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Fontos tudnivalok
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Kidolgozott tételek, tételvazlatok

1A Cantor féle kozos-pont tétel. Teljes indukeio. Alapegyen-
16tlensegek. (Szamtani és mértani kozép-, Haromszog-,
Bernioulli-egyenldtlenseg) Infimum és supremum (léte-
z¢s: B)

Cantor-féle kozos-pont tétel

Tétel Tegyiik fel, hogy a Cantor-féle axioma feltételei teljesiilnek. Ezen kiviil tegyiik
fel, hogy minden & > 0-hoz létezik olyan I, intervallum, mely az adott e-ndl ro-
videbb, azaz |I,,| = by — ay, < €. Ekkor a kozos pont egyértelmii.

Teljes indukcio

A természetes szamok halmazan (N) két mivelet van értelmezve, ezek az Gsszeadas (+) va-
lamint a szorzas (). Ertelmezve van még a < rendezési relacio. A természetes szamok halma-
zanak tulajdonsagai:

Leétezik legkisebb elem: 1 (egység)

Minden elem utan van kozvetleniil rakovetkez6: n - n + 1

A fenti két tulajdonsag alapjan kimondhato a teljes indukcios bizonyitas elve:
C¢l, hogy belassuk valamely Ay, ..., 4,, ... tulajdonsagok teljesiilését, ahol n tetszole-
ges természetes szam.
Ha A teljesil, és
V neN esetén az A,, tulajdonsagbol kovetkezik A, 44,
akkor a fenti tulajdonsag minden n esetén teljesiil.

Alapegyenlétlenségek

Szamtani és mértani kozép kozti osszefiiggés
Tekintsiink két, nemnegativ valos szamot, x,y = 0. Ezek szamtani kozepe (szamtani atlaga)

x+y
A=
2

¢s mértani kézepe (mértani atlaga)

G=.xy
Allitas Tetszbleges x,y = 0 valos szamok esetén % > .\/xy, és egyenléség pontosan

akkor teljesiil, hax = y.

Haromszog egyenlotlenség
Allitas Tetszdleges a, b valds szamokra |a + b| < |a| + |b|.
Bernoulli egyenlétlenség
Tétel Tetszoleges n € N természetes szam és h = —1 valos szam esetén teljesiil az

alabbi osszefiigges:

1+nm"=1+hn
A fenti kifejezésben egyenldség csakis akkor teljesiil, ha n = 0 vagy n = 1 vagy
h=0.
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Infimum és supremum, ezek létezése (B)

Definicio

Definicio

Tétel

Bizonyitas

1B

Legyen H egy alulrdl korlatos, nem iires halmaz. Ekkor 1étezik az alsé korlatok
kozott legnagyobb, vagyis 3s € R, s,s' < x,Vx € H és s' <s. Ez a halmaz
infimuma. Jele: inf(H)

Legyen H egy feliilrdl korlatos, nem tires halmaz. Ekkor 1étezik a fels6 korlatok
kozott legkisebb, vagyis S ER, x < §,S,Vx € H és S <S'. Ez a halmaz
supremuma. Jele: sup(H)

Tetszoleges nem iires, alulrol korlatos halmaznak létezik infimuma.

Konstruktiv bizonyitas: A halmaz alulrol korlatos, tehat Iétezik az a, als6 korlat.
Ha a, € H, akkor ez minimalis elem, egyben infimum is.
Ha a, € H, akkor legyen b; € H tetszéleges elem, b; > a;. Legyen tovabba
I =[ay, b1], és ¢; = e
Két eset lehetséges:

1) Ha c; als6 korlat, akkor legyen a, = ¢y, és by, := b;.

2.) Ha c; nem also korlat, akkor legyen a, = a4, és b, == ¢;.
Lathato, hogy az I, = [a,, b,] intervallum hossza épp fele I; hosszanak, ahol a,
also korlat, és b, € H.
Ezt a konstrukciot folytatva egy I, intervallumsorozatot kapunk az alabbi tulaj-
donsagokkal:

|) Ik = [ak, bk] zart, és Ik+1 c Ik

i) I hossza 27%|L,|

iii) ay also korlat, b, € H minden k-ra
Az 1) és ii) tulajdonsagok miatt az intervallum-sorozat teljesiti a Cantor-féle ko-
zOs-pont tétel feltételeit, tehat 1étezik egyetlen k6z6s pont, legyen ez s.

Belatjuk, hogy s alsé korlat, mivel ha lenne egy olyan h € H, amelyre h < s tel-
jestilne, akkor a ii) tulajdonsag miatt talalhatnank egy olyan [, intervallumot,
melyre h < a; < s lenne, ami ellentmond annak, hogy a; also korlat.

Belatjuk, hogy s infimum, azaz nincs nala nagyobb also korlat. Ha ugyanis indi-
rekt modon feltessziik, hogy 1étezik s’ > s also korlat, akkor talalunk kell egy
I}, intervallumot, melyre s < b, < s’. De mivel b, € H minden k-ra, igy ez nem
lehetséges. m

Polarkoordinatak. Implicit fliggveny tétel. Implicit fiigg-
vény derivalasa.

Polarkoordinatak

Definicio

Egy adott (x, y) € R? pont poldrkoordindtdi (r, ), melyeket igy definidlunk:
T a pont origdtol vett tdvolsaga

0: az origdbol az adott pontba mutatd vektornak az x tengely pozitiv részével
bezart szoge.

fgy tehat a polarkoordinatikra r € R* U {0} és 6 € [0,27).

szobeli vizsga, 1. sszetevd 7168 2014. junius 11.
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Implicit fliggvény tétel, implicit fliggvény derivalasa

Tétel (Implicit fiiggvény tétel) Tegyiik fel, hogy az F kétvaltozos fiiggvény differencidl-
haté az (xy,Vo) pont egy kornyezetében, és ebben a pontban F(xy,y,) = 0.
Ezen feliil feltessziik, hogy Fy(xo,yo) # 0 (azaz az érintésik nem parhuzamos az
xy sikkal). Ekkor létezik egy kétdimenzios intervallum

I=05LxI=0—ax)+a) X o=y +B)

hogy minden x € I, esetén az F(x,y) = 0 egyenletnek pontosan egy y = f(x)
megoldasa van, és y € I,. Tehat létezik egy f:1, = I, valos fiiggveny, mely a
kovetkezo tulajdonsagokkal rendelkezik:

- f(x0) = yo

fx)el, vxel

F(x,f(x)) =0, Vxel,

- F;(x,f(x)) +0, Vx €I

Tovabba f differencialhato I;-ben, és derivaltja:

CE(of)
F(x, f(x))

f'x) =

szobeli vizsga, 1. sszetevd 8/68 2014. junius 11.
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2A Szamsorozat hatarértéke. Divergens sorozatok, tipusai.
Konvergencia Cauchy feltétele. (B) Bolzano-Weierstrass
tétel.

Szamsorozat hatarértéke

Definici6  Szamsorozaton egy olyan hozzarendelést értiink, melyben minden n € N termé-
szetes szamhoz hozzarendeliink egy valds szamot. Az (a) sorozat n-edik
elekmét a,, jeldli, az egész sorozatot (a,,)-nel jeloljik.

Definicié6  Legyen (a,) egy sorozat. Azt mondjuk, hogy az (a,) sorozat konvergens, és
hatarértéke az A szam, ha ez rendelkezik a kovetkezd tulajdonsaggal: minden
€ > 0-hoz létezik N = N(&) epszilontol fliggd kiiszobindex, melyre minden
n > N esetén |a,, — A| < €. Ezt igy jeloljik: lim,,_,, a, = A.

Divergens sorozatok, tipusai
Definicio  Ha (a,,) nem konvergens, akkor divergens.

1) a, =n?
Definicio Az (a,) sorozat a +oo-be divergdl (,,a, minden hataron til n6”), ha minden
K € R korlathoz megadhatd N = N(K) kiiszobindex, hogy ha n > N, akkor
a, > K. Ezt igy jeloljik:
lim a, = +o0

n—-oo

Definicio Az (a,) sorozat a —oo-be divergdl (,,a,, minden hataron tal csokken™), ha min-
den K € R korlathoz megadhaté N = N (K) kiiszobindex, hogy ha n > N, akkor
a, < K. Ezt igy jeloljiik:

lim a,, = —
n—->oo

2) a, = (D"
Az ilyen tipust sorozatok tobb pont koriil torlodnak, példaul az a,, = (—1)™ sorozat elemei
rendre —1; 1 ... Ez nyilvan nem konvergens.

Konvergencia Cauchy feltétele (B)

Definici6 Az (a,) sorozat teljesiti a Cauchy feltételt, ha minden & > 0-hoz létezik
N = N(e) epszilontdl fiiggd kiiszobindex, melyre teljesiil, hogy minden
n,m = N esetén |a, — a,,| < €. Ha egy sorozat teljesiti a Cauchy feltételt, ak-
kor a sorozatot Cauchy sorozatnak nevezziik.

Tétel Ha (a,,) konvergens, akkor Cauchy sorozat.
Bizonyitas Legyen lim,,_, a,, = A és legyen € > 0 tetszéleges. Ekkor az % szdmhoz létezik
egy N kiiszobindex, melyre n > N és m = N esetén |a, — A| < s, valamint

la,, —A| < % Ekkor a haromszog-egyenlétlenség miatt

& &
|an_am| = |(an_A)‘}'(A_am)lS |an_A|+|am_A| <§+§:£

szdbeli vizsga, 1. 6sszetevd 9/68 2014. janius 11.
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Tétel Ha (a,,) Cauchy sorozat, akkor konvergens.
1. Lemma Ha (a,) eleget tesz a Cauchy kritériumnak, akkor korldatos.

Bizonyitas Az & = 1-hez létezik N index, melyre minden n > N esetén
a, € (ay —1,ay +1). Az intervallumon kiviil csak véges sok
eleme van a sorozatnak, ezért van legnagyobb és legkisebb elem
kozottik. Tehat K = max{|a,|, ..., |ay_1|} korlatja a sorozatnak. m

2.Lemma Ha egy (a,) Cauchy sorozatnak van (ank) konvergens részsorozata, és
limy,_, Ap, = A, akkor a sorozat is konvergens, és lim,,_,,, a, = A.

Bizonyitas Legyen & > 0 tetsz6leges. Ekkor a részsorozat konvergenciaja mi-
att 1étezik N; index, melyre

&
|ank —A| <3 han, > Nj.
Mivel (a,,) Cauchy sorozat, ezért 1étezik N, index, melyre
la, — an| < g, han,m > N,.
Legyen N = max{N;,N,}. Ekkor minden n > N esetén létezik
n, =n=N,igy

an — Al = |(an ank) + (ank _A)l = |an - ank| + |ank _A|
E €
|an—ank| + |ank —A| <E+E= en

Bizonyitas (A tétel bizonyitisa.) Az (a,) Cauchy sorozat, tehat korlatos (1. lemma). A
Bolzano-Weierstrass tétel miatt 1étezik (ank ) konvergens részsorozat, és ekkor
az eredeti sorozat is konvergens (2. lemma). m

Bolzano-Weierstrass tétel

Tétel Minden korlatos (a,) sorozatnak van konvergens részsorozata.

2B Kétvaltozos fiiggvények folytonossaga. Egyenletes- ¢€s
Lipschitz-folytonossag. Masodrendli Taylor formula tobb-
valtozos valos fliggvényekre.(B)

Kétvaltozos fiiggvények folytonossaga

Definicié6  Legyen Py, = (x,,y,) az f fliggvény értelmezési tartomanyanak egy pontja. Az
f fiiggvény folytonos az (x,,y,) pontban, ha tetszéleges € > 0-hoz létezik egy
6 > 0 szam, melyre

Vo, Y) €Dr,  Jr—x)?+ —y0)2<§

esetén teljesiil, hogy

|f (. y) = fx0, y0)| <€

Definicié6  Ha egy fliggvény értelmezési tartomanyanak egy pontjaban nem folytonos, ak-
kor ott szakaddsa van.
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Egyenletes- és Lipschitz-folytonossag

Definici6  Legyen f:S — R adott fiiggvény, S ¢ R? tartomany. Azt mondjuk, hogy f
egyenletesen folytonos S-ben, ha tetszdleges € >0 —hoz 3§ > 0, hogy ha
P,P' € S pontokra ||P — P'|| < &, akkor |f(P) — f(P")]| < e.

A § = §(¢) szamot az e-hoz tartozd folytonossagi modulusnak hivjuk.

Definici6 Az f:S — R kétvaltozos fiiggvény Lipschitz-folytonos, ha Iétezik egy olyan
L > 0 szam, melyre |f(P) — f(P')| <L -||P — P’'|| teljesil minden P,P' € S
pontra.

Az L szamot Lipschitz-konstansnak hivjuk.

Allitas Ha f egyenletesen folytonos S-en, akkor S minden pontjiban folytonos. Ha f
Lipschitz-folytonos egy tartomanyban, akkor ott egyenletesen is folytonos.

Masodrendii Taylor formula tobbvaltozds valds fiiggvényekre (B)

Legyen f:S — R kétvaltozos fliggvény, amely elegendden sokszor differencialhatd valamely
(%0, ¥o) pontban. Adjunk becslést az f(x,y) — f(xq, Vo) kiilonbségre az (xy,V,) pontbéli
derivaltak felhasznalasaval.

A fenti feladatra egy megoldast az érint6 sik alapjan tudunk adni, eszerint
f(x,y) = f(x0,¥0) + £ (x0,¥0) (x — x0) + £y (x0, ¥0) (¥ — ¥0)
Ez megfelel az elséfoka Taylor polinomnak.

Magasabb fokt Taylor polinomot tigy adjuk meg, hogy visszavezetjiik feladatot az egyvalto-
z0s esetre.

Legyen

F(t) = f(xo + tAx, yo + tAy)
ahol

Ax = x — x,, Ay =y —1y,

Ekkor F:[0,1] - R elegendGen sokszor differencialhatd valds fliggvény, F(0) = f(xq, Yo),
F(1) = f(x,y). Az F figgvény t = 0 pont koriili Taylor formulajat fogjuk hasznalni. Ehhez
sziikségiink lesz a derivaltakra:

F(0) = f(x0,Y0)
F'(t) = fi(xo + tAx, yo + tAy)Ax + f,(xo + tAx, yo + tAy)Ay
F"(t) = fix(xo + tAx, yo + tAy)(Ax)? + 25 (xo + tAx, yo + tAy) AxAy +
+fyy (xo + tAX, yo + tAy) (Ay)?
Ekkor a masodrendii Taylor formula igy irhato:
Ax\ 1 Ax
FG9) = £rory0) + grad £ o, v0) - () +5 (A%, 89) - HGxo 70) - () + 1o
ahol H a Hesse-matrix.
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3A Osszehasonlitd kritériumok sorozatokra. Rendérelv soro-
zatokra (B). Szamsorozat torlodasi pontja. Az e szam: so-
rozat hatarérteke ill. sor 0sszege. Szamtani atlag sorozat.

Osszehasonlito kritériumok sorozatokra
Allitas (Osszehasonlité kritériumok)

1. Tegyiik fel, hogy (a,) nullsorozat, (b,,) olyan sorozat, melyre (|b,|) < (la,])
minden n-re (régzitett N mellett minden n > N-re). Ekkor

lim b, =0

n—oo

2. Tegyiik fel, hogy (a,) a o-be divergal, és AN index, hogy ha n > N, akkor
b, = a,. Ekkor

lim b, = +o0

n—-oo

Rendorelv sorozatokra (B)
Tétel Tegyiik fel, hogy az (a,) és (by) sorozatok kozrefognak egy harmadik sorozatot
a, < cp, < by, vn €N
Tegyiik fel, hogy (a,,) és (b,) konvergens sorozatok ugyanazzal a hatarértékek-
kel.

lim a, = lim b, = A
n—oo n—oo

Ekkor (c,,) is konvergens, és

limc, =4

n—oo

Bizonyitas Legyen € > 0 tetsz6leges. Ekkor 1étezik N; kiiszobindex, melyre |a,, — A| < &,
ha n > N;. Specialisan megfogalmazva a, > A — e. Hasonléan létezik N,
melyre |b,, — A| < &, specidlisan b,, < A — €. EKkor n = max(N;, N,) esetén

A—e<a,<cp<b,<A+¢

Ebbdl a konvergencia kovetkezik. m

Szamsorozat torlodasi pontja

Definicio  Legyen (a,) egy sorozat. A t € R valds szam torlddasi pontja (a,)-nek, ha t
barmely kornyezetében, azaz a Ve > 0 (t — &, t + €) intervallumban végtelen
sok tagja van a sorozatnak.

Az e szam: sorozat hatarértéke ill. sor 0sszege
Definicio Az e szam a kovetkez0O sorozat hatarértéke:

1
e = lim (1 +—>
n—-oo n

Definici6 Az e szam a kovetkezd végtelen sor Osszege:

n
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Szamtani atlag sorozat
Allitas Adott (a,) nullsorozat. Legyen

n
a+-ta, 1
=T = EZ e
k=1
Ekkor lim,,_,, A,, = 0.
3B Kétvaltozos fuggvény hatarértéke. Atviteli elv. Parcidlis

derivaltak. Geometriai jelentés.

Kétvaltozos fiiggvény hatarértéke

Definici6  Legyen f:S — R kétvaltozos valds fiiggvény, Py = (xg,y,) € R? az értelmezési
tartomany egy torlodasi pontja. Azt mondjuk, hogy az f fliggvény hatdrértéke a
Py = (xg, yo) pontban L, azaz

fx,y) =1

lim
(x,¥)~(x0,0)
ha minden € > 0-hoz lézetik § > 0 szam, hogy ha
(x,y) €S, O<\/(x—x0)2+(y—y0)2<5
akkor |f(x,y) — L| < e.

Atviteli elv
Allitas
lim x,y) =1L
(XJ/)—’(xo:J/o)f( y)

pontosan akkor teljesiil, ha VB, = (x,,V,) € S, B, # P, sorozatra, melyre
llm Pn = PO

n—->0o
teljesiil, hogy
lim f(B,) =1L
n—->0o
Parcialis derivaltak

Definicié  Legyen f:S — R kétvaltozos valds fiiggvény. Legyen (x,, V) az S halmaz bels6
pontja. Ha létezik a

li f(x'yO)_f(xO'yO)
im
X—X X — Xo
véges hatarérték, akkor ezt a mennyiséget a fliggvény x szerinti parcidlis deri-

valtianak nevezzik az (x,, y,) pontban. Ezt igy jel6ljiik:

0
fo(XO' yO)' af(xo' yO)
Ha 1étezik a

li f(XOJy)_f(xO'YO)
m

Y=Yo Y —Yo
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véges hatarérték, akkor ezt a mennyiséget a fliggvény y szerinti parcidlis deri-
vadltjanak nevezziik az (xy, y,) ponban. Ezt igy jeloljiik:

d
fy,(xOIyO)ﬂ @f(xOI yO)

Geometriai jelentés

f1(x) = f(x,y,) egyvaltozos fiiggvényt. Ha (x,,y,) € int(D), akkor x, belsé pontja f; ér-
telmezési tartomanyanak. Ekkor £, (xq, yo) = fi (xo). Ez hasonldan igaz rogzitett x,-ra is.

Az ilyen, rogzitett y, konstans menti parcialis derivalt geometriai jelentése a fiiggvény feliile-
tébol az y,-ban atmend, az xy-sikra merdleges sikkal vett metszetének, — mely egy egyvalto-
z6s fliggvény — a derivaltja. A parcidlis derivaltak tehat a feliiletekhez x és y iranybol huzott
érintésikok meredekségét adja meg.
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4A Végtelen szamsor 0sszege. Divergencia teszt. Hanyados-
¢s gyokkritérium (B). Abszolut- és feltételes konvergencia.

Végtelen szamsor 0sszege
Végtelen sor alatt valds szamok Osszegét értjiik, ahol az 6sszeadanddk szama végtelen:

oo

a1+a2+a3+---+an+---=Zan

n=1
Divergencia teszt
Allitas Ha lim,,_ a,, # 0, akkor a sor divergens.
Hanyados kritérium (B)
Tétel 1.) Tegyiik fel, hogy
Ekkor a (3 a,) sor abszolut konvergens.
2.) Tegyiik fel, hogy

Bizonyitas 1.) A feltétel szerint

7‘L+1

<q <1, Vn, ahol q € (0,1) n-tdl fiiggetlen szdam.

n+1

> 1, Vn. Ekkor a (3a,,) sor divergens.

a
a;

a
a

an+1
an

Ezeket 0sszeszorozva azt kapjuk, hogy

An+1
a;

n

azaz |an+1| < la;|q™. Igy a majorans kritérium szerint az abszolutértékekbél al-
16 sor konvergens.

2.) Ha |22 > 1, akkor |a,.q1] = |a,l, tehat (a,,) nem lehet nullsorozat. m
Gyengitett valtozat
Tétel Tegyiik fel, hogy létezik a
. An+1
lim =A
n—-oo an

hatarérték. Ekkor

-ha A < 1, akkor a sor abszolut konvergens,

-ha A > 1, akkor a sor divergens,

-ha A = 1, akkor a sor lehet konvergens és divergens is.
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Gyokkritérium (B)
Tétel 1.) Tegyiik fel, hogy m < q <1 Vn, ahol q € (0,1) n-td! fiiggetlen szam.
Ekkor (3a,,) sor abszolut konvergens.
2.) Tegyiik fel, hogy fla,| = 1 vn. Ekkor a (¥ a,) sor divergens.
Bizonyitas 1.) A feltétel szerint ’m < q,ahol 0 < g < 1, igy igaz az is, hogy
la,| < q™, vn €N

Mivel

co
20w
n=1

ezért a majorans kritérium alkalmazasaval ebbol kovetkezik, hogy

[ee)
D lanl < o0
n=1

Az abszolut konvergencia miatt a sor konvergens:

o)

S o<

n=1

2.) Mivel V/|a,| = 1, igy emiatt |a, | = 1, azaz (a,,) nem nullsorozat, tehat
[ee]
an
n=1

sor nem konvergens. m

Gyengitett valtozat
Tétel Tegyiik fel, hogy létezik a
lim Vla,| =4
hatarérték. Ekkor "
-ha A < 1, akkor a sor abszolut konvergens,

-ha A > 1, akkor a sor divergens,
-ha A = 1, akkor a sor lehet konvergens és divergens is.

Abszolut- és feltételes konvergencia.

Definicio A (X a,) végtelensor abszolit konvergens, ha az abszolutértékekbdl allo
(Xlay, ) sor konvergens.

Allitas Ha (X a,,) abszolit konvergens, akkor konvergens is.

Definicio A (3 a,) végtelen sor feltételesen konvergens, ha konvergens, de nem abszolut
konvergens.
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4B Magasabb rendl parcialis derivaltak. Parcialis derivala-
sok sorrendje, felcserélhetosége. DE rendszerek. Allando
egyiitthatos linearis DER.

Magasabb rendii parcialis derivaltak

Ha a parcialis derivaltfiggvényeknek 1étezik parcialis derivaltja, akkor masodrendii parcialis
derivaltat kapunk:
0 (a ) 0’ fGy+h) = f(xy)

ayl\ax/ @Y | =555 0 Y) = fy(xy) = |im h

Parcialis derivalasok sorrendje, felcserélhetosége

Tétel Legyen f:S — R kétvdltozos valés fiiggvény, (x,y) € int(S). Ha a pont egy
kornyezetében léteznek az fiy, és fyy mdsodrendii parcialis derivaltak, és az
adott pontban folytonosak is, akkor itt a derivaldasok sorrendje felcserélhetd,

azaz fiy, (x,y) = fyx(x,¥).

DE rendszerek

Els6ként csak kétdimenzids rendszerekkel foglakozunk. Keresiink olyan y(x) és z(x) figg-
vényeket, melyek kielégitenek egy ilyen tipusu differencialegyenlet-rendszert:

y'(x) = f(x,y(x), z(x))
z'(x) = g(x, y(x), z(x))

ahol f és g adott haromvaltozos fiiggvények.

Allando egyiitthatos linearis DER

A konnyebb attekinthetdség kedvéért harom dimenzidban dolgozunk, de minden ugyanigy
elmondhatd n dimenzids linearis rendszerekre is. Tekintsiik az alabbi haromdimenziods rend-
szert:

Y1 = @111+ A12Y2 + 13Y3

Y2 = G21Y1 + 22Y2 + A23Y3

Y3 = A31Y1 + az2Y + A33Y3
a hozz4 tartoz6 kezdeti feltételekkel

y1(0) = yo1, ¥2(0) = yo2, ¥3(0) = yo3
A keresett fliggvényt rendezziik el egy vektorba. Ezt derivaljuk, az egyiitthatokat pedig mat-

rixba gyijtjiik:
y1(x) v (x) a;; Q2 Qg3
Y(x) = |y.(x)|, Y'(x) = [y2(x0), A= |0z Qap; a23‘
y3(x) y3(x) d31 A3z Qa3

A differencidlegyenlet-rendszer tehat kompakt alakban igy irhato:
Y'(x) =AY(x), Y(0) =Y,

Tétel A fenti (kompakt alakban irt) linearis egyenletrendszer megoldadsa
Y(x) =ed*-Y,
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S5A Végtelen mértani sor. Leibniz-sor (B). Fiiggvény folyto-
nossag, sorozatfolytonossag.

Végtelen mértani sor
Legyen a,, = g~ 1. Kérdés, mennyi az aldbbi 6sszeg: 1 + q + g% + -+ =?

Azelsé ntag osszege s, = 1+ q+q% + -+ g1 =11_qu, q+1

1
Py lql <1
Igy limSn= +OO, q 2 1
ﬂ ) qS—l

Leibniz-sor (B)
Definicio  (3a,) Leibniz-tipusu sor, ha az (a,) sorozat rendelkezik az alabbi harom tulaj-
donsaggal:
1.) valtakozo elgjeld, azaz a,a,.q < 0,
2.) (Ja,|) monoton fogyo,
3.) (ay) nullsorozat.

Tétel A Leibniz-tipusu sor konvergens.

Bizonyitas Feltehet6, hogy a; > 0, ekkor a paratlan indexii tagokra a(zn4+1) > 0, a paros
indexti tagokra a,, < 0 teljesiil. Képezziik az aldbbi sorozatokat:

aq = aq +a2

B =y }:}’algﬂl

< B

a,  =a+a, +az;+a
2 1 2 3 4-}:>a2
ﬁ2:=a1+a2+a3

Masrészt az (a,,) sorozat abszolutérték-monotonitasa miatt
a1<0(2<a3<--- ﬁ1>ﬁ2>ﬁ3>
A Cantor-féle kozospont tételt alkalmazzuk az I, = [aq, 1], I = [ay, B2], -
intervallum-sorozatra. Kénnyen lathatd, hogy
— I,41 C I, egymasba skatulyazott zart intervallumok,
— azintervallumok hossza |I;| = |a,|, || = |a4l, ..., ezért
lim |I,| = 0
n—->oco

Mivel a Cantor-tétel feltételei teljesiilnek, ezért 1étezik egyetlen kozds pont, s,

melyre
s = lim a, = lim B,
a—>0oo n—-oco
|
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Fiiggvény folytonossag, sorozatfolytonossag
Definicio ~ Adott egy f: X — Y fliggvény, és egy x, € Dy pont. Azt mondjuk, hogy az f
folytonos az x,-ban, ha Ve > 0-hoz létezik olyan § > 0, melyre teljesiil, hogy

esetén

If () = flxo)l <e.

Definicio6 Az f fliggvény az értelmezési tartomanyanak egy x, pontjaban sorozatfolytonos,
ha minden (x,) © Dy sorozatra, melyre
lim x, = x,

n—-00

lim () = £ (xo)

teljesiil, hogy

5B Komplex fiiggvény, kanonikus alak. Az e? és In(z) fiigg-
vények kiterjesztése komplex argumentumra.

Komplex fiiggvény, kanonikus alak

Legyen D c C egy tartomany a komplex szamsikon. f: D — C fiiggvényt tekintjiik. A fligget-
len valtozot z = x + iy, a fliggd valtozot w = u + iv jeldli. Tehat a hozzarendelés w = f(z).

Legyen D c C tartomany és adott ezen egy hozzarendelés f: D — C, ami a z komplex szam-
hoz a kovetkez6t rendeli hozza:

z— f(z) = Re(f(z)) +i Im(f(z))

A fliggvény kanonikus alakja két valés értékli kétvaltozos fiiggvény megadasat jelenti,
f(2) =u(x,y) +iv(x,y),ahol

u(lx,y) = Re(f(x + iy)), v(x,y) = Im(f(x + iy))

Az e? és In(z) fiiggvények Kiterjesztése komplex argumentumra
Az f(z) = e” fiiggvényt a komplex szamok esetén igy értelmezhetjiik:
e? = e** = e*(cos(y) + i sin(y))

Az exponencialis fliggvény inverzét keressiik. Mivel f(z) = e értékkészletében a 0 nincsen
benne, igy ez nem lesz benne a logaritmusfliggvény értelmezési tartomanyaban. Legyen

0 # w € C, és keressiik azt a z-t, melyre w = e#. Ha w trigonometrikus alakjaw = p - %9,
akkor

x =In(p), y =0 + 2km, k€EZ

Mivel az exponencialis fliggvény 2m szerint periodikus, ezért a keresett w szdm nem egyeér-
telmii. Tehat:

In(w) = In(|w]|) + i(arg(w) + 2km), keZ
sokérteki fiiggvény. A k = 0-hoz tartozo értéket foértéknek nevezziik, és jelolése

Ln(w) = In(lw|) + i arg(w)
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6A Valos fiiggvény hatarértéke véges pontban. Egyoldali
hatarértékek. Atviteli elv. Szakadasi helyek osztalyozasa.

Valos fiiggvény hatarértéke véges pontban

Definicio6  Adott f : X - Y fliggvény, és x, € R. Tegyiik fel, hogy 1étezik olyan kdrnyezet
U= (xog — &%+ &), melyre minden x € U, x # x, esetén x € Dy. Azt mond-
Juk, hogy az f fliggvény hatarértéke x,-ban a, ha minden & > 0-hoz 1étezik
6 >0, melyreha 0 < |x — xo| < &, akkor |f(x) — a| < €. Ezt igy jeldljik:

xlir? fx)=a
Egyoldali hatarértékek

Definicié Az f fiiggvény jobboldali hatarértéke xy-ban a € R, ha minden & > 0-hoz 1éte-
zik 6 > 0, melyre ha x € Dy, xo < x < xo + & teljesiil, akkor |[f(x) —a| <e.
Ezt igy jeloljiik:

lim f(x) =a
X-Xg+

Definicio Az f fiiggvény baloldali hatarértéke xy-ban a € R, ha minden & > 0-hoz 1éte-

zik 6 > 0, melyre ha x € Dy, xo— 6 < x < x, teljesiil, akkor [f(x) — a| < e.

Ezt igy jeloljiik:

lim f(x) =a
X—>>Xg—
Atviteli elv
1) limy,, f(x) =a akkor és csak akkor, ha minden (x,) sorozatra, melyre
(x) < Dy, lim x,, = x,, Xn # Xo
n—-oo

teljestiil, hogy
lim f(x,) =«
n—-oco

2.) limy_x 4+ f(x) = a akkor és csak akkor, ha minden (x,) sorozatra, melyre
(x,) € Dy, 111_{1010 Xn = Xo, Xn > X

teljesiil, hogy
Jlim fOn) =a

3.) lim,_,, _ f(x) = a akkor és cak akkor, ha minden (x,) sorozatra, melyre

(x) < Dy, lim x,, = x,, X < X
n—>0o
teljesiil, hogy
lim f(x,) =«
n—>0oo

Szakadasi helyek osztalyozéasa
Elséfaju szakadas
Els6faju szakadas van x,-ban, ha létezik

lim f(x) < oo, xl_i))rcn_f(x) <

X—-Xg+
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Megsziintethet6 szakadas
Megsziintethet6 a szakadas, ha Iéteznek és megegyeznek a jobb- és baloldali hatarértékek, de

lim f(0) # £ xo)

Masodfaju szakadas
A szakadas masodfaja, ha nem elséfaju.

6B Fourier sor, valos- és komplex alak. Trigonometrikus
rendszer ortogonalitasa (B). Derivalt fiiggvény Fourier so-
ra.

Fourier sor, valos- és komplex alak

Valés alak
Definicié6 Az f:[—m; ] — R fiiggvény Fourier egyiitthatéit igy definialjuk:

1 Vi
a, = ;] f(x) cos(kx) dx, k=0,12,..
-1

1 s
b, = —f f(x) sin(kx) dx, k=12, ..
T -1

feltéve, hogy a fenti integralok léteznek.

Definicié  Adott f: R — R 2 szerint periodikus fiiggvény. Tegyiik fel, hogy f integralhatd
a [—m; ] intervallumon. Az f(x) fuggvény Fourier sora (formalisan):

f~ % + Z (ay cos(kx) + by, sin(kx))
=1

ahol a;, és b;, a most definialt Fourier egylitthatok.
Komplex alak
Az Euler-formula szerint
e = cos(x) + i sin(x)
Ebbdl kovetkezik, hogy
e = oil=%) = cos(—x) + i sin(—x) = cos(x) — i sin(x)

ezért a trigonometrikus fiiggvények kifejezhetok komplex alakban:

eix + e—ix
COS\X) = —m—m
) =—
ix _ e—ix
sin(x) =
(x) 21

Az n-edik Fourier polinom:

a <
sp(x) = —+ ) (ay cos(kx) + by cos(kx))
> kZl k k

Helyettesitsiik be a trigonometrikus fliggvények komplex alakjait:
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n . . .
a e + e e —e X ,
k=1

ahol az a;, egyiitthato:

ay —ib
g = -k k>0
2
ay +ib
ay = Kk k<O
2
Tétel Tegyiik fel, hogy f eldall

FO) = ) el

k=-n

alakban. Ekkor:
1 (" e
—_ —lRKX
a = f_nf(x)e dx

Trigonometrikus rendszer ortogonalitasa (B)
Lemma Tetsz6leges n # m mellett

s
| 9u08m) =0
by [4
Bizonyitas Han = 0 vagy m = 0, akkor

Vs VA
f cos(0x) dx =0, f sin(0x) dx =0
-1 [

Egyéb esetekben az alabbi trigonometrikus azonossadgokat hasznaljuk fel:

cos((n + m)x) + cos((n — m)x)

cos(nx) cos(mx) =

2
cos(nx) sin(mx) = sin((n +m)x) -; sin((m — n)x)
sin(nx) sin(mx) = cos((n — m)x) ; cos((n +m)x)

|
Megjegyzés Ez a tulajdonsag azt jelenti, hogy a (¢,,) fiiggvényrendszer ortogonalis.

Derivalt fiiggvény Fourier sora

Tétel Legyen f:R — R valds fiiggvény 2m szerint periodikus és tegyiik fel, hogy a
[—1; ] intervallumon a fiiggvény véges sok pont kivételével folytonos. Ezenkiviil
tegyiik fel, hogy a szakadasi pontok elsdéfaju szakadasok, és hogy véges sok pont
kivételével f differencialhato. Ekkor az f' fiiggvény Fourier sora tagonkénti de-
rivaldssal kiszamithato:

f'~ ) (—ay - k-sin(kx) + by - k - cos(kx))
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TA Valos fiiggvény hatarértek kiterjesztése. Inverz fiiggvény
1étezése. Bolzano tétel (B).

Valos fiiggvény hatarérték kiterjesztése

Definicio  (,,xy = +00”)
lim f(x) =a
X—00
ha minden & > 0-hoz létezik K € R, hogy minden x € D¢, x > K esetén teljesiil,
hogy |f (x) — a| < €. Hasonléan,
lim f(x) =«
X——00
ha minden & > 0-hoz Iétezik K € R, hogy minden x € Ds,x < K esetén teljesil,
hogy |f(x) —a| < &.

Definicio »0 = 1007)
lim f(x) =+

X—>Xo
ha minden K € R-hez létezik § > 0, melyre minden |x — x,| < §, x # x, ese-

tén teljesiil, hogy f(x) > K. Hasonl6an,
lim f(x) = —o

X—Xo
ha minden K € R-hez létezik 6§ > 0, melyre minden |x — x| < &, x # x, ese-
tén teljesiil, hogy f(x) < K.

Definicio  (,,xqg = %0,a = +00”)

lim f(x) = 4+

X—00
ha minden K € R-hez létezik L € R, hogy minden x € Dg, x > L esetén teljesiil,
hogy f(x) > K. Hasonldan,

lim f(x) = —o0

X—00
ha minden K € R esetén létezik L € R, hogy minden x € Dy, x < L esetén telje-
siil, hogy f(x) < K.

Inverz fiiggvény létezése
Ha a fiiggvény bijektiv, akkor 1étezik inverz fiiggvénye: f~1:Y — X, melyre f~1(f (x)) = x,
illetve hasonloképpen, f(f~1(y)) = y

Bolzano tétel (B)
Tétel Legyen f : [a,b] = R folytonos fiiggvény. Tegyiik fel, hogy f(a) < f(b) és le-
ayen ¢ € (f(a), f(b)). Ekkor létezik olyan & € (a,b), melyre f(§) = c.

Bizonyitas Meghatdrozzuk azt a ¢ pontot, amir6l a Bolzano tétel szol. Induljunk ki az
Iy = [ay, bg] intervallumbol.

a0+b0

~  Legyen § =
Ha f(&;) = c, akkor készen vagyunk.
Ha f(&;) > c, akkor legyen a; :==a,y, by ==
Ha f(&;) < c, akkor legyen a, := ¢, by := b,

Ekkor az [a,, b;] intervallum a kovetkezd tulajdonsagu: f(a;) < ¢ < f(by)
és[ay, b1] C [a, b] éppen a fele.
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—  Megkonstrudljuk az [a,, b,] intervallumot ugy, hogy f(a,) < c¢ < f(b,)
teljesiiljon, akarcsak az elébb. Stb...

Ekkor két eset lehetséges:
1) vagy véges sok Iépésben vége van az iteracionak, ekkor megkapjuk & pontot
i) vagy ,nincs vége”, ekkor a sorozatokra teljesiil, hogy
{(an) Ffan) < C}
(by) : f(by) > c
Belatjuk, hogy f(§) = c. Vegyiik észre, hogy

lim a, = ¢, lim b, = ¢&
n—-oo

n—-oo

Valoban, [aq, by] D [ay, b1] D -+, és az intervallumok hossza tart a nulla-
hoz. Ekkor a Cantor-féle kozospont-tétel szerint egyértelmiien létezik a &
k6zos pont, & € (a,b). Mivel f folytonos é-ben, ezért minden (x,,) sorozat-
ra, melyre
%i_{{)lo(xn) =, %Lngo f(xn) = f(f)

ezért

lim f(a,) = f©),  lim f(B,) = £(©)
Emiatt f(§) <césf(é) =c,ezértf(§) =c. m

7B Sziikséges ill. elégséges feltétel lokalis széls6értékre ma-
gasabb dimenzioban. (B) Stacionarius pont, nyeregpont.
Lagrange-féle kozeépértek tétel kétvaltozos fiiggvényre. (B)

Sziikséges feltétel lokalis széls6értékre (B)

Tétel (Sziikséges feltétel lokalis szélsoérték létezésére) Tegyiik fel, hogy az f fiigQ-
vénynek (xq, yo)-ban lokdlis szélsGértéke van, és tegyiik fel, hogy a fiiggvény itt
differencialhato. Ekkor grad f (x4, vo) = (0,0), azaz

fx,(xO' YO) =0, fy’(x(), yo) =0

Bizonyitas Jeldlje f;(x) = f(x,y,) a kétvaltozos fiiggvény egyik metszetfiiggvényét. Ekkor
X, lokalis szélséértéke f;-nek, ezért fi' (x,) = 0, masrészt fi (x) = f(x,v,). m

Elégséges feltétel lokalis szélsoértékre

Tétel (Elégséges feltétel lokdlis szélsdérték létezésére) Tegyiik fel, hogy az (xq, Vo)
pont stacionarius pontja f-nek, és itt f kétszer differencidalhato. Ha ebben a
pontban

£ Geon Vo) it (o, y0) — (£25) (0, y0) > 0

akkor a pontban lokdlis szélséérték van. Ha emellett foy(xo, Vo) > 0, akkor lo-
kalis minimum, ha fiy(x, yo) < 0, akkor lokdlis maximum van. Ha

144 11 144 2
xx(xOryO)fyy(xo'yo) - (fxy) (%0,¥0) <0

akkor nincs szélsoérték. Ha pedig
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Bizonyitas

12} n 12} 2
frx (%0, yO)fyy (X0, Y0) — (fxy) (X0, ¥0) =0
akkor a szélsoérték létezésének eldontéséhez tovabbi vizsgalat sziikséges.

A tételt nem bizonyitjuk.

Stacionarius pont, nyeregpont

Definicio

Definicio

Ha grad f (x,, yo) = (0,0), akkor (x,, yo) staciondrius pont.

Azt a stacionarius pontot, melyben széls6érték nincs, nyeregpontnak nevezziik.

Lagrange-féle kozépérték tétel kétvaltozos fiiggvényre (B)

Tétel (Lagrange féle kozépérték tétel) Adott f:S —» R, S c R? fiiggvény, és az
(x0,¥0) € int(D) pont. Tegyiik fel, hogy létezik konvex U kiornyezete (xq,yo)-
nak melyben f differencidlhato. Legyen tovabba egy (x1,y,) € U pont, és
Ax = x; — xo, Ay = y; — y,. Ekkor 36 € (0,1), amelyre

Ax
Fny) = £ o, v0) = grad o, v6) - ()

ahol xg = 8Ax + xy, és yg = OAy + y,

Bizonyitas Vezessiik be az alabbi egyvaltozos fliggvényt:
F(t) = f(xg + tAx,y, + tAy)

Ekkor F:[0,1] —» R folytonos és differencialhatd, tovabba F(0) = f(xg, yo) €s

F(1) = f(x,y). Erre a fuggvényre alkalmazva az egyvaltozds Lagrange-féle

kozépértéktételt; 1étezik 6 € [0,1], melyre

F(1) -F(0)=F'(0) -1
Mivel a lancszabaly alkalmazéséaval rogzitett t-re
F'(t) = fy (xo + tAx,yo + tAy)Ax + f,, (xo + tAx, yo + tAy)Ay
ezért
F'(8) = fi (xo + 6Ax,yo + OAy) Ax + f, (xo + 6Ax,y, + 6Ay)Ay
(xerYG)

amibdl a tétel allitdsa kovetkezik. m
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8A Korlatos €s zart intervallumon folytonos fliggvényekre vo-
natkozo tételek: Weierstrass I. I1. és Heine tétel. (egyikre
B)

Weierstrass I. 11. (B)

Tétel (Weierstrass I.) Legyen f : [a, b] = R folytonos fiiggvény. Ekkor f korldtos.

Bizonyitas Indirekt modon tegyiik fel, hogy f feliilr6l nem korlatos, vagyis minden n € N-
hez létezik olyan x,, € [a, b], melyre f(x,) > n. lgaz, hogy a < x,, < b, ezért
az (x,) sorozat korlatos. Ekkor a Bolzano-Weierstrass tétel miatt 1étezik (xnk)

konvergens részsorozata.
lim x, = x,

nk—)OO

Az [a,b] intervallum =zart, ezért x, € [a,b]. Az f itt folytonos és
sorozatfolytonos is, tehat:

Jim £ (xn,) = fxo)
Viszont az indirekt feltevés miatt f (xnk) > n,;, amibdl az kovetkezik, hogy

lim f(xnk) =

nip—0oo

Ez ellentmondas. m

Tétel (Weierstrass I1.) Legyen f : [a, b] = R folytonos fiiggvén. Ekkor f folveszi mi-
nimumat és maximumadt, azaz

&, f(&) = min{f(x) : x € [a, b]}
38, (&) =max{f(x): x € [a,b]}

Bizonyitas lgazoljuk mondjuk a maximum létezését. Legyen H = {f(x) : x € [a, b]}. A
W1 tétel miatt ez a halmaz korlatos. Ekkor 8 = sup(H) < co. Ez azt jelenti,
hogy minden n € N-re 1étezik x,, € [a, b], melyre

1
p——<fl) <p
Erre a sorozatra (x,) C [a, b, ezért korldtos, vagyis 1étezik (x,, ) konvergens
részsorozata. Erre a részsorozatra
lim x, =x,

nk—>00

Az [a,b] intervallum zart, ezért x, € [a,b]. Az f itt folytonos és
sorozatfolytonos is, tehat egyrészt:

Jim£(,) = £Gx0)
masrészt
1
B——< ) <P
Ezért B = f(xy) € H, tehat valoban f = max(H). =

Heine tétel
Tétel Haaz f : [a, b] — R fiiggvény folytonos, akkor egyenletesen is folytonos.
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8B Hatvanysor, konvergencia-tartomanya, ennek jellemzése.
Hatvanysor konvergencia sugardnak meghatarozasa.(B).
Gombi polarkoordinatak, Jacobi determinansa (B)

Hatvanysor, konvergencia-tartomanya, ennek jellemzése
Definici6 A hatvanysor:

o)

ZCH(x—xO)", c, ER

n=0

Ahol x, € R rogzitett.
Definicio  Adott egy hatvanysor:

oo

n=0

Ennek konvergencia halmaza (konvergencia tartomanya, ,,ahol konvergens”):

o]
xER:chx”<oo}

n=0

H =

Allitas A konvergencia halmaz tulajdonsagai:
1) OeH
2.) Ha ¢ € H, akkor minden x-re, melyre |x| < |€], igaz, hogy x € H .
3.) Han ¢ 7, akkor minden x-re, melyre |x| > |n|, igaz, hogy x & 7.

Hatvanysor konvergencia sugaranak meghatarozasa (B)

Definicié  Tegyik fel, hogy létezik & # 0, melyre £ € H és An & H. A hatvanysor kon-
vergencia sugara p := sup{|x| : x € H}
Ha H = {0}, akkor p := 0.
Ha H = R, akkor p := o

Az x, = 0 esetben a konvergencia sugar meghatarozasa a gyokkritériummal lehetséges, a
,,SZEeTeposztas” a, = c,x".

Allitas Tegyiik fel, hogy a lim,_,o \/|c,| = v hatarérték létezik (esetleg +oo). EKKor:
1)y = 0 esetén p = . A hatvanysor mindeniitt konvergens.

2.)y = o esetén p = 0.

3)0 <y < weseténp =

Bizonyitas 1.)lim,_¢ +/|c,l - [x|* =0-|x], Vx
2) lim, L0 A/ ]yl - [x]|™ =00, Vx # 0

3) lime /Iyl - 1xI* = ylx|, Vx. Ezért |x| < i esetén y|x| < 1. A sor kon-
vergens. m

<R
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A konvergencia sugdr meghatarozhaté még a hanyados kritérium modszerével is, hasonld
szereposztassal.

lcntal

lcal

1)y = 0 esetén p = . A hatvanysor mindeniitt konvergens.

Allitas Tegyiik fel, hogy a limy,_,, =y hatarérték létezik (esetleg +0). Ekkor:

2.)y = o esetén p = 0.

3.)0<y<ooeseténp=%.

Bizonyitas
n+l (A <1l elxl< l,konvergens
A = lim Cn1X = |x| - lim [Cnal = y|x| :{ 14
el Xt noe e kA >1 o x| > %,divergens
|

Gombi polarkoordinatak, Jacobi determinansa (B)

Definici6  Egy adott (x,y,z) € R3 pont gémbi koordinatdi (r, @, 0), melyeket a kdvetke-
z6képp definidlunk:

r: a pont origdtol vett tavolsaga; r = \/x2 + y? + z?2

@:a pontba mutaté helyvektor és a z tengely pozitiv része altal bezart szog
¢ €[0,7]

6: a pontba mutato helyvektor xy sikra vett vetiiletének az x tengely pozitiv ré-
szével bezart szoge. 6 € [0,2)

A gémbi koordinatakkal tehat az (x,y, z) pont igy irhato le:

x = rsin(¢) cos(6), y = rsin(¢) sin(8), z = rcos(g)

A gombi koordinata-leképezés Jacobi determinansa
sin(¢p) cos(8) rcos(p)cos(8) —rsin(e)sin(f)
D(r,p,0) = [sin(p) sin(6) rcos(p)sin(@) rsin(ep)cos(f) | =
cos(¢p) —r sin(p) 0
rcos(p) cos(f) —rsin(g)sin(H) sin(¢p) cos(0) —rsin(¢) sin(0)
rcos(g)sin(@) rsin(e) cos(H) sin(¢) sin(8)  rsin(¢) cos(9)
sin(¢) cos(0) 1 cos(p) cos(8)|
sin(¢p) sin(8) rcos(¢)sin(8)]
= cos() - (r? cos(¢) sin(p) cos?(0) + r? sin(g) cos(¢) sin?(8)) +
+7sin(¢) - (r sin?(¢p) cos?(0) + r sin?(@) sin?(9)) =
1

= cos(¢@) - 2% cos(¢) sin(p) (cos2(8) + sin2(8)) + r sin(¢) - r sin?(¢p) (cos?(H) + sin?(9)) =
1

= COS((ﬂ) . + rsin((p) :

=12 sin(@) (cos?(¢) + sin?(p)) = r?sin(¢)
1
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9A Differencialhanyados. Geometriai jelentés. Folytonossag
¢s differencialhatosag.(B)

Differencialhanyados

Definicié ~ Adott egy f : H — R fliggvény és x, € Dy értelmezési tartomanyanak egy bels6
pontja (azaz (xo — &,%9 + &) © Dy valamely & > 0-ra). Az x ponthoz tartozod
differenciahanyados:

f&) = f(xo)

xX€E€D
x_xO f

A figgvény differencialhato x,-ban, ha a

i £ = f(xo)
m-—-——-

X=X X — Xo

hatarérték 1étezik és véges. Ennek a hatarértéknek a neve derivalt, differencial-
hanyados. Jele: f'(x;)

Geometriai jelentés

Geometriai jelentés: A differencidlhdnyados a fiiggvény grafikonjanak P = (xo; f (o))
pontjahoz tartozo érintéjének meredekségét (=irdnytangensét) adja.

Folytonossag ¢s differencidlhatosag (B)
Allitas Ha f differenialhto x,-ban, akkor ott folytonos is.

Bizonyitas Mivel
. fG) = f(x)
lim ———=m
X—Xo X — xO

ezért tetszéleges € > 0-hoz 1étezik § > 0, hogy

L S@ )

+ &
x_xO
ha [x — x,| < 8. Vegyiink € = 1-et. Azt jelenti, hogy
x_xO
azaz
f(x) = f(xo) <K
X — X

valamilyen K mellett, ha x elég kozel van x,-hoz. Ezért itt

[f () = f(xo)| < Klx = xo]

amibdl a folytonossag kovetkezik. Legyen ugyanis € > 0 tetszéleges, ekkor va-
lasszunk § = e/K-t. Ha |x — x| < &, akkor |f(x) — f(xp)| < e. m
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9B Figgvény rendszer, koordinata-transzformacio. Jacobi
matrix. Vektormez6 invertalhatésaga. Hengerkoordinatak,
Jacobi determinansa (B)

Fiiggvény rendszerek

Ha egyszerre tobb fiiggvényt tekintiink, akkor fiiggvényrendszerekrdl beszéliink. Tekintsiik
most azt a specidlis esetet, hogy a fiiggvények szdma megegyezik a valtozok szdmaval. Le-
gyen R c R? egy tartomany, ahol adott két fliggvény, ¢, : R - R. A fiiggvényrendszer, amit
tekintiink:

§=9okxy)

n=vy)
Ezt Ggy értelmezhetjiik, mint R? térbeli leképezés, mely az (x,y) ponthoz a (§,1) = F(x,y)
pontot rendeli hozza. Ezt a F: R - R? leképezést szokds vektormezdnek is hivni.

Koordinata-transzformacio

A fenti fiiggvényrendszerek koordinata-transzformaciok. Az F fiiggvény valtozoi x és y, az F
fiiggvény koordinatafiiggvényei pedig ¢ és Y. Ekkor az F fiiggvény az alabbi hozzarendelést
valositja meg:

(x,y) — (&n)

Példa

A polarkoordinatakat Descartes koordinatakka képezo fliggvényt fiiggvényrendszerként igy
definialhatjuk:

(r, ) — (x,y)
ahol

x =rcos(p) = ¢(r,9)
y = rsin(@) = Y(r, ¢)

Jacobi matrix
Definicio A fenti rendszerhez tartoz6 Jacobi matrixot igy definialjuk:
0y < [P0 B y)l _ lgrad 6 (x,)
' Y, y)  Py(x,y) grad ¥(x,y)
A fenti matrix determinansat Jacobi determinansnak hivjuk:

D(XJ’) = d’a'c(X'}’)d’;,/(x'J’) - 'al’alc(x:}’)(%(x:y}

Vektormezd invertalhatosaga

Az R2-beli leképezés invertalhato, ha a leképezés injektiv, azaz kiilonb6zd R-beli pontokhoz
a képtérben kiilonboz6 (&, n) pontok tartoznak. Ekkor a fenti rendszer invertalhato:
x=gn)
y = h(,n)

Hengerkoordinatak

Definici6  Egy adott (x,y,z) € R3 pont hengerkoordinatdi (r, 0, z), melyeket igy definia-
lunk: (r,8) a pont xy sikra vett vetiiletének polarkoordinatai, z pedig a harma-
dik Descartes koordinata:

x =rcos(8), y = rsin(0), zZ=1z
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Attérés Jacobi determinansa (B)

A hengerkoordinata-leképezés Jacobi determindnsa

cos(0) -rsin(@) 0
D(r,0,z) = |sin(0) rcos(8) 0
0 0 1

_ 0'|—rsin(9) 0 _o. cos(8) O 1_|cos(9) —rsin(6)| _
N rcos(8) 0 sin() 0 sin(8) rcos(0) |

=rcos?(0) +rsin?(@) =r

szobeli vizsga, 1. 6sszetevd 31/68 2014. janius 11.
1411



Matematika szigorlat — PPKE ITK

10A Differencialasi szabalyok: szorzat, hanyados, osszetett
fiiggvény, inverz. (B)

Differencialasi szabalyok

Tétel Legyenek f és g differencialhato fiiggvények. Ekkor
1) fF+9)'()=f"(x)+g'(x)
2.) (cf)'(x) =c-f'(x)
3) (f9)'(x) = f'(x)g(x) + fF(x)g'(x)
4.) Tegyiik fel, hogy g(x) # 0, ekkor
( 1 ) _9'®
g(x) g2®

5.) Tegyiik fel, hogy g(x) # 0, ekkor

<f(x)>' )9 — F)g' (x)
gx)) 9%(x)

6.) Lancszabdly (feg)(x)= f'(g(x)) -g'(x)

Bizonyitas 3.)

(9 Go) = tim LS ixo)g(xo) _

— lim f)g(x) = f(x)g(xo) + f(x)g(x) — f(x0)g(x0)
= lim pr— =
— lim f(x)g(xi : i(xo) n g(xo)}} m f(x) = f(xo)

i
XX —Xg X — xo

0

Ahonnan folhasznélva f folytonossagat kovetkezik az allitas.

4.)
, 11 gxo) = g(x)
( 1 ) _ i 9 9Go) _ 9(x)g(x)

— lim ——————=
g(x) X=Xo X — X X=X X —Xp

= lim
X—Xq

( -1 _g(X)—g(xo)>
g(x)g(xo) X — Xo

6.)

(F o gY@ = (F(9()) = lim flgt) - flgxo) _

X—Xg X — xO
_ f(9() = f(g(x0)) g(x) — g(xp)
= |lim =
x-xo g(x) — g(xo) X — Xo

flg) = flg@o) |90 =gCro)

T gmge)  g(x) — g(xg) xoxg X — X
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Tétel Tegyiik fel, hogy f : [a,b] = R szigoriian monoton és differencialhaté. Tegyiik
fel, hogy f'(x) # 0,Vx € Dy. Ekkor f~1 is differencidlhato, és

1
OO =
f(F1)
Bizonyitas A differencidlhatésagot bizonyitds nélkiil elfogadjuk. Induljunk ki az
F7(f(x)) = x azonossagbol, és derivaljuk x szerint, az sszetett fiiggvény de-
rivalési szabalyat alkalmazva. Ekkor

FY @) £ = @'
G () (FH @) =1
1
f(F1(r@))

F(fw)=

Mivel f(x) =y, a tétel allitasa ebbdl mar kovetkezik. m

10B Kétvaltozos fliggvény integralasa téglalapon. Integralas
normal tartomanyon. Kétvaltozos valos értékll fliggvény
integralja vonal mentén.

Kétvaltozos fiiggvény integralasa teglalapon
A fenti tétel kovetkezménye, hogy téglalap alaku tartomanyon (intervallumon) az integralas a
kovetkezoképpen néz ki.

Tétel Tegyiik fel, hogy R = [a, b] X [c,d], f: R = R integrdlhaté fiiggvény. Ekkor

ffRf(x,y) dR=f:<fcdf(x,y) dy) dxzj;d(fabf(x,y) dx)dy

Integralas normal tartomanyon

Definicié6 Egy R c R? részhalmaz x szerinti normaltartomdany a sikon, ha R a kdvetkezd
tulajdonsagokkal rendelkezik:

— létezik egy [a, b] intervallum,
— léteznek ¢4, ¢d,: [a, b] = R szakaszonként folytonos fiiggvények, melyekre
- ¢1(x) < ¢,(x) minden x-re és
R={(x,y):a<x<b  ¢1(x) <y <¢(x)}
Hasonloan, R c R? részhalmaz y szerinti normdltartomdny a sikon, ha létezik

egy [c,d] intervallum és l1éteznek 1, 1,: [c,d] - R szakaszonként folytonos
fiiggvények, melyekre ¥, (y) < 1, (y) minden y-ra és

R={x,y):a<y<b  P:(y) <x=<v,()}

Tétel Legyen R x-szerinti (illetve y szerinti) normaltartomdany a sikon. Tegyiik fel,
hogy az f fiiggvény integralhato R-en. Ekkor
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| jR f(x,y) dR = f b L ¢(())f(x y) dy dx

illetve

| f fx,y) dR = f ' f:z)f(x, y) dx dy

Kétvaltozos valos értekil fliggvény integralja vonal mentén
Legyen adott a sikban egy I" Jordan gorbe, melyet y fliggvénnyel paramétereziink:
I'={y@®:t€[a bl}

ahol y(t) = (x(©),y(t)), t € [a,b]. Feltessziik, hogy T sima gorbe. Legyen R < R? egy
olyan tartomany, mely tartalmazza a I' gorbét.

Definicio Az f fliggvény vonalintegradljat a I' gérbe mentén igy értelmezziik:

b
[reyras = [ rx@m)- V7m0 + 7@ ar
r a
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11A

Kozeépeértektetelek: Rolle-(B), Lagrange-(B), Cauchy tetel.
Integralszamitas alaptétele (B).

Kozépértéktételek (B)

Rolle tétel
Tétel

Bizonyitas

Legyen f:[a, b] — R fiiggvény. Tegyiik fel, hogy f folytonos és differencidalhato
la, b]-n. Tegyiik fel tovabbd, hogy f(a) = f(b). Ekkor 3¢ € (a,b), melyre
' =0.

A Weierstrass I1. tétel miatt 1étezik a fiiggvénynek minimuma és maximuma. Ha
m = M, akkor a figgvény konstans, és derivaltja nulla. Ha m < M, akkor 3¢,
melyre f(¢) = mvagy f(¢) = M. Ekkor é-ben lokalis szEélséérték van, és igy itt
a derivalt nulla. m

Lagrange tétel

Tétel

Bizonyitas

Cauchy tétel
Tétel

Legyen f : [a, b] — R fiiggvény. Tegyiik fel, hogy f
- folytonos [a, b]-n,

- differencialhato (a, b)-n.

Ekkor létezik olyan é € (a, b), melyre

) - f@)
[ ==

Az (a; f(a)) és (b; f(b)) pontokat dsszektd egyenes egyenlete
(b) — f(a)
hGo) = £ + LD g
Legyen
g(x) = f(x) — h(x)
Ekkor g differencialhato, és

g@=f(a-h(a)=0, gb)=fb)—hb)=0
tehat g-re a Rolle-tételt alkalmazva azt kapjuk, hogy 3¢, melyre g'(¢) = 0, azaz
fb) - f(a)
b —

a

') =h =

Legyen f : [a, b] — R fiiggvény. Tegyiik fel, hogy f

- folytonos [a, b]-n,

- differencialhato (a, b)-n.

-g(b) # g(a)

-9'(x) #0

Ekkor létezik olyan & € (a, b), melyre
f)—fl@ f'()
gb)—gl@ g'©&)
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Integralszamitas alaptétele (B)

Tétel A g, f : [a, b] = R differencidlhaté fiiggvények, melyekre f'(x) = g'(x) teljesiil
minden x € (a, b)-re. Ekkor f(x) = g(x) + ¢,Vx € [a, b] valamely ¢ € R mel-
lett.

Bizonyitas Legyen h(x) = f(x) — g(x). Derivaljuk h-t:
h'(x) =f'(x) —g'(x)
A tétel foltevése alapjan f'(x) = g'(x), amib6l kovetkezik, hogy h'(x) = 0. Ez
csak akkor lehetséges, ha h konstans, vagyis létezik ¢ = h(x), cER. m

11B Integral transzformacio polarkoordinatakkal. Helyette-
sités altalanos koordinata-transzformacioval kettds integ-
ralban.

Integral transzformacio polarkoordinatakkal
Kettds integralban a polarkoordinatakra valo attérés az altalanos helyettesités egy specialis
esete. Az attéréshez sziikség van a koordinata-transzformaciora, mely polarkoordinatakra valod
attérés esetén

x =71 cos(8)

y = rsin(0)
A Jacobi determinéns:
cos(@) —rsin(8)
sin(8) rcos(8)

Igy a megfelelé integral-transzformacio

fo(x,y) dlx,y) = fL’f(r cos(8),rsin(8)) - r d(r,6)

D(r,0) = = rcos?(0) +rsin?(0) =r

Helyettesités altalanos koordinata-transzformacioval kettds integralban

Tétel Adott egy f: R — R integralhato fiiggvény, ahol R korlatos, zart, mérhetd tarto-
many. Tekintstink egy

x=¢wv)
y=vy,v)
transzformaciot, melyrol feltessziik, hogy Jacobi matrixa sehol sem szingularis,

azaz

Ju,v) = ACRD) <I.'>,';(u,v)]

Y (u,v)  YPy(u,v)
jeloléssel det J(u,v) # 0 R-ben. Legyen tovabba

R ={(wv): (¢wv),¥p(w,v)) € R}
Ekkor

ffRf(x,y) d(x,y) = ffR,f(d)(u, ), v)) - D(u,v) d(u,v)
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12A Taylor polinom, tulajdonsagai. (B) Lagrange-f¢le mara-
dektag.

Taylor polinom, tulajdonsagai (B)

Egy n-ed rendii polinomot keresiink, mely olyan, mint f az x,-ban:
P (x0) = f(x0)
Py(x0) = f (x0)

Pn(n)(xo) = ™ (x,)
Allitas Ilyen polinom egyértelmiien létezik, a neve Taylor-polinom, jelélése Ty, (x).

Definicié Az f fiiggvény x,-hoz tartozo n-ed rendii Taylor polinomja:

" (n)
TuG) = o) + F/e0) e = 20) + Lo (e — 2 et LD (e
(r)
ne =3 L0000
k=0
Bizonyitas Az egyértelmiiség trivialis. Létezése a kdvetkezOképp igazolhato:
" (n)
7o) = £ o) + /o)t = x0) + Lo G =gy et L0 iy
T,,(x) és derivaltjai x,-ban:
)
T (xo) = f(x0) + f'(x0) (X0 — %0) + - +n—( 0 — xo)" = f(xo)
" (n)
TiGeo) = 0+ £/eo) 1+ 202y — ) 4o L0 ey ot = )
() (n)

Tn(k)(xo) =04+--4+0+ fk—(|95())k! + -+ f k('xO) (xg — Xo)n_k = f(k)(xo)

T (xy) = 0 + -+ 0 4 L= <"°) = f™(x,) m

Lagrange-féle maradéktag
Definicio6 A Lagrange-féle maradéktag:
Lp(x) = f(x) — T (%)

Tétel Tegyiik fel, hogy f (n + 1)-szer differencidlhato. Ekkor 3¢ € (x, x,) vagy
& € (xg, x), melyre:

fM© i1
7y (X = Xo)

L) =T @
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12B Komplex vonalintegral, kiszamitasa. Cauchy-féle alapté-
tel. Altalanositas.

Komplex vonalintegral, kiszdmitasa

Definici6 A vonalintegralt az aldbbi hatarérték definialja, amennyiben létezik és véges:
n

Jim, Y G = 7)) = [ £) dz
L

811—?0 k=1

ahol &, = max(s(zx_1,2x), k = 1,...,n). Ha L zart gorbe, akkor a vonalinteg-
ralra az alabbi jelolést hasznaljuk:

ﬁf(z) dz

Tétel Legyen az L gorbe paraméteres megadasa:
z(t) =x(@®) +iy(t) =r@t) - 9D,  te€[a,p]
Tegyiik fel, hogy x, y illetve r, 8 folytonosan differencialhatok. Ekkor

B
ff(z) dz = f f(z(t))z’(t) dt
B
=] flx(@® +iy®)(x'(®) +iy'(t)) dt

B
=j f(r(@) - e®) (r’(t)-eia(t)+ir(t)-ei9(t)9’(t)) dt

Tétel (Newton-Leibniz formula komplex vonalintegralra) Legyen adott az f:T — C
fiiggveny. Tegyiik fel, hogy létezik olyan F:T — C fiiggvény, melyre minden z
esetén F'(z) = f(z). Legyen A és B a tartomany két pontja. Ekkor

[r@as=r) - ra
L
minden olyan L c T Jordan gérbe mentén, melynek végpontjai A és B.

Cauchy-féle alaptétel

Tétel (Cauchy-féle alaptétel vonalintegrdlra) Legyen T C C egyszeresen Osszefiiggd
tartomany és ebben G C T egy sima, zart gorbe. Tegyiik fel hogy az f:T — C
fliggveény analitikus. Ekkor

jgcf(z)d2=0

Tétel (Cauchy-féle alapteétel altalanositisa) Legyen adott egy T € C dsszefiiggd tar-
tomany, melynek hatara a G C T gorbe. Feltessziik, hogy T nem egyszeresen
0sszefiiggo, jelolje Gy, ..., Gy, a lyukakat kérbevevo gorbéket, melyekrol feltesz-
sziik, hogy ugyanolyan iranyitasuak, mint G. Legyen f:T — C analitikus fiigQ-

veny. Ekkor
n
ff(z)dz=2 f(z)dz
G k=1"Ck
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13A Monoton fliggvények jellemzeése. Magasabb rendl derival-
tak. L'Hopital szabaly. (B)
Monoton fiiggvények jellemzése
Tétel Adott f : I = R fiiggvény, ahol I c R. Ekkor
f monoton nové akkor és csak akkor, ha f'(x) = 0, minden x € I-re,

f monoton fogyé akkor és csak akkor, ha f'(x) < 0, minden x € I-re.

Magasabb rendii derivaltak

Definicio6  Ha f’ derivalhato x,-ban, akkor ennek a derivéltja az eredeti f fliggvény mdso-
dik derivaltja
[0 — f'(xo)

X — X

f"(xo) =

Hasonlo6an, ha f"' is derivalhato, akkor a harmadik derivalt

f”(x) _f”(xo) 3 d3f

f (xO) = X — Xo - dx3
... €s igy tovabb. Az n-ed rendii derivalt jelolése:
f(n) = ﬂ
dx™
L'Hopital szabaly (B)
Tétel Legyenek f és g differencialhato fiiggvények, melyekre
lim f(x) = lim g(x) =0
X—>Xg XX

Keressiik a fiiggvények hanyadosanak hatarértékét. Ekkor ha létezik a derivaltak
hanyadosanak hatarértéke, akkor a keresett hatarérték is létezik, mégpedig

lim @) = lim Lx)
x=x0 g'(x)  x-%0 g (x)
Bizonyitas A tétel allitasa miatt f (x,) = g(x,) = 0, azaz
FG) _ fG) — fx)
gx)  g(x) —g(xo)
A Cauchy-féle kozépértéktétel szerint ekkor 1étezik egy & € (x, x,), melyre
@) - fxo) _f'©)
g(x) —g(x)  g'(§)

Nyilvanvaldan

lim f'x) = lim L@) = lim M = lim M ]
x=ox0g'(x)  xox%0g'(§)  xox0 g(x) — glxg)  x-x0 g(x)
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13B Vektormezo integralja gorbe mentén. Potencidlkeresés.
Potencial l1étezésének sziikséges (B) €s elégséges feltétele.

Vektormezo integralja gorbe mentén

Legyen T = {y(t):t € [a, b]} haromdimenzids Jordan gorbe. Legyen tovabba F egy harom-
dimenziés vektormezé F:D — R3, ahol D c R3. F koordinatafiiggvényeit jeldlie fi, f>,
f3:D - R.
fl (x' Y, Z)
F(x;y,z) = fZ(x'y'Z)
f3 (X, Y, Z)

Feltessziik, hogy F differencidlhaté D-ben. Feltessziik azt is, hogy I' € D. Az egyszeriiség
kedvéért jeldljiik R® pontjait roviden: r = (x, y, )

A gbrbe mentén vett vonalintegral jeldlése

LF(r) dr

Tétel (Vonalintegral kiszamitasa) A fenti jelolésekkel és feltételekkel

b
[Foyar = [ EG@)r@ya
r a
ahol y jeloli a y fiiggvény koordinatak szerinti derivaltjat.

Potencialkeresés

Adott egy haromvaltozos, valos értékii fiiggvény f: R —» R, R c R3. Ha a fiiggvény differen-

cidlhat6 a tartomanyban, akkor gradiense vektormezé: grad f: R - R3. Ennek ,.forditottja”,

hogy ha adott egy F: R - R3 vektormezd, akkor vajon létezik-€ olyan f: R — R differencial-

hato fiiggvény, melyre F = grad f.

Definicio Az F vektormezd potencidlos (konzervativ), ha 1étezik f differencidlhaté skalar-
fiiggvény, melyre F = grad f.

Potencial 1étezésének sziikséges (B) €s elégséges feltétele (vonalintegrallal)

Tétel Adott az F vektormezé egy R € R3 egyszeresen Gsszefiiggd tartomanyon. F-nek
pontosan akkor létezik potencidlja, ha minden R-beli zart gérbe mentén az F
vektormezo vonalintegralja 0.

Bizonyitas A bizonyitds sordn csak azt igazoljuk, hogy ha van potencial, akkor tetszéleges
zart gorbe mentén integralva az integral értéke nulla.

b b
f F(r) dr = f (Fy(©),7(0) dt = f (grad f(y(©),7(0) dt =
r a a

b d
- f @) dt = f(y®) - f(v(a))

Ha a gorbe zart, akkor ez azt jelenti, hogy a = b és igy y(a) = y(b), vagyis az
integral valoban nulla. m
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14A Egyvaltozos valos fiiggvény lokalis szélsoértékének
sziikséges (B) ill. elégséges feltétele.

Lokalis szélsoérték 1étezésének sziikséges feltétele (B)
Tétel Legyen f : X = Y differencialhato fiiggvény, és legyen f-nek xo-ban lokdlis
szélséertéke. Ekkor f'(xy) = 0.

Bizonyitas Tegyiik fel, hogy x,-ban mondjuk lokalis maximum van. A derivalt definicioja

szerint:
f’(xo) — lim f(x) - f(xo)

xX—Xq X — Xg
A lokalis maximum tulajdonsaga miatt 1étezik U = (x, — €, xo + €) kornyezet,
hogy ha x € U, akkor f(x) < f(xy). Igy ha x € (xy — &%), vagyis x < xo,

akkor
fO) = flx) <0
X — Xo <0

= f'(x0) 20

Hasonldan, ha x € (xq, xo + €), vagyis x > x,, akkor

fO) = flx) <0

X — Xo >0

A fentiekbdl kovetkezik, hogy f'(xy) = 0. m

= f'(x0) <0

Lokalis szélsoérték 1étezésének elégséges feltétele

Tétel Ha az f fiiggvény xy-ban kétszer differencidalhato, és f'(x,) = 0, azaz x, staci-
onarius pont, akkor:
-ha f""(xy) > 0, akkor x, lokdlis minimum,
-ha f""(x) < 0, akkor x, lokdlis maximum,
-ha f"(xy) = 0, akkor ebbdl nem eldonthetd, vajon xy-ban szélséértéke van-e.

14B Kétvaltozos fliggvény felszinének kiszamitasa.

Kétvaltozos fiiggveény felszinének kiszamitasa
Legyen adott egy F: R — R? fiiggvény, R € R2. Ennek feliilete egy 3 dimenzios feliilet:

S={(xy.fx¥): (x,y) €R} c R

Ennek nagysaga a kdvetkezOképp szdmolhato:

As) = | f (1R + £ 00y )
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15A Primitiv fiiggvény. Alaptulajdonsagok. Konvex és konkav
fliggvények, ezek jellemzése.

Primitiv fiiggvény
Definici6 Legyen f : [ —» R, ahol I € R. Legyen F : I — R. Az F fliiggvény az f fiiggvény
primitiv fiiggvénye, ha
F'(x) = f(x), Vx €1

Alaptulajdonsagok
Definicio  Legyen f : [ —» R. f primitiv fiiggvényei a hatdarozatlan integral.

jf(x)dx={H:I—>]R1|H’(x)=f(x)}={F+c:cER}

Tétel 1)
f(f"‘g)(x) dx = ff(x) dx+fg(x) dx
2.)
fc-f(x)dx=c-Jf(x)dx
3)
[ Flo0) 0@ ax = fp0) +¢
3/a)
[rre peoar=C" 0
3/b) |
;((j)) dx = In|f ()| + ¢
3/c)

jf’(x)-ef(x) dx =e/™ + ¢

Konvex és konkav fliggvények, ezek jellemzése
Definicio Az f : [a, b] — R fliggvény konvex, ha minden x,, x, € [a, b] esetén
f (xl + xz) < fxy) + f(x2)
2 2
Definicio Az f : [a, b] — R fliggvény konkav, ha —f konvex.

Inflexié

Definicio Az x, € Dy inflexios pont, ha itt az f : Dy - R fiiggvény konvexitasa a pont
el6tt mas mint a pont utdn, azaz ha f az
- (xg — 6, xp)-on konvex és (xg, x, + §)-on konkav, vagy
- (x¢ — 6, xp)-on konkav és (xg, xo + §)-0n konvex.
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Kapcsolat a derivalttal

Tétel Legyen f: [a, b] kétszer differencialhato fiiggvény. Ekkor
- f konvex [a, b]-n & f' monoton nové
- f konkav [a, b]-n & f' monoton csékkend.

Tétel Legyen f kétszer differencialhato fiiggvény xy-ban. Ekkor
-ha f""(xy) > 0, akkor x, lokdlis minimum,
-ha f"(x) < 0, akkor x, lokdlis maximum,
-ha f"(xy) = 0, akkor nem dontheté el, hogy van-e szélsGérték.

Tétel Legyen f kétszer differencialhato fiiggvény x,-ban. Ekkor
-ha f"(x,) > 0, akkor f konvex x, valamely kérnyezetében,
-ha f""(x) < 0, akkor f konkav x, valamely kornyezetében.

Allitas Legyen f hdaromszor differencidlhato fiiggvény x,-ban. Ekkor
-ha f""(xg) = 0 és f" eldjelet valt xy-ban, akkor x, inflexiés pont,
-ha f'"(xg) = 0és f'"(xo) # 0, akkor x, inflexios pont.

15B Kétvaltozos fiiggvény teljes differencidlhatésaga adott
pontban. Erintosik. Iranymenti derivalt kiszamitasa (B).

Kétvaltozos fiiggvény teljes differencialhatdésaga adott pontban
Definicio  Egy h(x) fiiggvény kisordé 0-ban, ha
h
lim ﬁ =0
x>0 X
Ezt ugy jeloljiik, hogy h(x) = o(x).
Definicié  Legyen f:S — R kétvaltozos fliggvény, és (x,y) € int(S). Azt mondjuk, hogy

az f fuggvény differencidalhaté (x,y)-ban, ha 1éteznek olyan A, B,C szamok,
melyekre

f(x+Ax,y + Ay) = AAx + BAy + C +o(\/Ax2 +Ay2)

teljesiil elegendéen kicsi Ax és Ay mellett, ahol A, B, C fliggetlenek Ax-t6l és
Ay-tol.

Erintosik
A derivalt geometriai jelentése is hasonld az egydimenzios esethez. Ha a fliggvény differenci-
alhat6 egy pontban, akkor a pont kdzelében a fiiggvény értékét az érintdsik segitségével koze-
lithetjiik. A sik megadasahoz megadjuk egy pontjat — ez (xo, Yo, f (x0, yo)) — és megadjuk a
sik meredekségét, ami a két parcialis derivalt. Az érintésik egyenlete:
z = f(x0,¥0) + fx (X0, ¥0) (x — x0) + £ (x0,¥0) (Y — ¥o)
Ezt atirva a megszokott alakba:
fx (X0, ¥0) (x = x0) + £,/ (x0, Y0 ) (¥ —y0) + (=1)(z —2,) = 0
ahol zy = f(xg, yo). Ebbdl az egyenletbdl leolvashatd, hogy a sik egyik normalvektora
n= (fx, (%o, J’o)rfy'(xo' Vo), —1)

Iranymenti derivalt kiszamitasa (B)
Definicié6  Legyen a € [0;2m). Az « iranyu iranymenti derivaltat igy értelmezziik:
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Definicio

Allitas

Bizonyitas

f&+pcos(a),y + psin(a)) — f(x,y)
P

0 .
Daf(x,}’) = %f(x!y) = f)ll;%
ha ez a hatarérték 1étezik.

Adott egy v € R? irany, melyre ||v|| = /v + vZ = 1. A v irdnymenti derivdl-
tat egy (x, y) pontban igy értelmezziik:
fG+pvny +pva) — f(x,y)

p

D,f(x,y) =lim
p—0
ha ez a hatarérték 1étezik.

Tegyiik fel, hogy az f fiiggvény differencidlhaté (x,y)-ban. Ekkor itt létezik az
iranymenti derivalt tetszéleges a € [0; 21) esetén, és

Dof(x,y) = fx(x,¥) cos(a) + f, (x,y) sin(a)
A differencialhatosag miatt

f(x+pcos(a),y + psin(a)) =
= f(x,y) + fi{(x,y)p cos(a) + £, (x, y)p sin(a) + o(|p])
ha |p| elegendden kicsi. Ebbdl kdvetkezik, hogy

£+ peos(a),y + psin(@) — f(x,y) _
p

= f1(x,y) cos(a) + f; (x, y) sin(a) + O(Lpl)

melynek hatarértékeként az allitast kapjuk. =
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16A Riemann-integral definicid. Elegséges feltételek integralha-
tosagra. Newton-Leibniz tétel. (B)

Riemann-integral definicio
Legyen az f fliggvény [a, b]-n értelmezett folytonos fiiggvény. Az [a, b] intervallum egy fel-
osztasaF = {xo =a <x; < -+ < x, = b}.

Definicid A felosztashoz tartoz6 also kozelito osszeg

n n
s(F) = Z my (X — xg_1) = z my Axy
k=1 k=1

ahol my, = inf{f (x) : x € [x}_q, xx ]} és Axy, = X} — Xp—1

Definicio A felosztashoz tartozé felso kozelito osszeg

n n
S(F) = z My (xg — Xp—1) = z M, Axy,
k=1 k=1

ahol M), = sup{f(x) : x € [xr_q1, Xk} és Axy = x), — Xp_1

Definici6 Az F felosztashoz tartoz6 egyik Riemann ésszeg

n n

o(F) = ) FE)G = x1) = ) fEAx,

k=1 k=1

ahol & € [xy_q, x;] tetszOleges és Axy = X — Xj—1

Definici6 Az F felosztassorozathoz tartozd oszcilldacios osszeg
n n
0(F) = ) (My = mi) Gt = ) = ) (M = i)
k=1 k=1
Definicio = Az F felosztas finomsdaga

§(F) =max{x, —x;_1:k=1,..,n}

Definicio  Legyen F az Osszes lehetséges felosztas. Legyenek s = sup{s(F) : F € F} és
S =inf{S(F) : F € F}.

Ha s = S, akkor az f : [a, b] — R korlatos fiiggvényt Riemann integrdlhatonak
nevezzilk. A fiiggvény Riemann integralja

b
ff(x)dx=s=S

Megjegyzés Ahol §(F) - 0

b n
| e ax = jim oz = 1im ) r&0ax,
a k=1
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Elégséges feltételek integralhatosagra

Tétel Ha f : [a, b] = R korldtos és monoton, akkor integrdalhato.
Tétel Ha f : [a, b] = R folytonos, akkor integralhato.
Tétel Legyen f : [a, b] = R korldtos, mely véges sok szakaddsi helytdl eltekintve foly-

tonos. Ekkor f integralhato.

Newton-Leibniz tétel (B)
Tétel Legyen f : [a, b] — R integrdlhato fiiggvény. Tegyiik fel, hogy létezik F primitiv
fiiggvénye, F'(x) = f(x) Vx € [a, b]. Ekkor

b
[ £ ax =) - F@

Bizonyitas Legyen F, = {a = x, < x; < - < x,, = b} egy felosztas, és F primitiv fiigg-
vény egy rész-intervallumon: F : [x;_q1, xx] = R.
A Lagrange-féle kozépérték-tétel miatt 1étezik &, € [x,_q, x5 ], melyre
, F(x) = F(x-1)
F'(§&) = X x = (&)

k= k-1

Tekintsiik azt a Riemann-6sszeget, ahol

_ N _ C F(xy) — F(xg-1) _
o(F) = ;f@u(xk ~ i) = }Z e T (= ) =
=) F(u) = Flae) = F) = F(a)
k=1
b
[ £60dx = tim o) = F0) ~ F(@
|
16B Fourier transzformacio. Alaptulajdonsagok. Derivalt

fliggvény Fourier transzformaltja.(B)

Fourier transzformacio
Tegytik fel, hogy az f: R — R valds értéki fiiggvény kielégiti az alabbi feltételeket:

1. Tetszoleges I C R véges intervallum esetén f lesziikitése az I intervallumra véges sok
pontot kivéve folytonosan differencialhato.

2. Ha x, szakadasi pont, akkor ez a szakadas elséfaju, €s itt a fiiggvényérték

£(xo) :f(xo +0) ';f(xo —-0)

3. A fliggvény abszolut integralhatd, azaz

j F (0] dx < oo

— 00
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Definici6 Ha f teljesiti a fenti feltételeket, akkor az f Fourier transzformaltia az az
f:R - C komplex értékii fiiggvény, melyet igy definialunk:

" 1 *© )
(s) = —f (x)e™* dx
f V 2T —oof
A Fourier transzformalt jeldlése F(f,s) = f(s)

Alaptulajdonsagok

Tétel A Fourier transzformalt alaptulajdonsagai:

1. A hozzarendelés linearis, azaz

Flef,s) = cF(f,s),  F(f+g,5)=F(f,s) +F(g,s)

2. F(f) folytonos fiiggvény
3. (Atskaldzas)
T(f(ax),s)z%?(f(x),g), haa >0
4. (Id6 megforditasa)
F(f(=x),5) = F(f(x), —s)
5. (1dé eltolas) .
F(f(x — xo),5) = e”"5F(f(x),5)
6. (Frekvencia eltolds)

F(e™*f(x),s) = F(f(x),s — k)

Derivalt fiiggvény Fourier transzformaltja.(B)
Tétel Ha

f F'G0)] dx < o0

akkor

F(f',s) =isF(f,s)

Bizonyitas Parcialisan integralva

Lfoof’(x)e“’sx dx = L f(x)e tsx
V2 e V2

o)

+ \/iTs_nf_:f(x)e_isx dx = isF(f,s)

Megjegyzés Az idétartomanybeli derivalas a frekvenciatartomanyban egy is tényezdvel valo
szorzéasnak felel meg.
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17A Integralfiiggvény. Integralszamitas II. alaptétele (B).

Integralfiiggvény
Definicié  Legyen f : [a, b] » R Riemann-integralhatd. Az f fliggvény integralfiiggvénye
F : [a,b] — R, ahol

F(x) =j f(t) dt

Integralszamitas II. alaptétele (B)
Tétel Az integralfiiggvény tulajdonsdgai:
1.) Folytonos [a, b]-n,
2.) ha f folytonos, akkor F differencidlhato, és F'(x) = f(x).

Bizonyitas 1.) f korlatos: |f(x)| < K. Az x, € (a, b), ekkor F(x,) folytonos-e?

Fe)-FGo) = [ f@a— [ f@ac= [ r@ar

|F(x) — F(xp)| =

< ] (O dt < K|x — x,|

0

X
[ r@a

Xo
A fentiekbdl kovetkezik, hogy lim,_,,, F(x) — F(x,) = 0, tehat F folytonos.

2.) Be kell latni a kovetkezot:

i &) = Fxo)
m--——-

X—Xo X — xO

= f(xo)

F(x) — F(x¢) — f(x0) (x — x0)

x_xO

= (%)

Ezt megbecsiiljiik. Legyen € > 0 tetszdleges. 36 > 0:
lx —xol <6 = [f(x) = fxp)| < €
Ha |x — xo| < &, akkor a fenti kifejezésben:

. |12 £ (©) = fxo) dt el =l _

|x—x0| B |x—x0| B

17B Magasabb rendii homogén linearis DE megoldasai. Al-
land6 egyiitthatos HLDE alapmegoldasai (B). Karakterisz-
tikus polinom.

Magasabb rendii homogén linearis DE megoldasai

Tétel Az L[y] = 0 egyenletnek létezik n darab linedrisan fiiggetlen megolddsa:
V1, -, Yn. Tovabba tetszéleges y megoldas felirhato ezek linearis kombinacioja-
ként:y = ¢y, + -+ Cp¥n
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Allandoé egyiitthatos HLDE alapmegoldasai (B), karakterisztikus polinom

Tekintsik az L[y] = y™ + a;y™ D + ... 4+ a,y = 0 egyenletet, ahol a4, ..., a,, € R adott
valos szamok. Specialis megoldasokat keresiink, melyek

y(x) = e™
alakuak. Ekkor y'(x) = A- e ... yM™(x) = A" - e,
Ezeket visszahelyettesitve azt kapjuk, hogy
Llyl = e + g A" 1+ -+ a,_1A+a,) =0
A jobboldalon all6 fiiggvény csak ugy lehet 0, hogyha a zardjelben szerepl6 polinom nulla.
Definialjuk a differencialegyenlethez tartozo karakterisztikus polinomot a kdvetkezdképpen:
P =2"+a A"+ +ay

Ez egy valos egylitthatos polinom, melynek a komplex szdmsikon n darab gydke van, multip-
licitasokkal egyiitt.

Elso eset

Tegyiik fel, hogy P(A) gyokei valosak, és mind egyszeresek. Legyenek ezek A, ..., A,,. EKkor
fel tudjuk irni a homogén egyenlet n megoldasat

y1(x) = ehr*

Yo (x) = ete*

yn(x) = e/n¥

¢s ezek linearisan fiiggetlen rendszert alkotnak. Ekkor az altaldnos megoldas:
n

y(x)=ch-e’1kx, ck €ER
k=1
Masodik eset

Tegyiik fel, hogy P(A) gyokei valdsak, viszont van m darab k,,-szeres (k,, = 1,2 ...) gyok.
Legyen minden A,, k,,-szeres gyoke a karakterisztikus polinomnak. Ekkor igy tudjuk felirni a
homogén egyenlet megoldasait:

y11(x) = eM?, yi2(x) = x - eM¥, yVik, = xki—1. ghix
yml(x) = e/‘{mx’ sz(x) =X elme :Ymkm = ka_l . ellmx
¢s ezek linearisan fiiggetlen rendszert alkotnak. Ekkor az altalanos megoldas:
m Kn
y(x) = Z Z C‘l’ll . xkl_l . ellnx’ Ck € IR
n=11=1

Harmadik eset

Tekintsiik azt az esetet, amikor a polinomnak komplex gyokei vannak. Ekkor ha A = a + if8
egy gyoke a karakterisztikus polinomnak, akkor konjugaltja, A = a — i is gyok. Két alap-
megoldast kapunk tehat:

uy (x) = 9/1x; u(x) = eix
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Mivel A komplex szam, ezért ezek komplex fiiggvények lesznek. Tudjuk, hogy ezek tetszdle-
ges linearis kombinacidja ismét megoldas lesz. Keresiink olya linearis kombinaciot, amely
valés értékii. Definidljuk a kovetkezd alapmegoldasokat:

uy (x) + uy (x)
2

uy (x) — uy(x) _
2i

Ezek a megoldasok is — nyilvanvaldan — linearisan fiiggetlenek. Az altalanos megoldas ezek

0sszege.

yi(x) = = e cos(Bx)

e™ sin(Bx)

y2(x) =

Negyedik eset

A negyedik eshetdség az, hogy tobbszords komplex gyokok allnak eld. Ekkor a komplex
gyokoknél megismert modszert és a tobbszords gyokoknél megismert felirast 6tvozve kell
alkalmazni.
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18A Helyettesités integralban. Parcialis integralas (B), alap-
esetek.

Helyettesités integralban
Tétel A helyettesitési integral alapformuladja:

ff(qb(t))-qb’(t) dt = Jf(x) dx

ahol ¢ szigoriian monoton fiiggvény.

x=¢(t)

Hatarozott alak
Tétel Legyen f : [a,b] = R integrdlhaté fiiggvény és ¢ : [a, B] = [a, b] szigorian
monoton, differencialhato fiiggvény.

o) =a  $B) =b
Ekkor
b B o~1(b)
[feax=[row)-¢@ar=| o) o@a
a a ¢~ (a)

Parcialis integralas (B)
Tétel Tegyiik fel, hogy f, g : [a, b] = R differencidalhaté fiiggvények. Ekkor
1.) Hatarozatlan alak

Jf’(x)g(x) dx = f(x)g(x) — ff(X)g’(x) dx

2.) Hatarozott alak
b

b
~ [ F090) ax

a

b
[ 7900 ax = g
b

= f(b)g(b) — f(a)g(a)

a

ahol f(x)g(x)

Bizonyitas Egyszerlien, a szorzatot derivalva:

(fg)'=f'g+fg’
Ez oldalanként kiintegralva
b

b
| rege ax = [f(x)g(x)

A tagokat atrendezve
b

b
F@@| - j F()g' () dx

b
[ g ax =

a

szobeli vizsga, 1. 0sszetevo 51/68 2014. junius 11.
1411



Matematika szigorlat — PPKE ITK

Alapesetek
1. alapeset

f polinom - e* dx

,»Szereposztas™: f'(x) = e* és g(x) = polinom.

2. alapeset

j polinom - {sin(x)} dx

cos(x)

v pIN sin(x)} , o
»Szereposztas”: f'(x) = {cos (x) és g(x) = polinom.
3. alapeset
In(x)
olinom - arcsin(x)
j P arctg(x)
e TN s . _ (In(x)
»Szereposztas™: f'(x) = polinom és g(x) = { }

4. alapeset

[ v
sin(x) }

»Szereposztas”™: f'(x) = e* és g(x) = {cos(x)

18B Inverz Fourier transzformacio. Parseval egyenldség.(B)

Inverz Fourier transzformacio

Tétel Tegyiik fel, hogy f teljesiti az 1., 2., 3. feltételeket. Ekkor f eldallithato Fourier
transzformaltja segitségeével.:

1 (*. ,
(x) = —f (s)eS* ds
f V 21 —oof
Ez az inverz Fourier transzformdcio.

Parseval egyenldség (B)

Tétel (Parseval egyenlet) Ha az 1., 2., 3. feltételek teljesiilnek és a Fourier sor egyen-
letesen konvergens, akkor

j_ FGOI2 dx = j Fs)| ds

Bizonyitas A bizonyitasban fel fogjuk hasznalni mind a Fourier transzformécid, mind pedig
az inverz Fourier transzformaciét. Kiindulunk a fenti egyenléség baloldalabol, és
az szorzat két f(x) tényez6jének egyikébe az inverz Fourier transzformaltat ir-
Juk.
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[ee) oo 1 oo . .
2(x) dx = f (x) —f (s)e"* ds dx
| s re=] f
Az egyenletes konvergencia miatt az integralas sorrendje folcserélheto:

f £200) dx = f £ —— f F(s)et ds dx = f f) = f FCOeiStdx ds =

_ ]:ﬂs)— [ rwemaas= [ joia=[ ol

mivel ]@ =f(-s). m
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19A Integral kozépertektetel (B). Valos fiiggveny grafjanak
hossza. Forgastest térfogata.

Integral kozépérték tétel (B)

Tétel Tegyiik fel, hogy az f € R|a,b] fiiggvény folytonos. Ekkor 3¢ € [a, b], melyre
b
J, f(x) dx
IO ="

Bizonyitas A Weierstrass II. tétel szerint 3¢,, &, € [a, b], melyekre f(&1) =m, f(&) =M
ahol m a fiiggvény minimuma, M a fiiggvény maximuma. Mivel m < k < M,
ezért a Bolzano tétel miatt 3¢ € (&1,&,), melyre f(§) = k. m

Fiiggvény grafjanak hossza

Definicio Az y = f(x) ésy = g(x) gorbék és az x = a és x = b egyenesek kozti teriilet
nagysaga:

b b
Asz(x)dx—f g(x) dx
Feltéve, hogy f(x) = g(x),anE [a, b] ‘

fvhossz
Tétel Legyen f : [a, b] — R differencidlhaté fiiggvény. A fiiggvény grdfjanak hossza
ekkor
b 2
s =f /1+(f’(t)) dt
a
Forgastest térfogata

Allitas Tegyiik fel, hogy f : [a,b] - R differencidlhaté. Ekkor a forgdstest térfogata:
b
V=m f f?(x) dx
a

19B Magasabb rendii inhomogén linearis DE-k megoldasai.
Allandok varidlasa. Probafiiggvény

Magasabb rendiu inhomogén linearis DE-k megoldasai

Az inhomogén linearis differencialegyenletek esetében a mar definialt L[y] = f(x) egyenlet
megoldasat keressiik, f(x) # 0.

Tétel Ha y, és y, megoldasai az
yP) + a;()y™ V(@) + - + 4y ()y(x) = f(x)

inhomogeén egyenletnek, akkor y = y, — y, a homogén egyenlet megoldasa. Ha
vy, a homogeén, az y, pedig az inhomogén egyenlet megoldasai, akkor y = y, +
Y, szintén megoldasa az inhomogén egyenletnek.
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Allandok varialasa

Legyen az L[y] = 0 homogén egyenlet n darab lineéarisan fliggetlen megoldasa yy, ..., yy,. Az
inhomogén egyenlet egyetlen megoldasat keressiik a kovetkezd alakban:

y(0) =y1(0)y1(x) + -+ + ¥ () yn(x)
A fenti megoldasban szerepl6 fliggvényekre az alabbi feltételeket tessziik:

Yivi+ o+ ¥y =0
Yivi+ o+ ¥Ynyn=0

Yy P 4ty = 0

Yy ey = fx)

fgy az egyiitthatok derivaltjaira adott n darab egyenlet. A fenti egyenletrendszert kompakt
formaban ugy irhatjuk fel, hogy a baloldalon az alapmegoldasok Wronski matrixa szerepel
megszorozva a y derivaltak oszlopvektoraval, a jobboldalon pedig a [0,0,0, ..., f(x)]” oszlop-

vektor all:
41 Y2 e
y{ yé = ‘l l \
yf” Y yé” R (" Y 16)

Mivel ezek az alapmegoldasok linearisan fiiggetlenek, ezért ez a matrix nem szingularis, tehat
a fenti egyenletrendszer mindig megoldhato.

Allitas Ha a fenti feltételek teljesiilnek, akkor L[y] = f(x).

Megjegyzendd, hogy az allandok varialasanak modszere akkor is hasznéalhato, ha a linearis
differencidlegyenlet egyiitthat6i nem konstansok, hanem adott, folytonos fiiggvények.

Probafiiggvény
Az allandok varidldsa modszer ugyan minden esetben alkalmazhato, de specidlis jobboldal

esetén, ha allando egyiitthatds lineéris differencidlegyenletet tekintiink, érdemes az inhomo-
gén egyenlet megoldasat specialis alakban keresni. A megoldandé egyenlet:

LIyl = y™ () + a; (0)y " V() + - + ap()y(x) = f(x)

— Ha f(x) = Ke**, ahol a € R, akkor a megoldast y(x) = Ae® alakban keressiik. A
ismeretlen.

- Ha f(x)=aux™+-+a;x+ay akkor a megoldast y(x) =A,,x™ + -+ A,
alakban keressiik, ahol Ay -k az ismeretlen paraméterek.

— Ha f(x) = Ksin(ax) vagy f(x) = K cos(ax), akkor a megoldast mindkét esetben
y(x) = Asin(ax) + B cos(Bx) alakban keressiik, ahol A és B az ismeretlen paramé-
terek.

Ha f (x) ezen specialis fliggvények Osszege, akkor a probafiiggvényt is sszegként keressiik.

Definici6 Ha a homogén differencidlegyenlet alapmegoldasai kozott 1étezik olyan fiigg-
vény, mint ami a differencialegyenlet jobboldalan szerepel, akkor rezonancidarol
beszéliink.
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20A Majorans €s minorans kritériumok valos improprius integ-
ralokra. Az f(x) = x~% hatvany-fiiggvény integralja
(0,1]-ben ill. [1, )-ben. (B)

Majorans és minorans kritériumok valds improprius integralokra.

Tétel (Majorans kritérium) Legyen f,g:1 - R, és I = (a,B). Tegyiik fel, hogy
|f ()| < |g(x)| Vx € I. Ekkor ha létezik az
B
f g(x) dx
a
integral (és véges) akkor
B
f f(x) dx
a
is véges.
Tétel (Minordns kritérium) Legyen f,g:1 > R, és I = (a,B). Tegyiik fel, hogy

lg(x)| < |f(x)| Vx € I. Ekkor, ha
B
j gx)dx = o0

akkor

| ) dx = o

Hatvanyfiiggvény improprius integralja (0,1)-ben (B)
Adott I = (0,1) véges intervallum, és f : I — R nem korlatos fiiggvény: f(x) = xia
f — dx =7, a>0

Ha létezik az improprius integral, akkor az igy szdmolhato:
1

— dx = lim — dx
£-0+ x%
A primitiv fliggvény
In|x]|, a=1

f—dx— xl-a
o a+1

Vizsgaljuk meg az érdekes eseteket, amikor ¢ = 1 és a # 1!

1) Ha a = 1, akkor

1 1 1 -0 —>—00
Jo —dx = Ell)rglJr [ln(x)] = gll)rglJr (ln(l) — ln(£)> =

X
£

2.) Ha a # 1, akkor

1
1 , 1—-a>0
‘lim(1 — 7% ={1—-a
0 x“ —a &0
o0, 1—-a<0
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Osszefoglalva:
1

11 , a<1
f—dx: 1—a
0

xa
00, a=>1

Hatvanyfiiggvény improprius integralja (1,00)-ben (B)
Adott I = (1, ) intervallum, és f : I — R nem korlatos fiiggvény: f(x) = ﬁ

xa
Ha létezik az improprius integral, akkor az igy szamolhato:

o b
—dx— lim — dx
1 x“ boo |, x@

*1
J—dx—7 a>0
1

A primitiv fliggvény
1 =
1 n|x|, a=1
.l——a dx = xl—a
x , a+1
1—«a

Vizsgaljuk meg az érdekes eseteket, amikor ¢ = 1 és a # 1!

1) Ha a = 1, akkor
b

—00 -0
fl p dx = gl_)l‘glo [ln(x)] = gl_r)glo (ln(b) — ln(l)) =
1
2.) Ha a # 1, akkor
+00, 1—a>0

lim (b1™% —1) =4 —
,an 1—a bl_{?o(b ) = 1’ 1—a<0
1—«a
Osszefoglalva:
<1
o 1 +00o, a<
f = dx = -1
1 X , a>1
l1—«a

20B Komplex fiiggvény differencialhatéosaga. Cauchy-

Riemann egyenletek. (B)

Komplex fiiggvény differencialhatosaga

Adott egy T < C tartomany és ezen egy f:T — C komplex fliggvény. Legyen f kanonikus
alakja f(z) = u(x,y) + i v(x,y). Tegylk fel, hogy u és v folytonosan differencialhaté fiigg-
vények, azaz léteznek uy, uy, vy, Xx;, parcialis derivaltak és folytonosak.

Definicio  Legyen z, az f értelmezési tartomanyanak egy belsd pontja. f differencialhato
Zy-ban, ha létezik és véges a kovetkezd hatarérték:

li f(zo + 1) — f(z)
im

h—-0 h
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Cauchy-Riemann egyenletek (B)

Tétel (Alaptétel a komplex fiiggvény differencialhatosagardl) Legyen T < C tarto-
many, f:T = C, zy € int T. Tegyiik fel, hogy u és v folytonosan differencialhato
fiiggvények. Ekkor f differencialhatosaga a zy = xy + iy, pontban azzal ekviva-
lens, hogy az u és v kétvaltozos fiiggvények kielégitik az alabbi dsszefiiggéseket:

uy (x0,y0) = U;'; (%0, ¥0)
u_’;/(xO' )’0) = _v)IC(xOJ }’0)
Az utolso két egyenletet Cauchy-Riemann egyenleteknek nevezziik.

crer

Bizonyitas 1. rész. Tegyiik fel, hogy f differencialhato z,-ban. Ekkor a derivalt definicioja-
ban szerepld hatarérték létezik specialis iranyokbol is. Legyen h = r + is és le-
gyen elséként s = 0 és r — 0. Ekkor

u(xo +7,¥0) +iv(xg +7,¥0) — ulxg, ¥o) — iv(xg, o)

r

f'(z0) = lim
r—0

o ulxg+1,y0) —ulxe,yo) ... vlxg+1,50) — v(x0,¥0)
= lim +ilim =

r—0 T r—0 r

= uy (X0, yo) + iv'(x0, ¥0)

Most tegyiik fel, hogy r = 0 és s — 0. Ekkor az el6z6hoz hasonldan:

u(xo,yo +5) —ulxg,¥0) ... v(xg,yo+5s)—v(xo,¥0)
- +ilim - =
is 50 is

f'(zo) = lim
s-0
= —iuy(x9, o) + vy (X0, Yo)

Mivel a kétoldali hatarértékeknek egyenldknek kell lenniiik, ezért
w (X, Vo) + ivx (X0, ¥o) = —iuy (x9, yo) + vy (X0, Yo)

Két komplex szam egyenldsége ekvivalens azzal, hogy valds és képzetes részeik
egyenldk, ebbdl pedig kovetkeznek a Cauchy-Riemann egyenletek. m

Bizonyitas 2. rész. Tegyiik fel, hogy a Cauchy-Riemann egyenletek teljesiilnek. Szamoljuk
ki a differenciahanyadost:
f(zo+h) = f(zo) ulxg+71,y0+s)+iv(xg+ 71,50 +5)—ulxe,yo) — v(xo,¥o)
h B T+ is

Felhasznalva u és v derivalhatosagat, ez igy folytathato (a derivaltak argumen-
tumat az atlathatosag kedvéért elhagyva):

f(zo+ h) — f(2) _ U T + u'yS + ivyr + ivj’,s n g (|h]) n & (|h]) _
h r+is r+is r+is
g (IR N EAUJ))

=u, +ivy + , .
r+is r+is
Ezért
_ fzoth) —f(z0) .,
}Ilz)r(l) 0 A 0 = ux(xO' 3’0) + lvx(xO' yO)

tehat a hatarérték 1étezik. m
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21A Szeparabilis differencialegyenlet megoldasa (B).

Szeparabilis differencialegyenlet

Tegyiik fel, hogy f(x, y)-ban szétvalaszthatd x és y:

f(x»Y)—ﬁ(y), B:'I:O

Ekkor a differencidlegyenlet:
, _alx)
" 7B

alaku. Ez a szeparabilis vagy szétvalaszthatd valtozoju differencialegyenlet.
Megoldasa (B)

Formalis megoldas

y' =y'(x)
dy _a()
dx  B()

L) dy = a(x) dx
B(y) = f B dy, AW = f a(x) dx

Ko6nnyen lathatd, hogy ha y = y(x) megoldas, akkor B(y) = A(x) + c. Ebb6l y meghataroz-
hato.

Nem formalisan
a(x)
Bly(x)
By()y'(x) = a(x)
Vegyiik mindkét oldal hatarozatlan integraljat:

f B(y(x))y'(x) dx = f a(x) dx

A jobboldal ismert, legyen az egyik primitiv fiiggvény:
Alx) = j a(x) dx

y'(x) =

A baloldalon y = y(x) 0j véaltozot bevezetve az integral atirhatd, és ennek primitiv figgvénye

fﬁ(y) dy = B(y)

Ekkor a differencidlegyenlet megoldasa B(y(x)) = A(x) + c. Ebbdl y(x) meghatarozhato,
példaul y(x) = B~1(A(x) + ¢).
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21B Feltételes szélsdertek keétvaltozos fliggvényre (feladat Kki-
tuzése). Lagrange-féle multiplikator szabaly.

Feltételes szélsoérték, feladat megfogalmazasa

Minta feladat: Legyen adott R2-ben egy ¢(x,y) = 0 gorbe. Hatarozzuk meg, hogy a gorbe
mely pontja van az origbhoz legkdzelebb. Ez azt jelenti, hogy meg kell hatarozni a

min(x? + y?)
értéket, ahol x és y valtozok nem fiiggetlenek, hanem fennall a ¢p(x, y) = 0 Osszefliggés.

Definicio A feltételes optimalizalas feladatat a kovetkezOképpen értelmezziik. Legyen
adott az f: S — R kétvaltozos differencialhato fiiggvény. Ennek tekintjiik meg-
szoritasat egy olyan halmazon, melyet egy implicit fliggvény ad meg, ahol
¢(x,y) = 0 Osszefiiggés teljesiil. Tomoren a feladat tehat

min X,
L TLVAC Y

Tétel (Sziikséges feltétel) Tegyiik fel, hogy az f(x,y) fiiggvény differencidlhatd, és
feltételes szélséeértéke van az (x4, Vo) pontban a ¢(x,y) = 0 feltétel mellett. Te-
gytik fel, hogy grad ¢(x,y) # (0,0). Ekkor létezik olyan A, € R konstans, mely-
re

fx (X0, ¥0) — AoPx (%0, ¥0) = 0
fy,(xO'yO) - /104)3’;(950.}/0) =0

Lagrange-féle multiplikator szabaly

Definialjuk az F(x,y,4) = f(x,y) — A¢(x,y), F: D X R — R haromvaltozés fliggvényt. Ha
(x0, yo) megoldasa a feltételes szélsdérték feladatnak, akkor van olyan Ay, melyre (x,, ¥o, 49)
stacionarius pontja F (x, y, 1)-nak.

Tekintsiik az alabbi feltételes optimalizalési feladatot

My f () Ve

Ehelyett tekinthetjiik az
F(x:yul)zf(x;)’)_/lﬁb(x,}’); (X'Y)EDf;AE]R
fliggvény feltétel nélkiili sz&lséérték feladatat.

f(x,y)

max
{p(x,y)=0}

szobeli vizsga, 1. 6sszetevd 60 /68 2014. janius 11.
1411



Matematika szigorlat — PPKE ITK

22A Homogén linearis (elsorendiil) DE megoldasa.(B) Inho-
mogén LDE egyenlet megoldasa.

Homogén LDE megoldasa (B)
Ha b(x) = 0, akkor a differencialegyenlet homogén linearis.

Allitas A homogén linaris differencialegyenlet altalanos megoldasa
y(x) = ce4™, ceR
ahol

Alx) = f a(x) dx
az a fiiggvény primitiv fiiggvénye.

Bizonyitas Az altalanos alak y' = a(x)y. Ez szeparabilis, tehat

dy
a = a(x)y

f%dyzfa(x)dx

Inly| = A(x) + ¢

eln(y) — eA(x)+c

y = eA®eC = c*eA) m

Inhomogén LDE megoldasa

Ha b(x) # 0, akkor a differencialegyenlet inhomogén linearis.
Tétel Inhomogén LDE minden megolddsa folirhaté y = y, + y,, alakban.

Tétel Az inhomogén linearis differencidlegyenlet altalanos megoldasa

y(x) = eA® <c +j b(x) e 4% dx)

ahol az elso tag a homogén egyenletrész altalanos megoldasa, a masodik tag az
inhomogén egyenlet egy konkrét megoldasa.

22B Cauchy-féle integralformula. Taylor sorfejtés analitikus
fiiggvényre. Laurent sorfejtés. Zérus és polus.

Cauchy-féle integralformula

Tétel (Cauchy-féle integralformula) Legyen T C C egszeresen dsszefiiggd tartomdny,
és f: T — C analitikus fiiggvény. & legyen tetszéleges belsé pont T-ben. Legyen
G c T olyan zart gorbe, amelynek belseje is T-ben van, és a gorbe korbeveszi &-
t. Ekkor

14
F© = 5§ Tz dz
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Taylor sorfejtés analitikus fiiggvényre

Tétel

Legyen f:T — C differencialhato z, egy kérnyezetében. Ekkor ott Taylor sorba
fejtheto, és
A N
F@) = f)+ ) =Gzt = ) ealz— 200"
n=1 ' n=0

ahol

1 f(2)
“n = omi jgc (z — zy)"+1 dz

Tegyiik fel, hogy f analitikus és f(z,) = 0. EKkor egy (z — z,) tényez6 kiemelhetd, és

f@) = (z-2)f (2)

alakban irhato, ahol £ analitikus.

Laurent sorfejtés

Tétel

Tegyiik fel, hogy f analitikus egy kérgytiriiben, azaz egy
T={z:r<|z—2y <R}
halmazon. Ekkor f ebben a korgyiiriiben felirhato a kovetkezé hatvanysorként:

o

F@= ) oz =20

k=—o0

ahol

dz

1 f(2)
Ck

- 2mi ) (z — zp)KH1

és G egy olyan z-t korbevevd zart gorbe, amely a fenti T tartomdny része. Ez az
un. Laurent-sor.

Zérus és polus

Definicio

Tétel

Definicio

Ha f(2) = (z — zy)™f (2), f (z,) # 0 valamely n > 1 egész szamra, akkor azt
mondjuk, hogy z, n-szeres (vagy n-ed rendii) zérusa f-nek.
Ha z, az f analitikus fiiggvény zérusa, akkor két eset lehetséges.

1. Van zy-nak olyan kérnyezete, ahol f(z) = 0 minden z-re.
2. Van zy-nak olyan kérnyezete, ahol f(z) # 0 minden z # z,-ra.

Tegyiik fel, hogy

f(2) = ———h(z)

(z —zp)"

alakban irhatd, ahol h(z) a z, egy kornyezetében olyan analitikus fiiggvény,
melyre h(z,) # 0. Azt mondjuk, hogy z, n-szeres pdlusa f-nek.
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23A Valos fiiggvény Taylor sora. Elemi fliggvények Taylor so-
ra: e*, sin(x), cos(x), (B)

Taylor sor

A hatvanysorok a konvergencia halmaz belsejében:
- folytonosak

- differencialhatok

- 0sszeadhatok, skalarszorozhatok

- 0sszeszorzas NEM lehetséges

Legyen f(x) = Yo Cn(x — x0)™ és x € H x koriili hatvanysor.
c
y = lim /|c,| = lim |2
n—-oo n—-oco

Ekkor f akarhanyszor differencialhato, éspedig
FO@=Yn =1 =k + D6y (= x)"

n=k

mn 1
>"p==
Cn Y

|x — xo| < p esetén.

Forditva:
Adott f fliggvény eléallithato-e hatvanysor alakban? Ha x, koriil el6all, akkor

filxo—p;xo+p)>R=(c,) ©R
Definicio Az f figgvény analitikus x,-ban, ha 3(c,,) szamsorozat, hogy
FO = al—x)",  -xl<p
n=0
Allitas Ha létezik hatvanysor-eléallitas, akkor az egyértelmii.

Kovetkezmény

Az analitikus fiiggvények egyértelmiien eléallithatok hatvanysorral = Taylor sor. A

o)

(k)
TG0 = Y Lo

k!
k=0

alaku sor az f fliggvény xq kozéppontl Taylor sora. A nem analitikus fiiggvények hatvanyso-
ra csak kozelités.

Elemi fliggvények Taylor sora: e*, sin(x), cos(x) (B)
Allitas Az f(x) = e* fiiggvény Taylor sora

(o]
x x"
er = — x €ER
n:

n=0

Bizonyitas f (™ (x) = e*. Ezért x, = 0 valasztassal f™(0) = 1, vn mellett. m
Allitas Az f(x) = sin(x) fiiggvény x, = 0 koriili Taylor sora

| x3 xS C DY
sin(x) =x — o+ — — "

31 ' 5 =l nrin © . XER
n=0
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Paratlan fiiggvény, igy Taylor soraban csak paratlan szimok szerepelnek.

Bizonyitas A definici6 alapjan szamoljuk ki a derivaltakat:

1hak=4n+1
sin®(x) ={-1 ha k=4n+3
0 ha k=2n

A konvergencia halmaz R, mert a derivaltak egyenletesen korlatosak:

|sin®(x)|<1, k=12.x€eR
|
Allitas Az f(x) = cos(x) fiiggvény xo = 0 koriili Taylor sora
x%  x* =Dt

cos(x)=1—E+E—-~-— 0 ol -xem,
n=

x €ER

Paros fiiggvény, igy Taylor sordban csak paros szdmok szerepelnek.
23B Lancszabaly tobbvaltozos fiiggvényekre. Specialis esetek.

Lancszabaly, specialis esetek

1. specialis eset
A kiils6 fiiggvény egyvaltozos f:D - R,D c R
Az egy darab belsé fiiggvény kétvaltozos ¢: S - R, S c R?

Tétel (1. specidlis eset) Tegyiik fel, hogy ¢ differencidalhaté az (x,y) € int(S) pont-
ban, és f differencialhaté az u = ¢(x,y) pontban. Ekkor az dsszetett fiiggvény
is differencialhato és a parcialis derivaltak:

El(xy) = (¢, y)dr(x,y)
E(,y) = f'(¢Cx, )y (x, y)

2. specialis eset

A kiilsé fliggvény kétvaltozos f:S —» R, S c R?

A két darab belsé fliggvény egyvaltozos ¢, yY:D - R, D c R

Tétel (2. specidlis eset) Tegyiik fel, hogy ¢ és Y differencidlhatéak a t € int(D) pont-
ban, és f differencialhaté az (x,y) = (¢(t), P (t)) pontban. Ekkor az Gsszetett
fiiggvény is differencialhato, és derivaltja:

F'(t) = f{ (@), (®)¢'(®) + £ (o (), p(0)' (1)

3. specialis eset
A kiilsé fiiggvény kétvaltozos f:S - R, S c R?
A két darab belsd fliggvény kétvaltozos ¢, yY: D - R,D c R

Tétel (Lancszabaly) Tegyiik fel, hogy ¢, differencialhatok (x,y)-ban, és f is diffe-
rencialhaté az (u,v) = (¢(x,¥),1(x,y)) pontban. Ekkor F is differencidlhaté
(x,y)-ban, és parcialis derivaltjai:

F{(x,y) = (¢, y), ¥ (x,¥)dr(x, ¥) + £/ (0 (e, v), 9 (6, ) )or (x, )
Ey(x,y) = fil(¢Ge ), (%, 9)) 5 (x, v) + £ (¢ G, ), (x, 3) )y (x, )
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Jegyzetek
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Félév végi eredmények Matematikai analizisbol

kredit |érdemjegy
Analizis Matematikai analizis 1. 6
tantargyak | Matematikai analizis 1L 7
érdemjegyei Osszesen 13

Erdemjegyek kreditértékkel siilyozott atlaga:

A Matematika szigorlat targyra valo jelentkezés eléfeltétele, hogy a hallgatéd rendelkezzen az
alabbi targyakbol elégségesnél jobb osztalyzattal:

Matematikai analizis 1.

Lineéris algebra L.

Diszkrét matematika I.

Matematikai analizis II.
Linearis algebra II.
Diszkrét matematika II.

Amennyiben a targyak kreditértékkel sulyozott jegyatlaga a 4,0-t eléri vagy meghaladja, a
hallgatd (kérése alapjan) mentesiil a szigorlat irasbeli részének teljesitése alol.
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