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Abstract

Although MR imagig was invented less then 50 years ago, it has revolutionized medical

imaging and diagnostic process as we know it. Its versatility makes it fit a wide range of

use cases, and compared to other imaging technologies, MRI demonstrates important

advantages in many cases, such as lack of ionizing radiation, adjustable contrast range,

and excellent differentiation between soft tissues. However, it has also a disadvantage:

the imaging speed is undesirably slow. While it is only inconvenience in some cases,

dynamic images of chest, for example, gets blurred by the different motions of the body,

like breathing and cardiac motion. There are new technologies that improves the imag-

ing process itself, but strong image reconstruction algorithms can vastly improve the

quality.

Among the many software techniques invented to improve image quality, com-

pressed sensing is inevitably is one of the most impactful theoretical construction, in-

troduced by Donoho, Candès, Romberg, and Tao in 2004 [1]–[3]. In contrast to the

Nyquist-Shannon theorem that asserts that continuous band-limited signals can be per-

fectly reconstructed from samples taken at a rate of twice the highest frequency present

in the signal of interest, compressed sensing allows lossless reconstruction from much

lower number of samples given that certain natural conditions are satisfied.

In this thesis work, we consider the classic results as well as the recent advances

within of the compressed sensing framework and their application to real life MR imag-

ing. In particular, we closely examine two recent publications presenting state-of-the-art

solutions combining conventional techniques with novel ideas.

Afterwards, we present our implementation of these algorithms along with the im-

plementation of a recently invented algorithm from the family of iteratively reweighted

least squares (IRLS) methods that previously have not been applied to MRI setting yet.

For the language of implementation we have chosen Julia, a new open-source language

released in 2012, as this language fits well the image reconstruction problem being in-

herently fast with a speed often comparable to C, and providing convenient environ-

iv



ment for fast prototyping.

Finally, we compare these algorithm with respect to reconstruction power from mas-

sively undersampled data and noise tolerance. Our results demonstrates the fitness of

the Julia language to prototyping and also shows strong benchmark suggesting that a

robust extension of the new IRLS method can bring enormous improvement to recon-

struction quality or imaging speed.
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Chapter 1

Introduction

While the fast evolution of technology profoundly changed today’s medicine, unar-

guably the medical imaging is of the fields which profited the most of the computation

power recently became available. And as X-rays revolutionized medical treatments

in the beginning of the 20th century, after its discovery by Wilhelm Conrad Röntgen,

the appearance of computer-aided imaging techniques such as computer tomography

(CT), diagnostic ultrasonography, positron emission tomography (PET), and magnetic

resonance imaging (MRI) opened a new horizon drastically increasing the resolution,

allowing 3D imaging, providing reliable dynamic recordings, and enhancing images

by automated post-processing [4]. In the recent decades radiology evolved to be an

interdisciplinary field involving, for instance, molecular biology, nuclear physics, ap-

plied mathematics, and computer science besides the classical medical fields such as

anatomy, angiology, and cardiology.

1.1. Magnetic Resonance Imaging

In particular, MRI has revolutionized medical imaging and diagnostic process as we

know it. Its versatility makes it fit a wide range of use cases. Compared to other imaging

technologies, MRI demonstrates important advantages in many cases.

• In contrast to X-ray, MRI doesn’t use any ionizing radiation, and hence it is totally

harmless to the patient. Also, MRI has enhanced resolution for soft tissues com-

pared to any other modality, in particular neural tissue, while X-rays are rather

used for diagnosing bone degeneration, dislocation, fracture or some tissue infec-

tion. Furthermore, MRI allows 3D scans. Nevertheless, MRI scanners are slow

and expensive compare to X-ray scan machines and therefore hardware and soft-

1



ware improvements are necessary for its wider use.

• As CT scanning is based on X-rays, it shares the downside with X-rays, doctors

need to evaluate the possible benefits of the scan and decide if it outweighs the

potential complications of exposure to ionizing radiations. MRI, however, elicit

this problem, although at the price of a elongated imaging process. Comparing

the medical problems where these technologies are used, one can conclude that

CT scan is very helpful in diagnosing severe injuries of the chest, head, spine or

abdomen, particularly fractures, and it is commonly used to localize tumors. MRI

often performs better at diagnosing problems in the joints, soft tissues, ligaments

and tendons. When available, doctors use it frequently to scan the spine, brain,

muscles, neck, breasts, and abdomen.

• MRI still does not have the portability, low cost, and real-time imaging speed

without any harmful radiation of ultrasound technology, but ultrasound is mostly

limited to 2D imaging (although 3D imaging is possible), have trouble penetrating

bone, and even in absence of bone the depth of penetration is limited depending

on the frequency of imaging. This is not the case for MRI technology.

• PET scans are particularly useful for functional imaging. For instance, it is used

for identification of lapses in cognitive function, examination of cardiac failures,

cancer screening and diagnosis, and finding an infection. Nevertheless, PET im-

age acquisition is even longer than MRI (especially, if we consider also the time

while patients wait for the tracer to reach the targeted organ), it uses a radioactive

substance as tracer, and it cannot scan tissues not absorbing the tracer making the

localization of the source of the signal infeasible without any additional informa-

tion. In order to solve the latter described limitation, one particularly promising

combination is the join use of PET and MRI. This illustrates that MRI is a funda-

mental technology not only by itself but also when combined with other imaging

modalities.

To sum up, MRI is a strong competitor to other imaging technologies, but it also have

weaknesses, of which the costs and scanning time are the most remarkable. There are

many methods to speed up measurements as it will be discussed later, but the con-

struction cost and the hardware constraints limit the applicability of these efforts. The

problem of slowness is even more apparent in case of dynamic images as motion of

organs (e.g. heart or lung) can drastically degrade the image quality. To overcome that
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issue, mathematical solutions developed in the last twenty years such as parallel imag-

ing and compressive sensing made high-resolution and fast images possible. This thesis

concerns the second of these two powerful mathematical ideas.

1.2. Compressed Sensing

Among the many software techniques invented to improve image quality, compressed

sensing (also known as compressive sensing, compressed sampling, and compressive

sampling) is inevitably is one of the most impactful theoretical construction, introduced

by Donoho, Candès, Romberg, and Tao in 2004 [1]–[3]. Such importance can be seems

by the fact that the four foundational papers of compressed sensing received, at the

time of writing this manuscripts, more than 60000 citations. In contrast to the Nyquist-

Shannon theorem that asserts that continuous band-limited signals can be perfectly re-

constructed from samples taken at a rate of twice the highest frequency present in the

signal of interest, compressed sensing allows lossless reconstruction from much lower

number of samples given that certain natural conditions are satisfied.

This impressive improvement is due to the same phenomenon that makes modern

image compression algorithms so successful: the sparsity of the signal to be recovered

in a certain representation domain. And while the classic image processing flow starts

with acquiring the fully sampled image, then feeding it to a compression algorithm that

discards the vast majority of the data still allowing later a lossless decompression (e.g.

JPEG or JPEG2000), the idea behind compressed sensing is that image acquisition can

be made much more effective by fusing it with the compression step recording only the

data we need later for decompression, hence the name compressed sensing. As will be

discussed in this thesis, MRI possess natural sparse representation and due to physics

of the nuclear magnetic resonance phenomenon, its acquisition process is dictated by

Fourier transforms which makes it a perfect candidate for the use of compressed sensing

machinery. Indeed, MRI was the first successful application of compressed sensing [5]

and, since 2017, MRI scanner employing this technology are approved by the American

Food and Drug Administration and commercially available [6], [7].

As a trade-off for the acceleration in the scanning time, the posterior process of re-

constructing the image from the measured data is much more involved compared to

the standard one typically used when longer scans, i.e., fully sampled Fourier mea-

surement, are performed. Therefore, a large amount of theory was developed since the

introduction of compressed sensing to further improve the recovery of a high resolution
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image from the compressed representation. Ideas coming from high-dimensional statis-

tics, non-linear optimization, harmonic analysis and signal processing came together in

order to develop robust, stable and scalable reconstruction methods for compressed

sensing. These ideas are particularly useful when applied to the MRI field since the

minimization problems with its associated cost functions associated tend to be very

challenging. Here, a few of those modern ideas will be discussed, in particular, ac-

celerated proximal methods, augmented Lagrangian methods and iteratively reweighted least

squares

1.3. Julia Language

Data scientists often find themselves in an very uncomfortable dilemma: Do they

choose high-abstraction level dynamic languages that allows rapid prototyping and

easy debugging, but fails to perform well in large-scale problems; or should they opt

for high performance languages with lower abstraction level, spending much more

time with the implementation. The rising popularity of Python in the recent decades

also due to this problem. Python, however, instead of solving the problem, get around

it by being merely a glu-language that connects high-performance libraries usually

written in C or Fortran. The problem therefore is still present, as one still needs to write

the performance-critical parts in a lower-level language. To give a better solution to

that problem, Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman started

to work on a brand new language in 2009. Their objective is bold, writing in their first

blog post that they created Julia because...

...we want a language that’s open source, with a liberal license. We want

the speed of C with the dynamism of Ruby. We want a language that’s

homoiconic, with true macros like Lisp, but with obvious, familiar math-

ematical notation like Matlab. We want something as usable for general

programming as Python, as easy for statistics as R, as natural for string pro-

cessing as Perl, as powerful for linear algebra as Matlab, as good at gluing

programs together as the shell. Something that is dirt simple to learn, yet

keeps the most serious hackers happy. We want it interactive and we want

it compiled. [8]

As of 2020, we can say that their mission statement was not completely science fic-

tion since the popularity of the language does not seems to decline ever since; in con-
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trary, the number of users increases in a fast rate, especially in the academia and the field

of data science. And as the objective of this thesis project involves heavy computing,

the chosen language to implement the algorithms of interest is became Julia.

1.4. Objective

In this thesis work, we consider the classic results as well as the recent advances within

of the compressed sensing framework and their application to real life MR imaging.

In particular, we closely examine two recent publications presenting state-of-the-art so-

lutions combining conventional techniques with novel ideas. Afterwards, we present

our implementation of these algorithms along with the implementation of a recently

invented algorithm from the family of iteratively least squares methods that previously

have not been applied to MRI setting yet. Finally, we compare these algorithm with re-

spect to reconstruction power from massively undersampled data and noise tolerance.

1.5. Outline

The structure of this thesis is as follows:

Chapter 2 introduces the reader to the core concepts of MRI, presents the hardware

improvements of the last decades, and show the limits of further hardware improve-

ments.

Chapter 3 summarizes the most important conditions and promises of compressed

sensing framework, and then gives a quick overview of the most popular first order

methods currently used in in the field.

Chapter 4 reviews three recent publications. Two of these papers proposes algorithms

which are currently state-of-the-art algorithms for reconstruction of dynamic MR im-

ages, and the third one presents an algorithm that has stronger guarantees than the

currently used solutions, and therefore a good candidate for reconstruction from even

more reduced data.

Chapter 5 lists our contributions to the field presenting the results of numerical ex-

periments.

Chapter 5 summarizes the project and articulates the future plans.

5



Chapter 2

Theoretical Background of MRI

2.1. History of Medical Imaging

The beginning of the history of medical images dates back to November of 1895, when

Wilhelm Conrad Röntgen discovered X-rays. The significance of his discovery is well

demonstrated by the fact that up until the 1960’s X-rays were the only non-invasive

way to look into the body, and hence he was awarded the first Nobel Prize in Physics

in 1901 for “in recognition of the extraordinary services he has rendered by the discovery of

the remarkable rays subsequently named after him” [9]. During the first 60 years of X-ray

radiography, it underwent a remarkable development gradually increasing the resolu-

tion of images and decreasing the radiation dose that threatened both the patients’ and

the doctors’ health. Since the 1920s, visualization of motions (i.e. dynamic imaging)

became possible by fluoroscopy, although only to a limited extent [10].

Although the theoretical background of later advances in medical images were

present much earlier, e.g., by the seminal work of Johann Radon, for the introduction

of modern imaging technologies to clinical medicine are delayed to the time when the

computers became powerful enough for image reconstruction tasks concerning both

the computational speed and the available memory. Therefore, the major breakthrough

came only in the 1960-70s, and then suddenly multiple imaging techniques were intro-

duced shortly after each other.

The first of these methods was the ultrasound imaging. It was devised by Floyd

Firestone in 1940 to detect internal flaws in metal castings [11], and it was proposed

for medical purposes first in 1949 by John Wild [12], but it was not until 1961 when

David Robinson and George Kossoff developed the first commercially practical water

path ultrasonic scanner [13].

6



Similarly, the concept of emission and transmission tomography was proposed in

the late 1950s by David E. Kuhl, Luke Chapman and Roy Edwards, but computer to-

mography was invented only in 1972 by Godfrey Hounsfield and Allan Cormack [14],

and the first PET camera was built for human studies by Edward Hoffman, Michael M.

Ter-Pogossian, and Michael E. Phelps in 1973 [15].

Finally, the youngest imaging technology, the MRI, became available for diagnos-

tics by the end of the 1970s, even though the nuclear magnetic resonance (NMR) spec-

troscopy that has the same mechanism was discovered by Felix Bloch and Edward Pur-

cell already in 1946. Then Reymond Vahan Damadian proposed the first MR body scan-

ner in 1969, and soon Paul Lauterbur had the idea of applying magnetic field gradients

in all three dimensions and a back-projection technique to create images in 1971, and he

also published the first MRI images: water tubes, a living clam, and the thoracic cavity

of a mouse in 1973 and 1974 [16].

Since their appearance, these computer-aided methods continue to develop at a very

fast pace, becoming essential tools for today’s practitioners despite the fact that they are

relative new technologies.

2.2. Physics of MRI

This section attempts to dive into the physics of MRI giving a quick overview of the

theory of nuclear magnetic resonance following [17]–[19].

2.2.1 Components of MRI machines

The theory of measurements based on nuclear magnetic resonance has its root in quan-

tum physics: The nuclear magnetic moment and the angular momentum of protons in

the atomic nuclei maintained by the spin of these particles are to be indirectly measured,

and these observables depend (besides many other factors) on the tissue where the pro-

ton is located. More specifically, the MRI machines are tuned to focus on the nucleus of

protons that consist of only one proton. The core components of MRI machines are the

following:

1. Superconductive coils immersed in liquid helium are the largest and most expen-

sive part of the machine. They are responsible for producing a almost perfectly

homogeneous and static magnetic field. The role of the liquid helium is to keep

the wires at superconducting temperature, so that massive amounts of electricity
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Figure 2.1: Schematic illustration of construction of a cylindrical MRI scanner. Source: [22].

can be run through the coils creating super-strong fields up to 21.1 T [20]. Al-

though stronger magnetic field allows better resolution, the construction costs of

such machines and the effect of the strong magnetic field on human tissues limit

the strength of available MRI scanners for routine clinical from 0.2 T to 3.0 T, and

up to 11.7 T in research machines for human imaging [21].

2. Inside of this super-strong electromagnet, the so called gradient coils are located

that alter the field along all three dimensions creating spatially varying magnetic

field (hence the name: gradient coils) in order of mT, so that signals coming from

different location within the coils are possible to be separated. They are also used

to provide contrast for diffusion and flow imaging.

3. Within the Radio Frequency (RF) coils are located that emit and measure time

varying electromagnetic signals on order of tens of µT.

The reason behind this elaborate design (depicted on fig. 2.1) is the need of creating

a measurement setup suitable to give a very fine control over the the direction of the

magnetic moment of protons of hydrogen atoms within the measured object (which, in

our case, is the human body that contains a large amount of hydrogen mostly in the

form of water, but also bounded within other molecules).

2.2.2 Macroscopic Magnetization

The purpose of the superconductive coils is to align the magnetic moment of protons

with the direction of the magnetic field. This direction (also corresponding to the head-

to-foot direction) is usually referred to as longitudinal direction or z direction, and the

plane perpendicular to this direction is called the transverse plane or the x-y plane. This
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alignment of the magnetic moment of the protons leads to two configurations: protons

with their magnetic moment pointing to the same direction as the static magnetic field,

and other protons having their magnetic moment with opposite direction. Without the

static field, the randomly oriented spins cancel out each other, as they also do in the

aligned case, when the number of protons oriented to the two directions are equal. But

in real systems, a slight excess of the protons aligned with the static magnetic field

always produces a net magnetization with the same direction as the external magnetic

field (see fig.2.2).

The ratio of the number of protons in these two groups are described by the Fermi-

Dirac statistics. In strong and static magnetic field at room temperature, the Fermi-Dirac

distribution reduces to Boltzmann distribution resulting the following formula:

N+ = N · eE+/(kBT )

eE+/(kBT ) + eE−/(kBT )
and N− = N · eE−/(kBT )

eE+/(kBT ) + eE−/(kBT )
,

whereN is the total number of protons,N+ andN− are the numbers of protons pointing

to the same and opposite direction as the static magnetic field, E+ and E− are their

respective energy levels, kB is the Boltzmann-constant, and T is the temperature. In

this case neighboring energy levels are equidistant with the difference in the secondary

spin quantum number of ∆m = ±1 and the energy difference of ∇E = γ~B0, where γ

is an empirical constant called gyromagnetic ratio (equals to 42.575·2πMHz/T in case of

protons), ~ is the reduced Planck constant, and B0 is the static external magnetic field.

The ratio of Boltzmann distributions for two states a spin ½nucleus is known as the

Boltzmann factor:

f(E) = e
− γ~B0
kBT .

Using this factor, the ratio of unpaired protons (these protons give the net magnetiza-

tion) divided by the number of all protons is given by

N+ −N−
N+ +N−

=
γ~B0

2kBT
.

This ratio at room temperature in a static field with a couple teslas is a tiny number (in

the order of 1× 10−6 multiplied by B0), so that explains why do MRI machines need

such a strong electromagnets. (Note that this ratio also can be increased by increasing

the temperature, but it is not feasible for human imaging.)

2.2.3 Precession

In equilibrium when all protons are aligned with the external magnetic field, the lon-

gitudinal component of net magnetization is maximal and the component in the trans-
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Figure 2.3: Precession of protons. As a result

of RF excitation pulse, the magnetic momen-

tum of protons deviates from the longitudinal

direction and starts to precess due to its angu-

lar moment.

verse plane is zero. However, with the aid of an electromagnetic excitation in the trans-

verse plane emitted by the RF coils, it is possible to rotate the vector of net magnetiza-

tion into the transverse plane. The key factor in this process is to tune the frequency of

the excitation to match the so called precessional frequency of the protons given by the

Larmor equation:

ω = γB0.

The name precessional frequency comes from the phenomenon that the magnetic moment

of protons start to precess around the longitudinal axis (which, again, is the direction

of static external magnetic field) due to its intrinsic angular momentum. When the

frequency of the excitation matches the precessional frequency of the proton (which

happens to be in the radio frequency range, hence the name of RF coils), then resonance

occurs and the angle of net magnetization gets tilted (illustrated by fig. 2.3), otherwise

the electromagnetic field has little to no effect of the net magnetization. An RF excitation

of a duration τ causes rotation of the magnetization by an angle θ, which is called the

flip angle, defined by

θ = γ

∫ τ

0
B1(t)dt = γτB1,

where B1 is the magnetization of RF excitation, and it is assumed to be constant over

time window of excitation with length τ .

As a result of the precession, the net magnetic flux changes in the RF coils (these

coils used for both emitting and receiving RF signals) inducing an electromotive force

Uind that can be calculated by Faraday’s law of induction:

Uind = −dΦ

dt
.

Projecting the precessing movement (with the Larmor frequency ω) of the net magneti-

zation to transversal plan, we get a sinusoidal change in flux that results in the following
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formula:

Uind ∼ sin(θ)ω cos(ωt) = sin(θ) γ B0 cos(γ B0 t).

While this formula is not an exact model that fits the current measured in the RF coils,

but it captures three important aspects of the resulted electric signal:

• It is a sinusoidal signal with a frequency depending only on a constant specific to

protons and the external magnetic field.

• The amplitude of that signal depends on the flip angle induced by an RF excita-

tion.

• And it is also dependent on the external magnetic field (yet another reason why

MRI machines need very strong electromagnets).

2.2.4 Relaxation

For a more accurate model, one should consider that as the protons emit RF signal due

to their precessing magnetic moment, they lose the energy of the excitation and they

slowly return to the low energy state; i.e., to the state where the magnetic moment of

protons are aligned along the longitudinal axis, and where the net magnetization points

to the same direction as the external field. Assuming that the excitation resulted in a

perpendicular flip angle, the longitudinal component of magnetization is characterized

by the exponential formula

Mz = M0(1− e−t/T1),

whereM0 is the amplitude of magnetization in the equilibrium and is often called Boltz-

mann magnetization, and T1 time constant is a property of the protons dependent on

the tissue where they are located. The name of this process is T1 relaxation.

Furthermore, the net magnetization is also affected by another relaxation process

called T2 relaxation. The phenomenon causing this relaxation is called dephasing, and

the name comes from the fact that when excitation is applied to protons in the equi-

librium, they will precess in the same phase, but soon they lose this synchronization.

This desynchronization is due to the slight inhomogeneity of the static external field

caused by four factors: spin-spin interactions (quantum mechanical interactions with

the nearby protons), magnetic field inhomogeneities (hardware limitations), magnetic

susceptibility (slight magnetization of molecules within the measured part of the body),

and chemical shift effects (shielding effect of the electron cloud of molecules incorporat-

ing the hydrogen atoms). The slightly different B0 value makes the Larmor frequency
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Figure 2.4: T1 relaxation after a 90° RF excitation. By the end of the pulse, the magnetization rotated from

the z-direction to the x-y plane; therefore, the longitudinal component is reduced to zero, and gradually it

returns to the equilibrium. Source: [23].

different, and that results in the desynchronization of phase. The outcome of this pro-

cess is that the transversal component of the net magnetization decays exponentially to

zero. The speed of decay is characterized by the T ∗2 time constant:

Mxy = M1 e
−t/T ∗

2 ,

where M1 is the initial amplitude of net magnetization in the beginning of the T2 relax-

ation process. For illustration of this process, see fig. 2.4. The resultant decaying signal

is known as the Free Induction Decay (FID). Using, however, the later described spin-

echo acquisition protocol, the last three inhomogeneity-causing factors can be cancelled

out leading to a slightly different time constant denoted by T2.

2.3. Concepts of MR Imaging

In that section, the most important concepts of MR imaging are summarized, clarifying

the vocabulary used in the later chapters, based on [17], [19].

2.3.1 MRI Sequences

Since the advent of MRI, numerous methods were developed and are used in today’s

medicine. And while they are all measure somehow the T1 and T2 constants at dif-
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Figure 2.5: T2 relaxation process. Right after the RF pulse, thre precession of all protons are in the same

phase, but they quickly desynchronize due to magnetic field inhomogeneities. The plot in the second

row depicts the strength of current induced in the RF coils that corresponds to the projection of the x-y

component (Mxy) of the net magnetization along the direction perpendicular to the surface of the coil.

And as a result of the T2 relaxation, the amplitude of this sinusoidal curve exponentially decays. The

resultant decaying signal is known as the Free Induction Decay (FID). Source: [23].

ferent location, the produced image is quite different, making them fit different use

cases. These methods are called MRI sequences and they mostly differ in the a partic-

ular setting of RF pulses and the gradients in the static magnetic field, resulting in a

particular image appearance. The most commonly used group of MRI sequences is the

spin echo [24]. In accordance with the two types of relaxation, sequences in that group

have two main parameters: TR (Time of Repetition) and TE (Time of Echo). These

parameters have a crucial role timing the recording of current in the RF coils when the

difference between the amplitude of the RF signal emitted by the excited protons is

maximal because this difference makes it possible later to distinguish different tissues.

The TR parameter is connected to the T1 value, as it determines the time between

two excitation pulses. Having a larger TR value allows protons to get better aligned

with the external magnetic field before the next excitation, which results in a higher ini-

tial value for Mxy, leading to a stronger current in the detector coils, but it also makes

the entire measurement longer. On the other hand, TE determines the delay between

the peak of the RF pulse and the peak of the echo. That echo is a temporary rephasing of

spins caused by a second, 180° RF pulse emitted at t = TE/2. That pulse inverts spins,
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Figure 2.6: Process of spin echo sequence. The echo is a temporary rephasing of spins caused by a second,

180° RF pulse emitted at t = TE/2. That pulse inverts spins, and therefore it makes spins with slower

Larmor frequency, which lagged behind the faster ones previously, be ahead of the others in phase. At

the time when faster precessing protons catch up, the transversal magnetization exhibits an echo peak.

Source: [23].

and therefore it makes spins with slower Larmor frequency, which lagged behind the

faster ones previously, be ahead of the others in phase. At the time when faster pre-

cessing protons catch up, the transversal magnetization exhibits an echo peak (see 2.6).

As stated earlier, an important advantage of spin echo technique is that three factors of

magnetic inhomogeneity is cancelled out by the inversion as these factors are constant

over time, while spin-spin interactions are random interactions between protons that

cause random local changes in the magnetic fields experienced by the protons.

Before moving forward, an important thing to note that the T1 relaxation is much

slower than the T2 relaxation (T1 relaxation takes hundreds of milliseconds up to a few

seconds while T2 rarely exceeds 200 ms. As a result, the acquisition time is mostly dom-

inated by waiting for the T1 relaxation, and therefore short TR values are favorable

when fast imaging is needed. Also, the different time-scale of T1 and T2 relaxation

opens a range of possibilities to make acquisition process faster or more effective.

Based on the choice of TR and TE values, we can talk about three types of spin

echo sequences: T1 weighted sequence has intermediate TR value in the magnitude of

T1 producing maximal T1 weighting (at this point, the difference caused by different T1

value between the amplitude of signals coming from different tissues are maximal) and
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Figure 2.7: T1 weighted se-

quence. Choosing the TR value

to be relatively short, and TE to

be relatively short, the difference

due to the variation of T1 value

over tissues would dominate

over differences caused by dif-

ferent T2 value. Source: Adapted

from [23].

Figure 2.8: T2 weighted se-

quence. Choosing both TR

and TE values to be rel-

atively long, the difference

due to the variation of T2

would dominate over differ-

ences caused by different T1

value. Source: Adapted

from [23].

Figure 2.9: Proton density (PD)

weighted sequence. Choosing the

TR value to be relatively long, and

TE to be relatively short, the differ-

ence due to the variation of both T1

and T2 values are minimized, and

hence mostly the density of protons

would determine signal strength.

Source: Adapted from [23].

short TE value magnitudes smaller than T2 producing minimal T2 weighting (there

is not enough time to have significant difference between decay curves with different

T2). To the contrary, T2-weighted images have a long TE (maximizing the difference

in T2 relaxation) and long TR (reducing the weight of T1 relaxation). And the third

type, called proton density (PD) weighting, uses short TE and long TE, so that the

pixel intensities on the resulted image will reflect only the density of protons (that also

differs between tissues), and the T1 and T2 values have little effect on it.

Two common variant of spin echo are multiecho spin-echo, and turbo spin-echo.

The multiecho spin-echo pulse sequence utilizes multiple 180° RF pulses to induce mul-

tiple echo peaks each with a different TE, forming multiple images of the same object

with different weighting ranging from PD-weighting to T2-weighting. This method ex-

ploits the fact that T1 is much larger than T1, thus multiple echos can be performed with-

out drastically changing the acquisition time. Similarly, turbo spin-echo sequences con-

sist of multiple echo-generating 180° pulses, but in this case only one image is formed

speeding up the imaging by gathering information about multiple positions in each

cycle.

The other large group of sequences is the gradient echo sequence [25]. That type of

sequences differs from echo-spin that the flip angle of initial RF pulse is less than 90°

(e.g., 20° or 30°) and there is no 180° secondary pulse, instead it induces an echo by the

spacial gradients explained later. Hence this method is able to perform the measure-

ment much faster as T1 relaxation reaches near-equilibrium state much earlier.
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Beyond these sequence types, several other commonly used variants exist, which

will not be discussed here, such as the inversion recovery sequences [26]–[29], diffusion-

weighted sequences [30], [31], perfusion weighted sequences [32]–[34], BOLD-contrast

images for functional MRI (fMRI) [35], [36].

2.3.2 Spatial Encoding

The core concept that allowed the extension of NRM (which is based on the same prin-

ciples described above) to MRI, is the spatial encoding. This technique, proposed by

Paul Lauterbur, allows for the localization of RF emitting protons or, more precisely, the

localization of an ensemble of RF emitting protons within a small volume called voxels

(note that the size and the shape of these voxels are defined by the configuration of MRI

machine for the given acquisition). Specifically, the problem with static magnetic field

is that, even though the net magnetization varies over the measured object based on

the type of the tissue, the RF pulse excites the entire volume of the measured object,

and therefore the induced signal of each voxel sum up making it impossible to separate

them based on their position. In contrast, generating a secondary magnetic field with a

gradient along a specific direction makes the Larmor frequency dependent on the po-

sition along that direction. That dependence can be exploited multiple ways allowing

exact localization along all three dimensions. A possible (and quite common) way to do

this is the following:

1. Producing a gradient along the z-direction during the RF excitation permits the

selection of a slice perpendicular to the z-axis by tuning the RF pulse to the fre-

quency specific to the given slice because this pulse excites then only protons in

the selected slice. In reality, however, not a single frequency used but rather a

band of frequencies whose width matches the bandwidth of resonance frequen-

cies of spins in the slice of interest. This approximately rectangular band of exci-

tation frequencies is realized in time domain by a pulse of a shape similar to the

sinc function.

2. Application of another gradient along the y-direction between the RF excitation

and the readout of induced current causes a gradual de-synchronization of phase

along the y-axis because protons experiencing higher external field will have a

higher Larmor frequency as well. Therefore, the position along y-direction be-

comes phase-encoded.
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Figure 2.10: Mechanism of slice selection.

Producing a gradient along the z-direction

during the RF excitation permits the selection

of a slice perpendicular to the z-axis by tun-

ing the RF pulse to cover the frequency range

specific to the given slice with given thickness

because this pulse excites then only protons in

this slice. Source: [23].

Figure 2.11: Process of phase and frequency encod-

ing. First, a gradient along the y-direction between

the RF excitation and the readout causes a gradual

de-synchronization of phase along the y-axis because

protons experiencing higher external field will have a

higher Larmor frequency. Second, a gradient along the

x-direction can be used to separate signal sources along

that dimension by the difference in their frequency.

Source: [23].

3. During the time window of readout, another gradient along the x-direction can

be used to separate signal sources along that dimension by the difference in their

frequency. This type of spacial encoding is called frequency encoding.

These steps are visually explained on fig. 2.10 and 2.11.

Decoding the spatial information becomes feasible then using the famous Bloch

equation:
dM
dt

= M× γB− Mxi +Myj
T2

− (Mz −M0)k
T1

.

Knowing that the transversal component of the net magnetization (that is, the measured

component) is non-zero only a selected slice and is dependent on the position within

the slice assuming the excitation strategy above, a convenient formulation is to use a

complex-valued function to denote the amplitude of the signal generated at position

(x, y) by m(x, y) = mx(x, y) + my(x, y), where mx(x, y) and my(x, y) is the amplitude

realized in a coil perpendicular to x-axis and y-axis, respectively. As a result of the

phase-encoding, the phase of a spin at position y along y-axis is given by ω0ty+γGytyy,

where ω0 is the base Larmor frequency of the selected slice, ty denotes the width of

time window of phase-encoding, and Gy corresponds to the slope of the linear gradi-
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ent applied along the y-direction. Because m(x, y) is a complex-valued function rep-

resenting the magnetization in both the x and y-direction, the distribution m(x, y) gets

weighted by a complex exponential corresponding to the spatial frequency γ/2π)Gyty:

m(x, y)exp(−iγGytyy.

Similarly, the shift in the frequency of precession during the readout characterized

by γGxx adds another weighting term to m(x, y). Solving the Bloch equation for this

configuration results in the following formula:

s(t) =

∫
x

∫
y
m(x, y)e−iγGxxte−iγGyytydxdy,

where s is the amplitude of signal to be measured, ty (length of time window for phase-

encoding) is a fixed number and t is a running variable. Having a look at the for-

mula, one can immediately see that it is the 2-dimensional Fourier transform of m(x, y)

corresponding to the coordinate ((γ/2π)Gxt, (γ/2π)Gyty) in the Fourier space. Due to

the discrete nature of this the acquisition process, the MRI machines can evaluate the

Fourier space in discrete positions, that is, the collected data is the discrete Fourier trans-

form (DFT) of the object. Consequently, the space of measurements is usually referred

to as k-space. This connection between the measured signal and Fourier transformation

is beneficial in many aspects, as it will be apparent in the next sections.

2.3.3 Sampling Trajectories

The effect of the spatial encoding schema discussed above is that the k-space points

can only be measured sequentially. Combined with the necessity of waiting for the T1

relaxation (that tends to be in the timescale of 250 ms to 1500 ms at 3 T, and somewhat

shorter for 1.5 T [37]–[39]), it leads to the most important limitation of MR imaging:

the acquisition is quite slow. While it is inconvenient for the patient to stay inside the

narrow scanner bore (especially for claustrophobic patients), the more important issue

is that the longer is the acquisition the more motion artifacts are introduced to the image.

The type of such involuntary motions include bulk motion (e.g., coughing, change body

position), respiratory motion, cardiac motion, and motion of other organs like blood

vessels or parts of the gastrointestinal tract. Although some of them can be reduced

by a large extent, for example, by asking patient to pay attention to remain still or to

hold breath for a 10 s to 20 s long measurement, others are out of control. Reducing the

k-space points, however, lead to various aliasing effects according to Nyquist-Shannon

sampling theorem that might blur clinically relevant features or introduce misleading
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artifacts. Therefore, radiologists always seek to find an optimal compromise between

the number of measured k-space points and the amount of motion artifacts introduced.

One important aspect of dealing with that problem is determining which points

are to be measured. Due to hardware limitations and because too rapidly changing

electromagnetic field would overheat the measured tissues, arbitrary positioning in k-

space is not feasible, and thus the order of measurement points are also a key aspects

of the process. These constrains introduces the necessity of well-defined geometries

describing the location and the order of measured k-space coordinates, called sampling

trajectories.

The traditional way of acquiring K-space data is through Cartesian trajectories. The

concept of these trajectories is that equally spaced grid-points are selected in the slice

or volume to be measured, and these points are evaluated systematically; for instance,

row-by-row, zig-zag, or spirally. The main benefit of this method that a simple and fast

reconstruction is possible via fast Fourier transform (FFT). Nevertheless, this method

fails to exploit a very important feature of natural images in general: the energy tends to

be concentrated in the center of the Fourier space; that is to say, the coefficients of lower

frequencies have usually large magnitudes, and points further from the center have

mostly a near-zero value. The significance of this observation is perfectly demonstrated

by the success of the modern image and video compression algorithms making use

of this uneven distribution, for instance, JPEG, MP3, and standards. Hence, multiple

non-equidistant sampling trajectories are also used in practice. Such trajectories are

radial [40], spiral [41], concentric rings [42], and 3D cones trajectories [43], just to name

a few. A couple 3-dimensional trajectories are depicted in fig. 2.12.

2.3.4 Accelerated MRI

For a deeper understanding of accelerating methods, one needs to get familiarized with

the concept of field of view and its connection to the bandwidth of RF excitation pulse.

The term field of view (FOV) refers to the area or volume over which an MR image is

acquired, and often also to its size as well. Due to the discrete nature of digital systems,

the FOV is also discretized representing it with a grid of equidistant points whose val-

ues in grid points can then be displayed as pixels on computer screens. The two main

parameters of FOV are therefore its size and the pixel width. The size of FOV is propor-

tional to the bandwidth of RF excitation and inverse proportional to the strength of the

frequency encoding gradient. Thus, it makes increasing the RF bandwidth is beneficial
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Figure 2.12: A few example for 3D trajectories. Source: [44]

for the image quality (although is comes with increased production costs as well), and

it limits the strength of the frequency encoding gradient, even though stronger gradient

would be advantageous to better separate tissues by their precessional frequencies. In

contrast, the pixel size is determined by the size of range over which k-spaces samples

are collected. In case of equidistant sampling in k-space over a square shaped FOV, the

connection between these parameters can be expressed by simple equations:

∆k = 1/FOV and ∆w = 1/kFOV ,

where ∆k is the distance between k-space points, FOV refers to the size of the FOV, ∆w

is the pixel width, and kFOV is defined as the range between the highest positive and

largest negative spacial frequencies in k-space (i.e., kFOV = k+max − k−max = 2 · kmax, if

k+max = |k−max|). For a visual example, please refer to fig. 2.13.

Using these concepts, one can formulate many methods to accelerate acquisition.

For instance, it is possible to evaluate only half of the k-space exploiting the under-

lying symmetry in the Fourier transform. This method is successful in maintaining a

high resolution, albeit it come with the cost of reduced signal-to-noise ratio (SNR) be-

cause of the lack of the noise-cancelling effect of two-sided measurements. Another

popular method is to avoid acquiring the periphery of k-space by limiting the range

of the phase-encoding frequencies (which, in fact, are connected to T1 relaxation that

contributes the most to the acqisition time). The advantage of this method is that it pro-

duces a decent speed-up keeping the SNR relatively high, but undersampling the high

frequencies have a blurring effect, and therefore the resolution goes down. Finally, it is
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Figure 2.13: Connection between FOV and k-space in case of Cartesian sampling: The size of FOV is

inversely proportional to the distance of k-space points, and the pixel size is determined by the size of

range over which k-spaces samples are collected. Source: [45].

also possible to reduce the size of the FOV leading to a rectangular shaped image (also

by reducing the phase-encoding step). The speed-up here, however, also comes with a

cost: the amount of noise unfortunately remains the same as in the case of the wider

FOV, but now it is distributed over a smaller area, and consequently the SNR also goes

down.

A similar, but more effective method is proposed to accelerate imaging using mul-

tiple independent RF coils are built around the measured object. That method is com-

monly referred to as parallel imaging (PI), and idea behind is that the placement and

the sensitivity characteristics of the coils are known, therefore the amplitude of the mea-

sured signal can be used to assist the localization of the signal source. This additional in-

formation makes less phase-encoding steps sufficient for acquisition, and thus allows a

potentially several-fold reduction in imaging time. For an illustrative example, see 2.14.

While PI also have downsides, namely the increased production cost of PI-capable ma-

chines, the unavoidable reduction in SNR (because each coil has its own, independent

noise that sums up at reconstruction), and the introduction of PI-specific artifacts that

comes from the inaccurate estimation of the coils sensitivities over the FOV, and the un-

even distribution of noise related to coil geometry, the effect of these drawbacks can be

reduces by the increase of number of coils (albeit this further increases the production

cost).

2.3.5 Bottom Line

Since the advent of MR imaging, an explosion of the amount of MRI concepts and tech-

nologies is witnessed by the scientific community during the last 3-4 decades. Although

the quality of the images has undergone drastic improvement, placing MRI to the focus
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Figure 2.14: Illustrative example for parallel imaging technique. Multiple independent RF coils are built

around the measured object, and as the detection sensitivities of the coils are known, the amplitude of the

measured signal can be used to assist the localization of the signal source. Source: [46]

of today’s diagnostic, the speed of evolution based on hardware-related innovations

seems to slow down as the technology approaches its physical limits (e.g., the strength

of the static magnetic field cannot be increased infinitely and the number of coils in PI is

limited, for example, by the space available inside the machine). And while the acqui-

sition time is significantly improved over time, but MRI is still considered to be a slow

imaging technique, making dynamic imaging a challenging task. Hence, there is an

increasing interest towards software solutions which can push further down the num-

ber of k-space points required to produce images with a quality sufficient for successful

diagnosis.
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Chapter 3

Mathematical Foundation

The real power of the compressed sensing is that it has a firm mathematical background

that provides guarantees for the solution under certain assumptions. In this chapter, we

essay to describe the very basics of compressed sensing, and then give a quick overview

of a few selected numerical methods, which will be later used in this work as building

blocks of more complex algorithms. These descriptions follow the book [47] and are

based on the lectures of the course titled Compressive Sampling at Technical University

of Munich by Alihan Kaplan.

3.1. Elementary Definitions

Although the reader might be to be familiar with the most of these definitions, for the

sake of completeness and clarity of notation used in this work, we present here a list

of definitions of elementary constructs, restricting ourselves to mere formulations with

short remarks omitting further explanation.

Definition (sparsity): We call a vector s-sparse, if at most s of its entries are non-zero; i.e.

‖x‖0 ≤ s.

Notation. By ΣN
s we denote the set of all s-sparse vectors in CN ; that is,

ΣN
s =

{
x ∈ CN : ‖x‖0 ≤ s

}
.

Definition (kernel/null space): The kernel/null space of a matrix A ∈ Cm×N is defined as

ker(A) =
{
x ∈ CN : Ax = 0

}
.

Definition (convex functions): A function f : Cn → R is called convex, if for all x,y ∈ Cn
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and t ∈ [0, 1]

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

holds. Similarly, a function f : Cn → R is called strictly convex, if for all x 6= y ∈ Cn and

t ∈ [0, 1]

f(tx + (1− t)y) < tf(x) + (1− t)f(y)

holds.

Remark. A useful property of convex function is that all local minimizers are also global

minimizers. Moreover, the minimizer of a strictly convex function is unique, as well.

Definition (Lipschitz-continuity): A function f : Cn → R is said to be Lipschitz-continuous,

if there exists a constant L ∈ R such that for all x,y ∈ Cn

|f(x)− f(y)| ≤ L ‖x− y‖2

holds where L is referred to as Lipschitz-constant.

Remark. The set of Lipschitz-continuous functions is a superset of continuously differ-

entiable functions.

Definition (gradient and Hessian): The gradient ∇f and the Hessian Hf of a function f :

Cn → R at x ∈ Cn is defined as follows:

∇f(x) =



∂
∂x1

f(x)

∂
∂x2

f(x)
...

∂
∂xn

f(x)

 ,Hf (x) =



∂2

∂x21
f(x) ∂2

∂x1x2
f(x) . . . ∂2

∂x1xn
f(x)

∂2

∂x2x1
f(x) ∂2

∂x22
f(x) . . . ∂2

∂x2xn
f(x)

...
...

. . .
...

∂2

∂xnx1
f(x) ∂2

∂xnx2
f(x) . . . ∂2

∂xnn
f(x)


.

Remark. The geometric interpretation of gradient is that it is a vector in the tangent

plane at a certain point on the surface defined by the function f , and this vector steepest

direction where the value of f increases the quickest. The Hessian, on the other hand,

carries information about the curvature of the surface.

Definition (order and rate of convergence): An iterative method producing the sequence

{xn} is said to have a convergence of order p to some x∗ with respect to function f : Cn → R,

if there exists a number µ ∈ R+ ∪ {0}, called rate of convergence, such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

< µ.
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Remark. If p = 1, then the convergence is also referred to as a linear convergence. The

special cases of linear convergence are superlinear convergence when µ = 0 and sublinear

convergence when µ > 0. If p = 2, then the convergence is called quadratic.

Notation. Besides the definition above, there are two other commonly used formulation

to characterize the convergence speed using the big O notation. One way is expressing

the time complexity by number of steps needed to approximate the solution under the

maximal tolerated error ε. For example, O(ε−2) is a colloquial notation to express that

the function will produce the approximation xk such that

|f(xk)− f(x∗)| < ε

after at most k = 1
ε2

steps. The other way around is expressing the error in cost function

by the number the already performed steps. Namely, O(k
1
p ) convergence states that

|f(xk)− f(x∗)| <
C ‖x0 − x∗‖22

k
1
p

for some C ∈ R.

Remark. Note that using this notation, O(ε−p) corresponds to O(k
− 1
p ) (where p has the

same meaning as in the definition above), and thatO(εα) means faster convergence than

O(εβ), if α < β.

Definition (norm): A non-negative function ‖·‖ : X → [0,∞) is called a norm, if

a) ‖x‖ = 0 if and only if x = 0,

b) ‖λx‖ = ‖λ‖ ‖x‖ for all scalars λ and all vectors x ∈ X , and

c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all vectors x,y ∈ X .

Remark. X denotes a vector space on which the norm is defined. In MRI setting, how-

ever, CN is the default vector space for computations, and therefore, we also define the

following constructs in this space.

Definition (`p-norms for vectors): The `p-norm on CN is defined for 1 ≤ p <∞ as

‖x‖p =

 n∑
j=1

|xj |p
 1

p

, (3.1)

and for p =∞ as

‖x‖∞ = max
j∈[n]
|xj |.

For 0 < p < 1, (3.1) defines a quasinorm, which means that from the definition of the norm a)
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ℓ0-"norm" ℓp-quasinorm
0 < p < 1

ℓ1-norm ℓ2-norm ℓ∞-norm

non-convex convex

Figure 3.1: `p balls in 2D.

and b) holds, but c) is replaced by the weaker quasitriangle inequality

‖x + y‖p ≤ C
(
‖x‖p + ‖y‖p

)
with C = 2

1
2
−1.

Remark. Figure 3.1 is showing 2-dimensional balls defined by `p-norm with various p

values.

Notation. [n] denotes the set of integers form 0 to n− 1.

Remark. For 1 ≤ p < ∞, the `p-norms are strictly convex, and `p-quasinorms for 0 <

p < 1 are always non-convex (see fig. 3.1).

Remark. Using the schema above, it is impossible to have a proper norm for p = 0;

nonetheless, is very common to define `0-norm as the number of non-zero coordinates:

‖x‖0 = |{xi 6= 0 : i ∈ [n]}| where x ∈ CN .

Following this convention, ‖·‖0 always refers to that formulation in this work.

Definition (matrix rank): The column rank of a matrix A ∈ Cm×N is defined as the maximal

number of independent columns of A. Similarly, the row rank of a matrix A ∈ Cm×N is the

maximal number of independent rows. As the column rank and the row rank are always equal,

this number is simply called the rank of A.

Theorem (SVD): For A ∈ Cm×N , there exist unitary matrices U ∈ Cm×m, V ∈ CN×N ,

and uniquely defined non-negative numbers σ1 ≥ σ2 ≥ . . . ≥ σmin{m,N} ≥ 0 called singular

values of A, such that

A = UΣV∗ where Σ = diag[σ1, σ2, . . . , σmin{m,N}] ∈ Rm×N .

The process of obtaining these matrices is called Singular Value Decomposition (SVD).

Remark. SVD is a particularly useful in analysis of matrix rank as the rank of a matrix

always coincides with the number of its non-zero sigular values.
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Definition: (Schatten-p norm) The Schatten-p norm of a matrix A ∈ Cm×N is defined as the

`p-norm applied to its singular values; that is,

‖A‖p =

min{m,N}∑
i=1

σpi (A)

 1
p

.

Three important special cases are p = 1, 2,∞, also called nuclear norm, Frobenius norm and

spectral norm, respectively. The nuclear norm also has a distinct notation ‖·‖∗, and the Frobe-

nius norm is usually denoted by ‖·‖F .

Remark. Similarly to `p-norms for p ∈ (0, 1), the Schatten-p norms with 0 < p < 1

are only quasinorms and are always non-convex. Schatten-0 norm are, however, not

defined as Schatten-p norms for p → 0 converge to an already defined quantifier, the

rank (of which, of course, one can think as the `0-"norm" of singular values).

Definition (discrete Fourier transform (DFT)): The discrete Fourier transform x̂ ∈ Cm of a

vector x ∈ Cm is given by

x̂k =
m−1∑
l=0

xl · e−
2πi
m
kl : 0 ≤ k ≤ m− 1,

or in matrix notation

x̂ = Fx with Fk,l = e−
2πi
m
kl.

3.2. Basics of Compressed Sensing

As it was shortly mentioned in chapter 1, a mathematical framework called compressed

sensing (CS) revolutionized MR image acquisition process allowing reconstruction from

much fewer k-space values under certain conditions as it would be necessary according

to the Nyquist criterion.

To realize this promise, first and foremost, the signal to be recovered must be sparse

in some transform domain. Fortunately, this criterion is usually already fulfilled, and

relatively easy to find the sparse representation. However, there also other conditions

need to be satisfied for successful recovery, and they are less intuitive. Hence, in this

section we attempt to give a quick overview of the most important definitions and the-

orems needed for basic understanding.

3.2.1 Formulation of the Problem

In engineering settings, especially in signal processing context, engineers and scientist

usually try first to model physical systems by a linear model because that way they
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describe the problem by a set of linear expressions, and then they can express it as a

matrix-vector multiplication Ax = y, where vector x is the input of the system, vector

y is the output (measured data), and A characterizes the measurement (thus it is of-

ten referred to as measurement matrix). A very common task then is to recover the input

consisting ofN variables from the measurement data, and generally the number of mea-

surements m must obey m > N , otherwise the linear system is underdetermined, and

hence there exist infinitely many solutions. In case of MRI setting, this statement corre-

sponds to already mentioned Nyquist criterion that requires the sampling frequency in

k-space to be twice as the highest frequency in the image space (vid. kFOV = 2 · kmax in

section 2.3.4).

And that is the point when compressed sensing comes into play claiming that given

a proper measurement matrix A, the problem

min
z∈CN

‖z‖0 subject to Az = y = Ax (P0)

have a unique s-sparse solution with s � N . This optimization problem is often re-

ferred to as (P0). The number of necessary measurement, however, still a difficult ques-

tion. There are theoretical results stating that m = 2s is the lower bound for a perfect

recovery [48] and that a stable recovery (later explained) occurs with high probability

with m ≥ Cslog(N/m) for random measurement matrices [47], but in practice, recon-

struction algorithms struggle to reach these theoretical limits (albeit, the achieved m is

still drastically improved compared to the Nyquist sampled case).

The main reason why the optimal bounds are usually not reached is that the mea-

surement matrices of real life systems have often have less favorable properties as ran-

dom matrices and, more importantly, (P0) is a NP-hard problem [49]; thus, only relax-

ations can be solved. The most commonly used relaxations are the so called `1 mini-

mization or Basis Pursuit (BP) [50] defined as

min
z∈CN

‖z‖1 subject to Az = y, (P1)

the Basis Pursuit DeNoising (BPDN) [51] formulated as

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η, (P1, η)

and the LASSO (Least Absolute Shrinkage and Selection Operator) [52] problem ex-

pressed by

min
z∈CN

‖Az− y‖2 subject to ‖z‖1 ≤ s.
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s = min‖x‖1 subject to Ax=y
x ∈ ℝ2

Ax = y Ax = y

‖x‖1= s ‖x‖2= s

Figure 3.2: Solution of `1 and `2 minimization problems. Matrix

A ∈ R1×2 is an underdetermined linear system, and the task is to

find x ∈ R2 with minimal `1-norm such that it satisfies the equation

Ax = y for fixed y ∈ R. The number of solutions are infinite (all

points along the blue line), and the unique solution of minimization

problem is marked with a green star. Note that `1 minimization

gives sparse solution, while `2 minimization is not sparsity seeking.

Figure 3.3: `1 minimization in 3D.

This figure demonstrates the spar-

sity seeking nature of `1 minimiza-

tion in a 3-dimensional space. The

image is taken from the interac-

tive demo available at https://

hakkelt.github.io/CS-demo/

By the aid of a Lagrangian multiplier λ, the latter two can be transformed to the same

unconstrained minimization problem

min
z∈CN

‖Az− y‖2 + λ ‖z‖1 .

3.2.2 Conditions and Guarantees

While `1-relaxation (often referred to as (P1) problem) might be appealing as it can be

solved efficiently in polynomial time, it needs a more careful approach to guarantee that

the minimum of the `1 problem is also a solution of (P0). The `2-relaxation, for example,

always has a unique solution, but this solution is not necessarily sparse (for a figurative

illustration, see fig. 3.2 and fig. 3.3). In contrast, `1 problem has a solution which is both

unique and s-sparse given that the matrix A fulfills the so called null space property of

order s, introduced by Cohen, Dahmen and DeVore in [53].

Definition (NSP): A matrix A ∈ Cm×N is said to satisfy the null space property (NSP) of

order s, if for any set S ⊂ [N ] with |S| = s

‖vS‖1 < ‖vSC‖1 : ∀v ∈ ker(A) \ {0}.

Notation. For a vector v ∈ CN and a set S ⊂ [N ], we denote by vS either the vector in

C|S| which is the restriction of v to the indices in S, or the vector in CN which coincides

with v on the indices in S and is zero elsewhere. Similarly, vSC means the same with

the complement of S.
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Theorem: Given a matrix A ∈ Cm×N , every s-sparse vector x ∈ ΣN
s ⊂ CN is the unique

solution of (P1) with y = Ax if and only if A satisfies the NSP of order s.

Remark. This theorem shows that for every y = Ax with s-sparse x, the `1-minimization

(P1) actually solves the `0-minimization (P0) when the NSP of order s holds.

Although NSP is a formidable construct that allows relatively easy and straightfor-

ward proofs, in realistic settings, signals are rarely sparse, but rather almost s-sparse

vectors, meaning that the most part of the energy of the signal is concentrated in s

coefficients with the the largest values. To involve these cases in the compressed sens-

ing framework, an extension of NSP is used, called stable NSP. Proving the stable NSP

property, one can then approximate the almost s-sparse signal with the best s-term ap-

proximation having a tight bound on the error term.

Definition (`p-error of best s-term approximation): For p > 0, the `p-error of best s-term

approximation to a vector x ∈ CN is defined by

σs(x)p = inf
{
‖x− z‖p : z ∈ ΣN

s

}
.

Remark. The infimum is always achieved by an z ∈ ΣN
s whose non-zero entries equal

the s largest absolute entries of x.

Definition (stable NSP): A matrix A ∈ Cm×N is said to satisfy the stable NSP with constant

0 < ρ < 1 of order s, if for any set S ⊂ [N ] with |S| = s

‖vS‖1 ≤ ρ ‖vSC‖1 : ∀v ∈ ker(A).

Theorem: The matrix A ∈ Cm×N satisfies the stable NSP with constant 0 < ρ < 1 of order s

if and only if for any set S ⊂ [N ] with |S| = s

‖z− x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2 ‖xSC‖) (3.2)

holds for any set S ⊂ [N ] with |S| = s and for all vectors x, z ∈ CN with Az = Ax.

Remark. The estimation (3.2) can be upper-bounded by means of the `1-error of best

s-term approximation σs(x)1 as

‖z− x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2 ‖xSC‖) ≤ 2 · 1 + ρ

1− ρ
σs(x)1.

The significance of this theorem is that it implies that having the stable NSP fulfilled,

the unique s-sparse solution z of (P1) with y = Ax approximates the vector x with a
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bounded `1-error. Therefore, by a good approximation of the sparsity s of the signal

and an upper bound ε of σs(x)1 (both can be inferred by the statistics of the signal), one

can construct or select a measurement matrix A such that the solution of any algorithm

solving (P1) is an approximation of the input signal with the maximal error of

1 + ρ

1− ρ
· 2ε,

where ρ depends only on the measurement matrix and ε is a small number because

only little energy is stored in the entries contributing the the `p-error of best s-term

approximation. Practically that means that by the careful design of the measurement,

arbitrary precision recovery is possible (having Nyquist sampling as a special case for

guaranteed perfect recovery), and that in case of approximately s-sparse signals, the

number of measurements can be drastically reduced without significant amount of error

introduced.

Finally, this construct can be further extended to handle noisy measurement: prov-

ing the robust NSP for the measurement matrix, the same guaranties apply to the `1-

error as in case of stable recovery, extended by an extra term characterizing the noise on

the measurement. As a result, arbitrary precision is allowed for arbitrary optimization

algorithm capable of solving (P1, η) given a measurement matrix satisfying the robust

NSP.

Definition (robust NSP): A matrix A ∈ Cm×N is said to satisfy the robust NSP with con-

stants 0 < ρ < 1 and 0 < τ of order s, if for any set S ⊂ [N ] with |S| = s

‖vS‖1 ≤ ρ ‖vSC‖1 + τ ‖Av‖2 : ∀v ∈ CN .

Remark. Note that v is not required to be in ker(A). In fact, if v ∈ ker(A), then Av = 0,

and we obtain the definition of stable NSP. Therefore, the robust NSP implies stable

NSP.

Theorem: The matrix A ∈ Cm×N satisfies the robust NSP with constants 0 < ρ < 1 and

0 < τ of order s if and only if

‖z− x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2 ‖xSC‖) +

2τ

1− ρ
‖A(z− x)‖2 (3.3)

holds for any set S ⊂ [N ] with |S| = s and for all vectors x, z ∈ CN with Az = Ax.

Remark. Supposing that a matrix A ∈ Cm×N satisfies the robust NSP of order s, (3.3)

implies that for any x ∈ CN , a solution z of (P1, η) with ‖Ax− y‖ ≤ η approximates x
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with `1-error 1

‖z− x‖1 ≤ 2 · 1 + ρ

1− ρ
σs(x)1 +

4τ

1− ρ
η. (3.4)

The main problem, nevertheless, with the NSP is that proving it is actually NP-

hard in general. Hence, the restricted isometry property (RIP) is more commonly used in

theoretical works because it is easier to handle, and at the same time it implies stable

NSP.

Definition (RIP): A matrix A ∈ Cm×N is said to satisfy the s-restricted isometry property

with the smallest number 0 < δs < 1, called restricted isometry constant (RIC), if

(1− δs) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs) ‖x‖22

holds for add x ∈ ΣN
s .

Theorem: If a matrix A ∈ Cm×N has restricted isometry constant

δ2s <
1√
2
,

then it satisfies the robust NSP of order s with constants

ρ =
δ2s√

1− δ22s
and τ =

2
√
s

(1− δ2s
√

1 + δ2s
.

3.2.3 The Connection Between CS and MRI

Although it is not always trivial to apply the compressed sensing scheme to different

measurement methods, MR imaging is in a lucky position with the Fourier transform

in the core of its image acquisition process as random partial discrete Fourier trans-

form (i.e., selecting m rows randomly with uniform distribution from the N rows, or in

other words, observing only m entries of the Fourier transform) is proved to satisfy the

RIP [54]. That discovery has enormous significance as is offers a way to speed up the

inherently slow MRI measurements by measuring only a few randomly selected points

from the k-space, and then solve the `1-minimization problem via an arbitrarily selected

optimization algorithm.

One can think of this recovery scheme as a denoising or inference cancelling pro-

cess where the noise/inference to be removed is the sum of undersampling artifacts

predicted by Nyquist-Shannon theorem. If we use an equispaced sampling pattern,

1Number 4 in the numerator of the error term at (3.4) is not a typo as one would expect, but a counter-

intuitive result of some basic arithmetics leading to this expression.
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Figure 3.4: A heuristic process for reconstruction signal from randomly undersampled data. In the left

block, the result of Fourier analysis is shown for both equidistant and random sampling, demonstrating

the underdetermined nature of equidistant undersampling (bottom) and the noise-like effect of random

sampling (top). In the right block, a simple method is applied that selects the peaks above a certain thresh-

old as candidates, calculates the inference of these peaks, and substracts the calculated inference from the

spectrum allowing detection of further peaks after lowering the threshold. Source: Adapted from [55].

Figure 3.5: Connection between the sampling pattern and the introduced inference. Using inverse DFT

replacing the missing values with zeros leads to different type of undersampling artifacts. Sampling only

the center reduces the resolution, undersampled equispaced scheme adds shifted copies of the signal to

the recovered image, and random sampling spreads the inference uniformly. Source: Adapted from [55].

then the resulted noise is basically shifted copies of the signal and hence recovery of the

original signal is impossible as each replica is an equally likely candidate. Figure 3.4

illustrates this problem and demonstrates the advantage of random sampling. In con-

trast, random sampling "spreads" the noise uniformly over the image, so the inference

acts mostly like white noise (see fig. 3.5). This approach is particularly appealing as

countless denoising algorithms exists, and as many of them are based on minimization

of the `1-norm of the transform of signal, these methods provide a convenient way to

solve (P1) problem. The transform used is always depends on the type of image in in-

terest: MR angiograms (imaging technique visualizing blood vessels) are sparse even in

the image domain, but edge detection algorithms like finite differences transform (that
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Figure 3.6: MR angiograms (MR images tuned to show blood ves-

sels) are intrinsically sparse even in image domain (top image), but

sparseness can be further improved by edge detection algorithms

(botton image) because only the morphology of the blood vessels are

diagnostically relevant. Source: Adapted from [56].

Figure 3.7: MRI images of the

brain are not sparse in image

domain, but they are in multi-

ple wavelet transform domains.

Source: [57].

corresponds to the well-known total variation (TV) penalty) can further enhance spar-

sity (fig. 3.6); brain images have a sparse representation in various wavelet transforma-

tions 3.7, and dynamic MR images tend to be sparse after temporal Fourier transform is

applied.

A truly random sampling in the k-space, however, is generally impractical due

to hardware and physiological constraints. For example, the sampling must follow

smooth lines and curves and be robust to real-life situations such as motion artifacts.

Also, a uniform random distribution of samples in the spatial-frequency domain does

not take into account the energy distribution of MR images in k-space. Therefore it

makes more sense to opt for a nonuniform variable density sampling matching en-

ergy distribution in k-space. Precisely, we should consider having more samples from

the central part of the frequency domain and less high frequency components. Conse-

quently, carefully designed pseudo-random sampling trajectories are utilized in prac-

tice. To quantify evaluate the "randomness" of the trajectories, authors of [55] and [58]

suggested using point spread function (PSF) to measure the desirable incoherence of

the aliasing interference, defined as

PSF = (e∗jF∗uFuei)i,j

where Fu is the undersampling Fourier transform operator, ei and ej are of the natural

basis having 0 in each coordinate except the i-th and j-th position, resprectively, where
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Figure 3.8: PSF of the central pixel for various sampling trajectories: (a) randomly chosen horizontal

lines, (b) uniformly selected random points, (c) radial, (d) uniform spirals, (e) variable density spirals, and

(f) variable density perturbed spirals. The red line marks the overall coherence level.

Source: Adapted from [55].

1 is located. Thus, PSFi,j measures the contribution of a unit-intensity pixel at the i-

th position of the image to the j-th position in the k-space. In case of fully sampled

measurement, the PSF is an identity matrix, and undersampling induces non-zero off-

diagonal terms. Figuratively speaking, PSF measures the leakage of energy from a

Kronecker delta input. Figure 3.8 shows PSF for a central pixel for a couple sampling

trajectories. This quantitiy then can serve as a simple measure for the incoherence by

calculating the sidelobe-to-peak ratio:

SPR = max
i 6=j

∣∣∣∣PSFi,jPSFi,i

∣∣∣∣ .
As a result, the design of an incoherent sampling trajetory aims to minimize SPR.

3.3. Numerical Methods

While the recovery is proved to be possible via polynomial time algorithms minimizing

the `1-relaxation of (P 0), finding the best algorithm for a given use-case is a quite chal-

lenging problem as the algorithm must satisfy many constraints like fast convergence

speed and guarantee for a (global) convergence, inexpensive computation and limited

memory requirement, numerical robustness and lack of problem-dependent parame-

ters. The number of choices are numberless; nevertheless, none of them appears to out-

perform all other in every aspects because improving convergence speed while keeping

global convergence is difficult, increased computational speed usually comes at the cost

of a more memory hungry implementation, and it is hard to optimize algorithms with-
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out tuning its parameters specifically to the problem to be solved.

The computation cost and the memory requirement, in particular, tend to be most

restrictive constraint. Namely, the direct calculation of Hessian is often computationally

prohibitive on one hand, on the other hand, the storage of the calculated Hessian can

be problematic even for medium sized images. To see that, let us consider a 256 × 256

grayscale image. Storing all the 65536 pixels of the image as a half-precision floating

point number requires 256× 256× 2 B = 128 KiB. While the gradient of the image is of

the same size, the Hessian has a quadratic memory requirement, (256 × 256)2 × 2 B =

8 GiB in our example. Although this requirement can be satisfied even on a stronger

personal computer, a high-resolution dynamic MR image, for instance, usually results

in magnitudes larger allocations, like 256 GiB for a 3D image of size 512 × 512 × 512

with 512 time frames and an enormously large 33 554 432 TiB allocation for its Hessian.

Therefore, second order optimization algorithms (i.e., algorithms using second

derivative) are not feasible in image reconstruction problems in general, even though

these algorithms usually outperform first order methods in convergence speed. On the

other end of the scale, zeroth order methods (that is, algorithms not using any gradi-

ent information), while being feasible and sometimes used for image reconstruction,

are considered to be impractical due to their slow convergence. Therefore, first order

methods appear to be the default option in nearly all image processing settings, and

accordingly, we will discuss them exclusively in the following. Of course, even this

restricted scope is far too large to cover, hence we restrict ourselves only to a few con-

cepts that will serve as building blocks of more complex algorithms reviewed in the

next chapters.

3.3.1 General Gradient Descent

Since Cauchy first proposed an iterative gradient direction method to solve astronomic

calculations in 1847 [59], the family of gradient descent algorithms became one of the

largest and most popular group of solvers due to their simplicity and relatively inex-

pensive computation. The core of all gradient methods is the so called gradient step

defined as

xk+1 = xk + αk∇f(xk),

where f is commonly called a loss or cost function, and α is generally referred to as step

size and it is a negative number if we consider the minimization problem and positive

if we are looking for the maximum.
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The greatest advantage of gradient descent is that it is universally applicable to all

problems where f is differentiable, but it is capable to find only a local optimum, and,

in its original form, it is rarely optimal (albeit sometimes the only feasible option). Ad-

ditionally, finding the optimal step size and a proper starting point is quite challenging,

and convergence is not always guaranteed. If the step size is too small then the con-

vergence speed becomes impractically slow; on the other hand, too large step size can

make the algorithm fail to converge. The improper choice of the initial point can also

drastically delay convergence, and also might cause converge to a unfavorable local

optimum instead of the global optimum (or, at least, a better optimum nearby).

Selection of Step Size

While a good starting point is always depends on the function to be minimized (from

this point, we consider only the minimization problem without loss of generality), there

are various schemes for determining the step size in each step. Notably, the line search

methods are commonly used to solve this problem because of its universally applica-

bility. As the name suggests, these methods perform a search for local minimum along

a descent direction (which, in case of gradient methods, is given by the gradient) and

return exactly the step size needed to step into this minimum. The search can be exact

(like the later described conjugate gradient’ implicit line search) or inexact where only

an approximation of the local minimum is calculated (like backtracking line search [60]

(see also fig. 3.9) or using Wolfe conditions [61]).

However, the line search methods become impractical when evaluation of the cost

function is computationally expensive. In these cases only fixed (but not necessarily

constant) step is applicable. Restricting the cost function to the set of convex and smooth

(differentiable with L-Lipschitz-gradient) functions, the analysis of global convergence

of first order methods with respect to step size selection becomes possible, still covering

a very large part of practical problems. In the following, f is always assumed to satisfy

these conditions.

The simplest step size selection scheme is the constant step size, and if we choose

the step size to be 1
L where L is the Lipschitz constant of∇f , then monotonic descent is

ensured and convergence to the global minimizer is guaranteed as f is assumed to be

convex. The convergence rate of cost function is linear (O(1/k)) as

f(xk)− f(x∗) ≤
L ‖x0 − x∗‖

4k + 2

is proved to be a tight inaccuracy bound for the generated sequence [62]. This rate,
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however, is undesirably slow, and therefore the optimal step size is a highly researched

topic. Although it was only recently proved that the convergence rate of all first order

method with constant step size is still linear at best [63], there is already a long history

of accelerated gradient methods like conjugate gradient, heavy ball iterations, and fast

gradient method.

3.3.2 Conjugate Gradient Method

To overcome the slow convergence rate of the classic gradient descent (GD) method,

one can use a modified version of it, the conjugate gradient method (CG) developed

by Hestenes and Stiefel [64], if the problem is defined by a symmetric (or self-adjoint

in complex case) and positive-definite matrix. In that case, the direction of movement

must be conjugate to the previous directions. Two non-zero vectors u and v are conju-

gate with respect to some A matrix, if

uTAv = 0.

Let us consider the following linear system as the subject of optimization:

Ax = b,

where Ais symmetric, positive-definite and real matrix, and b is also known.

As a direct method

Since A is symmetric and positive-definite, it defines an inner product:

〈u,v〉A := uTAv.

Using that inner product, it is possible to find n pairwise conjugate vectors: P =

{p1, ...pn}. Then P forms a basis in Rn, so the solution (x∗) of optimization problem

can be represented in terms of that basis:

x∗ =

n∑
i=1

αipi. (3.5)

Left multiplying both sides with pTkA we get:

pTkAx∗ =
n∑
i=1

αip
T
kApi =

n∑
i=1

αi〈pk,pi〉A.

As we know that Ax∗ = b and that 〈pk,pi〉A = 0 : ∀i 6= k because pi vectors are

mutually conjugate (i.e. orthogonal with respect to the inner product defined by matrix

A):

pTk b = αk〈pTk ,pk〉A.
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That way we can calculate all αi coefficients,:

αi =
pTi b

〈pi, ik〉A
,

and using these coefficients x∗ can be calculated directly by equation 3.5.

As an iterative method

One weakness of direct method that for high dimensional vectors, we have to calculate

high number of coefficients. On the other hand, it is not necessary to calculate all of

them as a good approximation of x∗ can be obtained using only a few well chosen pi

vectors. To achieve that we need to define a cost function:

f(x) =
1

2
xTAx− xTb.

The existence of a unique minimizer is evident as its second derivative is given by a

symmetric positive-definite matrix:

∇2f(x) = A.

Also, we can calculate the first derivative easily:

∇f(x) = Ax− b.

After choosing an arbitrary starting point x0, we can start the iteration by calculating

the so called residual, which is apparently equal to the negative gradient:

rk+1 = b−Ax.

Then we have to make sure to get a direction that is conjugate to all previous directions

by applying an operation similar to the Gram-Schmidt orthonormalising:

pk = rk −
∑
i<k

〈pi, rk〉A
〈pi,pi〉A

pi.

Following this direction, the next optimal location is given by

xk+1 = xk + αkpk,

where αk can be derived by substituting the previous formula for xk+1 to the the cost

function and minimizing it with respect to αk :

∇f(xk+1) = ∇f(xk + αkpk)
!

= 0⇒ ...⇒ αk =
pTk rk
〈pk,pk〉A
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Figure 3.9: Example for backtracking al-

gorithm. This 2D section of a high dimen-

sional function is selected by the gradient

direction, and we are looking for the local

minimum along that slice. In the first step,

a relatively large step size is chosen, which

gets gradually decreased until local mini-

mum is reached.

Figure 3.10: Example of

the effect of inappropriate

step size, "curved valley"

and flat area: slow conver-

gence of gradient descent

method. Source: [65].

x0

x

Figure 3.11: Visualization

of the advantage of the CG

method compared to GD: CG

requires significantly fewer

steps. The green line shows

the path of the GD method,

red shows the path of the CG

method. Source: [66].

An example that gives an intuition why CG needs less steps than GD is shown by

fig. 3.10 where the inappropriate step size and a "curved valley" produce zigzagging

motion, and slow convergence as a result, which is slowed even further when the flat

area in the bottom of that valley is reached. In contrast, CG avoids zigzagging because

of the constraint of conjugate directions as it is depicted on fig. 3.11. The basic, but still

the most popular, form of the algorithm is summarized in algorithm 1.

Algorithm 1: Conjugate Gradient (CG) method
input : vector b ,

symmetric, positive-definite matrix A,

ε ∈ R+ error tolerance parameter, and

approximate initial solution x0 (optional, set to 0 by default)

output: vector x such that Ax = b

Initialize r0 = b−Ax0, p0 = r0, k = 0

while ‖rk‖ > ε do

αk =
r∗krk

p∗
kApk

xk+1 = xk + αkpk

rk+1 = rk − αApk

βk =
r∗k+1rk+1

r∗krk

pk+1 = rk+1 + βkpk

k = k + 1
return xk

It worth noting that while it is hard to find a better method for simple problems
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than CG, in more complex cases preconditioning is necessary to ensure fast conver-

gence. Furthermore, there exist multiple extensions of the base CG algorithm, like the

biconjugate gradient (BiCG) method and its stabilized version (BiCGSTAB) [67] that re-

moves the constraint of self-adjointness, and the non-linear versions (just to name a few:

[68]–[70]) that pushes even further the boundary of set of problems solvable by CG.

3.3.3 Accelerated Gradient Methods2

Even though the conjugate gradient methods provides an effective way to accelerate the

convergence, the momentum-based methods that mostly outperform them in cases of

complex, non-quadratic cost functions has also a long history. First, the so called heavy

ball momentum was proposed by Polyak in 1967 to accelerate convergence [72]. The

resulting heavy ball iteration takes the following form:

xk+1 = xk −
α

L
∇f(xk) + β(xk − xk−1)

where α and β are simple constants, and the term β(xk − xk−1) is referred to as the mo-

mentum. The names heavy ball and momentum comes from the physical analogy; namely,

the path defined by the minimizer sequence {xk} resembles the route of a ball rolling

down from a hill. The optimal choice of α and β is unfortunately not trivial. In fact, uni-

versally optimal options not exists, but there are many variants of heavy ball method

with different choice of α and β, being optimal always only in specific use cases. Fol-

lowing that, Nesterov published the algorithm in 1983 that later became known as fast

gradient method (FGM) [73]. In contrast to the original gradient descent scheme, it

maintains two converging sequences {xk} and {zk}, of which {xk} is the sequence that

converges to the solution. The algorithm consists of three simple steps as shown in

algorithm 2.

Despite the seemingly different formulations, both methods use some kind of mo-

mentum rule. The main difference is that heavy ball simply performs a weighted ad-

dition of the momentum from the previous iterations and the gradient of the current

position, Nesterov’s method combines these term in a couterintuitive, yet optimal man-

ner as depicted on fig. 3.12. While FGM is preferred in convex optimization problems

since it is slightly faster than heavy ball method, the latter is more commonly used in

the machine learning community due to its robustness in non-convex settings.

Up to recent time, FGM was considered to be the fastest possible first order method

for convex optimization because of its quadratic convergence proved by Nesterov. He
2This section follows the presentation [71] given by Jeffrey Fessler in December, 2017.
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Algorithm 2: Fast Gradient Method (FGM)
input : convex and smooth function f ,

ε ∈ R+ error tolerance parameter, and approximate initial solution x0

(optional, set to 0 by default)

output: vector x = arg min f(x)

Initialize t0 = 1, k = 0, z0 = x0

repeat
zk+1 = xk − 1

L∇f(xk)

tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
xk+1 = zk+1 + tk−1

tk+1
(zk+1 − zk)

k = k + 1

until ‖xk − xk−1‖ < ε;

return x

Figure 3.12: Difference between heavy ball momentum and Nesterov’s momentum: While the heavy

ball simply performs a weighted addition of the momentum from the previous iterations and the gradient

of the current position, Nesterov’s method combines these term in a couterintuitive, yet optimal manner.

Source: Image is adapted from [74] and the idea of intuitive description of Nesterov’s momentum rule as

"lookahead" gradient step originates from [75].

also proved that the order of convergence (i.e., quadratic convergence) of his algorithm

is optimal indeed for first order methods. Nevertheless, the rate of convergence of FGM

is slightly sub-optimal as it was suggested by the convergence analysis performed by

Drori and Teboulle in 2014 [62]. In their research, they considered a "meta optimization"

problem, notably the minimization of worst-case convergence rate over all first order

methods and all possible cost functions. As this problem is too difficult to be solved,

they relaxed the problem to get a similar "meta-minimization" which can be solved by

a semi-definite program. They found numerically that the relaxed bound of worst-case

convergence rate for FGM is slightly below

2L ‖x0 − x∗‖22
(N + 1)2

,
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where N is the number of steps performed. Instead, they proposed a sequence of fixed

step sizes calculated numerically that has approx. two times lower worst-case upper

bound on convergence. Their approach, however, has a few drawbacks, such as the

number of steps must be chosen in advance to ensure the improved convergence bound,

and the numerical method producing these optimal step sizes is expensive both compu-

tationally and memory-wise. The next step that made this algorithm applicable in prac-

tical problems was done by Kim and Fessler in 2016, when they presented the analytical

solution for the optimized step size coefficients [76] in form described by algorithm 3.

Algorithm 3: Optimized Gradient Method 1 (OGM1)
input : convex and smooth function f ,

ε ∈ R+ error tolerance parameter, and

approximate initial solution x0 (optional, set to 0 by default)

output: vector x = arg min f(x)

Initialize θ0 = 1, k = 0, z0 = x0

while ‖xk − xk−1‖ > ε do
zk+1 = xk − 1

L∇f(xk)

θk =


1
2

(
1 +

√
1 + 4θ2k−1

)
: k = 1, 2, . . . N − 1

1
2

(
1 +

√
1 + 8θ2k−1

)
: k = N

xk+1 = xk − 1+tk/tk+1

L ∇f(xk) + tk−1
tk+1

(zk+1 − zk)

k = k + 1
return x

This form reflects the simple modification of the existing Nesterov method that leads

to the improved speed, namely the introduction of a new momentum term. The only

problem is that the step size sequence still depends on the number of steps performed.

Therefore, the same authors published a refined version of the algorithm [77] a year

later that removes this limitation and also simplifies the implementation, as one can see

looking at algorithm 4.

Of course, this formulation also enjoys the twice better worst-case convergence rate

meaning that the new convergence bound on the helper sequence {zk} for every itera-

tion is

f(zk)− f(z∗) ≤
1L ‖x0 − x∗‖22

(k + 1)2
.

Moreover, Drori showed in [78] that all first order algorithm have a function f such that

L ‖x0 − x∗‖22
N2

≤ f(zN )− f(z∗)
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Algorithm 4: Optimized Gradient Method 2 (OGM2)
input : convex and smooth function f ,

ε ∈ R+ error tolerance parameter, and

approximate initial solution x0 (optional, set to 0 by default)

output: vector x = arg min f(x)

Initialize t0 = 1, k = 0, z0 = x0

while ‖xk − xk−1‖ < ε do
zk+1 = xk − 1

L∇f(xk)

tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
xk+1 = xk − 1+tk/tk+1

L ∇f(xk) + tk−1
tk+1

(zk+1 − zk)

k = k + 1
return x

for sufficiently large-scale problems. Thus OGM has optimal worst-case complexity, not

just among the fixed step first order methods, but also among all first order methods.

3.3.4 Stochastic Gradient Descent

Sometimes the size of the problem does not allow the exact computation of even the

gradient. For instance, in case of supervised learning, the problem to be solved is find-

ing optimal parameters for a certain transform that minimizes a cost function over a

huge dataset of images. Calculating the gradient of such cost function would require

to load the entire dataset into the memory, but this is usually impossible as the dataset

often consist millions of images requiring hundreds of gigabytes memory to load. An-

other example is the previously mentioned high-resolution volumentric dynamic MR

image that needs 256 GiB for a 3D image of size 512 × 512 × 512 with 512 time frames

assuming that each pixel is stored as a single precision complex number.

Nevertheless, the application of gradient methods to these problems are not hope-

less, if the cost function can be decoupled into smaller functions. Fortunately it is very

often possible. Returning to the previous examples: The cost function of the supervised

learning problem is usually a sum of values of a simple function evaluated separately

for each image; and the cost function of the MRI problem can often be approximated by

a summation of cost values evaluated for each frame.

One possible approach is calculating the gradient for each term of the summation

(this needs loading only a single image/frame into the memory), and then the pre-

viously prohibiting memory demand can be reduced to an accumulating summation
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that needs memory allocation only for the accumulator and the current image/frame.

This approach is often referred to as batch gradient descent. Another approach, called

stochastic gradient descent (SGD), is applying the position update step (i.e., the step

that calculates the next element of the {xk} sequence) after the evaluation of gradient

for each frame. Even though this approach uses an a less accurate approximation of

the true gradient as the batch method, it appears to be surprisingly robust in many

practical applications frequently giving even a better result than batch processing in

highly non-convex cases. The third possibility is a combination of the first two: the

dataset is divided into small partitions, and the algorithm iterates over these partitions

performing the update step only after the sum of gradients within the current batch is

calculated. These partitions are usually called mini-batches, and thus the name of this

method is mini-batch gradient descent.

3.3.5 Proximal Gradient Methods

Besides the possibly slow convergence, the standard gradient descent method suffers

from another important limitation in real-life applications; notably, the the cost func-

tion is frequently not differentiable. There are multiple ways to handle this problem,

like finding a differentiable surrogate function which has minimizers near to the orig-

inal problem’s minimizers, or using the subgradient method [79]. While the former is

particularly useful in the cases when such surrogate can be easily defined, finding a

good surrogate is a very difficult problem in general. The latter, however, converges

undesirably slowly in many applications. In practice, more problem-specific methods

are preferred.

In image processing and machine learning applications, the so called proximal gra-

dient methods are peculiarly popular as the underlying assumptions of these methods

covers a large range of practical problems. Specifically, it only requires that the cost

function f to be minimized needs to be decomposable to a convex and differentiable

function g with Lipschitz-contiuous gradient and a general convex function h:

f(x) = g(x) + h(x).

First, we can say that although ∇f does not exists, ∇g is well-defined everywhere.

Second, we can define the proximal mapping

proxh,t(x) = arg min
z

1

2t
‖x− z‖22 + h(z).
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This mapping basically restricts the minimization of h to the proximity of x by the ad-

dition of a properly scaled paraboloid around x. Third, we can apply the forward-

backward splitting scheme introduced in [80] and [81], that is to say, we minimize f

by alternating the forward and backward steps where the forward step optimizes g(x)

via a gradient step (wk+1 = xk − tk∇g(xk)), and the backward step optimizes h(x) by

proximity operator (xk+1 = proxh,tk(wk+1)). That two steps can be merged into one

formula:

xk+1 = proxh,tk(xk − tk∇g(xk)).

Of course, this replacement of the original optimization problem helps us only if the

proximity operator can be solved easily, preferably by a closed formula. Fortunately,

the `1-norm satisfies that criterion as

prox‖·‖1,t(x) = Λt(x),

where T : Rn → Rn is the so-called soft-thresholding operator defined by

Λt(x)i = sgn(xi) max(|xi| − t, 0) =


xi − t : xi > t

0 : −t ≤ xi ≤ t

xi + t : xi < −t

.

After this operator, the group of methods using this thresholding function are named

as iterative shrinkage-thresholding algorithms or iterative soft-thresholding alorithms (ISTA).

In spite of the fact that it convergence only linearly, this group of methods was suc-

cessfully applied to solve many non-differentiable problems, most notably the (P1) or

LASSO problem where g(x) = ‖Ax− b‖2 and h(x) = λ ‖x1‖ and the corresponding

ISTA iteration is given by

xk+1 = Λλtk(xk − tkAT (Axk − b))

as∇‖Ax− b‖22 = 2AT (Ax−b). Therefore, it is easy to see the enormous significance of

the contribution of a publication by Beck and Teboulle [82] in which the authors showed

that ISTA can be accelerated by momentum rule used in FGM leading to a slightly more

complex update step defined by

xk = Λλtk(zk − 2tkA
T (Azk − b))

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
zk+1 = xk +

tk − 1

tk+1
(xk − xk−1).
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The authors also showed that their accelerated algorithm (named Fast ISTA or FISTA)

enjoys quadrati convergence. Obviously, the OGM scheme also can be extended to the

proximal gradient setting, and a possible algorithm is proposed in [63] using the update

step

yk = xk−1 + tAT (Axk−1 − b)

zk = yk +
θk−1 − 1

θk
(yk − yk−1) +

θk−1
θk

(yk − xk−1) + t
θk−1 − 1

γk−1θk
(zk−1 − xk−1)

xk = Λγk(zk − 2tkA
T (Azk − b))

with t = 1
L where L is the Lipschitz-constant of∇g(x) = AT (Ax− b),

γk =
1

L

2θk−1 + θk − 1

θk
, and θk =


1
2

(
1 +

√
1 + 4θ2k−1

)
: k = 1, 2, . . . N − 1

1
2

(
1 +

√
1 + 8θ2k−1

)
: k = N

.

3.4. Constrained problems

So far we discussed only problems where the cost function was expressed in a single

closed formula; however, real applications very often are better characterized by an ob-

jective function that must obey some constraints on its variables as we have already seen

by the formulation of the compressed sensing problem in section 3.2.1. Unfortunately, a

direct solution for these problems are hardly ever feasible, and therefore the most com-

mon scenario is to transform somehow these constrained problems to unconstrained

ones.

A simple and intuitive way to do this transformation is using penalty methods that

replaces the constrained problem with a series of unconstrained problems consisting

of an addition of the cost function and the weighted sum of functions describing the

constraints. In the general form, we can say that we need to find min f(x) subject to

ci(x) ≤ 0 : ∀i ∈ [N ] where N is the number of constraints. (Note that this formulation

also contains the equality constraints as c(x) = 0 can be replaced by two inequality

constraints; i.e., c(x) ≤ 0 and−c(x) ≤ 0.) Penalty methods then convert this constrained

formula to

min f(x) + µk
∑
i∈[N ]

p(ci(x)),

where p is called the penalty function and µk are the penalty coefficients, and we solve

this problem by an arbitrary solver for different µk values always using the solution of

previous iteration as the starting point for the next iteration. Initially µk is chosen to be
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a small number, and it is increased in each iteration until it reaches infinity (or rather

a sufficiently large number in practice). The intuition behind the algorithm is that first

the method finds a region where the value of f is small, and as the value of µk increases

it gradually converges to a solution that satisfies the constraints (therefore the penalty

function needs to map values which satisfy the constrains to a small number and give

large values that violates them; e.g. g(x) = max(0, x)2 and g(x) = ex − 1 are both

feasible options).

A similar group of methods is the class of augmented Lagrangian methods (AL) was

introduced by Powell [83] and Hestenes [84] in 1969. That class considers the problems

with equality constraints specifically, that is, min f(x) subject to ci(x) = 0 : ∀i ∈ [N ].

Compared to penalty methods, the transformed unconstrained problem contains an

extra term designed to mimic a Lagrange multiplier:

min f(x) +
µk
2

∑
i∈[N ]

ci(x)2 +
∑
i∈[N ]

λici(x).

Similarly to penalty methods, µ coefficients are increased after each iteration, but in this

case there is no need to increase them to infinity to reach the solution of the constrained

problem because of the carefully weighted additional term. The "careful weighting"

means that the λi variables are adjusted after each iteration to give higher weight to

constraints which are violated, using the update rule λi+1 = λi + µici(xi).

A commonly used variant of the general augmented Lagrangian scheme is the so

called Alternating Direction Method of Multipliers (ADMM) [85]. This scheme works

on problems in the form

min
x,z

f(x) + g(z) subject to Bx + Dz = c

with convex functions f abd g, matrices B and D, and some vector c. The augmented

Lagrangian of this constrained problem is defined by

Lµ(x, z,λ) = f(x) + g(z) + λT (Bx + Dz− c) +
µ

2
‖Bx + Dz− c‖22 ,

and ADMM approximates the solution of this unconstrained problem via the three steps

given as

xk+1 = arg min
x

Lµ(x, zk,λk)

zk+1 = arg min
z

Lµ(xk + 1, z,λk)

λk+1 = λk + µ(Bxk+1 + Dzk+1 − c)
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For example, the LASSO problem minx ‖Ax− b‖22 + c ‖x‖1 takes the form

min
x,z
‖Ax− b‖22 + c ‖z‖1 subject to x− z = 0

in the ADMM framework, and its augmented Lagrangian is

Lµ(x, z,λ) = ‖Ax− b‖22 + c ‖z‖1 + λT (x + z) +
µ

2
‖x + z‖22 .

Finally, the ADMM steps are the following (using the previously defined soft-thresholding

operator Λ):

xk+1 = (ATA + µI)−1(ATb + µzk − λk)

zk+1 = Λc/µ(xk+1 + λk/µ)

λk+1 = λk + µ(xk+1 + zk+1)

. The advantage of this scheme is that it allows distributed and parallelized computing

with slight modification on the core algorithm.
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Chapter 4

Related Works

As we seen in the previous chapters, the quest for finding practically feasible recon-

struction methods that need the least number of measurements (ideally close to the the-

oretical limits of the compressed sensing framework) is a challenging task; nonetheless,

it is a hot topic having very important new results an novel approaches outperforming

the older ones almost in every year. In this chapter we will discuss two recently pub-

lished research projects both presenting a state-of-the-art solution, and we will review a

third project that proposes an algorithm that has the potential to drastically outperform

the methods currently considered to be the best on this field.

4.1. Low Rank and Sparse Decomposition

Initially the compressed sensing framework was implemented in classic sparsity seek-

ing settings, and the main question was which transform domain has the sparsest rep-

resentation of the signal of interest. Although the authors of the first compressed sens-

ing publications were aware of the low rank structure of certain MRI techniques back

in 2007, this branch of research gained larger attention just in the recent years. An

approach that appeared to be particularly suitable to dynamic MRI setting is decom-

position of the image into a low rank and a sparse component [86]–[89]. The motiva-

tion behind such a decomposition comes from the inherent temporal correlation of the

background—that correlation is captured by the low rank part usually denoted by L—

and from the sparse nature of dynamic information that lies on top of the background,

encompassed by the sparse component with the notation of S.

A recent paper from Lin and Fessler [90], published in 2019, attempts to summa-

rize the advances in this field, then it proposes two new algorithms to accelerate the
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convergence of the most successful algorithms, and finally it presents the results of the

numerical experiments they carried out to compare the convergence rate of different

state-of-the-art algorithms.

Formulation of the Problem

In contrast to the basic sparsity formulation discussed earlier as (P0) problem and its

relaxation to the (P1) problem, the problem formulation of L+S decomposition scheme

(also called robust principal component analysis or RPCA) have two constraints in the

place of the original constraint promoting sparsity in some transform domain. The first

of these new constraints is the sparsity seeking `0 norm that takes the sparse part as

an argument, similarly to the original settings in (P0). The other constraint, however,

enforces the low-rankness of L. Putting it together, we get a LASSO-like formula

min
L,S
‖A(L + S)− y‖F subject to rank(L) < r and ‖ΦS‖1 < s,

where A : CN×nt → Cm×nc×nt is a linear operator (often represented1 by a matrix

in Cm·nc·nt×N ·nt , especially in theoretical discussions) modelling the 2D parallel MRI

acquisition scheme that assumes N pixels in each frame, nc receiver coils and nt time

frames that evaluates exactly m k-space points. Moreover, Φ : CN×nt → CN ·nt is an

appropriate sparsifying transform, y denotes the collection of measurement data, L,S ∈

CN×nt hold the low rank and sparse components, and finally r and s are the target rank

and sparsity. After solving this problem for L and S, the reconstructed image can be

obtained by the simple element-wise addition of components (of course, we need to

reshape back the resulted matrix to be a 2D or 3D dynamic image instead N × nt shape

created by stacking the vectorized frames as the columns).

The most common scenario to solve the L + S problem follows the same line of

arguments that was presented earlier: Instead of solving the problem that contains an

`0 and a rank term, both being NP-hard to optimize even separately, one can relax

both constraints to `1-norm and nuclear norm minimization, respectively, resulting the

Lagrangian formula

min
L,S
‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖ΦS‖1 .

In the aforementioned paper, the authors considered the unitary temporal Fourier

transform Tt as the sparsifying operator Φ, which is a largely conventional for dynamic
1This matrix representation requires the vectorization of the input before the matrix-vector multipli-

cation; however, this operation is hardly ever indicated explicitly, but rather assumed to be performed

implicitly. In this thesis work, we also omit denoting such vectorizations.

51



MR images, and they divided the analyzed algorithms into two main groups: meth-

ods based on proximal gradient technique and algorithms using variable splitting then

solving the transformed problem in the augmented Lagrangian framework, possibly

using the ADMM scheme.

Proximal Gradient Methods

In the first group they studied the three shrinkage-thresholding algorithms: ISTA,

FISTA and POGM. While ISTA has already been utilized along with the L + S mod-

elling scheme in [88], it was their contribution to show the applicability of accelerated

schemes in this setting. First, they combined L and S into a single "stacked" variable

X =
[
L S

]T
to simplify the notation because that way the momentum step can be

expressed by a single equation. Second, they recalled that the proximity operator has

closed formula; namely, the composition soft-thresholding function with the sparsity

transform and the singular-value thresholding, the latter defined as

SV TλL(L) = UΛλ(Σ)V∗,

first proposed to enforce low-rankness in [91]. Note that UΣV∗ in the formula above

stands for the singular value decomposition of the input matrix L. Consequently, the

forward-backward splitting scheme is easily applied to both variable performing

Lk = SV TλL(Lk−1 − t∇Lg(Xk−1)

Sk = T ∗ (ΛλS (T(Sk−1 − t∇Sg(Xk−1))) ,

where g(X) = 1
2 ‖[A A]X− y‖22 and therefore

∇L g(X) = ∇S g(X) = A∗([A A]X− y) = A∗(A(L + S)− y).

Accordingly, the algorithm takes form presented in algorithm 5.

Next, they extended this base algorithm to the accelerated scheme by inserting a

momentum step that resulted in algorithm 6 for FISTA and algorithm 7 for POGM. For

the sake of clarity and completeness, we note that the authors used a slightly different

formulation than the algorithms presented here, as they followed the original formula-

tion of ISTA given in [88]. The main difference is that they calculated the gradient at the

end of the loop body, not in the beginning, and they introduced an additional variable

M, named consistency term, that was defined as

M = L + S−E∗(E(Lk−1 + Sk−1)− d)
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Algorithm 5: ISTA for L+S decomposition
input : y: undersampled k-space data

A: data acquisition operator

T: temporal Fourier transform

λL: singular value threshold

λS : sparsity threshold

N : number of iterations

output: L,S = arg minL,S ‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖TS‖1

initialization: L0 = A∗d,S0 = 0, θ0 = 1, t = 0.99

notation: Xi =

Li

Si


for k = 1 . . . N do
∇gk = A∗(A(Lk−1 + Sk−1)− y)

Lk = SV TλL(Lk−1 − t∇gk)

Sk = T∗ (ΛλS (T(Sk−1 − t∇gk)))
return LN + SN

Algorithm 6: FISTA for L+S decomposition
input : same as input of algorithm 5

output: L,S = arg minL,S ‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖TS‖1

initialization: L0 = A∗d,S0 = 0, θ0 = 1, t = 0.5

notation: Xi =

Li

Si

 , X̃i =

L̃i

S̃i

 , X̄i =

L̄i

S̄i


for k = 1 . . . N do
∇gk = A∗(A(Lk−1 + Sk−1)− y)

L̃k = Lk−1 − t∇gk
S̃k = Sk−1 − t∇gk
θk = 1

2

(
1 +

√
1 + 4θ2k−1

)
X̄k = X̃k +

θk−1−1
θk

(X̃k − X̃k−1) +
θk−1

θk
(X̃k −Xk−1)

Lk = SV TλL(L̄k)

Sk = T∗
(
ΛλS

(
T(L̄k)

))
return LN + SN
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Algorithm 7: POGM for L+S decomposition
input : same as input of algorithm 5

output: L,S = arg minL,S ‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖TS‖1

initialization: L0 = A∗d,S0 = 0, θ0 = ζ0 = 1, t = 0.5

notation: Xi =

Li

Si

 , X̃i =

L̃i

S̃i

 , X̄i =

L̄i

S̄i


for k = 1 . . . N do
∇gk = A∗(A(Lk−1 + Sk−1)− y)

L̃k = Lk−1 − t∇gk
S̃k = Sk−1 − t∇gk

θk =


1
2

(
1 +

√
1 + 4θ2k−1

)
: k < N

1
2

(
1 +

√
1 + 8θ2k−1

)
: k = N

X̄k = X̃k +
θk−1−1
θk

(X̃k − X̃k−1) +
θk−1

θk
(X̃k −Xk−1) +

θk−1−1
ζk−1θk

(X̄k−1 −Xk−1)

ζk = t(1 +
θk−1−1
θk

+
θk−1

θk
)

Lk = SV TλL(L̄k)

Sk = T∗
(
ΛλS

(
T(L̄k)

))
return LN + SN

(E and d corresponds to A and y in our notation). While this version avoids an unnec-

essary calculation of gradient in the very first iteration, it introduces a couple avoidable

matrix additions in turn, and also it makes more difficult to understand how the algo-

rithms are connected to the original, only sparsity seeking versions. We summarized all

three algorithms in algorithm 8, following their notation, and it is easy to see that there

is no significant difference between the two formulations, but our version is easier to

understand.

Augmented Lagrangian Methods

The other approach they studied based on the augmented Lagrangian formulation com-

bined with the variable splitting scheme. The conventional way, proposed in [87], to

perform the variable splitting transform the original L+ S problem into

min
L,S

min
P,Q

{
1

2
‖A(L + S)− y‖22 + λL ‖P‖∗ + λS ‖Q‖1

}
subject to


P = L

Q = TS

.

54



Algorithm 8: ISTA/FISTA/POGM for L+S, as formulated in [90]
input : same as input of algorithm 5

output: L,S = arg minL,S ‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖TS‖1

initialization:

M0 = L0 = A∗d,S0 = 0, θ0 = ζ0 = 1, t =


1 : ISTA

0.5 : FISTA and POGM

notation: Xi =

Li

Si

 , X̃i =

L̃i

S̃i

 , X̄i =

L̄i

S̄i


for k = 1 . . . N do

L̃k = Mk−1 − Lk−1

S̃k = Mk−1 − Sk−1

if ISTA then
X̄k = X̃

else if FISTA then

θk = 1
2

(
1 +

√
1 + 4θ2k−1

)
X̄k = X̃k +

θk−1−1
θk

(X̃k − X̃k−1) +
θk−1

θk
(X̃k −Xk−1)

else if POGM then

θk =


1
2

(
1 +

√
1 + 4θ2k−1

)
: k < N

1
2

(
1 +

√
1 + 8θ2k−1

)
: k = N

X̄k = X̃k +
θk−1−1
θk

(X̃k− X̃k−1) +
θk−1

θk
(X̃k−Xk−1) +

θk−1−1
ζk−1θk

(X̄k−1−Xk−1)

ζk = t(1 +
θk−1−1
θk

+
θk−1

θk
)

Lk = SV TλL(L̄k)

Sk = T∗
(
ΛλS

(
T(L̄k)

))
Mk = Lk + Sk −A∗(A(Lk + Sk)− y)

return LN + SN
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Using ADMM technique, this formulation yields a modified augmented Lagrangian

function

L(L,S,P,Q,V1,V2) =
1

2
‖A(L + S)− y‖22 + λL ‖P‖∗ + λS ‖Q‖1 + . . .

+
δ1
2
‖L−P + V1‖22 +

δ2
2
‖TS−Q + V2‖

2
2 ,

where V1 and V2 take the place of Lagrangian multipliers in the classic augmented

Lagrangian method, and they come from the relaxation of equality constraints P = L

and Q = TS to L−P = V1 and TS−Q = V2. Thus, setting V1 and V2 to 0 leads back

to the solution of the constrained problem. These variables are adjusted after each step

to penalize deviations from the equality constraints, specifically for each pixel.

The associated algorithm (algorithm 9) consists of four main steps, each optimizing

L function for one variable while fixing all others. The minimization for P and Q is quite

straightforward as they can solved by the proximity operators: the soft-thresholding

solves for the `1-norm constraint on Q and SV T minimizes for the nuclear norm. Al-

though these steps also needs to take care of the other two terms introduced by the

equality constraints, they still have a directly solvable formula. On the other hand, op-

timization for L and S needs more elaborate steps. In fact, the most general solution is

utilized by the authors of the paper; namely, they try to find the root of the gradient.

As all terms containing L and S are `2 norms, the best (first-order) iterative method to

find the root of these quadratic terms is certainly the conjugate gradient. The inputs

of CG are derived as follows. Let us first take the partial derivate of the augmented

Lagrangian:

∂

∂L
L(L,S,P,Q,V1,V2) = A∗(A(L + S)− y) + δ1(L + P−V1)

!
= 0.

Then we can separate L from the rest of the formula by rearranging

A∗(A(L+S)− y) + δ1(L + P−V1) = A∗AL +A∗AS−A∗y + δ1L + δ1(P−V1) = . . .

= (A∗A+ δ1I)L +A∗AS−A∗y + δ1(P−V1).

Finally, putting it back to the previous equation and performing some further rearrange-

ments, we get the equation

(A∗A+ δ1I)L = A∗AS−A∗y + δ1P−V1

that fits the CG scheme as A∗A + δ1I is Hermitian and positive definite. Following the

same line of arguments, the equation needs to be minimized for S is derived as

(A∗A+ δ2I)S = A∗AL−A∗y + δ1Q−V2.
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Algorithm 9: AL method with CG steps
input : y: undersampled k-space data

A: data acquisition operator

T: temporal Fourier transform

λL: singular value threshold

λS : sparsity threshold

maxIterL: number of conjugate gradient iteration steps for L

maxIterS : number of conjugate gradient iteration steps for S

δ1, δ2: AL penalty parameters

N : number of iterations

output: L,S = arg minL,S ‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖TS‖1

initialization: L0 = A∗y,S0 = V1,0 = V2,0 = 0

for k = 1 . . . N do
Pk = SV TλL/δ1(L + V2,k)

Qk = T∗ΛλS/δ2(TS) + V2,k

Lk = arg minL(A∗A+δ1I)L = A∗y−A∗AS+δ1(P−V1,k) starting from Lk−1

Sk = arg minS(A∗A+δ2I)S = A∗y−A∗AS+δ2(Q−V2,k) starting from Sk−1

V1,k = V1,k−1 + Lk −P

V2,k = V2,k−1 + TSk −Q

return LN + SN

The second AL-type method that Lin and Fessler considered in their paper is a new

method that decomposes the acquisition operator A into a coil sensitivity mapping

C : CN×nt → CN×nc×nt (briefly discussed in section 2.3.4), a spacial Fourier transform

operator F : CN×nc×nt → CN×nc×nt , and an undersampling masking Ω : CN×nc×nt →

Cm×nc×nt such that A = ΩFC. They also assumed that C normalized and therefore it is

also unitary; i.e., C∗C = I. They can assume it without loss of generality as the image

can be freely scaled without changing its rank or sparsity, and this is also true for the

temporal Fourier domain. At the construction of the algorithm, they took advantage

of the increased freedom in the choice of variable splitting. In particular, they split the

acquisition operator together with the variables, and they arrived to the objective

arg min
L,S

min
Z,X

{
1

2
‖ΩZ− d‖22 + λL ‖L‖∗ + λS ‖TS‖1

}
subject to


Z = FCX

X = L + S

.
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Afterwards, they defined the AL function by

arg min
L,S

min
Z,X

{
1

2
‖ΩZ− d‖22 + λL ‖L‖∗ + λS ‖TS‖1

}
+
δ1
2
‖FCX− Z + V1‖22 +

δ2
2
‖L + S−X + V2‖22 ,

and they solved the resulting steps, as follows, exploiting that both T and F is uni-

tary, introducing an auxiliary variable S̃ = TS, and using again soft-thresholding and

singular-value thresholding for `1 and nuclear norm minimization:

Zk = arg min
Z

1

2
‖ΩZ− y‖22 +

δ1
2
‖X− (L + S) + V2‖

2
2

=
(
Ω∗Ω + δ1I)−1(Ω∗y + δ1(FCX−V1)

)
Xk = arg min

X

{
δ1
2
‖Z−FCX + V1‖22 +

δ2
2
‖X− (L + S) + V2‖

2
2

}
=

(
C∗C +

δ1
δ2

I

)−1(
C∗F∗(Z + V1) +

δ1
δ2

(L + S + V2)

)
=

δ1
δ1 + δ2

(
C∗F∗(Z + V1) +

δ2
δ1

(L + S−V2)

)

Lk = arg min
L

{
(λL ‖L‖∗ +

δ2
2
‖X− (L + S) + V2‖

2
2)

}
= SV TλL/δ2(X− S + V2)

Sk = arg min
S

{
(λS ‖TS‖1 +

δ2
2
‖X− (L + S) + V2‖

2)

}
= T∗

(
arg min

S̃

{
λS

∥∥∥S̃∥∥∥
1

+
δ2
2

∥∥∥T(X− (L + S) + V2)− S̃
∥∥∥2
2

})
= T∗ΛλS/δ2(T(X− L + V2)).

Although these steps might look more complicated at first than the previous method,

they can be calculated much faster indeed. In fact, the only inverse that needs to be

calculated is (Ω∗Ω + δ1I)−1, but this calculation is quite cheap because Ω∗Ω is diagonal.

Algorithm 10 summarizes the implementation of these steps, and describes the updates

of the Lagrange multipliers.

Datasets and Results

To evaluate the convergence speed and time complexity of the examined algorithms,

they performed numerical experiments on three Cartesian datasets and one another

recorded via a non-Cartesian sampling trajectory. Two of the Cartesian images and the

non-Cartesian one were published as a supplement to [88], and a simulated Cartesian

dataset is taken from [92]—which, in turn, was generated by the MRXCAT toolbox [93]
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Algorithm 10: improved AL method
input : y: undersampled k-space data

C: coil sensitivity operator

F : spacial Fourier transform operator

Ω: undersampling masking

T: temporal Fourier transform

λL: singular value threshold

λS : sparsity threshold

δ1, δ2: AL penalty parameters

N : number of iterations

output: L,S = arg minL,S ‖A(L + S)− y‖2 + λL ‖L‖∗ + λS ‖TS‖1

initialization: X0 = L0 = C∗F∗Ω∗y,S0 = V1,0 = V2,0 = 0

for k = 1 . . . N do
Zk =

(
Ω∗Ω + δ1I)−1(Ω∗y + δ1(FCX−V1)

)
Xk = δ1

δ1+δ2

(
C∗F∗(Z + V1) + δ2

δ1
(L + S−V2)

)
Lk = SV TλL/δ2(X− S + V2)

Sk = T∗ΛλS/δ2(T(X− L + V2))

V1,k = V1,k−1 + (Zk −FCXk)

V2,k = V2,k−1 + Xk − (Lk + Sk)

return LN + SN

that aims to provide realistic numerical phantoms for cardiovascular magnetic reso-

nance. Their results on all datasets were consistent proving the claimed improvement

induced by the two methods they proposed. They found that POGM outperforms all

other methods in case of all the four datasets, the "second place" is shared between

FISTA and the improved AL scheme, and the AL method with CG inner steps appears

to be the slowest in both convergence rate and time complexity. The latter is mainly

due to the time consuming CG steps, but also the improved AL algorithm is compu-

tationally more expensive. This comparison, however, is slightly unfair since it fails

to consider a very important advantage of ADMM-like methods, notably the indepen-

dence of steps that allows highly parallel implementations. Nonetheless, the primacy

of POGM—which, in fact, is the most important result of the research project—is in-

evitable.
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4.2. Multiscale Low Rank Decomposition

A similarly outstanding result was published by Frank Ong in the form of a doctoral

dissertation [94] in 2018, and as a preprint of a journal paper [95] submitted in Decem-

ber, 2019 (accepted in April, 2020 [96]). The novelty of his approach is that he makes

the so called multiscale low rank (MSLR) scheme practically feasible and demonstrates

its effectiveness in MRI setting. The idea was first proposed by McCoy et al. [97]–[99],

and it naturally extended the L+ S scheme by filling the "gap" between the large scale

low rankness, which is a global property, and pixel level sparsity, both being unable

to capture the local structures. Dynamic MR images of the full body, for instance, ex-

hibits large scale motions such as respiratory motion or change in body posture. On the

other hand, heart beats and motions of the gastrointestinal tract are better described in

a smaller scale, and movements of veins have effect on an even smaller scale.

The MSLR approach models this structure in data as a sum of block-wise low rank

matrices with increasing scales of block sizes. To put it into practice, let us denote the

image of interest with X, and let us consider the decomposition

X =

J∑
j=1

Mj ,

where J is the number of scales selected beforehand and Mj are block matrices with

a block size corresponding to the granularity of scale j. For a scale j, let us also de-

fine Nj , Bj ,Kj as the number of pixel within a block, the number of blocks, and the

maximum block matrix, respectively. As high resolution 3D images might need huge

storage, as we seen earlier, so usually we want to somehow reduce the memory de-

mand. Exploiting the low rankness of the different scales, the authors proposed not

to work with the image directly, but rather on the stacked spatial and tempral bases

LjinCN−j·Bj×K−j and RjinCnt·Bj×K−j Then the operatorM : CNj ·Bj×nt·Bj → CN×nt

is defined to embed stacked input to an image such that

X =

J∑
j=1

Mj(LjRj).

Putting it together with the MR image acquisition scheme, we get

y = A

 J∑
j=1

Mj(LjRj)
∗

+ W,

where A is the acquision operator, as earlier, and W is a complex Gaussian white noise

matrix. Following the same line of argument as before, to enforce Xj to be low rank in
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its blocks, we can use again the nuclear norm relaxation, leading to the cost function

1

2

∥∥∥∥∥∥y −A
 J∑
j=1

Mj(LjRj)
∗

∥∥∥∥∥∥
2

2

+

J∑
j+1

λj ‖Xj‖(j) ,

where ‖·‖(j) denotes the block-wise nuclear norm defined as the sum of the nuclear

norms of blocks. They propose choosing the parameter λi as it was suggested in [100]:

λj ∝
√
Nj +

√
nt +

√
2logBj .

That way, tuning only one scaling parameter for all λj is sufficient. Nevertheless, the

problem of too large memory requirement still present because of the ‖Xj‖(j) term. In-

stead, they further relaxes the problem by the Burer-Monteiro factorization [101], [102]:

‖X‖∗ =
H

min
X=LR

1

2

(
‖L‖2F + ‖R‖2F

)
,

and they change the cost function accordingly:

1

2

∥∥∥∥∥∥y −A
 J∑
j=1

Mj(LjRj)
∗

∥∥∥∥∥∥
2

2

+
J∑
j+1

λj
2

(
‖Lj‖2F + ‖Rj‖2F

)
.

While this problem becomes non-convex due to this relaxation, the gradient methods

usually finds a decent solution. And to reduce the still prohibitively large time com-

plexity, they optimize the cost function via stochastic gradient descent (SGD) that splits

the cost function to a sum of partial cost functions on single frame and single coil:

ftc(L,R) =
1

2

∥∥∥∥∥∥ytc −Atc

 J∑
j=1

Mj(LjRjt)
∗

∥∥∥∥∥∥
2

2

+

J∑
j+1

λj
2

(
1

ntnc
‖Lj‖2F + ‖Rj‖2F

)
,

and they perform the gradient steps as

L = L− αntnc∇Lftc(L,R) and Rt = Rt − αnc∇Rtftc(L,R),

or even running mini-batches as

L = L− αntnc
G

∑
(t,c)∈I

∇Lftc(L,R) and Rt = Rt − α
nc
G

∑
(t,c)∈I

∇Rtftc(L,R),

where α is the step size selected empirically (starting from one, it is decreased each time

the iteration diverges) I contains coil and frame indices selected into the current mini-

batch, and G is the size of the mini-batch (often determined by the number of available

CPUs or GPUs).
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Figure 4.1: Intuition for IRLS. the IRLS scheme majorizes the cost function in the locality of the solution

of the previous step by a quadratic function, and then solves for it (note that this general scheme is called

majorize-minimize or MM methods). If the quadratic function is chosen appropriately, then each iteration

brings closer to the solution. Source: [111].

4.3. Iteratively Reweighted Least Squares Methods

Iteratively reweighted least squares methods have a long history in the compressed

sensing framework; however, they got less attention recently despite of some strong

results [103]–[107] mostly based on the FOCUSS scheme [108]. Conventionally these

methods are used as a proxy for the `1, but it is even more powerful for `p-norms with

p < 1. In particular, it has been proved compared to the linear convergence rate of

for `1-norm, it enjoys superlinear for `p-quasinorms under the restricted isometry prop-

erty [109], [110].

In general, these algorithms have three main steps, namely

1. Xk+1 = arg minX J (x,W, ε)

2. update the smoothing parameter ε

3. update the weights W

A good intuition of this process is imagining a complicated cost function, which makes

difficult directly finding the minimizer. Instead, the IRLS scheme majorizes the cost

function in the locality of the solution of the previous step by a quadratic function, and

then solves for it (note that this general scheme is called majorize-minimize or MM

methods). If the quadratic function is chosen appropriately, then each iteration brings

closer to the solution, and therefore we need to find a good update step for ε and W.

Fig. 4.1 illustrates this process in a 2D case.

This framework is a powerful tool to solve many complicated problems, and it

serves as a proxy to a very wide range of functions. In [112], [113] the authors con-
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sidered a particularly difficult problem: the rank minimizaton. And in constrast to

the nuclear-norm minimization scheme we seen earlier, they have chosen the log-det

function as a surrogate to minimize over. It is easy to see how much more powerful this

approach is since contrary to nuclear norm, which is only an approximation of the rank,

the log-det is equal to the rank. To illustrate that, let us recall that

log(x) = lim
p→0

xp − 1

p
.

Than take x = σi(A) for some A, and accordingly

log(σi(A)) = lim
p→0

σi(A)p − 1

p
.

Next, we make some simple steps

R∑
i=1

log(σi(A)) = lim
p→0

R∑
i=1

σi(A)p − 1

p
= lim

p→0

(∑R
i=1 σi(A)p

p
− R

p

)
,

and we know that

lim
p→0

R∑
i=1

σi(A)p = rank(A).

Finally,
R∑
i=1

log (σi(A)p) = log

(
R∏
i=1

σi(A)p

)
= log(det(A)),

and

lim
p→0

(∑R
i=1 σi(A)p

p
− R

p

)
= lim

p→0

(
‖A‖pp
p
− R

p

)
,

where ‖A‖pp is a Schatten-p norm.

Although a deeper discussion of this new algorithm, named Harmonic-Mean-IRLS

or HM-IRLS, would be interesting, due to the limitation of this work we need to refer

the reader to the doctoral thesis [113] of Christian Kümmerle, or to the the our github

repository holding a reference implementation: https://github.com/hakkelt/

IRLS-for-CS-MRI/blob/master/SimpleMatrixCompletion.ipynb, as the

discussion would require a much longer introduction to mathematical concepts. A

important property, nevertheless, worth mentioning here: the authors constructed the

HM-IRLS to use some second-order information, and as a result of this propoerty, it

converges really fast, admitting superlinear convergence in general and even quadratic

convergence locally. On the other hand, it also means more heavy computation as well.
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Chapter 5

Contributions

While Julia produces usually faster code than other languages at the same abstraction

level for numerical application, the true power of the language is only shown when the

programmer writes the code following a couple performance tips listed on the official

documentation. One of the most commonly occurring mistake that results suboptimal

code is the high number of automatic memory allocations that leads to more frequent

calls to garbage collector, and in other words, it wastes resources. Therefore in the

following presentation of the programming-related contributions we will highlight the

memory-efficiency at the evaluation of the created code base.

5.1. FunctionOperators package

As we have seen so far in the descriptions of the algorithms, operations very often are

expressed as a multiplication a matrix-like entity and a vector or matrix. That nota-

tion is particularly convenient as it allows using the same set of mathematical tools as

we have for matrices, while allows extension of the capabilities of the conventional lin-

ear mapping defined as a matrix-vector multiplication. In practice that means that we

would like to combine the flexibility of functions with the power of tools designed for

matrices, so many times the best option is to define the operation we want to perform as

a function, and then wrap this function in an object that acts like a matrix and therefore

it is compatible for instance with iterative solvers like the conjugate gradient method.

Also it is desirable to add an "backward" operation, also defined by a function, to that

wrapper object, that defines what should the solver do when it wants to use the adjoint

of the operator.

Being driven by mostly scientists, the Julia community has already developed some
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packages that helps keeping the code structurally and visually similar to the abstract

mathematical notation; nevertheless, none of these were completely satisfying. In par-

ticular, there are three relatively popular packages that have such functionality, but all

of them some drawbacks:

• LinearOperators.jl [114] and LinearMaps.jl [115] aims to provide almost all fea-

tures of general matrices, but this design choice restricts the possible inputs to

vectors.

• AbstractOperators.jl [116] is a fairly new package that overcomes this limitation

and provides a relatively large range of features, mostly in the form of predefined

operators for the most common operations such as DFT, convolution, finite differ-

ences etc. It is also memory effective, preallocating a buffers when two operators

are composed (that corresponds to the matrix-matrix multiplication) and it reuses

this buffer later avoiding unnecessary memory allocations. Unfortunately, this op-

timization makes it impossible to accept on GPU arrays that makes unfavorable

for large-scale applications.

As Julia is designed to be very extendable, it is always a feasible option to develop a

new package that fits the specific problem. After reviewing the code of the mentioned

packages, we came to the conclusion that the design choices of these packages doen’t

allow addition of features we desired, without breaking the already existing features,

we decided to implement a package that fits better the image CS-MRI reconstruction

framework. The developed package is named FunctionOperators.jl and it is already

published to the central Julia package repository. Being just after the initial phase, the

package supports only the most basic features, but the design of the interface and the

efficient implementation lets the user build arbitrarily complex composite operators

without having any computation penalty compared to the implementation with pure

functions. As of today, the already implemented features if the package are the follow-

ing:

• Construction from a function with one argument that defines "forward" operation.

When the constructed FunctionOperator is being multiplied with a vector/matrix

of the proper size, this function is called on the given vector/matrix. The size of

the proper input and expected output is a mandatory argument of the constructor

of FunctionOperator, and any input with a mismatching size is rejected, and it

after the multiplication the size of the output is also checked against the output
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size specified at construction. E.g., the following code calculates the FFT of x and

stores in y:

Op = FunctionOperator(forw = x -> fft(x))

y = Op * x

• Construction from two functions both accepting one argument. These functions

define the "forward" and the "backward" operations. In contrast to the "forward"

function, the "backward" function is called when adjoint of the FunctionOperator

is requested. E.g., the following calculates the inverse FFT of x and stores in y:

Op = FunctionOperator(forw = x -> fft(x), backw = x -> ifft(x))

y = Op’ * x

• These "forward" and "backward" functions also can accept two arguments. In

that case, the second argument is the input of the operation, and the functions are

expected to store the result of the operation in the first argument. This feature is

advantageous if one wants to optimize the number of memory allocations. E.g.,

the following multiplies x elementwise with two and stores the result in y without

allocating an intermediate array.

Op = FunctionOperator(forw = (b,x) -> b .= x .* 2)|| mul!(y, Op, x)

• Composition of FunctionOperators by multiplication (that means composition of

the "forward" functions), addition and substraction (these adds/substracts the

output of the operations). E.g. considering the following the last line evaluates

to true:

Op1 = FunctionOperator(forw = x -> fft(x))

Op2 = FunctionOperator(forw = (b,x) -> b .= x .* 2)

Op1 * Op2 * x == fft(x .* 2)

• Composition of FunctionOperators with UniformScaling object from LinearAlge-

bra standard library. This UniformScaling operator corresponds to the identity

matrix. E.g. we can define the MR acquisition operator A as a FunctionOpera-

tor, and then we can define the CG operator in algorithm 9 as A′ ∗ A + δ1I (it is

not the abstract mathematical notation, but a valid Julia expression because Julia

also accepts Unicode characters in the identifiers!) and then we can pass it to a a

solver (IterativeSolver.jl has, for example, CG solver that uses duck-typing, so it

requires only that the multiplication must be implemented on the object passed as

argument).
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• Adjoint of composit FunctionOperators: If the FunctionOperator is a composition

of other FunctionOperators, then the adjoint is defined as the composition of ad-

joints of the member FunctionOperators, in the reverse order. E.g., let us recall the

decomposition of the acquisition operator A = ΩFC. Now look on it on the other

way around: we have Ω,F and C already created as FunctionOperators, and we

create the acquisition operator as the composition of them: A = Ω ∗ F ∗ C. Then

A′ ∗ x would do the same as C′ ∗ F ′ ∗ Ω′ ∗ x.

Under the hood, the most important property of the package that it uses the least

amount of memory possible by deferring the allocation of buffers as much as possible

and also by maintaining a smart global pool that stores the already allocated buffers.

These buffers are only needed to store intermediate results, and therefore they are safe

to reuse in different FunctionOperators provided that they are on the same thread. But

the user don’t need to worry about that criterion since this case is handled automati-

cally, making FunctionOperators a thread-safe package (assuming that the user builds

the operators from thread-safe "forward" and "backward" functions). This memory ef-

fective implementation makes FunctionOperators a truly unique as other packages are

all more or less suboptimal in this sense.

As an extra (yet experimental) feature, FunctionOperators package provides a macro

that automatically optimizes loops by cutting down the number unnecessary memory

allocations. To achieve this the macro uses the advanced code generation features that

produces code before the compilation of the program, but after the parser has built the

abstract syntax tree and deduced the type of variables; therefore, heavy optimizations

can be performed behind the scenes using macros and generated functions.

Following the guidelines of the Julia community for package development, the

code is thoroughly tested using unit tests, and has a clean documentation that contains

a notebook with an example for almost all features. The coverage of unit tests are mea-

sured by codecov.io, and it reported that the 94% of the code is covered. This report,

however, underestimates the coverage as it fails to detect the covered lines in case of

tests checking the functions that prints to console. The code of the package is uploaded

to https://github.com/hakkelt/FunctionOperators.jl, and the documen-

tation is available at https://hakkelt.github.io/FunctionOperators.jl/

latest/.
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5.2. Implementation of Sparse+Low Rank algorithms

After the careful examination of both the publication and the reference Matlab imple-

mentation, we created an efficient Julia version for each of these algorithms. As the

implementation was done at the same time as the FunctionOperators was developed,

it was a natural choice to benchmark the newly developed package against the other

similar packages on these algorithms. The contribution of this part of the project is

two-fold: First, it extends the currently small code base of MRI-related algorithms in

Julia, helping the fast growing group of scientists choosing to prototype their research

algorithms in Julia. Second, it might also help those who needs guidance in picking the

right package, especially because currently no other comparison is available to see the

difference between LinearMaps.jl and AbstractOperators.jl.

The result of the benchmarking is available in table 5.1 and the Jupyter notebooks

holding both the benchmarking code, the documentation, and the results are avail-

able at https://github.com/hakkelt/reproduce-l-s-dynamic-mri-julia

In comparison to the Matlab implementation, the results are somewhat mixed since Ju-

lia outperformed Matlab in case of the improved AL scheme (the speedup here was 2x)

and in case of proximal methods for the non-Cartesian dataset (with 2-3.5x speedup).

On the other hand, Matlab produced faster code for the other cases. This results un-

derlines the fact that merely switching the language to Julia not necessarily results in

increased speed automatically. A possible explanation is that we missed some hidden

optimization tricks deeply buried in the Matlab code (which was well optimized in-

deed, and very hard to read—it required a fair amount of time from us to understand

how is it connected to the theory described in the paper). Another possible factor is that

Matlab uses some proprietary C and fortran libraries that have slightly better perfor-

mance compared to the open source options bundled with Julia by default.

Furthermore, the comparison of different Julia implementations revealed that the

three package have very similar running time (that matches our expectations as these

packages are meant to be "invisible" in performance benchmarks being only wrappers

around some functions), but they rahter differ in the memory allocated, LinearMaps.jl

having the largest memory demand (as it was expected from the implementation that

allocates and releases buffers in each iteration again and again in our case), and Func-

tionOperators being better than AbstractOperators by a small margin. We also tested

the automatic optimization macro mentioned above, and the benchmarks showed that
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it reached almost optimal memory usage, reducing the size of net allocations by 70%

on average, compared to the 80% reduction achieved by the tedious process of manual

optimization.

5.3. Implementation of Multiscale Decomposition

The implementation of multiscale low rank algorithm described in [95], posed multiple

challenges. First, the algorithm was written in a framework, also developed by the au-

thor, called SigPy [117]. Practically that meant that we needed to re-implement a fairly

large part of that library in Julia. While it would have been possible to directly call the

methods from this framework, these blocking would make the paralellization of the Ju-

lia code practically impossible. The other largest challenge was that the author used a

special version of the non-uniform FFT (NFFT), also from his package, and therefore we

also needed to re-implement this non-trivial method as well because it was not compat-

ible with the Julia implementation of NFFT. However, this difficulty later turned out to

be beneficial, as we realized a performance problem in the author’s code, and correct-

ing it in our implementation doubled its speed. But first let us discuss shortly the NFFT

algorithm.

5.3.1 NFFT

As the name suggests, non-uniform FFTs are the non-Cartesian variant of the FFT, and

therefore they are very useful in MRI reconstruction with real-life data. Also, simi-

larly to the FFT which is the fast version of DFT, non-uniform FFT is also derived from

non-uniform DFT. There are many possibilities how to calculate them efficiently, but

the most widely used variant is proposed by Fessler [118]. This variant maps the off-

grid coordinates determined by the non-Cartesion trajectory to the closest grid point

and to its neighbor pixels, using a kernel (most commonly the Kaiser-Bessel function)

to weight this projection. Then, it applies the ordinary FFT to the grid filled with val-

ues by the mapping. Finally, it utilizes some technique, known as apodization in the

photography, that corrects the artifacts introduced by the undersampling and the map-

ping to the grid. The large popularity of this approach is that there are many highly

optimized FFT solutions, and therefore the speed of NFFT only depend on the effective

mapping (the time complexity of apodization is negligible compared to the mapping).

In our implementation we used the FFTW library to compute the FFT, which is cur-

rently the fastest open source solution (and some even claim that it outperform the
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algorithm

\data set

PINCAT Multicoil cardiac

cine MRI

Multicoil cardiac

perfusion MRI

Multicoil abdomi-

nal dce MRI

Matlab

AL-CG 16.8 s 49.0 s 19.9 s -

AL-2 17.8 s 55.3 s 27.5 s -

ISTA 1.7 s 5.5 s 2.3 s 141.8 s

FISTA 2.4 s 7.6 s 3.1 s 256.7 s

POGM 1.8 s 5.8 s 2.3 s 140.0 s

LinearMaps

AL-CG 28.4 s, 11.26 GiB 80.8 s, 31.08 GiB 33.8 s, 12.95 GiB -

AL-2 9.8 s, 6.22 GiB 28.4 s, 17.56 GiB 11.0 s, 7.32 GiB -

ISTA 6.0 s, 627.71 MiB 19.6 s, 1.36 GiB 6.8 s, 582.06 MiB 72.7 s, 2.18 GiB

FISTA 6.2 s, 627.71 MiB 16.5 s, 1.36 GiB 6.8 s, 582.06 MiB 73.2 s, 2.18 GiB

POGM 6.3 s, 677.71 MiB 16.8 s, 1.45 GiB 6.8 s, 622.06 MiB 72.6 s, 2.42 GiB

AbstractOperators

AL-CG 28.7 s, 678.06 MiB 76.1 s, 1.45 GiB 32.1 s, 622.41 MiB -

AL-2 9.0 s, 1.14 GiB 23.3 s, 2.93 GiB 10.2 s, 1.22 GiB -

ISTA 6.4 s, 627.68 MiB 16.4 s, 1.36 GiB 7.3 s, 582.03 MiB 72.8 s, 2.18 GiB

FISTA 6.5 s, 627.68 MiB 16.3 s, 1.36 GiB 7.3 s, 582.03 MiB 72.0 s, 2.18 GiB

POGM 6.6 s, 677.68 MiB 16.5 s, 1.45 GiB 7.0 s, 622.03 MiB 73.9 s, 2.42 GiB

FunctionOperators naive

AL-CG 30.6 s, 2.90 GiB 79.4 s, 6.14 GiB 33.3 s, 2.43 GiB -

AL-2 11.6 s, 12.20 GiB 32.0 s, 33.17 GiB 13.1 s, 13.82 GiB -

ISTA 6.8 s, 3.40 GiB 18.1 s, 8.67 GiB 7.6 s, 3.62 GiB 72.7 s, 6.71 GiB

FISTA 6.9 s, 3.40 GiB 17.6 s, 8.67 GiB 7.5 s, 3.62 GiB 74.9 s, 6.71 GiB

POGM 6.9 s, 3.45 GiB 17.8 s, 8.77 GiB 7.5 s, 3.65 GiB 73.741 s, 6.96 GiB

functionOperators optimized

AL-CG 27.0 s, 640.69 MiB 76.2 s, 1.38 GiB 33.0 s, 592.54 MiB -

AL-2 8.6 s, 1.04 GiB 22.7 s, 2.65 GiB 10.0 s, 1.11 GiB -

ISTA 6.1 s, 627.79 MiB 16.6 s, 1.36 GiB 7.6 s, 582.14 MiB 75.1 s, 2.18 GiB

FISTA 6.1 s, 627.79 MiB 16.5 s, 1.36 GiB 7.9 s, 582.14 MiB 73.8 s, 2.18 GiB

POGM 6.3 s, 677.79 MiB 16.747 s, 1.45 GiB 7.079 s, 622.14 MiB 73.6 s, 2.42 GiB

FunctionOperators pretty

AL-CG 28.0 s, 741.02 MiB 75.1 s, 1.57 GiB 30.7 s, 662.87 MiB -

AL-2 8.4 s, 1.26 GiB 21.8 s, 3.26 GiB 9.3 s, 1.36 GiB -

ISTA 6.3 s, 1.05 GiB 16.4 s, 2.49 GiB 6.9 s, 1.04 GiB 73.5 s, 3.03 GiB

FISTA 6.3 s, 1.05 GiB 16.3 s, 2.49 GiB 6.9 s, 1.04 GiB 72.2 s, 3.03 GiB

POGM 6.4 s, 1.10 GiB 16.5 s, 2.58 GiB 6.9 s, 1.08 GiB 74.5 s, 3.28 GiB

Table 5.1: Benchmarking on different datasets performing reconstruction via proximity and augmented

Lagrangian methods descirbed in [90]. "FunctionOperators naive" is an implementation with minimal

manual optimizations, "FunctionOperators optimized" is a manually optimized version, and ""Function-

Operators pretty" is exactly same as the "naive" version except that our automatic automatic optimizer

macro is called on the code. Environment of tests: 48 Intel Xeon CPUs and 385 GiB memory, Julia 1.4.
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commercial ones). This library supports also multithreading that help us also speed-

ing up the code. When we compared our implementation to the implementation in

SigPy, we considered three multithreading settings: a fully singly threaded, a partially

single threaded (the Julia code is single threaded, and the multithreading in FFTW is

allowed), and a fully multithreaded. Concerning the size of the problem: We tested the

implementation for three sizes, a small sized random image (64 × 64) and relative few

sampling points (1024), a "medium sized" where the image were relatively large with

size of 128×128×128, but the number of sampling point were still low compared to the

size of the image (16k sampling points), and the "large" problem where the image size

is reduced to keep the problem feasible, but the number of sampling points were large.

In case of the "medium" and "large" data, a batch dimension of size 12 is also provided

that means that no Fourier transformation is done along that direction, but the same

operation takes place on each slice defined by this direction.

The numerical results, then showed us that the best multithreading setting is de-

pends on the problem, as we expected. Moreover, the multithreading in FFTW brings

larger benefits when the size of input image is large (in these cases the FFT is the domi-

nant step in the NFFT), while enabling the Julia multithreading (these threads then dis-

tributes the sampling between each other) has a large positive impact when the number

of sampling points are sufficently large (let’s say over 1M points). In the MRI cases,

the latter is not an infrequent situation. For a better insights to the results, we refer the

reader to fig. 5.1-5.3. In these figures we show two different versions of the Julia imple-

mentation: one contains the initialization steps, the other not. While the former is good

enough when we want to evaluate the NFFT only once, the latter is good when we per-

form the same operation multiple times; e.g., in a loop. In these cases, one might want

to avoid repeated allocations in the initialization part, and therefore our implementa-

tion makes it possible to create a plan and then apply this plan to the data avoiding the

repeated initialization.

5.3.2 MSLR Algorithm

After finishing the re-implementation of the necessary parts of SigPy in Julia, our at-

tention is turned towards the implementation of the algorithm itelf that was not a chal-

lenge any more as almost all important operators and functions are defined in SigPy.

Being aware of the speedup in case of the re-implementation of the NFFT, we expected

similar acceleration. Yet, the result were even better as we predicted. As we already
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Figure 5.1: Comparison of running time between the Python implementation in SigPy package (blue), and

the Julia implementations (orange: initialization and computation), green: computation only) at different

threading settings in the case of a small problem (small input image with relatively few sampling points).

For small images, single threaded Julia version is the fastest. (Note that the Python implementation does

not implement multithreading, and hence the height of the three blue bar is the same.)
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Figure 5.2: Comparison of running time in the medium sized setting: Single threaded Julia + multi-

threaded FFTW yielded the best performance.
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Figure 5.3: Comparison of running time in case of large number of sampling points: Multithreaded Julia

code + multithreaded FFTW were the fastest.
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Figure 5.4: Comparison of speed different implementations for the gridding reconstruction problem (i.e. a

large scale adjoint NFFT with batch dimensions).

mentioned, the Python implementation did not exploit the potentials in the batch pro-

cessing in NFFT. Specifically, it is much faster to pass the image the NFFT specifying

along which dimension we want to perform the NFFT, than iterating over th batch di-

mension (= the dimension along which we do not want to perform the NFFT) and calling

the NFFT on each slice.

Fig. 5.4 demonstrates the effect: Here the measured algorithm technically consists

only of a loop that iterates over the batch dimension corresponding to the coils sensi-

tivities, and calls NFFT on each. On the other hand, the Julia version passes the entire

arraw to NFFT. The result is drastic, 5.5× speedup, even in the fully single threaded

case. But when we anable the full multithreading, algorithm appeared to outperform

even the Python’s GPU version. Fig. 5.5 does not show so much improvement, but still

many-fold speedup is experienced, with the fully multithreaded almost reaching the

Pyhton’s GPU version.

These results suggest that re-implementing the Python’GPU code in Julia would en-

joy, maybe not that much, but significant acceleration. For more information concerning

the implementational details, we refer the reader to the GitHub repository of the project:

https://github.com/hakkelt/extreme_mri_julia Environment of measure-

ments: 56 Intel Xeon CPUs, 2 K80 GPU, and 385 GiB memory, Julia 1.4.

5.4. HM-IRLS Implementation

While the plan at the beginning of the project was to apply the new HM-IRLS method to

the L+ S problem, the robust version of this algorithm is still not published at the time
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Figure 5.5: Comparison of speed for different implementation of the MSLR algorithm. Note that the

heavily multithreaded Julia implementation was almost as fast as the Python GPU implementation. Also

even the fully single threaded Julia implementation was more than three times faster than the Python CPU

implementation.

of the writing, unfortunately. Therefore we were limited make experiments with the

low-rank-only variant of the algorithm. To make the comparison to the other method

somewhat balanced, we used the simulated dataset from [93], and we modified it to

produce multiple slightly different datasets, and made experiments on how the param-

eters of these dataset-variant effects the recovery process. That way we could look at

the effect of noise, undersampling ratio, and sparseness. By undersampling, of course,

we mean here the undersampling of the Fourier domain.

The modification process consisted of a singular value hard thresholding that se-

lected the r largest singular values, and discarded all other. As a result, the thresholding

produced an image with the desired rank r. Next, we subtracted this low-rank approxi-

mation from the original image, and we added back the residual after hard thresholding

to the low-rank image. The resulted image served then as "ground truth" image, which

we undersampled, and added some noise to the undersampled data. The process in a

more exact form:

L = SV HTr(X)

Xgt = L +HTs(X− L),

where SV HTr is the singular value hard thresholding, andHTs is the hard thresholding

that discard all, but the s largest values in a matrix. The last step of the construction

of the modified setting was the undersampling where we were in full control of the

number of sampled point from the Fourier domain.

In the testing stage, we examined how much can the different algorithms recon-
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struct the "ground truth" from the undersampled, noisy measurement. Our experi-

ments showed that the HM-IRLS algorithm performed extremely well in the noiseless

case and when s = 0, that is, the ground truth image was only the low rank compo-

nent. The results also confirms the claims that POGM converges the fast, FISTA and

the improved AL being the second fastest, but finally all of the algorithms designed

to minimize the L + S cost converged to the same minimizer after a long time. The

MSLR algorithm, however, reached a much worse local minimizer than the other algo-

rithms. Even though it might be surprising at first, the difference in the reach optimizer

is fairly reasonable as HM-IRLS solved the low-rank minimization directly, the ones

with the L + S cost solved a relaxed problem that minimized nuclear norm instead

of the rank, and, finally, the MSLR even relaxed the the nuclear norm even further by

the Burer-Monteiro factorization to reduce the memory requirement of the algorithm

(therefore it is slightly unfair comparison to others which care less about memory con-

sumption). Moreover, we checked the behavior of the rank during the iterations, and

we noted that the while the HM-IRLS algorithm decreased the rank gradually, the soft-

thresholding-based algorithms reached the target rank very soon, but the overall cost

function stopped also at a ligher level. The AL method with CG steps were the only

expection, most probably because of the alternating steps working "against" each other.

Fig. 5.6 shows a setting plot were all algorithms successfully converged.

Unfortunately, even relatively low level of noise or small amount of sparsity can

make the HM-IRLS fail to converge. Fig. 5.7 displays such a case, that actually cor-

responds the setting used in the L + S paper we discussed deeper. In that setting,

not only HM-IRLS, but also the MSLR algorithm diverges at all α step sizes. This can

certainly avoided by adjusting the parameters of the algorithm. After running many

measurements we concluded that SNR under approximately 100 dB makes the HM-

IRLS fail to converge for most settings (see fig. 5.9. On the other hand, the reconstruc-

tion power of HM-IRLS appeared to be much stronger than the others minimizing the

nuclear-norm, as it is depicted on fig. 5.8. For more information on the implementation

details, see https://github.com/hakkelt/IRLS-for-CS-MRI. Environment of

measurements: 56 Intel Xeon CPUs, 2 K80 GPU, and 385 GiB memory, Julia 1.4.

It important to note that the results here are promising, but definitely not decisive,

as using HM-IRLS in this form in L + S setting is technically modelling error, and also

as we tested only on one dataset. One could rather see the efforts presented here as a

proof-of-concept that motivates further investigation.
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Figure 5.6: Ideal case: low-rank only and noiseless All algorithms converges and HM-IRLS gives the

best, almost perfect result. Even tough HM-IRLS seems to be the slowest, in the mathematical sense, it

is the fastest. Here on the image the red line shows the result of 30 iterations, while the others perform

multiple thousands of iterations. On the right image, showing the rank over the iterations, one can not

that HM-IRLS is more careful with decreasing the rank thank other methods, and the decrease is also more

smott.

Figure 5.7: Setting that mimics the real-life settings. HM-IRLS diverges as MSLR also does.

Figure 5.8: Reconstruction power. The number of

measurements (number of "spokes" in the radian

sampling trajectory) is increasing resulting more

measurement data.HM-IRLS have much better re-

construction in all cases. ZF refers to the naive zero-

filling method, where the missing values are substi-

tuted with zeros.

Figure 5.9: Noise tolerance of algorithms. When

the noies is very low, the HM-IRLS gives almost

perfect result, but higher noise level quickly de-

grades the performance. ZF refers to the naive zero-

filling method when missing values are substituted

with ones.
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Chapter 6

Summary

6.1. Objectives

In this thesis work, we considered the classic results as well as the recent advances

within of the compressed sensing framework and their application to real life MR imag-

ing. In particular, we closely examined two recent publications presenting state-of-the-

art solutions combining conventional techniques with novel ideas. Afterwards, we im-

plemented these algorithms along with a recently invented algorithm from the family of

iteratively least squares methods that previously have not been applied to MRI setting

yet. Finally, we compared these algorithm with respect to reconstruction power from

massively undersampled data and noise tolerance.

6.2. Achievements

Throughout the projects we presented here, we gained a deeper understanding of opti-

mization methods, in particular to iterative gradient methods, and IRLS methods. We

build up a confidence in programming in Julia, and we believe that the software we de-

veloped might server a good use for others, especially the FunctionOperators.jl package

and the parallelized NFFT.

We also proved that the new IRLS variant developed in [112], [113] is a feasible so-

lution to compressed sensing MRI, and despite being unstable, it can vastly outperform

other state-of-the-art algorithms when it converges.
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6.3. Future Plans

We plan to continue developing the FunctionOperators package extending it with fea-

tures and commonly used operators, and in the near future it also expected to became

GPU compatible. The achievements in the parallelization of NFFT is planned to be used

to contribute to the NFFT.jl package that is considered to be the best option for NFFT so

far, yet it lacks the support for multithreading and GPU arrays. Finally, we would like

to implement also extensions of the novel IRLS method as soon as the authors publish

their ongoing research.
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