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Motivation

* Need to make classification of patient state to
* make a diagnosis
* decide on a course of treatment based on the diagnosis

* For more complex classification, computer-aided diagnosis (CAD) may be
preferable

* does not get overwhelmed with number of variables
* its performance is easier to evaluate

* however: may not take into account all circumstances. This
is why final diagnosis (and responsibility for it) still falls on
doctor

Biomedical Signal Processing
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Overview

* The classification problem

* Examples of classification

* Types of classification

* Bayesian classification

* Cost matrix (implicit, explicit)

* the inability to escape from having to exercise moral judgment

Biomedical Signal Processing
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Probabilistic classification
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z: measured temperature

probabilistic classifier is a classifier that is able to predict, given an observation of an
input, a probability distribution over a set of classes, rather than only outputting the
most likely class that the observation should belong to. (Wikipedia)

P(T*|z2)+P(T|z) =1 Vz


https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Set_(mathematics)
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What determines threshold?

discriminant function:
f(z2)=p(T"|z) — p(T"|2)

Probabilistic classification

- T+ classification
T- classification
Discriminant function |*S
| I -

o
o0

Classificationprobability
o

o
o

34 345 35 355 36 36.5 37 375 38 38.5 39
measured instance z

Biomedical Signal Processing

Let’s difene a difference function f(z) for upcoming calculations.
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What determines threshold?

f(z) =p|z) —p(H|z)
Zihres = {ZIf(2) =0} —

1 Probabilistic clgssification
Ll LI T

LN T I
T+ classification

T = = - 1
2 _| -
‘ f’ I T- classification
- Qj - Discriminant function |'S}
- i
T o

P(T*2)

o
o0

Classificationprobability
o
[4,] o
)

1 1 1 ! L 1 1 1
34 345 35 355 36 36.5 37 375 38 38.5 39
measured iniance z

Biomedical Signal Processing

Where the difference function f(z) is zero, | can define a threshold!
Temperature under 37 degrees indicate a healthy, above it a sick person.
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What determines threshold?

f(2) =p(T*|z) —p(T"|2)
Zthres = {Zl f(Z)= 0}
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What if A low temperature indicates sickness too?
As the threshold is defined as a set of points, | might have multiple thresholds!
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Statistical classification at court

10

Biomedical Signal Processing

Fenton and Neil: Avoiding Probabilistic Reasoning Fallacies in Legal Practice
using Bayesian Networks

Notable examples (of need for Bayesian reasoning):

Sally Clark: ,1 in 73 million” (8543 x 8543) chance of her innocence
http://en.wikipedia.org/wiki/Sally_Clark

DNA-based conviction in rape case http://en.wikipedia.org/wiki/R_v_Adams

10
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Statistical classification at court
Sally Clark

* Clark's first son died suddenly in
December 1996 within a few weeks of mmmn’-:"b'ﬁhmdm
his birth. In January 1998 her second 2-4months of age
died in a similar manner

* A month later, she was arrested dovelopment
and tried for both of the deaths. —

* Prosecution evidence: the SiDS
chance of two children from an
affluent family e o
suffering SIDS was 1in 73 oy o

- 1 1 ~head covering
million (— . —) . -otloeping
8543 8543

Biomedical Signal Processing

~700 000 newborns/year in the UK

Fenton and Neil: Avoiding Probabilistic Reasoning Fallacies in Legal Practice
using Bayesian Networks

Notable examples (of need for Bayesian reasoning):

Sally Clark: ,1 in 73 million” (8543 x 8543) chance of her innocence
http://en.wikipedia.org/wiki/Sally_Clark

DNA-based conviction in rape case http://en.wikipedia.org/wiki/R_v_Adams

11
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Importance of Bayesian Reasoning

Sally Clark

* She was released from prison having served
more than three years of her sentence.

* Clark's experience caused her to develop
serious psychiatric problems and she died in
her home in March 2007 from alcohol
poisoning

* Journalists called Clark's experience "one of
the great miscarriages of justice in modern
British legal history".

Biomedical Signal Processing

- The SIDSs within one family are not independent events, therefor their joint

probability should not be calculated like this

- ,double SIDS is very rare, double infant murder is likely to be rarer still” 2>
Bayesian reasoning

- the very same factors which make a family low risk for cot death also make it low
risk for murder.

12
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Importance of Bayesian Reasoning

Imagine 10,000
R v Ada ms ;:gllzewho could

potentially have [

* A rape victim described her  committedthe e
crime [—

attacker as in his twenties. __,._—vagmm '

One of whom
« A suspect, Denis Adams, souee /
was arrested. The woman sutabout1o
failed to pick him out. pepe e
Adams was 37 and he had e ™
an alibi for the night in

question.

Actual source

-

* However, his DNA was a Mot oures b
match (1 in 20 million people S
would be a match) person

Biomedical Signal Processing

- The SIDSs within one family are not independent events, therefor their joint

probability should not be calculated like this

- ,double SIDS is very rare, double infant murder is likely to be rarer still” 2>
Bayesian reasoning

- the very same factors which make a family low risk for cot death also make it low
risk for murder.
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Breast cancer question

* A 50-year-old woman, no symptoms, participates in routine mammography
screening. She tests positive, is alarmed, and wants to know from you whether
she has breast cancer for certain or what the chances are. Apart from the
screening results, you know nothing else about this woman. How many women
who test positive actually have breast cancer? What is the best answer?

* The probability that a woman has breast cancer is 1% ("prevalence")

« If a woman has breast cancer, the probability that she tests positive is 90%
("sensitivity")

* |f a woman does not have breast cancer, the probability that she nevertheless
tests positive is 9% ("false alarm rate")

* Question: what is the probability that she has breast cancer?

Biomedical Signal Processing

From http://www.bbc.com/news/magazine-28166019

14
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Breast cancer question

¢ The probability that a woman has breast cancer is 1%
("prevalence") P(B) = 0.01;

¢ |If a woman has breast cancer, the probability that she tests positive is 90%

("sensitivity") P(test + |B) = 0.90;

If a woman does not have breast cancer, the probability that she nevertheless

tests positive is 9% ("false alarm rate") P(test + |~B) = 0.09;

Maths answer: 1,000 Women

* P(B|test +) =

10 have 990
(P(test+|B)-P(B)) B cancer don't
(P(test+|B)-P(B) + P(test+|~B)*P(~B))
9 test 89 test
. positive positive
(0.9-0.01) = 0.09 1 tests 901 test
0.9%0.01+4+0.09%0.99 ’ negative negative

Biomedical Signal Processing

15
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Classification matrix
S HEP
pecifity:
TNF = #TN FPF = L
= N+ IFD #TN + #FP
#FN #TP
#FN Sensitivity:
FNF=—— _uTp
#FN + #TP TPF = ———
Biomedical Signal Processing

References:
Rangayyan p. 469
Ling and Sheng: Cost-Sensitive Learning and the Class Imbalance Problem



| Pdzmany Péter Catholic University

Faculty of Information Technology and Bionics

Sensitivity & Specificity

Predicted Predicted Predicted Predicted
Model 1 Health lliness Model 2 Health lliness
Actual Health 230 10 Actual Health 180 60
Actual lliness 20 5 Actual lliness 5 20
g s 230 g s 180
Specificity = =0.96 Specificity = =0.75
230+10 180+60
e . 5 e o 200
Sensitivity = S00E 0.2 Sensitivity = Jois 0.8

Biomedical Signal Processing

References:
Rangayyan p. 469
Ling and Sheng: Cost-Sensitive Learning and the Class Imbalance Problem
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Accuracy
HTN H#FP
HFN H#TP
"
#TP+#TN
Accuracy =
#TP+#FP+#TN+#FN

Biomedical Signal Processing

An overall performance of the classifier can be defined as the accuracy.

References:
Rangayyan p. 469
Ling and Sheng: Cost-Sensitive Learning and the Class Imbalance Problem
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Accuracy
Predicted Predicted Predicted Predicted
Model 1 Health Iliness Model 2 Health lliness
Actual Health 230 10 Actual Health 180 60
Actual lliness 20 5 Actual lliness 5 20
230+5 180+20
Accuracy = >~ 0.89 Accuracy = =%~ 0.75
265 265

Biomedical Signal Processing

Model 1 classifies almost all test as negative, still has a higher accuracy.
Model 2 classifies the abn

In the breast cancer example the positive set is 1% compared to the 99% N
test. If the positive cases would be classified as negatives, the accuracy would
be still high.

References:
Rangayyan p. 469
Ling and Sheng: Cost-Sensitive Learning and the Class Imbalance Problem

19
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Cost matrix

Predicted Health Predicted llIness

C(TN): cost of screening | C(FP): cost of further
Actual Health (including tests/therapy therapy
complications) on healthy individual

C(FN): cost of delayed C(TP): cost of further
therapy tests/therapy

Actual lliness

Cost =TNF - C(TN) 4+ FPF - C(FP) + FNF - C(FN) + TPF - C(TP)

e

Biomedical Signal Processing

(

——

.

So far we have made diagnostic decisions based on the implicit assumption
that the cost of a false positive and false negative are the same.

This leads to us choosing a positive diagnosis if the probability of a positive
diagnosis is greater than the probability of a negative diagnosis.

However, what if there are difference costs associated with false positives,
false negatives? Or maybe there are even costs to a true positive or true
negative?

These misclassification cost values can be given by domain experts, or learned via
other approaches. In cost-sensitive learning, it is usually assume that such a cost
matrix is given and known.

References:
Rangayyan p. 469
Ling and Sheng: Cost-Sensitive Learning and the Class Imbalance Problem

20



| Pdzmany Péter Catholic University

Faculty of Information Technology and Bionics

Predicted  Predicted
Model Cost cosT e liness

Actual Health

Actual lliness

Predicted | Predicted Predicte | Predicted
Model1 | "\ Cith | iness Model 2 | peaith | Hliness
Actual Health 230 10 Actual Health 180 60
Actual lliness 20 5 Actual lliness 5 20
230 10 _ 180 60
C;J:t =730:10 0 230500 107 C?;t " 180+60 .0 T ts0ve0 107
2055 100 +57—- (=1) = 80.22 s+z0 100+55- (-1) =217

Biomedical Signal Processing

References:
Rangayyan p. 469
Ling and Sheng: Cost-Sensitive Learning and the Class Imbalance Problem
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Model Cost vs Accuracy

Predicted Predicted Predicted Predicted
Model 1 Health lliness Model 2 Health lliness
Actual Health 230 10 Actual Health 180 60
Actual lliness 60 18 Actual lliness 52 26
Accuracy = 0.89 Accuracy = 0.75
Cost = 80.22 Cost= 21.7

Biomedical Signal Processing

,If we compare both the models and if we check their accuracy. Accuracy for Model 1
is higher compared to Model 2, however the cost for Model 1 is higher compared to
Model 2.

So it depends on what kind of problem statement we are facing.

If we are focusing on accuracy then we will go with the Model 1 (In this case we need
to compromise on cost) , however if we are focusing on cost then we will go with the
Model 2 (In this case we need to compromise on accuracy).”

22
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Probabilistic classifier

What if this threshold is very costly?

Probabilistic cidssification
I T L

e L |
z T+ classification
T- classification
- Discriminant function
Lt

o
0
T

P(T*[2)

Classificationprobability
S
[4.] o

PTH2) +P(T12)=1 vz

3 '} 1 1 L il 1 1 L
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measured inl(ance z

Biomedical Signal Processing

probabilistic classifier is a classifier that is able to predict, given an observation of an
input, a probability distribution over a set of classes, rather than only outputting the
most likely class that the observation should belong to. (Wikipedia)

P(T*|z2)+P(T|z) =1 Vz


https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Set_(mathematics)
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Cost minimisation \

How to minimize the cost of a classification problem? c .r

The expected cost of classifying a case z into positive/negative class:
R(T*|z) = C(TP)- P(T*|z) + C(FP) - P(T"|2)
R(T|z) =C(FN) -P(T"|z) + C(TN) - P(T" |2)

Predicted Predicted
cosT Health lliness )P(T'lz)

Actual Health

Probability estimation of
classifying a case z as healthy

Actual lliness classifying a case z as healthy

)F(T*Iz) Probability estimation of

Biomedical Signal Processing

24
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Cost minimisation

The classifier will classify an instance z into positive class if and only if
it has a lower cost:
R* <R~
C(TP) - P(T*|z) + C(FP) - P(T"|z) < C(FN) - P(T*|z) + C(TN) - P(T"|z)
P(T~|2)[C(FP) — C(TN)] < P(T™*|z)[C(FN) — C(TP)]

0 C(FP)-C(TN)
C(FN)-C(TP) 0

P(T~|2)[C*(FP)] < P(T*|2)[C"(FN)]

Biomedical Signal Processing

Given the cost matrix, an example should be classified into the class that has the
minimum expected cost. This is the minimum expected cost principle.

The line,P(T~|2z)[C(FP) — C(TN)] < P(T*|z)[C(FN) — C(TP)]

indicates that the decision (of classifying an example into positive) will not be
changed if a constant is added into a row of the original cost matrix. Thus, the original
cost matrix can always be converted to a simpler one by subtracting C(TN) from the
first row, and C(TP) from the second row

Under this assumption, the classifier will classify a case into positive class if and only

if:
(T~ |2)[C*(FP)] < P(T*|2)[C*(FN)]

25
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Cost minimisation

C*(FP)=

0 C(FP)-C(TN)

C*(FN)=
C(FN)-C(TP)

P(T™|2)[C"(FP)] < P(T™|2)[C"(FN)]

0

we can obtain a threshold p” for the classifier to classify an instance
z as positive ifP(T " |z) = p * where
. C"(FP)

"~ C*(FN) + C*(FP)

Biomedical Signal Processing

Thus, if a cost-insensitive classifier can produce a posterior probability estimation

p(l|z) for test examples z, we can make it cost-sensitive by setting the classification
threshold p* to the limit, where

P(T~|z)[C*(FP)] = p*[C*(FN)]
However, here P(T"|z) should be (1-p*):
(1 =pH)I[C"(FP)] = p*[C"(FN)]
C*(FP) = p*(C*(FN) + C*(FP))
. c*(FP)
b = (c*(FN)+C*(FP))

) C*(FN)

P =C*(FN) + C*(FP)
and classify any example to be positive whenever P(T"|z)> p* .

26
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Multi-stage diagnosis

* Use more economic ways of
diagnosis first

* Generally (unless it is a round of
eliminating diseases), cost (and
probability) of diagnosis
increases as more and more
tests are performed

Biomedical Signal Processing

https://www.verywellhealth.com/diagnosis-of-pneumonia-4160855

Pneumonia Diagnosis

27
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Inevitability of having to exercise ethical/moral/practical
judgment

* What cost to put on someone’s life
» years of ,useful life”

* What cost to put on someone’s discomfort
* physical
* psychological

* Resource allocation — different area

Biomedical Signal Processing

28
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Combining several variables

f(x,y) = p([x,y) — p(H|x,y)

random Gaussian, 0p= Oy Gaussian, gp< Oy

29

Biomedical Signal Processing

The first one ca cnot be separated, the second one can be separated linearly.

With the third one a non-linear classification might be applied.

Or again, weighted substraction if we have unequal costs associated.
But more-generally, what approaches are taken?

29
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How to combine? Classification types

* Logic-based, rule-based
* Pseudo-probabilistic
» confidence factor (cf MYCIN)

* score definition, e.g. using simple counts of positive and
negative factors

* fuzzy logic
* Probabilistic
* log-likelihood

* Bayesian (and Bayesian/Belief networks)

* ANN-based methods
* Feed-forward vs Recurrent Neural networks
* Support vector machines

Biomedical Signal Processing

30

30
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Rule-based classification

IF (the RR interval of the beat is less than the normal at the current heart rate) AND

(the QRS waveshape is markedly different from the normal QRS of the patient)
THEN the beat is a PVC.

Biomedical Signal Processing

Rangayyan (2002): p. 446-448

31
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Rule-based classification

IF (QRS duration > 105 ms and < 120 ms) AND

(QRS amplitude is negative in leads V1 and V2) AND

(Q or S duration > 80 ms in leads V1 and V2) AND

(no Q wave is present in any two of leads I, V5, and V6) AND

(R duration > 60 ms in any two of leads I, aVL, V5, and V6) THEN
the patient has incomplete left bundle-branch block.

32

Biomedical Signal Processing

Rangayyan (2002): p. 446-448

32
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Variable SAPS Scale 4 3 2 1 0 1 2 3 4
Age (yr) <45 46-55  56-65 66-75 >75
Heart rate (beat/min) =180 140-179 110-139 70-109 55-69 40-54 <40
Systolic blood pressure (mm =190 150-189 80-149 55-79 <55
Hg)
Body temperature (°C) =41 39.0-40.9 38.5-38.9  36.0-38.4  34.0-359 32.0-339 30.0-31.9 <300
Spontaneous respiratory rate =50 35-49 25-34 12-24 10-11 6-9 <6
(breath/min)
or
Ventilation or CPAP Yes
Urinary output (L/24 h) >5.00 3.50-4.99  0.70-3.49 0.50-0.69  0.20-0.49  <0.20
Blood urea (mMol/L) =550 36.0-54.9 29.0-359 7.5-289 3.5-7.4 <3.5
Hematocnt (%) =60.0 50.0-59.9 46.0-49.9  30.0-45.9 20.0-29.9 <20.0
White blood cell count (10°/ =400 20.0-39.9 15.0-199 3.0-149 1.0-2.9 <1.0
mm?)
Serum glucose (mMol/L) =445 27.8-444 140-27.7 39-139 2.8-3.8 1.6-2.7 <L6
Serum potassium (mEq/L) =70  6.0-6.9 5.5-59 3.5-54 3.0-34 25-29 <25
Serum sodium (mEq/L) =180 161-179 156-160 151-155 130-150 120-129 110-119 <110
Serum HCO, (mEq/L) >40.0 30.0-39.9  20.0-29.9 10.0-19.9 5.0-9.9 <5.0
Glasgow coma score 13-15 10-12 7-9 4-6 3
33

Biomedical Signal Processing

How to classify ICU patients? One example is giving them a score based on
the table above.

Other scores: APGAR, Manning

References:

Le Gall et al. (1984): A simplified acute physiology score for ICU patients
http://en.wikipedia.org/wiki/ICU_scoring_systems
https://en.wikipedia.org/wiki/Apgar_score
https://en.wikipedia.org/wiki/Biophysical_profile

33
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Support vector machines

Maximum Margin Separation

e e
¢
[ :
[ ] ° [} i
o[e o L g. ......... 5
Input Space Feature Space g
% 100%

GC Content After 'AG’

34

Biomedical Signal Processing

Outside scope:
Relevance vector machines: SVMs with probabilistic output

Sources:
http://www.imtech.res.in/raghava/rbpred/svm.jpg
http://svmcompbio.tuebingen.mpg.de/examples.html
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Artificial neural networks A
H premature
* Perceptron all . ventricular
* Radial basis functions (RBFs) N - contraction
* Universal approximation asl t
theorem j /’;r/
E o e ¢ L
5 ] S normal heart
- “ beat
St 1
X1
multi-layer perceptron RBF network
update weights kernel parameters % o5 1 15 2 25
and weights RR interval in seconds

Biomedical Signal Processing

Perceptron: possibility of non-linear mapping following linear combination of
inputs

Radial basis functions (RBFs): weighted sum of radial basis function outputs,
each of which is a function of the distance of the input vector from some
center: p(x)=X.8_i#[a_i p(||x—c_i |])), with e.g. p(||x—c_i ||) =expf<+B]||x—c_i
1"2]

Universal Approximation theorem: feed-forward network with single hidden
layer able to approximate continuous functions on compact subsets
(https://en.wikipedia.org/wiki/Universal_approximation_theorem)




Pdzmany Péter Catholic University

Faculty of Information Technology and Bionics

Issues (mainly with ANNs) ) p——

10 130 150 170 190 20 230 250 270 290 310 330 350
o6

o Ao 7]
e merogsf i
* Curse of dimensionality ~ ey g
* Overtraining £ N z
g LA 3
* Time to run i / i i "3
- - ¥ ! LA vl
* Main solution: 4L S
* reduce dimensionality £
e —

o100 110
Weight [kilograms]

* feature extraction

BMI = mass / height?
* How to pick ANN architecture?

* self-organising maps (SOM)

Biomedical Signal Processing
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Feature extraction — Déja Vu ©

* Principal Component Analysis
* Covariance (2nd order statistic) of components zero
* Independent Component Analysis

* Other measure of independence, such as higher order
statistics or mutual information

nor-sparse, isolated non-sparse, square srangement sparse, isoloted Tparse, squors anangemsni

10 10

M .
o
' .
wﬁ ‘ f" e of e
.
10 -10
u 5 0 5 10 10 5 o 5 10 0 S [ 5 10 -10 5 0 5 1
¥y h

Biomedical Signal Processing

Comon and Jutten (2010): Handbook of blind source separation: Independent
Component Analysis and applications
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EXTRA
MATERIAL

Biomedical Signal Processing
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, False Alarm (- suppression) JFalse Alarm (+ suppression)
PPG C e
ABP ABP
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BCGII BCGIT
P spaiyrone [ s AV VA i b gAML
ECGITI ECGAVR
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o False Alarm (- suppression) p True Alarm (- suppression)
PPG PPG
ABP ABP
o VTACH ECGY wssYTACH
ECGAVF T
% ECGAVR
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' + 4 v ) . 1 ¥ v A It ¥
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Biomedical Signal Processing

Examples of false and true ventricular tachycardia alarms. Note the vertical
line marks the time the alarm sounded. (A and B) False alarms and the
algorithm failed to suppress them. (C) A false alarm and is suppressed
correctly. (D) A true alarm and is accepted correctly by the algorithm.

When signal quality is high enough for PPG, ABP, then it can suppress alarm

Source:

Li, Qiao, and Gari D. Clifford. "Signal quality and data fusion for false alarm
reduction in the intensive care unit." Journal of electrocardiology45.6 (2012):
596-603.
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Estimation of PDF — Unimodal Gaussian

* Supervised learning
(vs unsupervised or reinforcement)
* Gaussian est. of p(x | class)

* Bayesian est. of p(class | x)

Biomedical Signal Processing

s o
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Nop-parametric: @ M=3 ) h=02
Estimation odf PDF — Other | .. )
* histogram-base - — z D c—
(L] h=0.04

* kernel-based 2=
* K-nearest neighbour P oz oo
Mixture model histogram-based pdf est. kemel-based pdf est.
* mixture of Gaussians

(a) k=20

Biomedical Signal Processing
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