
Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Multi-domain classification of cardiac signals with

Deep Neural Networks

Botos Csaba & Hakkel Tamás

2017

A review submitted in partial satisfaction of the requirements of

Council of Scientific Students’ Associations

Supervisors: PhD. András Horváth, PhD. István Z. Reguly, Márton Áron Goda

Abstract

Recent success of convolutional neural networks in computer vision have motivated ap-

plying the same representation learning methods to signal processing as well. The novel

data driven approaches can make good use of a labeled dataset, lacking well-defined

mapping between the input-output pairs. Our main contribution is a special design of

preprocessing steps that boost the generalization, and stabilize the training of the under-

lying classifier algorithm. We propose a deep neural architecture for real-time automated

suggestions of possible cardiac failures that is able to detect class invariant anomalies,

using a single channel of a portable ECG device. The uniqueness of our approach is that

we deploy two parallel networks learning temporal and spectral domain representations

from scratch, trained side-by-side. We are aware of the possible flaws in the ground

truth labels, so our method offers visual reasons to confirm its predictions. Applying

visualization methods for extracting self-learned representations we are able to draw the

attention of the medical staff to the main contributing signal patterns that play the most

important roles in the suggested failure.

Keywords: deep learning, residual network, fully convolutional network, time

series, signal processing, ECG, atrial fibrillation, af detection

I

Acknowledgement

We would like to say thanks to our supervisors for their patience, guidance, and constant

help throughout the last year: PhD Horváth András, PhD Reguly Z. István, Goda Máron

Áron.

Also we must thank Dr. Herczeg Szilvia and Dr. Osztheimer István, who generously

offered their help and time to teach us the basics of cardiology, supervise our program

from the medical aspect, and give us useful advises.

II

Contents

Abstract I

Acknowledgement II

1 Introduction 1

1 Neural Networks . 1

2 Application for better purposes . 3

3 Contributions and Outline . 6

2 Related Works 8

1 Medical signal processing . 8

2 Machine Learning . 9

3 Deep Learning models 11

1 Variable length representation . 13

Fully Convolutional Networks (FCN) 13

Residual Networks (ResNet) . 13

2 Fixed length representation . 15

Long Short Term Memory networks (LSTM) 15

3 Classification . 17

4 Advanced methods . 17

Dilated convolution . 17

SELU . 17

Representation learning on different domains 19

Augmentation and transfer learning . 19

4 Evaluation 21

1 Test environment . 21

Evaluation . 21

2 Train environment . 23

The training set . 23

Data standardization . 23

Default parameters . 24

3 Time domain classification . 25

Initial experiments . 25

Late experiments . 29

III

CONTENTS IV

Conclusions . 32

4 Frequency domain classification . 32

Initial experiments . 32

Late experiments . 32

5 Multi-domain classification . 35

Late experiments . 35

5 Medical Relevance and Visualization 41

1 Quality of data set . 41

Method . 41

Results . 42

2 Confidence of the classifier . 43

Methods . 43

Results . 44

3 Most relevant segments of recordings . 45

Coloring the graph background. 45

Classes against each other. 46

Weights under sublogit layer. 46

Further experiments. 47

6 Summary 50

1 Contributions . 50

2 Challenge results and collaboration . 50

3 Future work . 51

Appendices 53

A The cardiac conduction and stimulus formation 54

B Most and Least Confident Classification Cases 56

1 Most confident classification cases of normal class 56

2 Most confident classification cases of AF class 57

3 Least confident classification cases of normal class 59

4 Least confident classification cases of AF class 60

C Neural Network Basics 62

1 Single Layered networks . 62

Defining the Perceptron . 62

Basics of Learning . 63

2 Inference . 64

Fully Connected layer . 64

Activation layer . 65

3 Measuring efficiency . 65

Loss . 66

CONTENTS V

Supervised learning . 66

Unsupervised learning . 66

4 Adjusting parameters . 66

Gradient Descent . 67

Training Policies . 67

Networks in practice . 69

5 Differentiation . 69

Numeric differentiation . 70

Complexity . 70

Analytic differentiation . 71

Fully Connected Layer . 73

Backpropagation . 75

Activation Layer . 76

Pooling layers . 77

k-WTA . 77

Dropout . 77

Output . 78

Bibliography 86

1. Introduction

As soon as you have good mechanical technology, you can make

things like backhoes that can dig holes in the road. But of course a

backhoe can knock your head off. But you don’t want to not

develop a backhoe because it can knock your head off, that would be

regarded as silly.

— Geoffrey Hinton

Some believe that once the computers will be better than us, they surely will have to wash

off humans from the face of the earth, fear that AI brings nothing but more unemployment

and darkness to the everyday life. On the contrary some may call these years as the

beginning of the 4th industrial revolution, think of Artificial Intelligence as the modern

equivalent of electricity, that will extend our psychical capabilities, as once electricity

extended physical limits, and see Neural Networks as a possible architecture to bring this

bright future. In the meantime, it is still our responsibility to take the opportunity and

make good use of these brilliant instruments. As bionic engineers, it fits perfectly our

role to understand and model the fine-tuned mechanisms of adapting biological systems

in nature. The main purpose of this work is two-fold: first we would like to improve our

understanding of cardiac signals by revealing invariant patterns from raw ECG recordings

using deep convolutional networks. Second, we believe these experiments help us to

generalize our current practical knowledge about representation learning algorithms.

Neural Networks

Artificial Neural Networks, a branch of Machine Learning have been around for several

decades, however the current wave, the deep learning era is the most recognizable one

that drew attention of professionals from different fields and connected them. The variety

of the applications of deep neural networks (DNN) is wide, since they are universal

approximators in theory, which means if enough training samples, computation time and

capacity is provided, any function can be reconstructed and modeled. With the theory

aside, the solution space of applied Neural Network has its own practical boundaries.

1

1. NEURAL NETWORKS 2

Capabilities and limitations. Deep learning possibly brings the future of program-

ming, where we no longer have to carefully design a set of rules for each different objective

- whether we want to solve everyday tasks (e.g. describing an image in a few sentence) or

highly domain specific problems (e.g. predicting the output of a numerically intractable

chemical measurement). However there are still some major issues with building uni-

versal approximators: having insufficient training samples, reducing the computational

complexity or transferring knowledge from a trained model on a biased distribution re-

veals that current architectures are relying strongly on domain-specific features, and do

not generalize well. Also there are two major trends in DNN solutions - offline algorithms

have no constraints on the evaluation time or power efficiency, rather focus on outputting

predictions with the highest accuracy. On the contrary online algorithms sacrifice preci-

sion in order to evaluate test samples in real time by meeting complexity and capacity

constraints.

Recent successes in computer vision. Most of recent breakthroughs occurred in the

field of image processing, where huge amounts of unstructured data were already a great

challenge for traditional algorithmic approaches. A few decades ago there were no signs

that in the near future there would be computers able to tell our emotions in real-time

from simple gray-scale images, automatically describe a scene for a visually impaired

person, tell if someone is present on an image, show their faces from unseen angles,

render them in 3D space, or even make them talk to us. However these are now publicly

available algorithms, provided with training sets, and trained baseline models, and most

importantly well documented experiments and evaluations. This enables everyone who

has access to the internet to use, review, improve and share new ideas which led to

exponential growth in interest of deep learning pulling both academic and industrial

investments.

Graphical Processing Units The whole act was made possible by the growth of

computational capacity of parallel processors, mainly motivated by the demands of the

video-game industry - they developed in a complimentary way, hand in hand. Soon

the number of cores in GPUs jumped to a level where easily distributed tasks could

outperform complex sequential computations both in process-time and precision. In

the past years development was driven mostly by AI. Since evaluating a single neuron’s

activity only requires the values of its direct inputs and can be implemented as a vector

product embedded into a non-linearity (that will be later described), huge numbers of

neurons can be evaluated at once making them a perfect match for the capabilities of

GPUs.

Practice is the best of all instructors If someone wants to keep pace with the

inventors and take part in the 4th industrial revolution, one can find themselves in times

of trouble. Not because of the lack of self-study materials, but the amount of available

content. At the time of writing dozens open-source projects, and numerous free courses in

2. APPLICATION FOR BETTER PURPOSES 3

deep learning are available that fit the personal level of understanding and style preference

- still understanding these algorithms is not equivalent with being able to apply them.

In order to strengthen our perception of the field, furthermore to reveal the potential of

neural networks for larger audiences we entered a signal processing challenge. We have

developed a model to improve medical attendance by providing automatic suggestions

for cardiologists based on real-life recordings of portable AliveCor ECG devices.

Application for better purposes

Social relevance. Thousands of heart failures could be prevented with proper treat-

ment if early signs were diagnosed in time. Over the years medical equipment advanced

by involving some sort of artificial intelligence. We don’t have to go far, probably every

gas station in the area has a semi-automatic defibrillator, that has a sensor built in which

recognizes whether the patient needs to be shocked or not — to prevent unnecessary

reanimation. The basic idea is to relieve overwhelmed doctors by recognizing invariant

patterns in the specific pathological situations. These patterns are taught at medical

universities, and fine-tuned during years of practice — but turns out that volunteering

cardiologists can submit their knowledge base to engineers who in return will automatize

at least the trivial process to support the better treatment. In order to assist in the

diagnosis, and make predictions based on previous cases we utilize Machine Learning

techniques to combine professional knowledge and neural networks to achieve the lowest

error rate on a classifying task. To emphasize the importance, and social relevance of our

work we could add that the the number of deaths from AF increased to 193,300 deaths

in 2015, from 29,000 in 1990 [20].

The real challenge. Atrial Fibrillation (AF) is the most common type of cardiac

arrhythmia, still the state-of-the-art algorithm is under-performing on real data. This

problem was the main motive behind the AF Challenge:

The 2017 PhysioNet/CinC Challenge aims to encourage the development of

algorithms to classify, from a single short ECG lead recording (between 30 s

and 60 s in length), whether the recording shows normal sinus rhythm, atrial

fibrillation (AF), an alternative rhythm, or is too noisy to be classified. There

are various types of cardiac arrhythmias that may be classified by

• Origin: atrial arrhythmia, junctional arrhythmia, or ventricular arrhyth-

mia.

• Rate: tachycardia (> 100 beats per minute (bpm) in adults) or brady-

cardia (< 60 bpm in adults).

• Mechanism: automaticity, re-entry, triggered.

• Atrio-ventricular Conduction: normal, delayed, blocked.

2. APPLICATION FOR BETTER PURPOSES 4

• Duration: non-sustained (less than 30 s) or sustained (30 s or longer).

Previous studies concerning AF classification are generally limited in appli-

cability because 1) only classification of normal and AF rhythms were per-

formed, 2) good performance was only shown on carefully-selected often clean

data, 3) a separate out of sample test dataset was not used, or 4) only a small

number of patients were used. It is challenging to reliably detect AF from

a single short lead of ECG, and the broad taxonomy of rhythms makes this

particularly difficult. In particular, many non-AF rhythms exhibit irregular

RR intervals that may be similar to AF. In this Challenge, we treat all non-

AF abnormal rhythms as a single class and require the Challenge entrant to

classify the rhythms as 1) Normal sinus rhythm, 2) AF, 3) Other rhythm, or

4) Too noisy to classify.

————– Introduction to Computing in Cardiology Challenge of 2017 [2]

The rules. A moderate set of single lead ECG samples (8528) recorded with a portable

device called Kardia Mobile and labeled by a team of cardiologists is provided with

the following classes: noisy, normal, atrium fibrillation, other or in their short form:

∼, N,A,O. The task is to develop a method that is able to classify a set of unseen (3658)

prerecorded sample with the highest accuracy. At first sight the initial conditions are

very encouraging, but soon after the first check of the training files it turned out that

only a limited number of samples are given, exactly 8528 samples, and the data set is

extremely imbalanced. Also as it was revealed during the last weeks, the ground truth

labels had several errors, misleading the training process. We had several discussions

in the early phase of development with professionals about possible classification errors,

that even were trivial to us. Many suggestions were committed by the competitors, and

as a result the organizers released an updated label reference.

Measuring device. As mentioned earlier, the data set is recorded by a device of the

company AliveCor that is named Kardia Mobile (see figure 1.1). It is a relatively new,

low-cost device that makes ECG recording surprisingly easy: The device has two small

metal plates, the patient puts one or two of his or her fingers from one hand to one of the

plates, and other fingers to the another plate, and when it is done, the device immediately

starts to record ECG. The device has no displays, so it send the data a mobile phone,

where an app receives and processes the input.

Problems. While it might sound very appealing to have a small, simple, and low-

budget device that the patient can bring anywhere, it has some problematic drawbacks

as well. First, the connection between the fingers and the plates are not perfect, thus

significant amount of noise is introduced to the recordings – even a very little movement

of the patient can produce detectable noise. Second, due to the simple design of the

design, it records only single lead ECG, meaning the device watches only one channel

2. APPLICATION FOR BETTER PURPOSES 5

Figure 1.1: Photo of the measuring device of the company AliveCor called Kardia Mobile.
Data set of the challenge is recorded by devices of that type. Image Credits: AliveCor

Type # recording Time length (s)
Mean SD Max Median Min

Normal 5154 31.9 10.0 61.0 30 9.0
AF 771 31.6 12.5 60 30 10.0

Other rhythm 2557 34.1 11.8 60.9 30 9.1
Noisy 46 27.1 9.0 60 30 10.2
Total 8528 32.5 10.9 61.0 30 9.0

Table 1.1: Length of recordings in training data set

that makes diagnosis much harder compared to the conventional 12-lead devices used in

clinical practice. Third, the device is designed to record short recordings ranging from 9

to 61 seconds (see table 1.1). Whereas it is convenient to the patient, doctors generally

records much longer recordings because atrial fibrillation is episodic, that is, it occurs

rarely, so the shorter recordings is the lower is the likelihood that it catches an event.

Augmentation. Being aware of the problems, we inspected our possibilities to aug-

ment the data set because the key of successful training of neural network is the large,

heterogeneous and balanced training set. We considered generating new recordings from

the given data set by cropping, stretching the samples or even by adding some noise to

them. Then we focused on the noisy class because that class had the least samples. We

were thinking about to generate noisy samples from random noise, and we even asked

cardiologists to produce some "blank" recording for us (i.e., the recordings device is not

attached to a patient, but it recorded only noise. Besides, we made some experiments

on creating recordings by a neural network. But finally we rejected all of these ideas

3. CONTRIBUTIONS AND OUTLINE 6

because they did not we could not ensure that the new samples does not mislead our

neural network by adding new (and possibly medically not correct) information to the

training set. Lastly, we managed to get a device, and we planned to record some new

samples, but it was not designed to help that kind of attempts (it transmits the data

over ultrasound, and the app can save the data only as plots in pdf files.

Contributions and Outline

The outline of this work follows the same path we took to enter and complete the CinC

Challenge of 2017.

Chapter 2 points out preliminary studies in signal processing, traditional machine

learning algorithms and novel deep learning architectures - strong baselines for our initial

experiments.

Chapter 3 walks trough the steps of understanding the relevant mathematical back-

ground we are working with: i.e. the core building blocks of fully convolutional network

(FCN) and recurrent neural networks (RNN) and the most successful assemblies of them.

In the appendix we also provide the analytical apparatus of supervised training the pre-

decessor of FCNs and RNNs the multi-layer perceptrons (MLP), the back-propagation

algorithm, and the advanced weight update policies.

Chapter 4 begins with defining the training and testing environment, used to develop

and evaluate our approaches. Later in this chapter we introduce model modifications

specifically designed for ECG classification in a logical order, describing our experiences

for each major improvements applied and the motivations for the succeeding experiments.

Chapter 5 examines the medical relevance of the classifier: whether the model learns

features that are specific indeed for the human heart or rather watches features that char-

acterizes only the provided data set. First, it presents our methods to gain information

about the quality of data set. Second, it shows the way how we inspected the features

the model is looking for. Third, it describes out visualization technique that highlights

the most relevant sections of the recordings.

Chapter 6 summarizes our contributions to the field of Computing in Cardiology and

in general to signal processing with deep neural networks. During the final supervision

of this work (2017 Q4) the results of CinC Challenge of 2017 have been published and

presented on the annual conference in Rennes. In this chapter we will make conclusion

on competition’s results as well. Sharing ideas with the authors of the best performing

3. CONTRIBUTIONS AND OUTLINE 7

solutions inspired further improvements on our current approach and opened opportuni-

ties for collaboration in the future - finally we will elaborate on both short and long-term

plans.

2. Related Works

Our work is relying mainly on two disciplines: machine learning and medical signal

processing. In this chapter we cover the details of previous attempts to classify electric

signals produced by the cardiac conducting system. See Appendix A for a thorough

description on how these patterns are formed.

Medical signal processing

Biological systems emit electromagnetic signals which can be measured with delicate sen-

sors. Since the heart muscular fibers produce well defined rhythms of electrical waves

during alternating phases of contraction and relaxation we can associate pattern anoma-

lies detected with well-known cardiac disorders - such as AF.

Traditional approaches on AF detection. Previous approaches were relying on

human-designed rules and decision trees. According to authors of one of the top algo-

rithms in the challenge, it turns out that hundreds of possible rules may apply in a given

case and another hundred may result in false predictions.

Still the most relevant features are the ones that are taught in med schools, for a com-

prehensive list of reliable features recognized by cardiologists see [63]. An excellent col-

lection of preliminary studies concerning automated detection of AF was provided by

the Challenge, which mainly lists the state of the art algorithms at the beginning of the

competition:

AF detectors can be thought of belonging to one of two categories: atrial ac-

tivity analysis-based or ventricular response analysis-based methods. Atrial

activity analysis-based AF detectors are based on the analysis of the absence

of P waves or the presence of fibrillatory f waves in the TQ interval. Pub-

lished methods to do this include: an echo state neural network [59], P-wave

absence (PWA) based detection [38], analysis of the average number of f

waves [14], P-wave-based insertable cardiac monitor application [61], wavelet

entropy [3, 64] and wavelet energy [17]. Atrial activity analysis-based AF

detectors can achieve high accuracy if the recorded ECG signals have little

noise contamination and high resolution, but tend to suffer disproportionately

from noise contamination [11]. In contrast, ventricular response analysis is

8

2. MACHINE LEARNING 9

based on the predictability of the inter-beat timing (‘RR intervals’) of the

QRS complexes in the ECG. RR intervals are derived from the most obvious

large amplitude feature in the ECG, the R-peak, the detection of which can

be far more noise resistant. This approach may therefore be more suitable for

automatic, real-time AF detection [9]. Published methods include: Poincaré

plot analysis [4], Lorenz plot analysis [68], analysis of cumulative distribution

functions [72], thresholding on the median absolute deviation (MAD) of RR

intervals [44], histogram of the first difference of RR intervals [26], minimum

of the corrected conditional entropy of RR interval sequence [47, 48], 8-beat

sliding window RR interval irregularity detector [58], symbolic dynamics and

Shannon entropy [5], sample entropy of RR intervals [56, 39, 12].

It is worth noting that AF detectors that combine both atrial activity and

ventricular response could provide an enhanced performance by combining

independent data from each part of the cardiac cycle. Such detection ap-

proaches have included: RR interval Markov modeling combined with PR

interval variability and a P wave morphology similarity measure [6] and a

fuzzy logic classification method which uses the combination of RR interval

irregularity, P-wave absence, f-wave presence, and noise level [60]. It is also

worth noting that multivariate approaches based on machine learning that

combines several of the above single features can also provide enhanced AF

detection [57, 1, 43].

————– Introduction to Computing in Cardiology Challenge of 2017

Machine Learning

At the time of writing, supervised deep learning is a well-known data driven approach that

is generally applicable to various fields of signal processing, however new inventions appear

mostly on image processing and computer vision, largely thanks to the publicly available

large-scale image database ImageNet [13]. A recent breakthrough was achieved by an

architectural innovation, namely Residual Networks [21] that allow us to stack multiple

layers in blocks whose output is added elementwise to its input, therefore these blocks

will 1) only have to learn residual modifications in representation space 2) stabilize the

gradient flow during backward propagation. Using residual blocks we can deploy networks

with more parameters, enabling our parametrized function to approximate more complex

mappings. Studies of He et. al [22] showed that a specific internal structure of the residual

blocks and their twin branch in the computation graph, the skip-connections, are playing

an important role in the trained networks’ performance. Previous works applying Deep

Learning for time series classifications helped us with the first steps. We based our initial

experiments on strong baseline time-series classifiers trained from scratch [79], where the

authors provided 3 candidate architectures that we also evaluated on the AF Challenge

dataset. We soon learned that the receptive field of the classifier neurons in the last

2. MACHINE LEARNING 10

layer were too small to detect arrhytmias spanning multiple heartbeats. Knowing that

some form of cardiac failures may also appear episodically in our training samples we

considered the following advanced techniques: Dilated convolutions [82] and Long short-

term memory (LSTM) networks [54] and their simplified architectures Gated recurrent

units (GRU) described in [52]. Technically speaking RNNs provide a better solution for

handling different length samples as well. We separately trained dilated convolutinal

networks, and multi-layer recurrent networks in the same setting. The results of [8]

motivated us to apply also end-to-end training of the convulutional feature extractors

before the recurrent units, however the stacked architecture was unstable to be trained

from scratch. During the challenge an alternative solution have been published [62],

featuring a residual neural network which can exceed the precision and recall of individual

experts in categorizing single-lead ECG recordings in 10 cardiac failure classes. The

resemblance between their candidate network and ours confirmed the applicability of

deep learning for single-lead ECG signals and suggested further investigation into our

data augmentation and preprocessing steps. Restricted number of samples and class

unbalance are well known issues of the AF Challenge, which motivated us to incorporate

a technique listed in [7], namely random oversampling (ROS).

3. Deep Learning models

No one knows what the right algorithm is, but it gives us hope that

if we can discover some crude approximation of whatever this

algorithm is and implement it on a computer, that can help us

make a lot of progress.

— Andrew Ng

We began the challenge with the hope that our previous experience on image processing

and machine learning will pay off. A preliminary study of training neural networks with

a thorough mathematical walk-trough is provided and can be found at Appendix C.

Taking a closer look at the data set revealed three major obstacles for training deep

neural networks. History of the label distribution can be seen on Figure 3.1.

Size. 8528 samples were provided for training and evaluating our algorithms and 3658

ECG samples were held back as a hidden test set until the announcement of the final

results. Compared to lightweight benchmark datasets like CIFAR-10 [36] or MNIST [41]

where 10000 samples are provided simply for evaluation purposes, and the training set is

almost tenfold of the challenge’s.

Balance. The objective to classify a sample into 4 different classes can mislead those

who are not aware of the class imbalance of the AF training set and the advanced evalua-

tion metric. By first assumption we could say that the worst performance is 25% because

random guess would yield 1/N score for N classes. For this particular reason the au-

thors of the challenge set the metric to the average of the F1 scores, which is basically a

generalized score of the precision and recall of the underlying algorithm:

F-score = 2×
precision × recall
precision + recall

11

12

Original distribution Corrected labels (Phase II.)

Corrected labels (Phase III.)

Figure 3.1: During the challenge, the labels have been updated multiple times. The
strangest detail was the fact (as it was revealed after the finals), that the organizers used
the current top 10 algorithms at each update to determine which samples were the most
confusing and should be revised.

1. VARIABLE LENGTH REPRESENTATION 13

Variable length representation

Another challenging detail, is that we have to deal with time dependency. Since we cannot

determine how long the samples will be, nor describe a time frame that would fit every

relevant pattern, we have to project somehow the sample into a fixed dimensional space.

In order to preserve important information by the projection we can separate samples into

clusters by previously extracting features which describes best the data. These values are

usually time dependent pattern fitting maps. For one-dimensional convolutional networks

this would be the generalized idea of [46], visualized on 3.2

Fully Convolutional Networks (FCN)

Based on the fact that hierarchical feature extractors such as the LeNet [42], and so its

modern version the VGG [70] are easily trained, reliable, and can be easily restructured

for transfer learning purposes. We decided to re-implement the Fully Convolutional

Network [46] paradigm in one dimension, as motivated by the following works [51, 40].

The actual convolutional layers of our FCN models are following the pattern:

c = K ∗ x

b = BatchNorm(c)

h = ReLU(b)

y = AvgPoolw(h)

Where BatchNorm is described in [29], and ReLU is the rectified linear unit (nonlinear)

activation function, and w indicates the window size of the pooling operation (the stride

was set to the same value as well). Hyper-parameters of this convolutional layer are

hidden in the dimensions of K → [IN, OUT, k], where IN is fixed, OUT represents how

many feature maps will be created by the convolution operation, and k is how large the

kernel will be, i.e. how large the receptive field will this layer have on x. These layers

were assembled in the depicted manner on Figure 3.3 (top row).

Residual Networks (ResNet)

We also began experimenting with Deep Residual Networks [21], suggested by [79]. The

basic idea is simple: we concatenate several of the above mentioned FCNs after each

other, while stabilizing the gradient flow by adding the convolutional blocks’ input to their

output. However the interpretations of why deep residual networks actually work so well

are not clear. An excellent article on this topic van be found at[75]. Oversimplifying, we

could say each FCN blocks (in Eq. 1) in the model are no longer responsible for detecting

global features, but expected as shallow networks to work together as different ensembles,

1. VARIABLE LENGTH REPRESENTATION 14

Figure 3.2: Semantic segmentation (bottom) uses the feature extractors from VGG (top),
by simply reshaping the fully connected layers into convolutions with local receptive fields.
We expect the same behavior when training convolutional networks on one dimensional
time series. Image credits [46]

Figure 3.3: A strong baseline provided by Wang et al. for general signal processing tasks.
On their benchmark they report that the fully convolutional and residual networks can
outperform traditional approaches. Image credits [79]

2. FIXED LENGTH REPRESENTATION 15

Figure 3.4: Studies of He et al. show which sequence of layers in the underlying im-
plementation of residual blocks are the most efficient. For our experiment we applied
both the original and the proposed pre-activation ordering, and we can agree with the
effectiveness of the latter as well.

which allows us to increase the overall capacity of the model. The ordering between the

layers of each residual block and the implementation of the skip connections, especially at

pooling steps can be tought of as an additional hyper-parameter of the network - luckily

studies of He et al. [22] of such delicate differences revealed the best implementation of

ResNets. For visual description and alternatives see Figure 3.4

Fixed length representation

Once every filters have been evaluated in the end we can use different approaches: to

take the weighted norm or mean of the filtered signal to represent each pattern’s presence

in the input signal or we can use techniques that have been proven to be successful in

natural language processing tasks: recurrent neural networks (RNNs).

Long Short Term Memory networks (LSTM)

Our first attempt was to use a Long Short Term Memory network (LSTM) [24, 49],

shortly we switched to its modified version Gated Recurrent Unit network (GRU) [10],

but we experienced that the network was not capable to overfit the train set, and achieve

a satisfactory error rate. It turned out that other teams applied LSTMs as well, however

they stacked it on top of pretrained convolutional feature extractors.

Due to the large number of task specific hyper-parameters in LSTMs and GRUs the

search space would exponentially increase, so we decided to continue experimenting with

simply reducing the feature map to a single scalar value by mean averaging the activation

through time of the last layer of the model, usually referred as the logit layer.

2. FIXED LENGTH REPRESENTATION 16

Figure 3.5: Long Short Term Memory network maintains two state, one hidden, and one
output state, and via forget and input gates it offers a solution for training recurrent neu-
ral networks with back-propagation through time without exploding/vanishing gradients.
Image credit: Chris Olah’s blog [54]

Figure 3.6: Gated Recurrent Unit networks combine forget and input gates into a single
update gate. By discarding the output cell state, the result is a simpler model, that is
easier to initialize, and train. Image credit: Chris Olah’s blog [54]

3. CLASSIFICATION 17

Classification

After extracting the most relevant time features from the sample, and reducing it to a

fix length feature vector, the model has to separate the feature space with respect to the

classes. A basic approach is to apply logistic regression where each feature dimension is

taken into account and weighted to determine each class (by dissecting the feature space

with hyper-planes). As a result a four dimensional vector [0, 1]4 is produced, where each

dimension represents the confidence of the network whether the sample is belonging to

the corresponding class or not. The output is then normalized with the softmax function

to give a confidence distribution over the classes:

pi =
exp(yi)

| exp(y)|1
(3.1)

As later will be described we experimented with applying Multi-Layer Perceptrons (MLP) [19],

on top of these learned representations, however the results show that the model is more

likely to collapse during training-time due to falling in a local minimum.

Advanced methods

Dilated convolution

Evaluating the initial 1D re-implementation of the famous ConvNet and ResNet architec-

tures which are originally intended to work on fix-sized (224 x 224) images of, we realized

that the final logit neurons have too small receptive field. Technically that means, with

300 Hz sampling frequency, that the network was required to output a prediction based

simply on less than a second - so in order to explicitly adjust the filter’s field-of-view

whithout collapsing the time-relevant features (i.e. using pooling operations) we aug-

mented the models with a method called Atrous or dilational Convolution [82], such

technique was applied for signal generating with WaveNet. For visual supplementary on

2D see Figure 3.7, for the WaveNet reference see Figure 3.8 We tried different patterns,

and involved the sequence of dilations as a hyperparameter in our search.

SELU

We have seen the latest updates from the Klambauer et al. who presented Self normaliz-

ing neural networks [35] during the time of the contest. They report excellent results on

shallow neural networks that are using an alternative non-linearity called SELU derived

from Self-normalizing + Exponential Linear Unit layer. The implementation of the acti-

vation function is written in Eq. 3.2 where λ and α parameters are the hyper-parameters

of the layer. A rare phonemenon in field of recent updates on activation layers, that the

optimal value of these parameters is provided in [35]. Replacing Rectified Linear Units

(ReLU) had an incredible improvement on our architectures as well.

4. ADVANCED METHODS 18

Figure 3.7: As stated in [82]: " Systematic dilation supports exponential expansion of
the receptive field without loss of resolution or coverage. (a) F1 is produced from F0 by a
1-dilated convolution; each element in F1 has a receptive field of 3×3. (b) F2 is produced
from F1 by a 2-dilated convolution; each element in F2 has a receptive field of 7×7. (c)
F3 is produced from F2 by a 4-dilated convolution; each element in F3 has a receptive
field of 15×15. The number of parameters associated with each layer is identical. The
receptive field grows exponentially while the number of parameters grows linearly. "

Figure 3.8: Dilated convolutions used for generating realistic audio samples [55] - "layers
have various dilation factors that allow its receptive field to grow exponentially with
depth and cover thousands of timesteps". Dilated convolutions were a perfect match for
our goal to improve the performance while keeping the capacity of our network on the
minimum.

4. ADVANCED METHODS 19

selu(x) = λ







x if x > 0

αex − α if x ≤ 0
(3.2)

λ∗ = 1.0507 ∼

α∗ = 1.6732 ∼

Representation learning on different domains

We explored the possibilities using both log-spectrogram and time domain features.

Time relevant features in frequency domain. We applied a sliding window on the

input samples, where each window had been point-wise multiplied by the Hamming weight

window and transformed to frequency domain using Real Fast Fourier TransformRFFT.

In order to increase the sample’s variance we took the absolute value of the result and

applied natural logarithm element-wise. This resulted in a frequency representation of the

original signal, that preserved the time invariant patterns. This sequence of non-linear

transformations are usually referred as taking the logspectrogram of the sample, and is

frequently used in signal processing. We are aware of the fact that during the process,

actually by taking the magnitude of the output of the RFFT we discard the information

of the phase, however this loss will be later covered by precise choice of parameters of

the sliding window.

Matching the dimensions. Solution was to resample the input for the network work-

ing on the spectral domain in order that after the spectrogram transfer it had the same

length as the input, but with much more channels (freq bands if you like) on frequency

domain a VGG19 alternative was the best solution: we implemented the VGG19 without

the 2x4096 FC on the end (those layers made every single network worse as my experi-

ments shows...) with special skip connections - after the first 2 layers every layer’s output

was concatenated to the 2nd layers output (so not in a residual manner). The dilation

parameters are the same here on time domain the network mentioned before was applied

their outputs were concatenated and a single logit layer was operating on them, with an

additional Batch Norm layer before. The logits were aggregated by mean reduction - the

same as we did on the CNN.

Augmentation and transfer learning

Despite the initial difficulties with RNN, we began to experiment as a spinoff project

to apply RNN as a time series predictor, training it to predict the following N values

of the measurements based on the previous parts of the sample. We believe that this

model can be reused to initialize training classifier recurrent networks, instead of random

4. ADVANCED METHODS 20

Figure 3.9: Artificial sample produced by an LSTM trained to predict and continue
original ECG samples. Left: an AF Challenge 2017 entry classified as normal. Right:
ECG sequence produced by a network trained on exclusively normal samples. In this case
the network functions as some sort of language model of ECG. Among many samples,
professionals could not tell whether samples produced by this method were artificial or
taken from the original training set. Truth on being told, after further analysis they could
detect artifacts, still some said that a very ill patient could produce the same samples.
Image credits: Wikimedia, Adventure Time.

initialization. On the other hand, by feeding back the network its own predictions we

could produce data 3.9. The network in this case would function as some sort of "language

model" [50] of ECG signals - and if trained properly, i.e. on a single class, it would output

labeled, yet totally artificial samples, which could be used as augmented training data as

well.

4. Evaluation

In this chapter we describe the details of the parametrized function we optimized to map

ECG samples to cardiac failure classes. We have tried many of the available alternatives,

and ideally would list all of our previous experiments for others to avoid the pitfalls we

have come across - however, due to limits we list those elements that were used in the

most successful architectures with our initial motivation that led us to these solutions.

Test environment

Evaluation

The best practice on evaluating the classifier model’s performance is to simply compare

the number of matching labels evaluated on a completely disjunct set of samples from the

training set. However, in our case it was not so trivial to score different methods, since

by simply answering normal to every sample would yield 50+% success rate, therefore it

would be less representative.

Confusion matrix. Instead we are using an extended version of precision-recall eval-

uation, namely we apply a confusion matrix, where every row represents a histogram of

the correct label, and every column represents the predictions of our model. The diagonal

elements show how many labels match, but it preserves the distribution between classes.

Using this method, we can easily track down when a training routine collapses, and the

network is only using a few of the available classes. When the diagonal elements over

number the off-diagonals, then the network has been successfully trained. For examples

of the confusion matrix see Figure 4.1. By reducing the matrix to a single scalar defined

on the website of AF Challenge, we get an accuracy value, which tells us the exact score

we would obtain by submitting an official entry on behalf of our research group. In the

final phase of the competition the official evaluation metric has changed.

Class balance issue. After the competition has ended, we realized, that our implemen-

tation of the evaluation metric had the following bug: in every iteration we processed the

whole evaluation set, however the input producer function used to assemble the batches

applied the random oversampling method as well.

21

1. TEST ENVIRONMENT 22

Figure 4.1: Confusion matrix. Diagonal values represent prediction hit, off-diagonals
represent miss. Image credits AF Challenge 2017

Figure 4.2: Confusion matrix visualized in TensorBoard for different runs with Fully
Convolutional Networks

2. TRAIN ENVIRONMENT 23

Train environment

The training set

In order to keep track of how well our model generalized the features, and to avoid over-

fitting, the original downloaded samples were separated into two sets, into train and

evaluation set at an 80-20 ratio. We re-sampled randomly selected entries to make an

even distribution between classes. We use evaluation set to keep track how our model

performs on unseen data.

Data standardization

We experimented with different normalization techniques such as standard normalizing

per sample, or with the global mean and average with no significant difference in the re-

sults. Our current experiments involve standardizing the samples by heart rate frequency,

thus the class relevant invariance can be easier learned by the the network.

Toy problem. A simple example is the following: suppose we have two patients, one

who drinks coffee regularly resulting in a high heart rate (even in healthy) and one

who runs a marathon every week with low heart rate at rest. If both were having the

same cardiac symptom probably the cardiologist would record their natural heart rate to

have a baseline, a reference point to use for diagnosis. This is because the time domain

patterns are expressively specific to the patient’s heart rate. Technically this means,

if the atrial fibrillation specific curve would appear in both samples it would probably

appear elongated or compressed — and the model had to learn both patterns as if no

similarity would have exist between them. This problem could lead to a situation where

the network would discard some rare feature, in order to reserve the capacity for the

trivial pattern just with different lengths.

Solutions. To counterweight we could increase the capacity of the network, which often

leads to significant improvement in performance on the train set, however at the same

time as a by-product the performance on the validation set decays, since the model is

more likely to over-fit, simply memorizing the train samples, and loses its ability to

generalize well. The loss is likely to happen since our training set only contains less than

8K samples. An other solution is standardizing the heart rate frequency of our samples

by resizing the whole sequence in time, which would in case, solve our toy example. We

made sure that discarding the sample specific frequency has no significant relevance to

the corresponding class. For details of class BPM variance see Figure 4.3

Weighted loss. Our first attempts to improve accuracy on rare samples was to set

higher loss on underrepresented classes to encourage the network to optimize by learning

2. TRAIN ENVIRONMENT 24

Figure 4.3: The heart rate distribution and variance between classes is similar (except of
cases in Noise class where the heart beat detection algorithm fails to find the R waves,
thus resulting in extreme values, which we intend to filter before the entry reaches the
valid sample classifiers), so discarding the average heart rate by normalizing every sample
by the value, presumably would not affect negatively the performance of our network.

to recognize these samples better, but it resulted in over-fitting and soon was replaced

by augmented evenly distributed mini-batches.

Mini-batch. Mini-batch training and evaluation is a common method throughout al-

most every Deep Learning algorithm. It enables the back-end to feed the network with

multiple samples at once. Both parallel inference and weight adjusting is implemented

in the latest machine learning frameworks for mini-batch processing.

Default parameters

Capacity. As a baseline we initialized all our experiments with the same number of

channels as stated in the reference architecture, except that instead the usual N × N

kernels we used a N2 × 1 kernels for convolution operations.

Optimizer. We have experimented with the basic Stochastic Gradient Descent method

comparing against the current state-of-the art optimizer algorithm ADAM [33].

3. TIME DOMAIN CLASSIFICATION 25

Regularization. DropConnect [77] with p = 0.5 settings. We also apply weight decay,

by adding the L2 norm of each θ in the network’s parameters to the overall loss function

and use soft labels (perturbed one-hot vectors) in order to prevent the networks from

favoring a specific class. Our training policy varies over different settings, currently we

are using early stopping method: after 10 consecutive steps where validation performance

has not improved the trainer shuts down, to enable other train routines use the allocated

device — otherwise the models are evaluated after a previously given number of steps.

Throughout the training, we decrease the learning rate, in order to prevent the model

from oscillation.

Time domain classification

The literature research we made suggested, and the cardiologists helping us confirmed

that doctors make diagnosis according to the time domain representation of the recording,

so we put strong emphasis on researching that area, thus the majority of our experiments

were carried out in time-domain. The main advantage of classification over time domain

that by applying visualization methods such as inspecting the activation maps at each

layer, or advanced techniques like guided backpropagation [81] and deconvolution [84]

helped us to inspect specific patterns recognized by the algorithm. During these ex-

periments, the data preprocessing steps also evolved with the different architectures we

tried.

We trained and evaluated the following models in time-domain, with at least 2 cross

validations and 420 epochs per each - the listed results are the mean of the corresponding

approach.

Initial experiments

LSTM. At first, we carried out multiple experiments on single LSTM-s with different

width (100, 150, 256, 512, 1024) and number (1, 2, 3) of stacked layers. For all of

the experiments, we used ADAM optimizer without adapting learning rate and dropout.

Mean and variance was always shifted to (0, 1) as a preprocess step, and the length of

the training samples was a fixed to 100, 1000, or 3000.

The test results were quite disappointing: Only the LSTM with 256 width 2 depth,

trained on long (3000 points, 10 sec) samples was able to reach 0.64 train F1 score, but

even that model performed dreadfully having only 0.32 F1 score on the hidden test set.

However, that network was fast thanks to the TensorFlow implementation: Running the

network on a single k80 GPU yielded 210 sample/sec training speed and 450 sample/sec

forward speed.

LSTM on CNN. Afterwards, we essayed to combine LSTM with CNN, hoping that

LSTM can transform variable length features (e.g. QRS complexes) to fixed length feature

3. TIME DOMAIN CLASSIFICATION 26

vectors that are good inputs for CNNs. Thus, we kept 2 layer of LSTM, and trained them

on a CNN from [79] under identical training settings to the previous experimenlts. The

performance of the model was still not satisfying, so we inserted batch normalization

layers between convolutional layers to the first network that performed over 0.80 on train

set.

We submitted that network as our first entry containing working neural networks, and

its official F1 score on the hidden test set was 0.72. (We already had had two preceding

entries: One was a test entry guessing normal class for every sample that yielded 0.15 as

F1 score, and the other one utilized only hand-crafted feature extractor and an SVM over

it that scored 0.45 on hidden test set.) Nonetheless, the performance of that architecture

still did not meet our expectations, it was much more efficient in classification and just

slightly slower (Training speed of the network was 170 sample/sec, and forward speed

was 370 sample/sec running the TensorFlow implementation on a single k80 GPU).

Time dependency and variable length. Dealing with variable length samples can

be done in multiple ways:

1. With random-cropping we get fixed length samples, therefore length of time-dependent

features coming out from CNNs will be deterministic.

2. We can deploy an RNN on the top of the variable length feature vectors and after

they’ve processed them, the hidden state will hold the information retrieved from

the sequence in a fixed state vector. Sadly our experiments with training CNNs

and RNNs in an end-to-end fashion have failed, due to instability.

3. We can apply mean reduction for different length feature vectors and a linear clas-

sifier on the average of each feature for the whole sequence.

4. We can evaluate the predicted class for each time instance and take the average of

the prediction. This was the most successful way of dealing with varying length

samples: it works more robustly, and over-fit is less likely to occur in the logit-

reducing scenario.

5. We can use variable sized windows: Time dependent (different length) feature vec-

tors could be processed at once with a fully connected classifier on the top of it,

however that means, that the weights of each specific time frame should be learned

separately. In that sense, shifting our training sample by one arbitrary time-frame

all the time-dependent learned features would be discarded. To avoid that we came

up with the idea of using fix number of different length windows for reducing the

length-variant samples to a fixed length representation (by hand, instead of using

an LSTM for the same purpose). So when we would feed a 9000 and a 18000 long

input, our feature vector would be the length of 9 and 18 (supposing our feature ex-

tractor is scanning 3.3 seconds with a stride of 3.3 seconds - 1000 sampling points)

and after applying the variable sized window, for example N = 3 both sample would

yield a feature vector of length 3 (for each feature extracted by the CNN). In other

3. TIME DOMAIN CLASSIFICATION 27

Figure 4.4: A crop from a sinus-rhythm sample can be seen on the left. The activation
map of the feature extractor in the middle (extracting 128 features in total) clearly
increases magnitude when the R wave is scanned - so do the logit layer that performs a
single linear transformation on the previous layer for each time frame - resulting in class
suggestions based on the amplitude of each R wave. This immediately meant that we
need to increase heavily the receptive field of each layer.

words, with N = 3 every sample would end in a matrix that has F columns (each

representing whether the sample contained the corresponding pattern or not), and

3 rows (whether the feature was present in the beginning, in the middle and in the

end of the sample).

First we tried the variable sized windowing method, but these experiments were rather

instructive than ground braking, mostly suggesting that one should not use variable sized

windows. We tried also the others, and finally, we decided on mean reduction, but we

still had two options where to perform that reduction: A) We could average the feature

vector before the logit layer, or B) evaluating the logits at multiple time instants and mean

reducing the final choice of the network. Later it turned out that option B) performs

better, so we used in our later models.

During the debugging of the flawed system we also learned, that feature extractors in

our succeeding experiments were theoretically useless. The three layered CNN, with each

layer having a kernel size 17×1 turned out to be scanning only a 3×(17−1) = 48 window

- at most. This theoretical barrier only became clear when we visualized the output of

the last layer, see on Fig 4.4

We implemented the model in TensorFlow, and because there is no recurrent part in the

network, it became much faster. (Running on a single k80 GPU the training speed is

1200 sample/sec, and the forward speed is 2110 sample/sec.)

ImagNet models. After some further literature research, we found a couple cutting

edge architectures that might fit our needs: VGG16, VGG19, ResNet, Pre-Activation

ResNet, WideResNet. We tried them applying the same modification to all: Instead

of using N × N kernels, we used N2 × 1 kernels to keep the overall capacity of the

network. Initial results were good, and soon we began tuning the preprocess steps to

push the limits of these networks. Running the PyTorch implementation (we switched to

PyTorch because we found that prototyping is much faster for us in PyTorch compared

3. TIME DOMAIN CLASSIFICATION 28

to TensorFlow) on a single k80 GPU, results of these networks were the following:

• VGG16

– F1 score: 0.81 (train set), 0.74 (evaluation set)

– Training speed: 570 sample/sec

– Forward speed: 990 sample/sec

• VGG19

– F1 score: 0.83 (train set), 0.75 (evaluation set)

– Training speed: 430 sample/sec

– Forward speed: 870 sample/sec

• ResNet-50

– F1 score: 0.81 (train set), 0.75 (evaluation set)

– Training speed: 340 sample/sec

– Forward speed: 540 sample/sec

• WideResNet-28-10

– F1 score: 0.82 (train set), 0.79 (evaluation set)

– Training speed: 210 sample/sec

– Forward speed: 300 sample/sec

Hand crafted features. We also tested some of the most important wavelet features,

and R-R variability indices computed externally. Sadly the features completely confused

the logit neurons, resulting always in worse performance when random Gaussian noise

was used instead of features (since the weights just simply decayed to zero for the noise).

Tested on three VGG16, VGG19 and ResNet-50, it reduced their overall test F1 to: 0.62

0.60 0.59 (respectively)

Increasing receptive field. Just after the previous experiments, we noticed the pres-

ence of the CNN receptive field problem. In the previous trials we tried larger pools for

max pooling: [size:stride] 10:1, 10:2, 20:2, 100:50. From these experiments we learned

that while increasing these parameters can improve the train performance, on the down-

side it also increases the gap between the train and the test error since the network is

more capable to overfit on massively downsampled data. Consequently, we started using

Dilated Convolutions to overcome the receptive field problem, and we applied a custom

sequence of dilation parameters for each test. Results show that using dilated convolu-

tions in the low level feature extractors is more effective than in the latent layers. For

3. TIME DOMAIN CLASSIFICATION 29

Residual Network we applied dilation only for the first convolutional layer, while the

second layer always had a dilation parameter of 1 (i.e. no dilation applied).

Late experiments

We trained 134 networks in time domain, and ideally we would share the details of each

experiment, because one could find general rules that apply elsewhere, but due to space

constraints we only list our most instructive experiments from the last weeks of the

challenge.

Preprocessing. For these experiments, we added two preprocessing steps: One is ran-

domly multiplying the samples by -1. because sometimes R peaks were the most negative

values in the sample - so we had to train a sign invariant model. The other was the 2.2

sigma thresholding because without that the dilated convolutional networks would have

been still driven by the magnitude of the sample. In order to reduce this effect we just

chopped of the top of the r-peaks to see whether it was working or not. Sigma 2.2 had

been performing better than other sigma values (1, 2, 3, 5, inf) validated with 5-fold

cross-validation on two networks: WRN-28-10 and VGG16.

Training. To make the training set keep the same class imbalance, we randomly selected

90 percent of each category. We tried both 256 and 512 batch size, and we used 300 epoch

for every network. Besides, we tried mwo optimizers, and we experienced that ADAM

performed significantly better than SGD when initial learning set is set to 1e-4 and

decreased linearly to 0 over the training session.

Architectural changes. Also we experienced significant improvement by removing the

dense layers (2 fully connected layers that are usually the last two layers before the logit

layers in ImageNet models) which mainly combined the activation maps of convolutional

layers because their capacity appeared oversized (usual width from 1024 to 4096). In a

task like ImageNet classification with 1000 categories, they probably make a good choice,

but on our problem set they blocked the gradient flow.

Finally we learned that by using SELU layers, described at Eq. 3.2, even if the training

error was higher, the distance between the test and train accuracy was smaller than in

cases of ReLUs. Also the phenomenon of "dead neurons" (neurons that are constantly

outputting zero not effected by the input) was avoided by using SELU

Hierarchical classification. During the contest, the scoring system has changed: the

final score was the mean of the F1 scores of normal, AF, other classes. Noise class

was not directly evaluated (however it still affected the precision of the detection of

other classes). To maximize our score, we trained a binary classification network as a

first step simply to detect noisy samples. When the sample was not detected by the

3. TIME DOMAIN CLASSIFICATION 30

noise discriminator network, than we fed it in to a three-way classifier. We tried further

hierarchical alternatives, but they did not yield significant improvement. Our experiments

showed that even a shallow network could perform over 90% on noise detection, and by

this approach we hoped that the noise discriminator capacity trained separately could

reserve more generalization ability of the 3-way classifier.

Custom architectures.

Encode-Net Inspired by the network used for fast neural style-transfer [18], we de-

signed a network with the following layers:

• convolution (32) + batch normalization + SELU + max pooling

• convolution (64) + batch normalization + SELU + max pooling

• convolution (128) + batch normalization + SELU + max pooling

• convolution (256) + batch normalization + SELU + max pooling

• dilated, preactivation Residual Block (256)

• dilated, preactivation Residual Block (256)

• dilated, preactivation Residual Block (256)

where convolution layers had dilation factor of 2 and no bias, and kernel size of 11, 7, 7,

7 respectively, in the residual blocks the second convolutional layer was dilated with the

factor of 2, and each residual block had two convolutional layers with kernel size of 11

and 9 respectively. Residual blocks’ inner architecture depicted on figure 3.4, and the

schematic structure of our proposed feature extractor can be seen on figure 4.5.

We implemented that model with PyTorch and got F1 scores of 0.98 on train set and 0.92

on evaluation set. Running on a single k80 GPU, the training speed was 630 sample/sec,

and forward speed was 1120 sample/sec.

Skip Fully Connected Network (SkipFCN) Motivated by densely connected CNNs [27]

we refactored our VGG16 network in a manner where the output of the first pooling

layer was concatenated to every succeeding pooling layer. (Many other architectures

were tested as well with no significant improvement, however this network later turned

out to be super-effective on spectral domain). For details see figure 4.6.

That that architecture was implemented also in Pytorch with slightly lower results: F1

scores was 0.93 on training set and 0.88 on evaluation set. Running on a single k80 GPU

the training speed was 560 sample/sec and forward speed was 970 sample/sec.

3. TIME DOMAIN CLASSIFICATION 31

batch norm

SELU

max pool

32 64 128 256

32

256
+

256
+

256
+

+
+

256

batch norm

SELU

conv 256

batch norm

SELU

dilated conv 256

dilated conv 32

encoder blocks residual blocks

Figure 4.5: Encode-Net Temporal dimension is gradually reduced while increasing num-
ber of feature maps provides broader/wider connection with the residual network, thus
keeping computationally inexpensive. Hierarchical feature maps are trained more ro-
bustly, while the residual layers can operate more efficiently on latent representations of
these high level features.

256 ~ 1
256 ~ 1
256 ~ 1

64 ~ 4
64 ~ 2
64 ~ 1

32 ~ 2 Batch norm

SELU

32

64

128

256

conv 32
dilated by 2

Dilated convolution blocks

32 ~ 4
32 ~ 2

max pool

128 ~ 4
128 ~ 2
128 ~ 1

max pool concat

max pool concat

:4

:8

Figure 4.6: SkipFCN: A classic fully convolutional VGG16 network without the three
dense layer of 4096 neurons, using 9 × 1 convolution kernel instead of 3 × 3 and halved
each layer’s capacity. On time domain the Encode-Net outperformed this architecture,
however on spectral domain the skip connections improved the overall generalization by
breaking the symmetry.

4. FREQUENCY DOMAIN CLASSIFICATION 32

Figure 4.7: Taking the average of the top 10 performing network revealed that our detec-
tors that operate in time domain (almost independently from the underlying architecture)
tend to perform excellently on Atrial Fibrillation category, while the worst score was the
F1 of the Other class.

Conclusions

Finally we concluded that networks operating in time-domain are the most efficient in

detecting AF, while the other class is always a drawback for the overall accuracy. See

figure 4.7

Frequency domain classification

Initial experiments

Initial experiments were built on complete sequences, by applying FFT to the whole

sequence. It turned out that the class invariant features were too delicate, and were

diminished by taking the Fourier Transform of the complete signals.

Late experiments

Skipping to the last phase of the challenge, we experimented with training networks that

were successful on time domain, with the difference that now we used the logspectrogram

of the samples.

4. FREQUENCY DOMAIN CLASSIFICATION 33

Log-spectrogram. By taking the FFT of smaller windows we can analyze the spectral

components of the sample and preserve temporal features at the same time. Our experi-

ments with the fine-tuning of different parameters of taking the spectrogram of samples

concluded to using stride parameter of 1 for the sliding window, Hanning weight before

applying FFT, and (2N +1) window size for retrieving N = 32 number of channels from

the transformation. It is a general step afterwards to apply elementwise logarithm of the

absolute value on the spectrogram to increase its variance. Important note: This step

discards phase and therefore the transformation will be irrevertible, still it improved the

performance of the network in almost all cases. For a detailed visualization see figure

4.8. We tested the last two architectures, we created in the time-domain experiments,

and results on a single k80 GPU are the following:

• freq-EncodeNet

– F1 score: 0.95 (train set), 0.88 (evaluation set)

– Training speed: 450 sample/sec

– Forward speed: 540 sample/sec

• freq-skipFCN

– F1 score: 0.94 (train set), 0.93 (evaluation set)

– Training speed: 410 sample/sec

– Forward speed: 530 sample/sec

4. FREQUENCY DOMAIN CLASSIFICATION 34

SPECTROGRAM

log-SPECTROGRAM

FFT sliding window FFT

TIME

elementwise logarithm of magnitude

Figure 4.8: Preprocess step that provides spectral domain representation while preserving
time-domain patterns. Using a sliding window of size (2N+1) with stride of 1 yields an
almost identical length representation as the input sample but in N number of channels -
making the signal highly redundant, yet incredibly informative for the classifier algorithm.

5. MULTI-DOMAIN CLASSIFICATION 35

Multi-domain classification

In the last two days of the challenge we have been able to implement a forked preprocess

technique that was built on the most successful attempts’ experience, taking the following

steps:

• Sample N/4 number of random samples from each class, with N = (batchsize) =

16.

• Random crop a 2400 section from the samples.

• Fork the pipeline to time preprocess

– Random multiplying the samples by −1 to increase the robustness of the model

towards inverted records

– Threshold the peaks between σ = 2.2 for each sample

• Fork the pipeline to spectral preprocess

– Take the spectrogram of the random crop with window size of 65, Hanning

window weight, overlap of 64

– Resample with Nearest Neighbour method the 32 channel output to match

the length of the original time crop: 2400

– Take the absolute value piecewise

– Take the logarithm piecewise

Late experiments

We cut straight to the chase by only selecting the best performing network on each domain

to run our trainings on.

• Time: EncodeNet F1 - 0.92

• Freq: SkipFCN F1 - 0.93

The settings of our last experiments contained the forked preprocess steps and both model

initialized with Xavier [37] technique.

5. MULTI-DOMAIN CLASSIFICATION 36

32 64 128 256

256

+
256

+

FFT

256

+
25

6
~

1

25
6

~
1

64
 ~

 4

64
 ~

 2

64
 ~

 1

32
 ~

 2

po
ol

12
8

~
4

12
8

~
2

12
8

~
1

 p
oo

l
co

nc
at

po
ol

co
nc

at

32
 ~

 4

Multi-domain
featuresco

nc
at

25
6

~
1

Figure 4.9: Processing a single-lead ECG signal on both time and spectral domain with
our proposed architecture. To be able to concatenate the spectral activation maps to the
temporal features we re-sampled the signal with nearest-neighbour method.

5. MULTI-DOMAIN CLASSIFICATION 37

Figure 4.10: Overall performance of the FCN approaches plotted in TensorBoard. Top:
Accuracy derived from the confusion operator. Bottom: Unweighted loss during training

5. MULTI-DOMAIN CLASSIFICATION 38

Figure 4.11: Weight distribution of the classifier (last) layer through training. Note that
networks with small variance, and local edgy peaks are more likely to fall into a local
minimum of the parameter space — where choosing the same class no matter what is the
input is too stable state for the network to learn any further features.

5. MULTI-DOMAIN CLASSIFICATION 39

Figure 4.12: Models are monitored through the training process: during weight updates
a small subset of unseen entries is inferred, and compared to the ground truth labels.
In these confusion matrices the row sum represents a histogram of the labels, while the
column sum would represent the histogram of the network’s choice. Their intersection
results in the talkative heat maps. Notice that those models whose confusion matrix is
mainly diagonal is performing well, and those networks which have been collapsed gives a
matrix where only a single column can be seen (i.e. first row, the two rightmost matrix).

5. MULTI-DOMAIN CLASSIFICATION 40

Figure 4.13: Overall performance of the ResNet approaches plotted in TensorBoard. It
is worth to mention that the network represented by the green curve is using the same
hyper-parameters as the network with the highest train performance (blue), still because
of the MLP block it fails to learn a generalized representation. Another important feature
is that the network represented by the blue line performs way better on the training set,
still fails on the evaluation set. This is the classical example of an over-fitted model. Top:
Accuracy on the training set. Bottom: Accuracy on the evaluation set.

5. Medical Relevance and Visualization

Besides evaluating how well the classifier model performs on the training and test set, we

wanted to examine how relevant our results are medically. To achieve that, we contacted

two cardiologists to help us: Dr. Szilvia Herczeg and Dr. István Osztheimer, both

working at the Heart and Vascular Center of Semmelweis University. Our goal was first

to compare the decisions of the cardiologists and our model, then we wanted to explore

which are the most important features the model is looking for.

Quality of data set

Method

Website First thing we did to allow the cardiologist to contribute to our project was

designing a website that displays the recordings and provides a graphical user interface

to annotate the displayed recordings and leave comment under the interesting recordings

to make the annotation more informative. That way we obtained an alternative annota-

tion that helps us to validate the data set; i.e., what are the obvious cases, and which

recordings are insufficient to make a firm diagnosis. The website handles multiple users,

and it even has a minimalist registration form to register new users.

Design and features. When making a front-end for the website, we paid attention to

make the design simple and clear, yet to give all the information that can help classifica-

tion, so only the graph of a single recording and the belonging input fields (radio buttons

for the class labels and an optional comment field) is visible to the user when he or she

annotates data. The chart is scaled to the standard format originated from traditional

paper-based ECG recordings (the ECG graph paper is moved at speed of 25mm/sec, and

the paper is divided into 05x05mm grid-like boxes that represents 200ms at time scale

and 0.5mV at y axis). The main feature of the charts that they are zoomable, so the

user can observe even small details of the recordings. Additionally, the average BPM

(beat per minute) is indicated under the graph to aid decision-making. The website picks

the recording randomly, but the distribution of the chosen recordings over the classes is

uniform, meaning that the user get a recording from each class with equal probability.

41

1. QUALITY OF DATA SET 42

Figure 5.1: Screenshot of "test" page of
the website

Figure 5.2: Screenshot of "browsing"
page of the website

Website pages. We created two very similar pages for the website: One is for "warm

up", meaning that this one is aiming to help the user to get familiar with the interface and

the data set, and another one is for "test" – it is used to measure the performance of the

user over the classification problem. The only difference between them that the former

one tells the user what class does the recording belongs to according to the cardiologists

of the challenge, and also it provides another comment field (e.g. for the case if user

wants to leave a comment upon possible misclassification). Figure 5.1 shows a screenshot

of the layout of the "test" page. Furthermore, we created a web page to browse the

annotated recordings. It shows the file name, name of annotatior, time of annotation,

labels according to the cardiologist of challenge and our annotator, and the comments.

Figure 5.2 depicts that "browsing" page.

Results

Dr. Szilvia Herczeg kindly offered that she annotates a subset of the data set, and ac-

cordingly she annotated 500 recordings so far. We compared her annotation against the

annotation of the cardiologists of the Challenge, and we found that she agreed the classi-

fication only in approx. 65% of recordings. That underlines the fact that classification of

a large part of the data set is not evident even for experts. However, when we compared

her annotation against the output of our model, it turned out that considering only those

cases when she agreed with the cardiologists of the challenge (i.e. the evident cases) the

model gave the same prediction for classes as the cardiologists. Even more surprisingly,

apparently Szilvia’s annotation has slightly more matches to the model’s prediction than

the annotation of the cardiologists of challenge (though it can be an artifact due to the

low number of annotations). For more information see table 5.1.

2. CONFIDENCE OF THE CLASSIFIER 43

Label All Correct Match Correct & Match
Normal 124 111 107 104

AF 97 70 74 70
Other 140 45 63 43
Noisy 139 103 102 102
Total 500 329 346 319

Table 5.1: Result of Szilvia’s annotation. Label: class name, All: number of annotated
recordings by Szilvia grouped by reference annotation, Correct: number of matches be-
tween Szilvia’s annotations and the reference annotation, Match: number of matches
between Szilvia’s annotation and the model’s prediction, Correct & Match: all agree.
Reference annotation: annotation of cardiologists of Challange

Confidence of the classifier

Methods

Output of model. We wanted to examine not only the data set, but our classifier

model as well, so we also created a website to show the recordings that were easiest or

the hardest to classify for our model. To achieve that we took advantage of the fact

that the output layer (that is also called logit layer) of the network produces numbers

in the range of [0, 1] for each class, and each number represents the confidence of the

network whether the sample belongs to the corresponding class or not. So we fed all

recordings to the classifier and picked the top 10 recordings which had the largest output

number for the normal class, and we did the same for the AF class. We assumed that

those recordings can also be interesting that were difficult for the classifier, so we selected

the 10 recordings that belongs to the least confident decisions for both normal and AF

class. We decided to inspect only these two classes because other and noisy classes are

only technically necessary for defining the problem, but they have no medical relevance

because noisy recordings must be repeated in medical practice and the other class consists

of numerous different arhythmias that are treated totally different ways.

Visualization website and evaluation. In order to make the selected recordings

visible to the cardiologists, we added a page to the website similar to the previous ones;

however, it displays only the graphs of the selected 40 recordings. The graphs are scaled

to the standard format and the grid lines over the graphs are also standard, and the

graphs are zoomable. We sent a link to that page to the cardiologists, and asked them to

try to find some common features between those that are classified into the same class.

We also asked them whether the recordings, that the model classified confidently, were

evident for them, too, and also the opposite, i.e., whether they found the least confidently

classified recordings obscure as well.

Technologies and URL. The website is mobile friendly, and utilizes the following

technologies: HTML5, PHP, JQuery, Bootstrap, Google’s chart Javascript library, and

2. CONFIDENCE OF THE CLASSIFIER 44

Figure 5.3: Section of one of the recordings that corresponds to the most confident
predictions. Unit for x axis is sec, and for y axis is mV.

SQLite. It is hosted by Pázmány Péter Catholic University. The website can be reached

at the following URL: http://users.itk.ppke.hu/~hakta/challenge/

Results

We asked both Dr. István Osztheimer and Dr. Szilvia Herczeg to look at the selected 40

recordings, tell us whether are the recordings of most confident machine predictions are

easy for them or not, and try to find tendencies. We answered them independently from

each other, but their remarks were very similar in most aspects.

Noise. First, they both agreed that the in case of most confident predictions the record-

ing contained no or low, distinguishable noise, especially in case of recordings with normal

rhythm. Figure 5.3 shows an example for these samples that were easily classified due to

the very low noise. Similarily, they both mentioned that the main difficulty in classifying

the recordings that were classified by the model with least confidence is the low amplitude

noise and irregular baseline changes that makes P wave detection very difficult. In case

of hardly detectable P waves, they both would rather look at the RR intervals whether

they are regular or not. For more details on cardiac signals see Appendix A.

RR intervals and BPM. In addition, István noted that half of the selected recordings

classified as normal with lowest confidence are rather AF recordings, but the unusually

regular RR intervals can be very misleading. Moreover, Szilvia noticed that all of the

confidently classified normal recordings have arhythmia absoluta, meaning that RR in-

tervals are always changing, and most of these recordings have high BPM value, while

recordings of low confidence prediction have much lower BPM on average. She mentioned

that the arhythmia absoluta and BPM are two of the most common features cardiologists

are looking for in real life clinical practice.

Conclusion. The final conclusion from both of them was that it is true that the record-

ings that were hard to classify for the model are very difficult for them, and the high

confidence predictions are evident for them as well, and the model might detect some of

the important medically relevant features.

http://users.itk.ppke.hu/~hakta/challenge/

3. MOST RELEVANT SEGMENTS OF RECORDINGS 45

Most relevant segments of recordings

Interpretation of layers of the model. For further investigations, we had to look

inside the model. As it is mentioned earlier in the "Evaluation" chapter, the model

overcomes the problem of variable length input by using mean reduction, meaning that

it scans through the input with a short window, and the output of these scanned sections

are averaged at the very end of the model. For the sake of simplicity, we can image that

every neuron gathers information from the recent few milliseconds and fires according

to that information in every moment of the recording. Finally the very last layer of the

model takes the mean of these time-dependent outputs. Including that layer, we have

inspect 3 layers at the top of our model:

• Feature layer: That layer is looking for 256 different features over time (i.e. there is

256 neurons in that layer). It produces a large positive number in a given moment,

when looking at the section of the recording from the recent past it recognizes

the pattern it is looking for. If it is something very different, it can produce even

negative output.

• Sublogit layer: There is 3 neurons in that layer, that take the weighted sum of

the output of feature neurons for each neurons. Each neuron weights the features

differently, giving high weight for the features that describes the corresponding

class, and low weights for those, that does not.

• Logit layer: It produces the output of the model by averaging the output of the

sublogit layer over time.

Coloring the graph background.

We were also curious what are the most important segments of each recording that

contributes most to the decision of the model, so we took the output from sublogit layer

because it tells us which is the most probable class for each short sections of the recording,

and colored the background according to that. The advantage of that method is that

it even displays how confident the guess was. The classifier for noisy class is a separate

model, so the graphs shows confidence values only for normal, AF, and other class. The

white color means totally uncertain, green means normal, red means AF, blue means

other. The colors are not mixed to avoid abundance of information, so always only most

confident guess’ color is used. An example for these graphs can be seen on the figure

5.4. We showed that graphs to István, and he concluded that the model might be mainly

sensitive to different kind of irregularities, and also the quality of irregularities (irregular

patterns can change according to a rule or in a totally irregular manner).

3. MOST RELEVANT SEGMENTS OF RECORDINGS 46

Figure 5.4: Example for graph with colored background. Depth of colors indicates how
confident was the classifier for the given section.

Classes against each other.

During preparing the output of the sublogit layer for conversion to RGB colors, we noticed

that there might be a correlation between the outputs of sublogit layer for each class over

time, that is, for instance when the model produces high value for AF class, then the

values for normal and other class will be low with higher chance. Figure 5.5 shows a

clean example of that phenomena. Following that guess, we computed sublogit output

for each sample, and calculated correlation for all class pairs over time (that way we

got 3 values for each recording). Then we took mean and standard deviation of these

correlation coefficients over the samples. The results was the following:

• Normal vs. AF: -0.5189 (mean), 0.3299 (std deviation)

• Normal vs. other: -0.0998 (mean), 0.5892 (std deviation)

• AF vs. other: -0.6850 (mean), 0.3442 (std deviation)

It confirmed our suspicion that there is a strong negative correlation between the other

and AF classes, and a less strong negative correlation between normal and AF class, and

the standard deviation is relatively low for these two comparisons, while there is no such

a strong correlation between the sublogit output of normal and other classes and the

deviation from the mean value is also much higher in that case.

Weights under sublogit layer.

To discover the phenomenon described above, we had to dig a bit deeper to our model:

we inspected the weights coming from the feature layer to the sublogit layer. From the

256 features of our model, and we picked the top 50 feature neurons for each class that

contributes most to the given class, that is, the feature neurons that have the strongest

connection (highest weight) with the sublogit layer neuron of the corresponding class. We

3. MOST RELEVANT SEGMENTS OF RECORDINGS 47

Figure 5.5: Sublogit layer output of model for the same recording as at the figure 5.4.
That graph is a good example for "competing classes" because as AF value goes higher,
the other two classes value go down, and vice versa.

did the same for the most negative weights, then we matched these subsets of features

against each other. The table 5.2 shows the result of that matching, that is, how many

shared features are between classes. While it might be confusing that 25 + 1 shared

features where normal and other class are "against each other" and yet there is no corre-

lation between the logits of the two class, it turns out that there are some shared features

that suppresses of promotes normal and other together. That also can be a possible

explanation why the classifiers have always worse performance on the class other than

either normal or AF.

Further experiments.

We wanted to visualize somehow the features the model is looking for, so we tried multiple

approaches.

Best fragment for strongest features. First, we selected the top 10+10 of the most

positive and most negative features, cut the samples into at most 1.7 sec long pieces, and

computed the logit values for all samples of training set. Then, we looked up the top 10

fragments with highest logit value for each classes for each features, and plotted them

hoping that we can notice some common patterns, but no tendency was visible.

Optimizing input. Second, we attempted to optimize only the input layer to produce

a "perfect" sample that makes the model decide as confident as it is possible. We tried

both producing "perfect" normal sample, and producing a "perfect" sample for one of

the features. In the former case, we set the goal as optimizing the input layer until the

logit layer produces [1, 0, 0] as output, and in the latter case, the goal of the optimizer

was to approach the optimal output of feature layer that is a vector that consists of only

zeros except one places that selects the desired feature. These trials was also unsuccessful

3. MOST RELEVANT SEGMENTS OF RECORDINGS 48

Positive for... Negative for... Number of features
AF other 37
other normal 25
other AF 11
normal AF 11
AF normal 1
normal other 1
normal, other - 1
normal, other AF 4
AF normal, other 1
normal - 33
AF - 22
other - 9
- normal 23
- AF 24
- other 11

Table 5.2: Distribution of shared features over classes.

because apparently the optimizer added noise to the samples, but no patterns emerged.

Figure 5.6 shows an example of difficulties in finding an optimal input by demonstating

an input belonging to normal and the same sample after optimalization belonging to AF.

Convolutional kernels. Thirdly, we gave a trial to plot the kernels of the convolutional

layers. These does not yield either any result, no recognizable pattern were present on

the plots of kernel graphs.

Conclusion. The failure of these experiments mostly might be the effect of the mixed

time- and frequency domain feature extraction. While that multi-domain processing

method improved out final score, it is a huge drawback when propagating the information

backward in the model because it is hard to think in frequency domain for people, and

people hardly can find any frequency domain features (even if it is obviously there) on a

time domain representation.

3. MOST RELEVANT SEGMENTS OF RECORDINGS 49

Figure 5.6: An example of difficulties in finding an optimal input. The green line is the
original input classified by the model confidently to the class AF. On the other hand,
the blue line shows the same sample after optimizing for normal class. That optimized
sample would be classified firmly as normal, even tough a human could tell immediately
that the the recordings are the same.

6. Summary

Contributions

In the previous chapters we described our main contributions to the field of signal pro-

cessing and atrial fibrillation detection. We worked out the major cornerstones of design-

ing deep neural networks specifically for cardiac monitoring while keeping complexity in

mind. We consider our biggest achievement that using computer vision experience we

constructed an algorithm, trained it from scratch on a moderate sized data set with high

error in the ground truth labels that outperforms the referenced state of the art cardiac

failure detectors. In this chapter we also mention the final scores of the CinC Challenge of

2017, and review their algorithms and inspect ways to improve ours with such knowledge.

Challenge results and collaboration

Our results. While the performance of the classifier can be measured many different

ways, we have decided to stick to the official scoring algorithm, that is, the F1 score. Our

final model was a parallel ensemble of a feature extractor on temporal domain (Enco-

deNet) and on spectral domain (skipFCN) that yielded the following results:

• Detailed F1 on training set: 0.9093 (normal), 0.8883 (AF), 0.8181 (other), 0.5589

(noise)

• Overall F1 on training set: 0.87

• Detailed F1 on test set: 0.8786 (normal), 0.7953 (AF), 0.6887 (other), 0.6404 (noise)

• Overall F1 on test set: 0.79

Besides that we contacted two cardiologists from the Heart and Vascular Center of Sem-

melweis University. By their help, we can state that the model detects some of the most

important features doctors are watching when making a diagnosis and in many cases it

makes similar decisions as doctors do (e.g. the recordings that are hard to classify for

the model are difficult for doctors as well).

Best competitors. The challenge was really tight and the top results clearly represents

the level of difficulty. The following competitors achieved a test score of F1=0.83

50

3. FUTURE WORK 51

• Zabihi et al. Detection of Atrial Fibrillation in ECG Hand-held Devices Using

a Random Forest Classifier [83]. With heavy feature-engineering provided over

500 hand-crafted features fed to a traditional machine learning approach, random

forests. These representations of the samples could be easily concatenated to our

multi-domain feature vector - also experimenting with random forests could yield

some interesting results.

• Teijeiro et al. Arrhythmia Classification from the Abductive Interpretation of

Short Single-lead ECG Records [73]. Using an ensemble of 3 Long Short Term

Memory networks and an MLP stacked on the top, with additional expert feature

support to correct samples that yields low confidence values. They describe a

method of training of parallel recurrent modules that could help us elaborate on

our experiments with LSTMs.

• Datta et al. A Robust AF Classifier using Time and Frequency Features from

Single Lead ECG Signal (not published yet). Basically their approach is closely

related to ours, collaboration would reveal how could we improve our proposed

multi-domain networks.

• Hong et al. ENCASE: an ENsemble ClASsifiEr for ECG Classification Using

Expert Features and Deep Neural Networks (not published yet). They have fine-

tuned a 64 layered Residual Neural Network supported by experts who relabeled

the training set and removed uncertain samples. Their efforts and capacity could

help us train a version of our classifier of higher complexity.

Future work

Short-term plans. After successfully training our final model, we intend to use the

convolutional layers as feature extractors in reverse engineering to find out if we can help

cardiologists by providing them a list of ECG patterns our network used as a guideline

for classification. For doing so we have multiple choices: we can utilize DeConv nets [84],

or apply gradient ascension [81] on the receptive field of perceptrons, or simply take

the mean of windows in samples that yields the largest activation in the latent feature

representation.

From the feedback of the cardiologist, we learned that we could improve our program

by increasing the sensitivity of AF because it is much better to classify a normal as AF

than the opposite. Furthermore, implementing an algorithm that detects the quantity of

irregularity might improve the performance.

Long-term plans. We would like to implement Domain Adversarial training of Neural

Networks (DANN) [16] to transfer our best model’s trained parameters to real world

applications which may introduce different sample density.

3. FUTURE WORK 52

Our following task will be utilizing One Shot learning [67, 76] to tackle the small-train

set problem.

Finally, the device that was used to record the original samples will be commercially

available soon, and it is a great opportunity for us to write the inner mechanism of a real

life, end-to-end product.

Appendices

53

A. The cardiac conduction and stimulus

formation

The heart conduction system controls the generation and propagation of electrical sig-

nals or action potentials. They cause heart muscles to contract and the heart to pump

blood.This electrical activity can be measured by electrodes placed at specific points

on the skin through the recording knows as Electrocardiogram (ECG). A tracing of the

overall electrical activity of the heart is possible, resulting from the propagation of many

action potentials.

In the normal heart each beat begins in the right atrium with an action potential signal

from a sinal atria (SA) node, the heart’s natural pacemaker. The signal spreads across

both areas, because the muscle cell depolarizes in contraction. This induces the face

known as Atrial Systole. On the ECG this atrial depolarization is represented by the P

wave (Fig. A.2).

Figure A.1: The cardiac conduction and stimulus formation

The period of conduction that follows atrial systole and precedes the contraction of the

ventricle is depicted on the ECG by the PR Segment, a flat line following the P wave.

When the signal leaves the atriait (Fig. A.1 Phase 3) enters with ventricles via the atrial

54

55

ventricular (AV) node located in inter atrial septum (Fig. A.1 Phase 4). It enters the

Bundle of His and spreads through the Bundle branches and the large diameter Purkinje

fibres along the ventricle walls (Fig. A.1 Phase 5-6).

As the signals spread through to the ventricles the contractile fibres depolarize and con-

tract very rapidly, inducing Ventricular systole. The ECG QRS Complex (Fig. A.2)

represents this rapid ventricle depolarization. Atrial depolarization also occurs in this

time. But any atrial activity is hidden on the ECG by the QRS complex. Finally as the

signal passes out of the ventricle, the ventricular walls start to relax and recover in the

state described as Ventricular diastole. The T wave (Fig. A.2) on the ECG marks this

ventricle re-polarization.

Figure A.2: Schematic figure of ECG curve. Image Credits: Hank van Helvete - EKG
Komplex

On the ECG the ST Segment (Fig. A.2) depicts the period when the ventricles are

depolarized. QT interval represents a summation of all ventricular APs, LQTS mutations

primarily affect ventricular ion channel complexes. The sequence of events just described

and associated ECG traces repeat in every heartbeat. An ECG is not a tracing of single

action potential, but rather the amalgamation of many action potentials, which constitute

the electrical activity of the heart.

B. Most and Least Confident Classifica-

tion Cases

Most confident classification cases of normal class

Figure B.1 Figure B.2

Figure B.3 Figure B.4

Figure B.5 Figure B.6

56

2. MOST CONFIDENT CLASSIFICATION CASES OF AF CLASS 57

Figure B.7 Figure B.8

Figure B.9 Figure B.10

Most confident classification cases of AF class

Figure B.11 Figure B.12

Figure B.13 Figure B.14

2. MOST CONFIDENT CLASSIFICATION CASES OF AF CLASS 58

Figure B.15 Figure B.16

Figure B.17 Figure B.18

Figure B.19 Figure B.20

3. LEAST CONFIDENT CLASSIFICATION CASES OF NORMAL CLASS 59

Least confident classification cases of normal class

Figure B.21 Figure B.22

Figure B.23 Figure B.24

Figure B.25 Figure B.26

Figure B.27 Figure B.28

4. LEAST CONFIDENT CLASSIFICATION CASES OF AF CLASS 60

Figure B.29 Figure B.30

Least confident classification cases of AF class

Figure B.31 Figure B.32

Figure B.33 Figure B.34

Figure B.35 Figure B.36

4. LEAST CONFIDENT CLASSIFICATION CASES OF AF CLASS 61

Figure B.37 Figure B.38

Figure B.39 Figure B.40

C. Neural Network Basics

Single Layered networks

For example if a small picture is given to a person, he or she guesses about it. If that

person is told that there are four classes, like Car, Plane, Cat, Kid, he can tell how likely it

is that the given picture falls in that class, so he can give a so-called confidence parameter.

Patterns which are associated with cats may be associated with kids too, but is unlikely

to be associated with planes. Deciding whether a pattern improves the confidence on

each class or not, yields a sign for the given pattern, and the measure how strongly it

influences the likelihood is called the weight of the pattern. In neural networks there are

small nodes based on the biological model of neurons, that is responsible for recognizing

and weighting the patterns. These nodes are called perceptrons.

Defining the Perceptron

Let x be preprocessed information, the perceptron P decides which parts of it are im-

portant in recognizing a cat: having a corresponding weight with large magnitude, and

which of them are irrelevant: having a weight with magnitude close to zero. Therefore a

perceptron has a weight wi for each input xi and its transient state can be now formally

written:

Ptransient =
∑

i

xiwi

Which can be also rewritten as the inner product of x and w

Ptransient =< x , w >= x
T
w

In the following examples perceptrons will be arranged in a special way, to form a Feed

Forward network, meaning that the information flow will occur in a direct way, without

feedback - see figure C.1. However wiring many perceptrons together results in a nu-

merically unstable system, caused by the lack of any restriction on the magnitude of the

weights. Regularization addresses exactly this problem, implicitly making the network

less likely to simply memorize pictures, or only respond to samples from the training set

– the problem of overfitting.

62

1. SINGLE LAYERED NETWORKS 63

Figure C.1: A small feed forward network with three hidden layer composed of Fully
Connected layers.

Basics of Learning

After describing the model, the first question is:

— what are the correct values for wP for each P in network F?

There are a lot of intuitive explanations how this problem should be approached and

solved. For an exhaustive study of the topic, visit Michael Nielsen’s website [53]. Any-

how, in general this is still the most studied question in machine learning. Luckily, if F ’s

performance can be measured, thanks to its feed-forward structure a numerical sugges-

tion can be defined as well, which tells how to change wP to improve efficiency of F .

In practice an L Loss function is defined, and the objective of the training is to reduce

it. Without digging deep in math we can find an intuitive situation with the same results.

Take a perceptron P with input x of objects on a given picture of a cat. Suppose that this

perceptron fires (has high output value) when wheels are on the picture. It should remain

silent when there are no round objects listed in x, still it turns on, affecting the output of

F , producing high error. Since we know the original label of the picture, we can tell which

assumptions were wrong, and which were good - which to decrease, which to increase if

the next time F is given the same input. This information is distributed between the

previous perceptrons which caused the current one to fail, by simply multiplying the

error with the weight corresponding to the previous node. Also with the information of

how much the output of the actual node influenced the error, and with its input values,

the significance of misleading xi can be reduced, and important features’ weights can

be increased, which is actually finding a better wP. For further intuitive examples see

section 5, or visit Andrej Karpathy’s guide [31].

SGD. The example led to the practical application of the so called Stochastic Gradient

Descent. Originally every samples in the training set should be introduced to the system

2. INFERENCE 64

before updating its weights and that would be the Batch Gradient Descent, but in the

hope that the samples fall in a subset of the whole space of all possible inputs, the

algorithm uses mini-batches for the learning process. When the number of samples in

the batches reduces to 1, the training is called on-line training. And if it happens on F

containing a single perceptron it is called Rosenblatt perceptron learning algorithm.

Inference

Let us suppose that for a particular task an F is given, first what we have to understand

is how input data x ∈ X (interchangeably x1) is inferred. First, assume that the data

can be expressed as multi-dimensional matrix, like RGB pictures, audio recordings, gene

maps. Some networks preserve the spatial information i.e. feature extraction performed

on images, while other instances operate on the whole input data i.e. processing audio

samples in frequency domain. Either way the output y (or yL) can be obtained by feeding

x to the network: y = F(x) The core concept is that we can compose such an F function

by applying multiple projections to x. Practically that means sending input through the

first layer, the second, and all the way through to the last layer Lth, which output would

be the value of F(x), the response of the network. Therefore in terms of evaluating F(x)

layer by layer, actually translates to a single function call, which can be unfolded to a

sequence of embedded projections:

F(x) = FL (xL) = FL

(

y(L−1)

)

FL

(

y(L−1)

)

= FL

(

F(L−1)

(

x(L−1)

))

= FL

(

F(L−1) (· · ·F1(x))
)

Using the function composition operator ◦, rewritten in the classical notation:

F(x) = FL ◦ F(L−1) ◦ · · · ◦ F1(x) (C.1)

The C.1 equation is the most fundamental idea behind feed-forward neural networks,

namely the inference or forward-propagation As mentioned above, every layer l is repre-

sented by an Fl. The most basic layers are the Fully Connected and Activation layers.

Fully Connected layer

These layers carry out the heavy-lifting of inference by performing linear projection and

translation transformations. The operations are following the rules of basic linear algebra,

where the input xFC ∈ R
N and the output yFC ∈ R

M are specified as real valued vectors.

The parameters of the layer φFC = (W, b) are the corresponding weights and biases of

each perceptron node in the layer forming a weight matrix W ∈ R
M×N and a bias vector

b ∈ R
M respectively. Therefore evaluating the output of the Fully Connected layer is the

3. MEASURING EFFICIENCY 65

defined by the following:

yi =





∑

j

Wi,j xj



+ bi

y = W · xj + b

[M] = [M ×N] · [N] + [M]

(C.2)

Activation layer

Nodes in activation layers are introducing non-linearity to the network, by applying the

same non-linear activation function to the corresponding output of the previous layer,

performing element-wise operation. Let F be an activation layer with activation function

f after a fully connected layer with 3 neurons:

F (x) =







f(x1)

f(x2)

f(x3)







These functions are essential for the network, since they increase the numerical stability:

they squeeze or mitigate the input preventing the network from saturation or explosion

(numerical of course). Conventionally the following functions are applied most often as

activation function:

RectifiedLinearUnit(ReLU) :=max {0, x} (C.3)

HyperbolicTangent(TanH) := tanh(x) =
2

1 + e−2x
− 1 (C.4)

SoftPlus(SP) := ln(1 + ex) (C.5)

Logistic(Log) :=
1

1 + e−x
(C.6)

The only constraint on these functions that they have to keep the dimension of the input,

namely Fact : R
N 7→ R

N . Note: These functions do not have any variable parameters,

therefore activation layers cannot be trained.

Measuring efficiency

If the function F mentioned above is given, and satisfies our needs, then we are done.

However this is usually not the case, and finding the optimal F∗ is the main challenge

targeted by many branches of Machine Learning. Despite it was proven, that standard

multilayer feed-forward networks are capable of approximating any measurable function

to any desired degree of accuracy [25], if the goal function F∗ is unknown, or too abstract

to be measurable (i.e. telling how funny a picture is), we cannot utilize the universal

approximator.

4. ADJUSTING PARAMETERS 66

Loss

By reformulating the objective, we can define a Loss function L : F(X) 7→ R, which

maps our candidate F network to a scalar field, that represents the general correctness

of F over the space of possible inputs X – the lower its value the better F is performing.

By doing so we may apply Machine Learning algorithms that would minimize the Loss,

therefore F would converge towards F∗ implicitly.

Note: In practical implementations F is not evaluated over the whole space of possible

inputs, instead in the hope that a small subset of both training and validating sam-

ples called a mini-batch will approximate L(F) as well. Useful practices for reducing

computing complexity and improving stability, and rate of convergence will be covered

later.

Supervised learning

In cases where the parameters of F∗ are not known, but we know how it would map the

input space X 7→ Y, e.g. which character appears on the input image x, then we can

define a set of previously labeled pairs of input - solution sample which could be used

later on for training, and evaluating performance of the network.

Unsupervised learning

When no labeled dataset is available, the network still can be used for extraction of hidden

structure of the unlabeled samples. Later these instances are used as density estimators,

or adapted as feature extractors for larger networks. Generative Networks. Training

such architectures can be done by feeding networks random noise as input and training

them to reproduce given samples: F : Rk 7→ X, hence the name Generative Networks.

Auto-encoder Networks The other frequently applied paradigm is setting the objec-

tive task to compress the input sample into a h ∈ R
k hidden representation vector that

is able to preserve the key information about the original input, and either by symmet-

ric (Restrictive Boltzmann Machines) or independent (Deep Belief networks) operations

decompress the data.

In both cases hyper-parameter k is intuitively the number of unlabeled features in the

latent space that the network will be able to categorize, i.e. correlation between different

color intensities on pictures taken of stained brain samples.

Adjusting parameters

Generally speaking, applying Machine Learning algorithms boils down to the process of

iteratively altering parameters φ of F to optimize the Loss. Once L(F) is obtained, we

4. ADJUSTING PARAMETERS 67

can evaluate how changing the parameters would influence it – evaluate the gradient ∇φF

of the parameters with regards to L.

Gradient Descent

Updating φ by descending on the gradient slope with a small step size ε will decrease L.

Derivation from the general form of Gradient Descent depends on the architecture of the

network, but there is a main concept for doing so, called Backpropagation described by

Werbos et al. [80]. The exact method which can be applied for Fully Connected networks

will be explained in detail in section 5.

Training Policies

Though theoretically after finite steps of iterations, with Gradient Descent F may ap-

proximate any Borel-measurable function, in practice Deep Neural Networks can fall into

local-minimum of the parameter-space. I.e. the network tends to learn the very basic fea-

tures of the input space, if it is not forced to generalize. The problem with generalization

is that the training set has finite samples and extending it requires human-supervision.

Therefore training networks with many layers requires some advanced techniques for

training. There are multiple way to improve the convergence rate and the stability of the

network.

Batch processing. There are two radical methods of updating the parameters in the

network.

Theoretically if we wanted to create a perfect network, we would infer all possible samples

from X and the Loss function L would evaluate the network on every solution (in a single

iteration, without the network being updated), then we would take the mean of the Loss

to evaluate the gradient, e.g.

L∗ =
1

N

∑

x∈X
L(F(x))

One update on the whole training set is called a batch This way, if the capacity of F is

large enough, it is possible to train the network to be able to solve every problem. In a

special case when we want to simulate logical circuits with real values instead of Boolean

true or false, then we can train a network to act like a logical processing unit - since

we are able to map ∀x ∈ X 7→ y ∈ Y by external evaluation.

The other case is more practical, when the train data is not available at once, but in

sequence. The network is usually updated in testing time and that is why it is called

on-line training. The topic is described exhaustively in [66]. In practice the network

is trained previously before on-line training (even if a very few sample are available),

because the responses are not just used for evaluating the Loss function, but taken into

account as valid predictions. Normally there is no opportunity to label freshly acquired

4. ADJUSTING PARAMETERS 68

samples, and this is the main reason that this technique is used mainly in unsupervised

learning tasks. However when supervision is available, then the network can be trained

in the following manner: predictions which were correct are put into the training set, and

the network weights are updated immediately to encourage the same response for similar

samples. A frequent application of on-line training is called Q-learn, for case studies see

[65].

Both methods are powerful for specific tasks, but in practice the solution is in between:

mini-batch training. Inferring multiple samples at the same time with the same network

not just yields a more stable convergence, but is an excellent opportunity to parallelize

the process: Extending by one extra dimension to each stage of the inference (inputs,

transient activations, outputs) can be done easily, also almost every library can take

the advantage to perform optimized matrix operations on tensors (at least NumPy can).

On the second hand, processing only some instead of all of the input samples at once is

computationally a better choice. In real applications it is worth considering 2k mini-batch

sizes because of the requirement of memory allocation [32].

Advanced First order derivatives. Simple heuristics applied to first order deriva-

tives, such as:

Momentum [71] v(n+1) = γvn +∇φn
L and φ(n+1) = φn − εvn

Adagrad [15] r(n+1) = rn+(∇φn
L)2 and φ(n+1) = φn−

ε
γ+

√
rn

(∇φn
L)2 (element-

wise)

RMSProp [74] r(n+1) = (1− ε)rn + ε (∇φn
L)2

Adam [34] Combination of RMSProp and momentum.

A more sophisticated, but expensive method is using second order derivative, for instance

Conjugate gradient [69].

Decreasing the learning rate ε. For large networks it is inevitable to use decreasing

learning rate, otherwise the convergence would take too much time (small ε) or would

not even occur (large ε).

Cross-Validation. Special L̂ = (Ltrain,Lvalidation) functions approximate the effi-

ciency of the network not just by evaluating them on the currently or previously trained

samples, but on samples which are from a totally disjunct set Xvalidation. The motiva-

tion behind it is to see how well would the network perform on samples which it has not

faced before. By doing so we can evaluate how well the network generalized the informa-

tion from samples of the training set. In order to keep Xtrain

⋂

Xvalidation = ∅ we may

not use Lvalidation for parameter updating. However in order to prevent overfitting we

can monitor e.g. generalization error Eg = L̂1

L̂2

during training and use Early Stopping

when Eg > δ, where δ is a parameter of how much we tolerate overfitting.

5. DIFFERENTIATION 69

Networks in practice

Though networks can vary in shape and function, the representation of the succeeding

layers, evaluated by embedded functions described in C.1 is a common feature. Each of

these layers serve as nodes of the computational graph of the network. The type of the

layer determines whether it can be updated or not: for Fully Connected layers ∇φFFC is

well defined, explained in the following example.

Toy example. Assume L is given, and we have a fully connected network with 2 hidden

layers, i.e. L = 3, which maps a F dimensional input vector x to a M dimensional output

vector y, namely F : RN 7→ R
M . The constraint on the parameters are:

W 1 of the first layer must have N columns

W 3 and the bias b3 of the last layer must have M rows, dimensions respectively.

Number of rows of W l must match dim(bl) 3 dimensional

Number of columns of W l must match dim(b(l−1))

Then the evaluation unfolded would look like the following:

y = F(x) = F3 ◦ F2 ◦ F1(x) = W 3(W 2(W 1(x) + b1) + b2) + b3

For further usage and simplicity, I would like to fix these numbers. Let F be a network

with the following shape: [5, 4, 3] meaning that in each layer there are 5, 4, 3 neurons

respectively, M = 3 and all nodes are connected to the previous layer. The width of

the input layer is not yet defined, let it be N = 10. Note: It is usually distracting and

redundant to explicitly write the width of the outermost layers when testing different

networks, because the input and the output layers must have fixed dimension for the

same task, while the width of the hidden layers are varied. Define an L2 Loss function

on the toy example. For one sample-label pair (x, y∗) the L2 Loss is:

L2(F) =
1

2

∑

i

(y∗i −F(x)i)
2 =

1

2

∑

i

(y∗i − yi)
2 (C.7)

L2 is a universal Loss function, which is used in cases where the label space Y is continuous

(e.g. floorspace, consumption and height of a house, based on the price: R
1 7→ R

3).

Differentiation

In the above evaluating of ∇φF can be done in two ways, namely by numerical approxi-

mation, or by analytical derivation, in the following I will discuss both.

5. DIFFERENTIATION 70

Numeric differentiation

Evaluating the numerical gradient (or difference) is an elementary, yet powerful operation,

in which we would perturb, or modify one parameter φ of our system F at once. That is

done by first adding φ+ and after subtracting φ− a little amount dφ from the original φ

and evaluate L± = L(Fφ±), namely the Loss of the system in the modified state, yielding

the numerical gradient in the following equation:

dL(F)

dφ
=

L+ − L−

2dφ
=

L(Fφ+)− L(Fφ−)

2dφ
(C.8)

Summary. In a nutshell value of dL(F)
dφ

tells how changing the parameter φ by dφ would

change the performance of the network. If it is positive then updating F by adding dφ to

φ would result in higher Loss value, which is the opposite of our goal, so we just subtract

it, if it is negative, then trivially we should add dφ to φ since it is making some good

progress.

Complexity

Though letting the computer do the hard work seems to be a good idea, it is worth

considering that the simple method above will be applied to every φ of L. It means

that for the network in the toy example, we need to evaluate L(F) two times for each

parameter in the weight matrices and the bias vectors of the network, totaling in

#(φ) = 2×

3
∑

i=1

N(i−1) ·Ni +Ni = 2× (10 · 5 + 5...+ 4 · 3 + 3) = 188

Even if F is approximated by using k-sized mini-batches for evaluation it is still a com-

putationally very expensive function, because the inference would result in the following

number of operations of addition and multiplication:

#(operations) = k ×

3
∑

i=1

2 ·N(i−1) ·Ni +Ni = k × 176

Therefore approximated with k = 10 mini-batches would a single parameter update of a

very tiny network would require total operations of:

#(total) = #(φ)× k ×#(operations) = 188 · 10 · 176 = 330880 (C.9)

Because both #(φ) and #(operations) has complexity of O(N2), one update will yield

complexity of

#(total) = O(N4) (C.10)

5. DIFFERENTIATION 71

We can see that even for a shallow and relatively small network (industrial Awe networks

has billions of parameters, and uses much larger batches) described in the toy example the

method is really costly. That encourages us to derive our differentials on paper first, and

use numerical gradient approximation for checking our solution. Using Gradient Check

is essential when implementing new architectures, because it is a very efficient tool for

debugging in comparison with updating. The method in a few words is about setting

an error rate ε, and decrease dφ until the numeric solution does not match the analytic

solution with 1 − ε significance. If the analytic solution is incorrect the cycle will not

terminate.

Analytic differentiation

Deriving the update by hand requires basic knowledge in calculus extended to multivari-

ate cases, though since the operations are elementary, in general we must understand

only three basic definitions to do so. Some formality before starting: we have three in-

dependent variables x, y, z and functions f , g, h. The result of operations performed on

variables, i.e. x+ 2y can be represented by a function f = x+ 2y. If the value depends

on a variable then it can be written explicitly, passing the variable as the argument of the

function f(x, y) = x + 2y. For the sake of simplicity assume that the variables are not

general objects from an abstract space, they are only real values: x, y, z ∈ R. However

the following description could be extended for the above-mentioned variables as well.

For any one-dimensional function f(x) : R 7→ R we say that the value represented by

the function depends on the variable by the extent of its derivative. The derivative (or

differential) of the function can be seen as an ideal case of C.8 where the perturbation

would approach zero, namely:

∂f

∂x
= lim

dx→0

df(x)

dx
= lim

dx→0

f(x+ dx)− f(x− dx)

2dx
(C.11)

Multiplication rule. Consider a value x · y · z represented by f(x, y, z). f is now

depending on three variables, we can define the measure of this dependency on one

variable by the formal equation:

∂f

∂x
= lim

dx→0

f(x+ dx, y, z)− f(x− dx, y, z)

dx
= lim

dx→0

((x+ dx) · y · z)− ((x− dx) · y · z)

2dx

= lim
dx→0

(x+ dx)− (x− dx)

2dx
yz = lim

dx→0

2dx

2dx
yz = yz

We can apply the same method for each variable, the result will be the elements of the

gradient ∇f
∂f

∂x
= yz

∂f

∂y
= xz

∂f

∂z
= xy (C.12)

The important thing to understand that in a computational graph, a multiplicative node,

which takes N arbitrary parameters (or arguments), will have a partial derivative for each

variable its output is depending on. In general if these derivatives are represented as a

5. DIFFERENTIATION 72

vector, then it is called the gradient ∇f of f . Also the value of the derivative will be the

product of all variables except the one of which we are computing the influence of on the

output.

Addition rule. Consider a value x · y + x · z represented by g(x, y, z). The change of

g with respect to x is defined with the following shortened equation:

∂g

∂x
= lim

dx→0

((x+ dx)y + (x+ dx)z)− ((x− dx)y + (x− dx)z)

dx
= y + z (C.13)

Notice that – in the terms of computational graphs – if a node contributes to other

different operations (namely x · y and x · z), than the derivative of each occurrence in

later values will be summed up.

Chain rule. Let f(x) = 2x+3 and g(f) = 5f . Suppose that we would like to know the

derivative of g with respect to x. At first we cannot do so, but there are two options: in

the hope that substituting the value represented by f into g would not make the equation

too complex we can unroll the references and rewrite g(x) = 5 · (2x+3), or we could use

the chain rule:
∂g

∂x
= lim

dx→0

g(f(x+ dx))− g(f(x− dx))

2dx

Assume that f(x+ dx)− f(x− dx) 6= 0.

lim
dx→0

g(f(x+ dx))− g(f(x− dx))

f(x+ dx)− f(x− dx)
·
f(x+ dx)− f(x− dx)

2dx

∂g

∂x
=

∂g

∂f
·
∂f

∂x
(C.14)

Which is a formula of the products of partial derivative of g, that treats f like a variable,

and f explicitly operating on variable x. The derivative of g with respect to variable x

is the product of the local derivative of g is ∂g
∂f

= 5 and ∂f
∂x

= 2 which equals ∂g(x)
∂x

=
∂(5·(2x+3))

∂x
= 10, the function strictly depending on x. The important message is that we

can interchangeably use function values and variables with a constraint that at a point,

in an arbitrary depth there must be a real variable. Note: the statement above stands

for computations with Acyclic Graph, meaning that there should not be any feedbacks

or loops – no definitions like f(g), g(f) or f(f). We will see that these rules play a very

fundamental role in training networks.

Vector Notation. Before drilling deep into mathematical equations, a small reminder:

the following vector and matrix formulation is just a special annotation, using the rules

above, which helps to make clear both the definition, and the computations done by the

network when it is implemented. The vectors with partially derivatives inside are just

representing real values, arranged in a fancy way. Every vector and matrix defined in

5. DIFFERENTIATION 73

forward propagation, has its corresponding derivative w.r.t. the Loss. More trivially, if

any value is depending on a list of variables f(x1, x2 · · ·xn) = f(x) (a vector) then there

is a list of partial derivatives w.r.t. to f – forming the gradient ∇f =
(

∂f
x1
, ∂f
x1

· · · ∂f
xN

)

.

Notation: When the vector notation is emphasized the variable name is conventionally

written in bold font x, or is underlined x. Because later the indexing would become too

crowded, we only use the indexed notation when it is necessary, otherwise using x.

The next step is formulating the dependency of multiple functions on multiple variables.

As seen above, a multivariate function has its gradient vector – in the same fashion as

the list of variables were organized into vectors x, values composed of them can also form

a vector F = (f1, f2 · · · fM), composing a multivalued function depending on the same

variables. Doing so yields a first-order derivative matrix, composed of gradient vectors

J = (∇f1,∇f2 · · · ∇fM)T , called the Jacobian of F . The Jacobian has as many rows

as output values F has, and the same number of columns of the variables that fi is a

function of.

J(F) =









∇f1
...

∇fM









=









∂f1
∂x1

· · · ∂f1
∂xN

...
. . .

...
∂fM
∂x1

· · · ∂fM
∂xN









(C.15)

The matrix and vector operations (such as addition and inner product) that can be

performed on the derivative arrays are identical defined in the inference section. That is

important because product of derivatives introduced by the chain rule, can be applied as

well for multidimensional array of derivatives too.

Fully Connected Layer

Return to the toy example and begin with the last layer, with 3 nodes. If a sample x is

inferred F(x) = y, then the response of the network will be a vector of dim(y) = 3. If

we took the L2 distance between the response and the goal y∗, then it would tell how far

we are from the ideal, by a single scalar value. Since we want to minimize it, we have to

adjust the parameters of the network, namely descend on the gradient slope. To get the

small extent of the update we have to evaluate ∂L
∂φ

. Intuitively in the case we would like

to correct the weights of a decision, it would require two things:

The original situation (the input of the lth layer xl), which the decision was made

in.

The error on the decision – the derivative δl of the Loss with regards to the decision.

Since xl is obtained via inference, what we have to calculate is δl for the lth layer in order

to acquire the parameter gradient. The first step is to evaluate the δL, or the error of

the last layer’s response y3, namely δ3 = ∇y3L. Begin with the first element:

δ31 =
∂L

∂y1
=

∂

∂y1

1

2

(

(y∗1 − y1)
2 + (y∗2 − y2)

2 + (y∗3 − y3)
2
)

= y1 − y∗1

5. DIFFERENTIATION 74

Expanding it to the whole array:

δ3 =

















∂L
∂y1

∂L
∂y2

∂L
∂y3

















=



















∂
∂y1

1
2

∑

i(y
∗
i − yi)

2

∂
∂y2

1
2

∑

i(y
∗
i − yi)

2

∂
∂y3

3

1
2

∑

i(y
∗
i − yi)

2



















=

















y1 − y∗1

y2 − y∗2

y3 − y∗3

















Consider the following notation: δ3i = (y∗i −yi), called parametric vector notation. Writing

arrays in this way, saves a lot of space. However, when this notation gets jammed with

indexes, it is useful to write down explicitly the whole array for clarification.

The last layer Now we have exact values of δ3 and x3, so we can calculate how should

the weights in W 3 be changed in order to get a better network. Applying the differenti-

ation rules for each weight (forming a matrix) of the layer will result in a derivative for

each weight (also forming a matrix). Taking the first perceptron of the layer, it has a

weight W 3
1 = (W1,1,W1,2,W1,3,W1,4) for each output of the previous layer.

Suppose that this neuron had to tell how rounded is the object on an image sample, and

the ith neuron of the 2nd layer fires when it recognizes sharp edges. Of course it would be

bad if our neuron had a large weight on x3i . If this node performs poorly because of x3i ,

then it would contribute a lot to the Loss function while inferring sharp objects, with its

output y1 being far away from y∗1, resulting in a positive δ31 . In case of x3i = 0, the weight

W1,i has nothing to do with the error δ31 of the neuron. Notice that the error of each

weight (w.r.t L) should be proportional to the error and the input as well: ∂L
∂w1,i

= x3i ·δ
3
1 .

However it can be also derived in terms of the differentiation rules:

∂L

∂W1,i
=

∂L

∂y31
·

∂y31
∂W1,i

= δ31 · x
3
i

Considering the parameter update. assume that a picture of an origami sculpture

(a very edgy one) was inferred and the ith node of the second layer worked correctly. Both

x3i and δ31 is positive, however the weight should be decreased: that is why we will take

the negative of the derivative for updating w1,i. Substituting i = 1, 2, 3, 4 into ∂L
∂w1,i

yields

a gradient of L with regards to the weights of the first neuron of the last layer. Doing so

for each neurons in the layer would result in 3 gradient vectors ∇W1
L, ∇W2

L and ∇W3
L

which is practically stacked to make a matrix which can be later added element-wisely

to the weight matrix W .

∇WL =



















∂L
∂W1,1

∂L
∂W1,2

∂L
∂W1,3

∂L
∂W1,4

∂L
∂W2,1

∂L
∂W2,2

∂L
∂W2,3

∂L
∂W2,4

∂L
∂W3,1

∂L
∂W3,2

∂L
∂W3,3

∂L
∂W3,4



















=

















x1δ1 x2δ1 x3δ1 x4δ1

x1δ2 x2δ2 x3δ2 x4δ2

x1δ3 x2δ3 x3δ3 x4δ3

















5. DIFFERENTIATION 75

The last part of the equation can be also expressed as:

∇WL =

(

∂L

∂Wi,j

)

= (xjδi) = x ∧ δ (C.16)

Where ∧ denotes the outer product operator. The gradient of the bias is simply ∇bLL =

δL.

The (L− 1)th layer. Gradient descent can be applied on networks with more than one

layer, however continuing the example of the image descriptor network requires a bit more

abstraction. In the previous explanation we assumed that the ith neuron of the second

layer worked properly. In general cases this assumption is incorrect, if the whole network

is initialized at once. If we think about that also the mentioned neuron in the last hidden

layer should be trained, then we can apply the same method with a 4 dimensional δ(L−1)

and with a 5 dimensional x(L−1) input.

Note: Capital L is representing the number of layers. In the toy example L = 3.

Acquiring the δ(L−1) is where the chain rule (C.14) steps into the scene. While in the

example before we could find an intuitive workaround, in this case it would be quite

strained, since L does not depend directly on y(L−1). Utilizing the chain rule:

δ(L−1) =
∂L

∂y(L−1)
=

∂L

∂yL
·

∂yL

∂y(L−1)
= δL · J(FL) (C.17)

Where J(FL) denotes the Jacobian (C.15) of the function representing the projection of

the last layer FL : R4 7→ R
3. It is a map of how each input variable affects the output

of the layer. In general: the Jacobian numerically can be represented as a 3× 4 matrix,

analytically as a local derivative of function F . In case of Fully Connected layers the

Jacobian is simply the weight matrix F (Fl) = Wl (the bias drops out here).

For derivative of scalar values (R) the product operator is well defined, and it can be

expanded the same way to derivatives of multidimensional values as regular inner product

of the values they are composed of. Note: In order to stay consistent with the dimensions

of the computation, we have to switch sides of the matrix multiplication defined in (C.2):

δ
(L−1)
j =

∑

j

δLi WL
i,j

δ(L−1) = δL ·WL

[4] = [3] · [3× 4]

(C.18)

Backpropagation

The backpropagation algorithm, first described by Werbos et. al [80]

5. DIFFERENTIATION 76

The lth layer. The contribution to the Loss of the general lth layer δl can be retrieved

by unfolding ∂L
∂yl

applying the chain rule, namely the backpropagation:

δl =
∂L

∂yl
=

∂L

∂yL
·

∂yL

∂y(L−1)
· · ·

∂y(l+1)

∂yl

δl = δL · J(FL) · J(F(L−1)) · · · J(F(l−1))

[dim(l)] = [dim(L)] · [dim(L)× dim(L− 1)] · · · [dim(l + 1)× dim(l)]

(C.19)

Note: the order of evaluating these derivatives is theoretically irrelevant, however com-

putationally there is an opportunity to implement it in two ways [30]:

forward-mode differentiation: evaluating in the order of layers is efficient in cases

where the output of the network is much larger than the input

reverse-mode differentiation: evaluating in reversed order for networks with fewer

outputs than inputs.

As pointed out in the thesis, the former would require (L− l) times evaluating a matrix-

matrix product and one vector-matrix operation, while the latter would require (L −

l) times evaluating a vector-matrix product and one matrix-matrix at the end. Using

forward-mode differentiation does not require keeping transient activations yl, however

it is computationally costly. Using backward-mode differentiation does not strain the

CPU, but the memory. It is because if J(Fl) is not linear, then it requires the input xl

to evaluate the first order derivatives.

Activation Layer

Though the activation layer operates on the input, it has no adjustable parameter. Since

we have to evaluate δ for layers behind activation layers, the error must pass through

J(Factivation as well. Luckily activation layers applies a scalar function element-wise

on the inputs, the Jacobian of the composite function F has a special attribute: it is

diagonal, meaning that:

J(F) =
∂Fi

∂xj
=







∂f(xi)
∂xi

i = j

0 i 6= j

We can exploit this function when implementing activation layers, by simply using

element-wise product ∂f(xi)
∂xi

instead of a matrix multiplication. The mentioned activation

functions (C.3, C.4, C.5, C.6), are differentiable almost everywhere, the corresponding

5. DIFFERENTIATION 77

derivatives:

(ReLU)′ :=Heaviside(x) (C.20)

(TanH)′ :=1− tanh(x)2 (C.21)

(SP)′ :=
1

1 + e−x
(C.22)

(Log)′ :=Logistic(x) · (1− Logistic(x)) (C.23)

Pooling layers

Pooling layers are decreasing the parameter space with a fixed down-sampling projection

which operates independently on tiles of input. In general pooling layers are moving a

N-sized window, or a tile through the data taking stride steps. Data in each window is

collapsed by an aggregation function, such as mean() or max() lowering the computational

complexity of the next layers processes. Implementation of this layer can be a bottleneck

of inference, since the operations carried out in each window may rely on the same

input values if N > stride i.e. windows overlap. In my library a single max-pool

layer is implemented with fixed parameters: stride = N = 2. Further information

see [32] ~/convolutional-networks/#pool.

k-WTA

k-Winner Takes All layers are similar to pooling layers, without preserving spatial infor-

mation. They function as a threshold of the previous layer, only passing those activations

which have the largest magnitude among the others. Gradient is also distributed between

those neurons which were passed by the k-WTA layer. Mainly used in fully-connected

networks for reducing computational complexity. This layer was applied when generating

MNIST visualization. For further information see [45].

Dropout

Dropout layers target the problem of overfitting, being considered as a method of regular-

ization. In theory they reduce complex co-adaptation via model averaging, by generating

different networks (using the same parameters) in each forward pass [23]. Practically

they drop activations of the previous layer (with random Bernoulli(p) probability) when

propagating information, forcing succeeding layers to not depend on an individual neu-

ron of the layer before. Computationally it is very efficient to create different, so called

sub-networks: both for forward and backward pass a single Boolean array mask is used.

Note: Dropout layers are reducing the overall magnitude of the activation of the previous

layer, considering that latent layers would be saturated when dropout layers were removed

after training, the activations passed by this layer are multiplied by the constant 1
p
.

~/convolutional-networks/#pool

5. DIFFERENTIATION 78

DropConnect. A similar concept, introduced by Li Wan et al. [78]: instead of dropping

the activation of the previous layer, the weights of the layer are canceled out in the same

fashion. In my implementation they can be only applied to fully-connected layers, where

a Boolean matrix mask is used.

Output

On the top of every network there should be a dedicated layer, which arranges the net-

works response. If a (sample, label) pair was inferred it also evaluates the result and

output a (response, loss) pair. Therefore the output layer will determine how the net-

work will be trained, and the response interpreted

Softmax. In case of classification, when the network has to decide which set was the

input sampled from, then we can transform the response into a categorical probability

distribution, i.e. how confident each neuron in the last layer in classifying the input as

their ’own’. For that, we use one-hot notation, where y∗i = [0, 0 · · · 1 · · · 0] (with only

one non-zero element) represents the ground-truth label, the ith class. The response will

be turned into a discrete density function, e. g. = [0.1, 0.6, 0.2, 0.1] can be interpreted

as the following: the input x is categorized as a sample from the second class with 60%

confidence. Notice that |p|1 =
∑

i yi = 1 constraint should be satisfied. To transform

a real valued N dimensional vector y ∈ R
N to the mentioned probability distribution

p ∈ ΩN we apply the Softmax function:

pi =
exp(yi)

| exp(y)|1
(C.24)

Conventionally the corresponding Loss function is the log-loss or cross-entropy func-

tion:

L(y) = −
∑

i

y∗i log pi (C.25)

5. DIFFERENTIATION 79

and the derivation of its gradient w.r.t. the original response of the last layer y, is the

following (based on [28]):

∂L

∂yi
= −

∑

k

y∗j
∂ log pj
∂yi

= −
∑

k

y∗j
pj

∂pj
∂yi

= −y∗i (1− pi)−
∑

j 6=i

y∗j
pj

(pipj)

= −y∗i − y∗i pi +
∑

j 6=i

y∗j pi

= −y∗i +
∑

j

y∗j pi

= pi





∑

j

y∗j



− y∗i

= pi − y∗i

(C.26)

The trick of the derivation is that y∗ has only one non-zero element which is 1, and the

lemma:

∂pj
∂yi

=







pi(1− pi) i = j

−pipj i 6= j

Bibliography

[1] A Support Vector Machine approach for reliable detection of atrial fibrillation events

- IEEE Conference Publication. url: http://ieeexplore.ieee.org/abstract/

document/6713560/ (visited on 11/18/2017).

[2] AF Classification from a short single lead ECG recording: the PhysioNet/Computing

in Cardiology Challenge 2017. url: https://physionet.org/challenge/2017/

(visited on 05/08/2017).

[3] R Alcaraz et al. “Wavelet sample entropy: A new approach to predict termination

of atrial fibrillation”. In: Computers in Cardiology, 2006. IEEE. 2006, pp. 597–600.

[4] Atrial fibrillation detection by heart rate variability in Poincare plot | BioMedi-

cal Engineering OnLine | Full Text. url: https://biomedical- engineering-

online.biomedcentral.com/articles/10.1186/1475-925X-8-38 (visited on

11/18/2017).

[5] Automatic online detection of atrial fibrillation based on symbolic dynamics and

Shannon entropy | BioMedical Engineering OnLine | Full Text. url: https://

biomedical- engineering- online.biomedcentral.com/articles/10.1186/

1475-925X-13-18 (visited on 11/18/2017).

[6] Saeed Babaeizadeh et al. “Improvements in atrial fibrillation detection for real-

time monitoring”. eng. In: Journal of Electrocardiology 42.6 (Dec. 2009), pp. 522–

526. issn: 1532-8430. doi: 10.1016/j.jelectrocard.2009.06.006.

[7] Evgeny Burnaev, Pavel Erofeev, and Artem Papanov. “Influence of Resampling on

Accuracy of Imbalanced Classification”. In: arXiv:1707.03905 [cs, stat] (Dec. 2015).

arXiv: 1707.03905, p. 987521. doi: 10.1117/12.2228523. url: http://arxiv.

org/abs/1707.03905 (visited on 11/16/2017).

[8] Emre Çakır et al. “Convolutional Recurrent Neural Networks for Polyphonic Sound

Event Detection”. In: IEEE/ACM Transactions on Audio, Speech, and Language

Processing 25.6 (June 2017). arXiv: 1702.06286, pp. 1291–1303. issn: 2329-9290,

2329-9304. doi: 10.1109/TASLP.2017.2690575. url: http://arxiv.org/abs/

1702.06286 (visited on 11/16/2017).

80

http://ieeexplore.ieee.org/abstract/document/6713560/
http://ieeexplore.ieee.org/abstract/document/6713560/
https://physionet.org/challenge/2017/
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-8-38
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-8-38
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-18
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-18
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-18
https://doi.org/10.1016/j.jelectrocard.2009.06.006
https://doi.org/10.1117/12.2228523
http://arxiv.org/abs/1707.03905
http://arxiv.org/abs/1707.03905
https://doi.org/10.1109/TASLP.2017.2690575
http://arxiv.org/abs/1702.06286
http://arxiv.org/abs/1702.06286

BIBLIOGRAPHY 81

[9] Marta Carrara et al. “Heart rate dynamics distinguish among atrial fibrillation,

normal sinus rhythm and sinus rhythm with frequent ectopy”. eng. In: Physiological

Measurement 36.9 (Sept. 2015), pp. 1873–1888. issn: 1361-6579. doi: 10.1088/

0967-3334/36/9/1873.

[10] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural networks on

sequence modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

[11] ROBERTA COLLOCA. Implementation and testing of atrial fibrillation detectors

for a mobile phone application. eng. Laurea Magistrale / Specialistica. Apr. 2013.

url: https : / / www . politesi . polimi . it / handle / 10589 / 78201 (visited on

11/18/2017).

[12] Deeptankar DeMazumder et al. “Dynamic analysis of cardiac rhythms for discrim-

inating atrial fibrillation from lethal ventricular arrhythmias”. eng. In: Circulation.

Arrhythmia and Electrophysiology 6.3 (June 2013), pp. 555–561. issn: 1941-3084.

doi: 10.1161/CIRCEP.113.000034.

[13] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE.

2009, pp. 248–255.

[14] Xiaochuan Du et al. “A Novel Method for Real-Time Atrial Fibrillation Detec-

tion in Electrocardiograms Using Multiple Parameters”. In: Annals of Noninvasive

Electrocardiology 19.3 (2014), pp. 217–225.

[15] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for

online learning and stochastic optimization”. In: Journal of Machine Learning Re-

search 12.Jul (2011), pp. 2121–2159.

[16] Yaroslav Ganin et al. “Domain-Adversarial Training of Neural Networks”. In: arXiv:1505.07818

[cs, stat] (May 2015). arXiv: 1505.07818. url: http://arxiv.org/abs/1505.07818

(visited on 05/07/2017).

[17] Manuel García et al. “Application of the relative wavelet energy to heart rate in-

dependent detection of atrial fibrillation”. In: Computer methods and programs in

biomedicine 131 (2016), pp. 157–168.

[18] Leon A Gatys et al. “Controlling perceptual factors in neural style transfer”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[19] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and

semantic segmentation”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2014, pp. 580–587.

[20] Global, regional, and national life expectancy, all-cause mortality, and cause-specific

mortality for 249 causes of death, 1980-2015: a systematic ... - PubMed - NCBI.

url: https://www.ncbi.nlm.nih.gov/pubmed/27733281 (visited on 11/20/2017).

[21] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–

778.

https://doi.org/10.1088/0967-3334/36/9/1873
https://doi.org/10.1088/0967-3334/36/9/1873
https://www.politesi.polimi.it/handle/10589/78201
https://doi.org/10.1161/CIRCEP.113.000034
http://arxiv.org/abs/1505.07818
https://www.ncbi.nlm.nih.gov/pubmed/27733281

BIBLIOGRAPHY 82

[22] Kaiming He et al. “Identity Mappings in Deep Residual Networks”. In: arXiv:1603.05027

[cs] (Mar. 2016). arXiv: 1603.05027. url: http://arxiv.org/abs/1603.05027

(visited on 05/22/2017).

[23] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation

of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[25] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward

networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[26] Chao Huang et al. “A novel method for detection of the transition between atrial

fibrillation and sinus rhythm”. eng. In: IEEE transactions on bio-medical engineer-

ing 58.4 (Apr. 2011), pp. 1113–1119. issn: 1558-2531. doi: 10.1109/TBME.2010.

2096506.

[27] Gao Huang et al. “Densely Connected Convolutional Networks”. In: arXiv:1608.06993

[cs] (Aug. 2016). arXiv: 1608.06993. url: http://arxiv.org/abs/1608.06993

(visited on 11/20/2017).

[28] Moos Hueting. Accessed: June 5, 2025. url: http://math.stackexchange.com/

questions/945871.

[29] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift”. In: arXiv:1502.03167 [cs]

(Feb. 2015). arXiv: 1502.03167. url: http://arxiv.org/abs/1502.03167 (visited

on 05/09/2017).

[30] Andrej Karpathy. “Connecting Images and Natural Language”. PhD thesis. Stan-

ford University, 2016.

[31] Andrej Karpathy. “Andrej Karpathy blog Hacker’s guide to Neural Networks”. Ac-

cessed: June 5, 2025. url: http://karpathy.github.io/neuralnets/.

[32] Andrej Karpathy, Fei-Fei Li, and Justin Johnson. “CS231n Convolutional Neural

Networks for Visual Recognition.” Accessed: June 5, 2025. 2016. url: http://

cs231n.github.io/.

[33] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014). url: https://arxiv.org/abs/1412.6980

(visited on 05/08/2017).

[34] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[35] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: arXiv:1706.02515

[cs, stat] (June 2017). arXiv: 1706.02515. url: http://arxiv.org/abs/1706.

02515 (visited on 11/20/2017).

[36] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features from

tiny images”. In: (2009).

http://arxiv.org/abs/1603.05027
https://doi.org/10.1109/TBME.2010.2096506
https://doi.org/10.1109/TBME.2010.2096506
http://arxiv.org/abs/1608.06993
http://math.stackexchange.com/questions/945871
http://math.stackexchange.com/questions/945871
http://arxiv.org/abs/1502.03167
http://karpathy.github.io/neuralnets/
http://cs231n.github.io/
http://cs231n.github.io/
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1706.02515

BIBLIOGRAPHY 83

[37] Siddharth Krishna Kumar. “On weight initialization in deep neural networks”. In:

arXiv:1704.08863 [cs] (Apr. 2017). arXiv: 1704.08863. url: http://arxiv.org/

abs/1704.08863 (visited on 11/20/2017).

[38] Steven Ladavich and Behnaz Ghoraani. “Rate-independent detection of atrial fib-

rillation by statistical modeling of atrial activity”. In: Biomedical Signal Processing

and Control 18 (2015), pp. 274–281.

[39] Douglas E. Lake and J. Randall Moorman. “Accurate estimation of entropy in

very short physiological time series: the problem of atrial fibrillation detection in

implanted ventricular devices”. eng. In: American Journal of Physiology. Heart and

Circulatory Physiology 300.1 (Jan. 2011), H319–325. issn: 1522-1539. doi: 10.

1152/ajpheart.00561.2010.

[40] Martin Längkvist, Lars Karlsson, and Amy Loutfi. “A review of unsupervised fea-

ture learning and deep learning for time-series modeling”. In: Pattern Recognition

Letters 42 (2014), pp. 11–24.

[41] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database

of handwritten digits. 1998.

[42] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech,

and time series”. In: The handbook of brain theory and neural networks 3361.10

(1995), p. 1995.

[43] Qiao Li et al. “Signal processing and feature selection preprocessing for classification

in noisy healthcare data”. In: Aug. 2016. isbn: 9781849199780.

[44] David T. Linker. “Accurate, Automated Detection of Atrial Fibrillation in Ambu-

latory Recordings”. eng. In: Cardiovascular Engineering and Technology 7.2 (June

2016), pp. 182–189. issn: 1869-4098. doi: 10.1007/s13239-016-0256-z.

[45] Qingshan Liu and Jun Wang. “Two k-winners-take-all networks with discontinuous

activation functions”. In: Neural Networks 21.2 (2008), pp. 406–413.

[46] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Net-

works for Semantic Segmentation”. In: The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). June 2015.

[47] Luca Mainardi, Leif Sörnmo, and Sergio Cerutti. “Understanding Atrial Fibrillation:

The Signal Processing Contribution, Part I”. In: Synthesis Lectures on Biomedical

Engineering 3.1 (Jan. 2008), pp. 1–129. issn: 1930-0328. doi: 10.2200/S00152ED1V01Y200809BME024

url: http://www.morganclaypool.com/doi/abs/10.2200/S00152ED1V01Y200809BME024

(visited on 11/18/2017).

[48] Luca Mainardi, Leif Sörnmo, and Sergio Cerutti. “Understanding Atrial Fibril-

lation: The Signal Processing Contribution, Part II”. In: Synthesis Lectures on

Biomedical Engineering 3.1 (Jan. 2008), pp. 1–139. issn: 1930-0328. doi: 10.2200/

S00153ED1V01Y200809BME025. url: http://www.morganclaypool.com/doi/abs/

10.2200/S00153ED1V01Y200809BME025 (visited on 11/18/2017).

http://arxiv.org/abs/1704.08863
http://arxiv.org/abs/1704.08863
https://doi.org/10.1152/ajpheart.00561.2010
https://doi.org/10.1152/ajpheart.00561.2010
https://doi.org/10.1007/s13239-016-0256-z
https://doi.org/10.2200/S00152ED1V01Y200809BME024
http://www.morganclaypool.com/doi/abs/10.2200/S00152ED1V01Y200809BME024
https://doi.org/10.2200/S00153ED1V01Y200809BME025
https://doi.org/10.2200/S00153ED1V01Y200809BME025
http://www.morganclaypool.com/doi/abs/10.2200/S00153ED1V01Y200809BME025
http://www.morganclaypool.com/doi/abs/10.2200/S00153ED1V01Y200809BME025

BIBLIOGRAPHY 84

[49] Pankaj Malhotra et al. “Long short term memory networks for anomaly detection

in time series”. In: Proceedings. Presses universitaires de Louvain. 2015, p. 89.

[50] Tomas Mikolov et al. “Recurrent neural network based language model.” In: Inter-

speech. Vol. 2. 2010, p. 3. url: http://www.fit.vutbr.cz/research/groups/

speech/servite/2010/rnnlm_mikolov.pdf (visited on 05/09/2017).

[51] Roni Mittelman. “Time-series modeling with undecimated fully convolutional neu-

ral networks”. In: arXiv preprint arXiv:1508.00317 (2015).

[52] Yasumasa Miyamoto and Kyunghyun Cho. “Gated Word-Character Recurrent Lan-

guage Model”. In: arXiv:1606.01700 [cs] (June 2016). arXiv: 1606.01700. url:

http://arxiv.org/abs/1606.01700 (visited on 05/07/2017).

[53] Michael Nielsen. “Neural Networks and Deep Learning”. Accessed: June 5, 2025.

2016. url: http://neuralnetworksanddeeplearning.com/.

[54] Chris Olah. Understanding LSTM Networks – colah’s blog. url: http://colah.

github.io/posts/2015-08-Understanding-LSTMs/ (visited on 05/07/2017).

[55] Aaron van den Oord et al. “WaveNet: A Generative Model for Raw Audio”. In:

arXiv:1609.03499 [cs] (Sept. 2016). arXiv: 1609.03499. url: http://arxiv.org/

abs/1609.03499 (visited on 11/19/2017).

[56] Optimal parameters study for sample entropy-based atrial fibrillation organization

analysis - Surrey Research Insight Open Access. url: http://epubs.surrey.ac.

uk/124492/ (visited on 11/18/2017).

[57] Julien Oster and Gari D. Clifford. “Impact of the presence of noise on RR interval-

based atrial fibrillation detection”. eng. In: Journal of Electrocardiology 48.6 (Dec.

2015), pp. 947–951. issn: 1532-8430. doi: 10.1016/j.jelectrocard.2015.08.013.

[58] Andrius Petrėnas, Vaidotas Marozas, and Leif Sörnmo. “Low-complexity detection

of atrial fibrillation in continuous long-term monitoring”. eng. In: Computers in

Biology and Medicine 65 (Oct. 2015), pp. 184–191. issn: 1879-0534. doi: 10.1016/

j.compbiomed.2015.01.019.

[59] Andrius Petrenas et al. “An echo state neural network for QRST cancellation during

atrial fibrillation”. In: IEEE Transactions on Biomedical Engineering 59.10 (2012),

pp. 2950–2957.

[60] Andrius Petrėnas et al. “Detection of occult paroxysmal atrial fibrillation”. eng.

In: Medical & Biological Engineering & Computing 53.4 (Apr. 2015), pp. 287–297.

issn: 1741-0444. doi: 10.1007/s11517-014-1234-y.

[61] Helmut Pürerfellner et al. “P-wave evidence as a method for improving algorithm

to detect atrial fibrillation in insertable cardiac monitors”. In: Heart Rhythm 11.9

(2014), pp. 1575–1583.

[62] Pranav Rajpurkar et al. “Cardiologist-Level Arrhythmia Detection with Convolu-

tional Neural Networks”. In: arXiv:1707.01836 [cs] (July 2017). arXiv: 1707.01836.

url: http://arxiv.org/abs/1707.01836 (visited on 11/16/2017).

http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf
http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf
http://arxiv.org/abs/1606.01700
http://neuralnetworksanddeeplearning.com/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://epubs.surrey.ac.uk/124492/
http://epubs.surrey.ac.uk/124492/
https://doi.org/10.1016/j.jelectrocard.2015.08.013
https://doi.org/10.1016/j.compbiomed.2015.01.019
https://doi.org/10.1016/j.compbiomed.2015.01.019
https://doi.org/10.1007/s11517-014-1234-y
http://arxiv.org/abs/1707.01836

BIBLIOGRAPHY 85

[63] James A Reiffel et al. “Practice patterns among United States cardiologists for

managing adults with atrial fibrillation (from the AFFECTS Registry)”. In: The

American journal of cardiology 105.8 (2010), pp. 1122–1129.

[64] Juan Ródenas et al. “Wavelet Entropy Automatically Detects Episodes of Atrial

Fibrillation from Single-Lead Electrocardiograms”. In: Entropy 17.9 (2015), pp. 6179–

6199.

[65] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist

systems. University of Cambridge, Department of Engineering, 1994.

[66] David Saad. On-line learning in neural networks. Vol. 17. Cambridge University

Press, 2009.

[67] Adam Santoro et al. “One-shot Learning with Memory-Augmented Neural Net-

works”. In: arXiv:1605.06065 [cs] (May 2016). arXiv: 1605.06065. url: http://

arxiv.org/abs/1605.06065 (visited on 05/07/2017).

[68] Shantanu Sarkar, David Ritscher, and Rahul Mehra. “A detector for a chronic

implantable atrial tachyarrhythmia monitor”. eng. In: IEEE transactions on bio-

medical engineering 55.3 (Mar. 2008), pp. 1219–1224. issn: 0018-9294. doi: 10.

1109/TBME.2007.903707.

[69] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method

without the agonizing pain. 1994.

[70] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: arXiv:1409.1556 [cs] (Sept. 2014). arXiv: 1409.1556.

url: http://arxiv.org/abs/1409.1556 (visited on 05/09/2017).

[71] Ilya Sutskever et al. “On the importance of initialization and momentum in deep

learning.” In: ICML (3) 28 (2013), pp. 1139–1147.

[72] K. Tateno and L. Glass. “Automatic detection of atrial fibrillation using the co-

efficient of variation and density histograms of RR and deltaRR intervals”. eng.

In: Medical & Biological Engineering & Computing 39.6 (Nov. 2001), pp. 664–671.

issn: 0140-0118.

[73] Tomás Teijeiro et al. “Arrhythmia Classification from the Abductive Interpretation

of Short Single-Lead ECG Records”. In: arXiv:1711.03892 [cs] (Nov. 2017). arXiv:

1711.03892. url: http://arxiv.org/abs/1711.03892 (visited on 11/20/2017).

[74] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude”. In: COURSERA: Neural Networks

for Machine Learning 4.2 (2012).

[75] Andreas Veit, Michael Wilber, and Serge Belongie. “Residual Networks Behave

Like Ensembles of Relatively Shallow Networks”. In: arXiv:1605.06431 [cs] (May

2016). arXiv: 1605.06431. url: http://arxiv.org/abs/1605.06431 (visited on

05/09/2017).

[76] Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: (June 2016).

(Visited on 05/07/2017).

http://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1605.06065
https://doi.org/10.1109/TBME.2007.903707
https://doi.org/10.1109/TBME.2007.903707
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.03892
http://arxiv.org/abs/1605.06431

BIBLIOGRAPHY 86

[77] Li Wan et al. “Regularization of neural networks using dropconnect”. In: Proceed-

ings of the 30th International Conference on Machine Learning (ICML-13). 2013,

pp. 1058–1066. url: http://machinelearning.wustl.edu/mlpapers/papers/

icml2013_wan13 (visited on 05/08/2017).

[78] Li Wan et al. “Regularization of neural networks using dropconnect”. In: Proceed-

ings of the 30th International Conference on Machine Learning (ICML-13). 2013,

pp. 1058–1066.

[79] Zhiguang Wang, Weizhong Yan, and Tim Oates. “Time Series Classification from

Scratch with Deep Neural Networks: A Strong Baseline”. In: arXiv preprint arXiv:1611.06455

(2016).

[80] Paul John Werbos. The roots of backpropagation: from ordered derivatives to neural

networks and political forecasting. Vol. 1. John Wiley & Sons, 1994.

[81] Jason Yosinski et al. “Understanding neural networks through deep visualization”.

In: arXiv preprint arXiv:1506.06579 (2015).

[82] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated Con-

volutions”. In: arXiv:1511.07122 [cs] (Nov. 2015). arXiv: 1511.07122. url: http:

//arxiv.org/abs/1511.07122 (visited on 11/19/2017).

[83] Morteza Zabihi et al. “Detection of Atrial Fibrillation in ECG Hand-held Devices

using a Random Forest Classifier”. In: Sept. 2017.

[84] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional

networks”. In: European Conference on Computer Vision. Springer. 2014, pp. 818–

833.

http://machinelearning.wustl.edu/mlpapers/papers/icml2013_wan13
http://machinelearning.wustl.edu/mlpapers/papers/icml2013_wan13
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122

	Abstract
	Acknowledgement
	Introduction
	Neural Networks
	Application for better purposes
	Contributions and Outline

	Related Works
	Medical signal processing
	Machine Learning

	Deep Learning models
	Variable length representation
	Fully Convolutional Networks (FCN)
	Residual Networks (ResNet)

	Fixed length representation
	Long Short Term Memory networks (LSTM)

	Classification
	Advanced methods
	Dilated convolution
	SELU
	Representation learning on different domains
	Augmentation and transfer learning

	Evaluation
	Test environment
	Evaluation

	Train environment
	The training set
	Data standardization
	Default parameters

	Time domain classification
	Initial experiments
	Late experiments
	Conclusions

	Frequency domain classification
	Initial experiments
	Late experiments

	Multi-domain classification
	Late experiments

	Medical Relevance and Visualization
	Quality of data set
	Method
	Results

	Confidence of the classifier
	Methods
	Results

	Most relevant segments of recordings
	Coloring the graph background.
	Classes against each other.
	Weights under sublogit layer.
	Further experiments.

	Summary
	Contributions
	Challenge results and collaboration
	Future work

	Appendices
	The cardiac conduction and stimulus formation
	Most and Least Confident Classification Cases
	Most confident classification cases of normal class
	Most confident classification cases of AF class
	Least confident classification cases of normal class
	Least confident classification cases of AF class

	Neural Network Basics
	Single Layered networks
	Defining the Perceptron
	Basics of Learning

	Inference
	Fully Connected layer
	Activation layer

	Measuring efficiency
	Loss
	Supervised learning
	Unsupervised learning

	Adjusting parameters
	Gradient Descent
	Training Policies
	Networks in practice

	Differentiation
	Numeric differentiation
	Complexity
	Analytic differentiation
	Fully Connected Layer
	Backpropagation
	Activation Layer
	Pooling layers
	k-WTA
	Dropout
	Output

	Bibliography

