellemzése. 

Primitív függvény 

Definíció Legyen      , ahol    . Legyen      . Az   függvény az   függvény 
primitív függvénye, ha 

  ( )   ( )      

Alaptulajdonságok 

Definíció Legyen      .   primitív függvényei a határozatlan integrál.  

∫ ( )    {      |   ( )   ( )}  {       } 

Tétel 1.) 

∫(   )( )    ∫ ( )    ∫ ( )    

2.) 

∫   ( )      ∫  ( )    

3.) 

∫  ( ( ))    ( )     ( ( ))    

3/a) 

∫  ( )    ( )    
    ( )

   
   

3/b) 

∫
  ( )

 ( )
      | ( )|    

3/c) 

∫  ( )    ( )      ( )    

Konvex és konkáv függvények, ezek jellemzése 

Definíció Az   [   ]    függvény konvex, ha minden       [   ] esetén  

 (
     

 
)  

 (  )   (  )

 
 

Definíció Az   [   ]    függvény konkáv, ha    konvex. 

Inflexió 

Definíció Az       inflexiós pont, ha itt az        függvény konvexitása a pont 

előtt más mint a pont után, azaz ha   az  

- (       )-on konvex és (       )-on konkáv, vagy  

- (       )-on konkáv és (       )-on konvex. 
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Kapcsolat a deriválttal 

Tétel Legyen   [   ] kétszer differenciálható függvény. Ekkor 

-   konvex [   ]-n      monoton növő 

-   konkáv [   ]-n      monoton csökkenő. 

Tétel Legyen   kétszer differenciálható függvény   -ban. Ekkor 

- ha    (  )   , akkor    lokális minimum, 

- ha    (  )   , akkor    lokális maximum, 

- ha    (  )   , akkor nem dönthető el, hogy van-e szélsőérték. 

Tétel Legyen   kétszer differenciálható függvény   -ban. Ekkor 

- ha    (  )   , akkor   konvex    valamely környezetében, 

- ha    (  )   , akkor   konkáv    valamely környezetében. 

Állítás Legyen   háromszor differenciálható függvény   -ban. Ekkor 

- ha    (  )    és     előjelet vált   -ban, akkor    inflexiós pont, 

- ha    (  )    és     (  )   , akkor    inflexiós pont. 

15B Kétváltozós függvény teljes differenciálhatósága adott 

pontban. Érintősík. Iránymenti derivált kiszámítása (B). 

Kétváltozós függvény teljes differenciálhatósága adott pontban 

Definíció Egy  ( ) függvény kisordó  -ban, ha  

   
   

 ( )

 
   

Ezt úgy jelöljük, hogy  ( )   ( ). 

Definíció Legyen       kétváltozós függvény, és (   )     ( ). Azt mondjuk, hogy 

az   függvény differenciálható (   )-ban, ha léteznek olyan       számok, 

melyekre 

 (         )             (√       ) 

teljesül elegendően kicsi    és    mellett, ahol       függetlenek   -től és 

  -tól. 

Érintősík 

A derivált geometriai jelentése is hasonló az egydimenziós esethez. Ha a függvény differenci-

álható egy pontban, akkor a pont közelében a függvény értékét az érintősík segítségével köze-

líthetjük. A sík megadásához megadjuk egy pontját – ez (       (     )) – és megadjuk a 

sík meredekségét, ami a két parciális derivált. Az érintősík egyenlete: 

   (     )    
 (     )(    )    

 (     )(    ) 

Ezt átírva a megszokott alakba: 

  
 (     )(    )    

 (     )(    )  (  )(    )    

ahol     (     ). Ebből az egyenletből leolvasható, hogy a sík egyik normálvektora 

  (  
 (     )   

 (     )   ) 

Iránymenti derivált kiszámítása (B) 

Definíció Legyen   [    ). Az    irányú iránymenti deriváltat így értelmezzük: 
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   (   )  
 

  
 (   )     

   

 (      ( )        ( ))   (   )

 
 

ha ez a határérték létezik. 

Definíció Adott egy      irány, melyre ‖ ‖  √  
    

   . A   iránymenti derivál-

tat egy (   ) pontban így értelmezzük: 

   (   )     
   

 (           )   (   )

 
 

ha ez a határérték létezik. 

Állítás Tegyük fel, hogy az   függvény differenciálható (   )-ban. Ekkor itt létezik az 

iránymenti derivált tetszőleges   [    ) esetén, és 

   (   )    
 (   )    ( )    

 (   )    ( ) 
Bizonyítás A differenciálhatóság miatt 

 (      ( )        ( ))   

  (   )    
 (   )    ( )    

 (   )    ( )   (| |) 

ha | | elegendően kicsi. Ebből következik, hogy 

 (      ( )        ( ))   (   )

 
  

   
 (   )    ( )    

 (   )    ( )  
 (| |)

 
 

melynek határértékeként az állítást kapjuk.   
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16A Riemann-integrál definíció. Elégséges feltételek integrálha-

tóságra. Newton-Leibniz tétel. (B) 

Riemann-integrál definíció 

Legyen az   függvény [   ]-n értelmezett folytonos függvény. Az [   ] intervallum egy fel-

osztása   {              }. 

Definíció A felosztáshoz tartozó alsó közelítő összeg 

 ( )  ∑  (       )

 

   

 ∑     

 

   

 

ahol       { ( )    [       ]} és             

Definíció A felosztáshoz tartozó felső közelítő összeg 

 ( )  ∑  (       )

 

   

 ∑     

 

   

 

ahol       { ( )    [       ]} és             

Definíció Az   felosztáshoz tartozó egyik Riemann összeg 

 ( )  ∑ (  )(       )

 

   

 ∑ (  )   

 

   

 

ahol    [       ] tetszőleges és             

Definíció Az   felosztássorozathoz tartozó oszcillációs összeg 

 ( )  ∑(     )(       )

 

   

 ∑(     )   

 

   

 

Definíció Az   felosztás finomsága 

 ( )     {               } 

Definíció Legyen   az összes lehetséges felosztás. Legyenek      { ( )     } és 

     { ( )     }. 

Ha    , akkor az   [   ]    korlátos függvényt Riemann integrálhatónak 
nevezzük. A függvény Riemann integrálja 

∫  ( )   
 

 

     

Megjegyzés Ahol  ( )    

∫  ( )   
 

 

    
   

 (  )     
   

∑ (  )   
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Elégséges feltételek integrálhatóságra 

Tétel Ha   [   ]    korlátos és monoton, akkor integrálható. 

Tétel Ha   [   ]    folytonos, akkor integrálható. 

Tétel Legyen   [   ]    korlátos, mely véges sok szakadási helytől eltekintve foly-

tonos. Ekkor   integrálható. 

Newton-Leibniz tétel (B) 

Tétel Legyen   [   ]    integrálható függvény. Tegyük fel, hogy létezik   primitív 

függvénye,   ( )   ( )    [   ]. Ekkor  

∫  ( )   
 

 

  ( )   ( ) 

Bizonyítás Legyen    {              } egy felosztás, és   primitív függ-

vény egy rész-intervallumon:   [       ]   . 

A Lagrange-féle középérték-tétel miatt létezik    [       ], melyre 

  (  )  
 (  )   (    )

       
  (  ) 

Tekintsük azt a Riemann-összeget, ahol 

 (  )  ∑ (  )(       )

 

   

 ∑
 (  )   (    )

       

(       )

 

   

  

 ∑ (  )   (    )

 

   

   ( )   ( ) 

∫  ( )   
 

 

    
   

 (  )   ( )   ( ) 

   

16B Fourier transzformáció. Alaptulajdonságok. Derivált 

függvény Fourier transzformáltja.(B) 

Fourier transzformáció 

Tegyük fel, hogy az       valós értékű függvény kielégíti az alábbi feltételeket: 

1. Tetszőleges     véges intervallum esetén   leszűkítése az   intervallumra véges sok 
pontot kivéve folytonosan differenciálható. 

2. Ha    szakadási pont, akkor ez a szakadás elsőfajú, és itt a függvényérték 

 (  )  
 (    )   (    )

 
 

3. A függvény abszolút integrálható, azaz 

∫ | ( )|   
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Definíció Ha   teljesíti a fenti feltételeket, akkor az   Fourier transzformáltja az az 

 ̂     komplex értékű függvény, melyet így definiálunk: 

 ̂( )  
 

√  
∫  ( )        

 

  

 

A Fourier transzformált jelölése  (   )   ̂( ) 

Alaptulajdonságok 

Tétel A Fourier transzformált alaptulajdonságai: 

1. A hozzárendelés lineáris, azaz 

 (    )    (   )  (     )   (   )   (   ) 
2.  ( ) folytonos függvény 

3. (Átskálázás) 

 ( (  )  )  
 

 
 ( ( ) 

 

 
)         

4. (Idő megfordítása) 

 ( (  )  )   ( ( )   ) 
5. (Idő eltolás) 

 ( (    )  )         ( ( )  ) 
6. (Frekvencia eltolás) 

 (     ( )  )   ( ( )    ) 

Derivált függvény Fourier transzformáltja.(B) 

Tétel Ha 

∫ |  ( )|   
 

  

   

akkor 

 (    )     (   ) 

Bizonyítás Parciálisan integrálva 

 

√  
∫   ( )        

 

  

 
 

√  
[ ( )     ]

  

 

 
  

√  
∫  ( )        

 

  

    (   ) 

  

Megjegyzés Az időtartománybeli deriválás a frekvenciatartományban egy    tényezővel való 
szorzásnak felel meg. 
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17A Integrálfüggvény. Integrálszámítás II. alaptétele (B). 

Integrálfüggvény 

Definíció Legyen   [   ]    Riemann-integrálható. Az   függvény integrálfüggvénye 

  [   ]   , ahol  

 ( )  ∫  ( )   
 

 

 

Integrálszámítás II. alaptétele (B) 

Tétel Az integrálfüggvény tulajdonságai: 

1.) Folytonos [   ]-n, 

2.) ha   folytonos, akkor   differenciálható, és   ( )   ( ). 

Bizonyítás 1.)   korlátos: | ( )|   . Az    (   ), ekkor  (  ) folytonos-e? 

 ( )   (  )  ∫  ( )   
 

 

 ∫  ( )   
  

 

 ∫  ( )   
 

  

 

| ( )   (  )|  |∫  ( )   
 

  

|  ∫ | ( )|   
 

  

  |    | 

A fentiekből következik, hogy        
 ( )   (  )   , tehát   folytonos. 

2.) Be kell látni a következőt: 

   
    

 ( )   (  )

    
  (  ) 

|
 ( )   (  )   (  )(    )

    
|  ( ) 

Ezt megbecsüljük. Legyen     tetszőleges.     : 

|    |    | ( )   (  )|    

Ha |    |   , akkor a fenti kifejezésben: 

( )  
|∫  ( )   (  )   

 

  
|

|    |
 

 |    |

|    |
   

   

17B Magasabb rendű homogén lineáris DE megoldásai. Ál-

landó együtthatós HLDE alapmegoldásai (B). Karakterisz-

tikus polinom. 

Magasabb rendű homogén lineáris DE megoldásai 

Tétel Az  [ ]    egyenletnek létezik   darab lineárisan független megoldása: 

       . Továbbá tetszőleges   megoldás felírható ezek lineáris kombinációja-

ként:               
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Állandó együtthatós HLDE alapmegoldásai (B), karakterisztikus polinom 

Tekintsük az  [ ]   ( )     
(   )          egyenletet, ahol           adott 

valós számok. Speciális megoldásokat keresünk, melyek 

 ( )      

alakúak. Ekkor   ( )        …  ( )( )        . 

Ezeket visszahelyettesítve azt kapjuk, hogy 

 [ ]     (      
              )    

A jobboldalon álló függvény csak úgy lehet  , hogyha a zárójelben szereplő polinom nulla. 

Definiáljuk a differenciálegyenlethez tartozó karakterisztikus polinomot a következőképpen: 

 ( )        
         

Ez egy valós együtthatós polinom, melynek a komplex számsíkon   darab gyöke van, multip-
licitásokkal együtt. 

Első eset 

Tegyük fel, hogy  ( ) gyökei valósak, és mind egyszeresek. Legyenek ezek        . Ekkor 

fel tudjuk írni a homogén egyenlet   megoldását 

  ( )       

  ( )       

  
  ( )       

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás: 

 ( )  ∑       

 

   

      

Második eset 

Tegyük fel, hogy  ( ) gyökei valósak, viszont van   darab   -szeres (       ) gyök. 

Legyen minden      -szeres gyöke a karakterisztikus polinomnak. Ekkor így tudjuk felírni a 

homogén egyenlet megoldásait: 

   ( )          ( )                  
            

  
   ( )          ( )                  

            

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás: 

 ( )  ∑∑     
         

  

   

 

   

      

 

Harmadik eset 

Tekintsük azt az esetet, amikor a polinomnak komplex gyökei vannak. Ekkor ha        

egy gyöke a karakterisztikus polinomnak, akkor konjugáltja,        is gyök. Két alap-

megoldást kapunk tehát: 

  ( )        ( )      
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Mivel   komplex szám, ezért ezek komplex függvények lesznek. Tudjuk, hogy ezek tetszőle-

ges lineáris kombinációja ismét megoldás lesz. Keresünk olya lineáris kombinációt, amely 

valós értékű. Definiáljuk a következő alapmegoldásokat: 

  ( )  
  ( )    ( )

 
       (  ) 

  ( )  
  ( )    ( )

  
       (  ) 

Ezek a megoldások is – nyilvánvalóan – lineárisan függetlenek. Az általános megoldás ezek 

összege. 

Negyedik eset 

A negyedik eshetőség az, hogy többszörös komplex gyökök állnak elő. Ekkor a komplex 

gyököknél megismert módszert és a többszörös gyököknél megismert felírást ötvözve kell 

alkalmazni. 
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18A Helyettesítés integrálban. Parciális integrálás (B), alap-

esetek. 

Helyettesítés integrálban 

Tétel A helyettesítési integrál alapformulája:  

∫ ( ( ))    ( )    ∫ ( )   |
   ( )

 

ahol   szigorúan monoton függvény. 

Határozott alak 

Tétel Legyen   [   ]    integrálható függvény és   [   ]  [   ] szigorúan 

monoton, differenciálható függvény.  

 ( )     ( )    
Ekkor 

∫  ( )   
 

 

 ∫  ( ( ))    ( )   
 

 

 ∫  ( ( ))    ( )   
   ( )

   ( )

 

Parciális integrálás (B) 

Tétel Tegyük fel, hogy     [   ]    differenciálható függvények. Ekkor 
1.) Határozatlan alak 

∫  ( ) ( )     ( ) ( )  ∫ ( )  ( )    

2.) Határozott alak 

∫    ( ) ( )   
 

 

  ( ) ( )|

 

 

 ∫  ( )  ( )   
 

 

 

ahol  ( ) ( )|

 

 

  ( ) ( )   ( ) ( ) 

Bizonyítás Egyszerűen, a szorzatot deriválva: 

(  )          

Ez oldalanként kiintegrálva 

∫  ( ) ( )   
 

 

 [ ( ) ( )]

 

 

 

A tagokat átrendezve 

∫   ( ) ( )   
 

 

 [ ( ) ( )]

 

 

 ∫  ( )  ( )   
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Alapesetek 

1. alapeset 

∫              

„Szereposztás”:   ( )     és  ( )         . 

2. alapeset 

∫        {
   ( )

   ( )
}     

„Szereposztás”:   ( )  {
   ( )

   ( )
} és  ( )         . 

3. alapeset 

∫        {

   ( )

      ( )

     ( )
 

} 

„Szereposztás”:   ( )          és  ( )  {  
( )
 

}. 

4. alapeset 

∫   {
   ( )

   ( )
} 

„Szereposztás”:   ( )     és  ( )  {
   ( )

   ( )
}. 

18B Inverz Fourier transzformáció. Parseval egyenlőség.(B) 

Inverz Fourier transzformáció 

Tétel Tegyük fel, hogy   teljesíti az 1., 2., 3. feltételeket. Ekkor   előállítható Fourier 
transzformáltja segítségével: 

 ( )  
 

√  
∫  ̂( )       

 

  

 

Ez az inverz Fourier transzformáció. 

Parseval egyenlőség (B) 

Tétel (Parseval egyenlet) Ha az 1., 2., 3. feltételek teljesülnek és a Fourier sor egyen-

letesen konvergens, akkor 

∫ | ( )|    
 

  

 ∫ | ̂( )|
 
   

 

  

 

Bizonyítás A bizonyításban fel fogjuk használni mind a Fourier transzformáció, mind pedig 

az inverz Fourier transzformációt. Kiindulunk a fenti egyenlőség baloldalából, és 

az szorzat két  ( ) tényezőjének egyikébe az inverz Fourier transzformáltat ír-
juk. 
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∫   ( )   
 

  

 ∫  ( )
 

√  
∫  ̂( )       

 

  

  
 

  

 

Az egyenletes konvergencia miatt az integrálás sorrendje fölcserélhető: 

∫   ( )   
 

  

 ∫  ( )
 

√  
∫  ̂( )       

 

  

  
 

  

 ∫  ̂( )
 

√  
∫  ( )      

 

  

   
 

  

  

 ∫  ̂( )
 

√  
∫  ( )        

 

  

  
 

  

 ∫  ̂( ) ̂( )
 

  

   ∫ | ̂( )|
 

 

  

   

mivel  ̂( )   ̂(  ).   
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19A Integrál középértéktétel (B). Valós függvény gráfjának 

hossza. Forgástest térfogata. 

Integrál középérték tétel (B) 

Tétel Tegyük fel, hogy az    [   ] függvény folytonos. Ekkor    [   ], melyre 

 ( )  
∫  ( )   
 

 

   
 

Bizonyítás A Weierstrass II. tétel szerint        [   ], melyekre  (  )   ,  (  )    

ahol   a függvény minimuma,   a függvény maximuma. Mivel      , 

ezért a Bolzano tétel miatt    (     ), melyre  ( )   .   

Függvény gráfjának hossza 

Definíció Az    ( ) és    ( ) görbék és az     és     egyenesek közti terület 

nagysága: 

  ∫  ( )   
 

 

 ∫  ( )   
 

 

 

Feltéve, hogy  ( )   ( )    [   ] 

Ívhossz 

Tétel Legyen   [   ]    differenciálható függvény. A függvény gráfjának hossza 
ekkor 

  ∫ √  (  ( ))
 
   

 

 

 

Forgástest térfogata 

Állítás Tegyük fel, hogy   [   ]    differenciálható. Ekkor a forgástest térfogata: 

   ∫   ( )   
 

 

 

19B Magasabb rendű inhomogén lineáris DE-k megoldásai. 

Állandók variálása. Próbafüggvény 

Magasabb rendű inhomogén lineáris DE-k megoldásai 

Az inhomogén lineáris differenciálegyenletek esetében a már definiált  [ ]   ( ) egyenlet 

megoldását keressük,  ( )   . 

Tétel Ha    és    megoldásai az 

 ( )( )    ( ) 
(   )( )      ( ) ( )   ( ) 

inhomogén egyenletnek, akkor         a homogén egyenlet megoldása. Ha 

   a homogén, az    pedig az inhomogén egyenlet megoldásai, akkor      
   szintén megoldása az inhomogén egyenletnek. 
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Állandók variálása 

Legyen az  [ ]    homogén egyenlet   darab lineárisan független megoldása        . Az 
inhomogén egyenlet egyetlen megoldását keressük a következő alakban: 

 ( )    ( )  ( )      ( )  ( ) 

A fenti megoldásban szereplő függvényekre az alábbi feltételeket tesszük: 

  
        

      

  
   

      
   

    

  

  
   

(   )      
   

(   )    

  
   

(   )      
   

(   )   ( ) 

Így az együtthatók deriváltjaira adott   darab egyenlet. A fenti egyenletrendszert kompakt 

formában úgy írhatjuk fel, hogy a baloldalon az alapmegoldások Wronski mátrixa szerepel 

megszorozva a   deriváltak oszlopvektorával, a jobboldalon pedig a [         ( )]  oszlop-

vektor áll: 

[

       
  

   
    

 

    

  
(   )   

(   )    
(   )

] [

  
 

  
 

 
  
 

]  [

 
 
 

 ( )

] 

Mivel ezek az alapmegoldások lineárisan függetlenek, ezért ez a mátrix nem szinguláris, tehát 

a fenti egyenletrendszer mindig megoldható. 

Állítás Ha a fenti feltételek teljesülnek, akkor  [ ]   ( ). 

Megjegyzendő, hogy az állandók variálásának módszere akkor is használható, ha a lineáris 

differenciálegyenlet együtthatói nem konstansok, hanem adott, folytonos függvények. 

Próbafüggvény 

Az állandók variálása módszer ugyan minden esetben alkalmazható, de speciális jobboldal 

esetén, ha állandó együtthatós lineáris differenciálegyenletet tekintünk, érdemes az inhomo-

gén egyenlet megoldását speciális alakban keresni. A megoldandó egyenlet: 

 [ ]   ( )( )    ( ) 
(   )( )      ( ) ( )   ( ) 

 Ha  ( )      , ahol    , akkor a megoldást  ( )       alakban keressük.   
ismeretlen. 

 Ha  ( )               , akkor a megoldást  ( )            

alakban keressük, ahol   -k az ismeretlen paraméterek. 

 Ha  ( )      (  ) vagy  ( )      (  ), akkor a megoldást mindkét esetben 

 ( )      (  )      (  ) alakban keressük, ahol   és   az ismeretlen paramé-
terek. 

Ha  ( ) ezen speciális függvények összege, akkor a próbafüggvényt is összegként keressük. 

Definíció Ha a homogén differenciálegyenlet alapmegoldásai között létezik olyan függ-

vény, mint ami a differenciálegyenlet jobboldalán szerepel, akkor rezonanciáról 

beszélünk. 
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20A Majoráns és minoráns kritériumok valós improprius integ-

rálokra. Az  ( )      hatvány-függvény integrálja 

(   ]-ben ill. [   )-ben. (B) 

Majoráns és minoráns kritériumok valós improprius integrálokra. 

Tétel (Majoráns kritérium) Legyen        , és   (   ). Tegyük fel, hogy 
| ( )|  | ( )|     . Ekkor ha létezik az  

∫  ( )   
 

 

 

integrál (és véges) akkor   

∫  ( )   
 

 

 

is véges. 

Tétel (Minoráns kritérium) Legyen        , és   (   ). Tegyük fel, hogy 
| ( )|  | ( )|     . Ekkor, ha   

∫  ( )   
 

 

   

akkor 

∫  ( )   
 

 

   

Hatványfüggvény improprius integrálja (0,1)-ben (B) 

Adott   (   ) véges intervallum, és       nem korlátos függvény:  ( )  
 

   

∫
 

  
   

 

 

       

Ha létezik az improprius integrál, akkor az így számolható: 

∫
 

  
   

 

 

    
    

∫
 

  
   

 

 

 

A primitív függvény 

∫
 

  
    {

  | |     

    

   
    

 

Vizsgáljuk meg az érdekes eseteket, amikor     és    ! 

1.) Ha    , akkor 

∫
 

 
   

 

 

    
    

[  ( )]

 

 

    
    

(  ( )⏞  
  

   ( )⏞  
   

)     

2.) Ha    , akkor 

∫
 

  
   

 

 

 
 

   
[    ]

 

 

 
 

   
    
   

(      )  {
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Összefoglalva: 

∫
 

  
   

 

 

 {

 

   
    

      

} 

Hatványfüggvény improprius integrálja (1,∞)-ben (B) 

Adott   (   ) intervallum, és       nem korlátos függvény:  ( )  
 

   

∫
 

  
   

 

 

       

Ha létezik az improprius integrál, akkor az így számolható: 

∫
 

  
   

 

 

    
   

∫
 

  
   

 

 

 

A primitív függvény 

∫
 

  
    {

  | |     

    

   
    

 

Vizsgáljuk meg az érdekes eseteket, amikor     és    ! 

1.) Ha    , akkor 

∫
 

 
   

 

 

    
   

[  ( )]

 

 

    
   

(  ( )⏞  
  

   ( )⏞  
  

)     

2.) Ha    , akkor 

∫
 

  
   

 

 

 
 

   
[    ]

 

 

 
 

   
    
   

(      )  {

        

  

   
      

 

Összefoglalva: 

∫
 

  
   

 

 

 {

      

  

   
    

} 

20B Komplex függvény differenciálhatósága. Cauchy-

Riemann egyenletek. (B) 

Komplex függvény differenciálhatósága 

Adott egy     tartomány és ezen egy       komplex függvény. Legyen   kanonikus 

alakja  ( )   (   )     (   ). Tegyük fel, hogy   és   folytonosan differenciálható függ-

vények, azaz léteznek   
    

    
    

  parciális deriváltak és folytonosak. 

Definíció Legyen    az   értelmezési tartományának egy belső pontja.   differenciálható 

  -ban, ha létezik és véges a következő határérték: 

   
   

 (    )   (  )
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Cauchy-Riemann egyenletek (B) 

Tétel (Alaptétel a komplex függvény differenciálhatóságáról) Legyen     tarto-

mány,      ,         . Tegyük fel, hogy   és   folytonosan differenciálható 

függvények. Ekkor   differenciálhatósága a           pontban azzal ekviva-

lens, hogy az   és   kétváltozós függvények kielégítik az alábbi összefüggéseket: 

  
 (     )    

 (     ) 

  
 (     )     

 (     ) 

Az utolsó két egyenletet Cauchy-Riemann egyenleteknek nevezzük. 

Bizonyítás 1. rész. Tegyük fel, hogy   differenciálható   -ban. Ekkor a derivált definíciójá-

ban szereplő határérték létezik speciális irányokból is. Legyen        és le-

gyen elsőként     és    . Ekkor 

  (  )     
   

 (       )    (       )   (     )    (     )

 
  

    
   

 (       )   (     )

 
     

   

 (       )   (     )

 
  

   
 (     )     (     ) 

Most tegyük fel, hogy     és    . Ekkor az előzőhöz hasonlóan: 

  (  )     
   

 (       )   (     )

  
     

   

 (       )   (     )

  
  

      
 (     )    

 (     ) 

Mivel a kétoldali határértékeknek egyenlőknek kell lenniük, ezért 

  
 (     )     

 (     )      
 (     )    

 (     ) 

Két komplex szám egyenlősége ekvivalens azzal, hogy valós és képzetes részeik 

egyenlők, ebből pedig következnek a Cauchy-Riemann egyenletek.   

Bizonyítás 2. rész. Tegyük fel, hogy a Cauchy-Riemann egyenletek teljesülnek. Számoljuk 

ki a differenciahányadost: 

 (    )   (  )

 
 

 (         )    (         )   (     )   (     )

    
 

Felhasználva   és   deriválhatóságát, ez így folytatható (a deriváltak argumen-

tumát az átláthatóság kedvéért elhagyva): 

 (    )   (  )

 
 

  
     

      
      

  

    
 

  (| |)

    
 

  (| |)

    
  

   
     

  
  (| |)

    
 

  (| |)

    
 

Ezért 

   
   

 (    )   (  )

 
   

 (     )     
 (     ) 

tehát a határérték létezik.   
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21A Szeparábilis differenciálegyenlet megoldása (B). 

Szeparábilis differenciálegyenlet 

Tegyük fel, hogy  (   )-ban szétválasztható   és  : 

 (   )  
 ( )

 ( )
     

Ekkor a differenciálegyenlet: 

   
 ( )

 ( )
 

alakú. Ez a szeparábilis vagy szétválasztható változójú differenciálegyenlet. 

Megoldása (B) 

Formális megoldás 

     ( ) 

  

  
 

 ( )

 ( )
 

 ( )     ( )    

 ( )  ∫ ( )     ( )  ∫ ( )    

Könnyen látható, hogy ha    ( ) megoldás, akkor  ( )   ( )   . Ebből   meghatároz-
ható. 

Nem formálisan 

  ( )  
 ( )

 ( ( ))
 

 ( ( ))  ( )   ( ) 

Vegyük mindkét oldal határozatlan integrálját: 

∫ ( ( ))  ( )    ∫ ( )    

A jobboldal ismert, legyen az egyik primitív függvény: 

 ( )  ∫ ( )    

A baloldalon    ( ) új változót bevezetve az integrál átírható, és ennek primitív függvénye 

∫ ( )     ( ) 

Ekkor a differenciálegyenlet megoldása  ( ( ))   ( )   . Ebből  ( ) meghatározható, 

például  ( )     ( ( )   ). 
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21B Feltételes szélsőérték kétváltozós függvényre (feladat ki-

tűzése). Lagrange-féle multiplikátor szabály. 

Feltételes szélsőérték, feladat megfogalmazása 

Minta feladat: Legyen adott   -ben egy  (   )    görbe. Határozzuk meg, hogy a görbe 

mely pontja van az origóhoz legközelebb. Ez azt jelenti, hogy meg kell határozni a 

   (     ) 

értéket, ahol   és   változók nem függetlenek, hanem fennáll a  (   )    összefüggés. 

Definíció A feltételes optimalizálás feladatát a következőképpen értelmezzük. Legyen 

adott az       kétváltozós differenciálható függvény. Ennek tekintjük meg-

szorítását egy olyan halmazon, melyet egy implicit függvény ad meg, ahol 

 (   )    összefüggés teljesül. Tömören a feladat tehát 

   
{(   )  (   )  }

 (   ) 

Tétel (Szükséges feltétel) Tegyük fel, hogy az  (   ) függvény differenciálható, és 

feltételes szélsőértéke van az (     ) pontban a  (   )    feltétel mellett. Te-

gyük fel, hogy       (   )  (   ). Ekkor létezik olyan      konstans, mely-
re 

  
 (     )      

 (     )    

  
 (     )      

 (     )    

Lagrange-féle multiplikátor szabály 

Definiáljuk az  (     )   (   )    (   ),          háromváltozós függvényt. Ha 

(     ) megoldása a feltételes szélsőérték feladatnak, akkor van olyan   , melyre (        ) 
stacionárius pontja  (     )-nak. 

Tekintsük az alábbi feltételes optimalizálási feladatot 

   
{ (   )  }

 (   ) vagy    
{ (   )  }

 (   ) 

Ehelyett tekinthetjük az 

 (     )   (   )    (   ) (   )         

függvény feltétel nélküli szélsőérték feladatát. 
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22A Homogén lineáris (elsőrendű) DE megoldása.(B) Inho-

mogén LDE egyenlet megoldása. 

Homogén LDE megoldása (B) 

Ha  ( )   , akkor a differenciálegyenlet homogén lineáris. 

Állítás A homogén lináris differenciálegyenlet általános megoldása  

 ( )     ( )     
ahol 

 ( )  ∫ ( )    

az   függvény primitív függvénye. 

Bizonyítás Az általános alak     ( ) . Ez szeparábilis, tehát 

  

  
  ( )  

∫
 

 
    ∫ ( )    

  | |   ( )    

   ( )    ( )   

     ( )       ( )   

Inhomogén LDE megoldása 

Ha  ( )   , akkor a differenciálegyenlet inhomogén lineáris. 

Tétel Inhomogén LDE minden megoldása fölírható         alakban. 

Tétel Az inhomogén lineáris differenciálegyenlet általános megoldása 

 ( )    ( ) (  
⏟      

∫ ( )    ( )   
⏟          

) 

ahol az első tag a homogén egyenletrész általános megoldása, a második tag az 

inhomogén egyenlet egy konkrét megoldása. 

22B Cauchy-féle integrálformula. Taylor sorfejtés analitikus 

függvényre. Laurent sorfejtés. Zérus és pólus. 

Cauchy-féle integrálformula 

Tétel (Cauchy-féle integrálformula) Legyen     egszeresen összefüggő tartomány, 

és       analitikus függvény.   legyen tetszőleges belső pont  -ben. Legyen 

    olyan zárt görbe, amelynek belseje is  -ben van, és a görbe körbeveszi  -
t. Ekkor 

 ( )  
 

   
∮

 ( )
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Taylor sorfejtés analitikus függvényre 

Tétel Legyen       differenciálható    egy környezetében. Ekkor ott Taylor sorba 
fejthető, és 

 ( )   (  )  ∑
 ( )(  )

  
(    )

  ∑  (    )
 

 

   

 

   

 

ahol 

   
 

   
∮

 ( )

(    )   
   

 

 

Tegyük fel, hogy   analitikus és  (  )   . Ekkor egy (    ) tényező kiemelhető, és 

 ( )  (    )  ̃( ) 

alakban írható, ahol   ̃ analitikus. 

Laurent sorfejtés 

Tétel Tegyük fel, hogy   analitikus egy körgyűrűben, azaz egy 

  {    |    |   } 

halmazon. Ekkor   ebben a körgyűrűben felírható a következő hatványsorként: 

 ( )  ∑   (    )
 

 

    

 

ahol 

   
 

   
∮

 ( )

(    )   
   

 

 

és   egy olyan   -t körbevevő zárt görbe, amely a fenti   tartomány része. Ez az 
ún. Laurent-sor. 

Zérus és pólus 

Definíció Ha  ( )  (    )
   ̃( ),   ̃(  )    valamely     egész számra, akkor azt 

mondjuk, hogy     -szeres (vagy  -ed rendű) zérusa  -nek. 

Tétel Ha    az   analitikus függvény zérusa, akkor két eset lehetséges. 

1. Van   -nak olyan környezete, ahol  ( )    minden  -re. 

2. Van   -nak olyan környezete, ahol  ( )    minden     -ra. 

Definíció Tegyük fel, hogy 

 ( )  
 

(    ) 
 ( ) 

alakban írható, ahol  ( ) a    egy környezetében olyan analitikus függvény, 

melyre  (  )   . Azt mondjuk, hogy     -szeres pólusa  -nek. 
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23A Valós függvény Taylor sora. Elemi függvények Taylor so-

ra:   ,    ( ),    ( ), (B) 

Taylor sor 

A hatványsorok a konvergencia halmaz belsejében: 

- folytonosak 

- differenciálhatók 

- összeadhatók, skalárszorozhatók 

- összeszorzás NEM lehetséges 

 

Legyen  ( )     (    )
  

    és        körüli hatványsor. 

     
   

√|  |
 

    
   

|
    

  
|     

 

 
  

Ekkor   akárhányszor differenciálható, éspedig 

 ( )( )  ∑   (   )    (     )     (    )
   

 

   

 

|    |    esetén. 
 

Fordítva: 

Adott   függvény előállítható-e hatványsor alakban? Ha    körül előáll, akkor 

  (         )    (  )    

Definíció Az   függvény analitikus   -ban, ha  (  ) számsorozat, hogy 

 ( )  ∑  (    )
 

 

   

 |    |    

Állítás Ha létezik hatványsor-előállítás, akkor az egyértelmű. 

Következmény 

Az analitikus függvények egyértelműen előállíthatók hatványsorral   Taylor sor. A 

 ( )  ∑
 ( )(  )

  
 (    )

 

 

   

 

alakú sor az   függvény    középpontú Taylor sora. A nem analitikus függvények hatványso-
ra csak közelítés. 

Elemi függvények Taylor sora:   ,    ( ),    ( ) (B) 

Állítás Az  ( )     függvény Taylor sora 

   ∑
  

  

 

   

     

Bizonyítás  ( )( )    . Ezért      választással  ( )( )   ,    mellett.   

Állítás Az  ( )     ( ) függvény      körüli Taylor sora 

   ( )    
  

  
 

  

  
   ∑

(  ) 

(    ) 
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Páratlan függvény, így Taylor sorában csak páratlan számok szerepelnek. 

Bizonyítás A definíció alapján számoljuk ki a deriváltakat: 

   ( )( )  {
             

              
           

 

A konvergencia halmaz  , mert a deriváltak egyenletesen korlátosak: 

|   ( )( )|                

  

Állítás Az  ( )     ( ) függvény      körüli Taylor sora 

   ( )    
  

  
 

  

  
   ∑

(  ) 

(  ) 
    

 

   

     

Páros függvény, így Taylor sorában csak páros számok szerepelnek. 

23B Láncszabály többváltozós függvényekre. Speciális esetek. 

Láncszabály, speciális esetek 

1. speciális eset 

A külső függvény egyváltozós           

Az egy darab belső függvény kétváltozós            

Tétel (1. speciális eset) Tegyük fel, hogy   differenciálható az (   )     ( ) pont-

ban, és   differenciálható az    (   ) pontban. Ekkor az összetett függvény 
is differenciálható és a parciális deriváltak: 

  
 (   )    ( (   ))  

 (   ) 

  
 (   )    ( (   ))  

 (   ) 

2. speciális eset 

A külső függvény kétváltozós            

A két darab belső függvény egyváltozós             

Tétel (2. speciális eset) Tegyük fel, hogy   és   differenciálhatóak a      ( ) pont-

ban, és   differenciálható az (   )  ( ( )  ( )) pontban. Ekkor az összetett 

függvény is differenciálható, és deriváltja: 

  ( )    
 ( ( )  ( ))  ( )    

 ( ( )  ( ))  ( ) 

3. speciális eset 

A külső függvény kétváltozós            

A két darab belső függvény kétváltozós             

Tétel (Láncszabály) Tegyük fel, hogy     differenciálhatók (   )-ban, és   is diffe-

renciálható az (   )  ( (   )  (   )) pontban. Ekkor   is differenciálható 

(   )-ban, és parciális deriváltjai: 

  
 (   )    

 ( (   )  (   ))  
 (   )    

 ( (   )  (   ))  
 (   ) 

  
 (   )    

 ( (   )  (   ))  
 (   )    

 ( (   )  (   ))  
 (   ) 
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Jegyzetek 
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Félév végi eredmények Matematikai analízisből 

  
kredit érdemjegy 

Analízis 

tantárgyak 

érdemjegyei 

Matematikai analízis I. 6  

Matematikai analízis II. 7  

Összesen 13  

 
Érdemjegyek kreditértékkel súlyozott átlaga: 

 

 

A Matematika szigorlat tárgyra való jelentkezés előfeltétele, hogy a hallgató rendelkezzen az 

alábbi tárgyakból elégségesnél jobb osztályzattal: 

Matematikai analízis I. Matematikai analízis II. 

Lineáris algebra I. Lineáris algebra II. 

Diszkrét matematika I. Diszkrét matematika II. 

Amennyiben a tárgyak kreditértékkel súlyozott jegyátlaga a 4,0-t eléri vagy meghaladja, a 

hallgató (kérése alapján) mentesül a szigorlat írásbeli részének teljesítése alól. 


