
Stochastic Signals and Systems

Spectral theory, I.
Lecture 3.



Completely regular process. Review.

Let (yn) be a completely regular process, i.e.

Hy
−∞ =

⋂
m≥0

Hy
−m = {0}.

Then for (yn) we have:

yn =
∞∑

k=0
hken−k

with h0 = 1, and
∞∑

k=0
h2

k <∞. MoreoverHe
n = Hy

n for all n.



The problem of prediction revisited

Let (yn) be a completely regular process

yn =
∞∑

k=0
hken−k = en +

∞∑
k=1

hken−k ,

where h0 = 1, and (en) is the innovation process of y .

Then the LSQ predictor of yn is given by

ŷn =
∞∑

k=1
hken−k .

The problem: express ŷ in terms of y - instead of e!



Simplify the problem: assume that (yn) is an MA(r) process:

yn =
r∑

k=0
cken−k , c0 = 1. (1)

A useful tool: the backward shift operator :

(yn) 7→
(
(q−1y)n

)
, (q−1y)n = yn−1.

Introduce a polynomial of q−1 as

H(q−1) = 1 + c1q−1 + . . . cr q−r =
r∑

k=0
ckq−k .

Then the MA process (1) can be rewritten as

y = H(q−1)e



y = H(q−1)e.

The LSQ predictor is
ŷn = yn − en.

Thus, the process (ŷn) can be defined this way:

ŷ =
(
H(q−1)− 1

)
e.

To express e via y , a formal procedure is to invert y = H(q−1)e as

e = H−1(q−1)y .

What is the interpretation of the operator H−1(q−1)?



An example: (yn) is an MA(1) process

yn = en + cen−1. (2)

Then
en = −cen−1 + yn.

Iterating this equation we get

en =
∞∑

k=0
(−c)kyn−k . (3)

It is well defined, if |c| < 1. (3) is the inverse of (2). Thus

H(q−1) = 1 + cq−1, H−1(q−1) =
∞∑

k=0
(−c)kq−k

The situation becomes much more complicated for higher order MA
models. The interpretation of H−1(q−1) needs extra care.



A detour: the z transform, I.

An excursion to the theory of linear time invariant (LTI) systems:

yn =
n∑

k=0
hkun−k , n ≥ 0.

Here u = (un) is the input process, y = (yn) is the output process, n ≥ 0.

The coefficients hk are the impulse responses.

Assume that
∞∑

k=0
|hk | <∞.

Let u = (un) be bounded. Then y = (yn) will also be bounded.



Define for |z | > 1:

U(z−1) =
∞∑

k=0
ukz−k , Y (z−1) =

∞∑
k=0

ykz−k , H(z−1) =
∞∑

k=0
hkz−k .

The power series are absolute convergent for |z | > 1.

Then we have a simple multiplicative description of our LTI:

Y (z−1) = H(z−1) U(z−1).

Extend it to two sided processes: neither |z | > 1, nor |z | < 1 would do.

The only option is to try |z | = 1, i.e. z = e iω.



Fourier methods for w.s.st. processes, I.

Thus we are led to the formal objects:
∞∑

n=−∞
yne−inω, ω ∈ [0, 2π).

The aim of spectral theory is to give a meaning to these formal objects.

Let (yn) be a w.s.st. process. We can ask if the finite Fourier series

ξN :=
N∑

n=−N
yne−inω

has a limit in any sense? (EξN = 0.)

For a start ask if the following sequence has a limit?

lim
N→∞

E

∣∣∣∣∣
N∑

n=−N
yne−inω

∣∣∣∣∣
2

=?



Consider a fix N, and compute:

E

∣∣∣∣∣
N∑

n=−N
yne−inω

∣∣∣∣∣
2

= E
( N∑

n=−N
yne−inω

N∑
m=−N

yme+imω

)
=

=
N∑

n=−N

N∑
m=−N

E (ynym) e−i(n−m)ω

As E (ynym) = r(n −m), introduce a new variable τ = n −m. Thus

E

∣∣∣∣∣
N∑

n=−N
yne−inω

∣∣∣∣∣
2

=
2N∑

τ=−2N
r(τ) e−iωτ (2N + 1− |τ |). (4)



Fourier methods for w.s.st. processes.

Defining

sn(ω) =
+n∑

τ=−n
r(τ)e−iωτ ,

we can write
2N∑

τ=−2N
r(τ) e−iωτ (2N + 1− |τ |) =

2N∑
n=0

sn(ω).

This is the Cesaro-sum of a Fourier series: the sum of partial sums.

=⇒ E

∣∣∣∣∣
N∑

n=−N
yne−inω

∣∣∣∣∣
2

=
2N∑

n=0
sn(ω)



At this point let us make the assumption that

+∞∑
τ=−∞

r2(τ) < +∞. (5)

Assumption (5) implies that

lim
n→∞

+n∑
τ=−n

r(τ)e−iωτ =
+∞∑

τ=−∞
r(τ)e−iωτ =: f (ω)

is well-defined, f (ω) = lim
n→∞

sn(ω) in L2([0, 2π], dω).

Fejér’s theorem: The sum also converges to f (ω) in the Cesaro sense:

lim
N→∞

1
N + 1

N∑
n=0

sn(ω) = f (ω) a.s..



Fourier methods for w.s.st. processes, III.

Proposition
Under condition

∑
r2(τ) < +∞

lim
N→∞

1
2N + 1E

∣∣∣∣∣
N∑

n=−N
e−inωyn

∣∣∣∣∣
2

= f (ω) ≥ 0

exists a.s. on [0, 2π) w.r.t. the Lebesgue-measure, where

f (ω) =
+∞∑

τ=−∞
r(τ)e−iωτ .



Herglotz’s theorem, special form.

We immediately get a special form of the celebrated Herglotz’s theorem:

Proposition
Under condition

∑
r2(τ) < +∞ we have

r(τ) = 1
2π

∫ 2π

0
e iωτ f (ω)dω

with some f (ω) ≥ 0, f (ω) ∈ L2[0, 2π). In particular

r(0) = 1
2π

∫ 2π

0
f (ω)dω.

This is the spectral density function of the w.s.st process y .



Herglotz’s theorem, example.

Let (yn) = (en) be an orthogonal process.

Then the autocovariances are:

r e(0) = σ2, and r e(τ) = 0 for τ 6= 0.

In this case
f (ω) = σ2, ∀ω ∈ [0, 2π).

The spectral density function is constant.

Exercise. (HW) Let y be an MA(1) process: yn = en + cen=1. Compute
the spectral density function of y .


