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Today’s goal

* Examples on the separation problem — what does it mean? How is it related to
the dimension reduction problem?

* The PCA/ICA algorithms

Biomedical Signal Processing
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Motivation

* Biomedical signals often arise from several additive sources/components
* EEG: summation of local field potentials
* EMG: summation of motor unit action potentials (MUAPSs)
* Can we separate these components?
* separation in different signal domains (e.g. t/f/t-f)
* separation usingseveral channels/trials

* several microphones/PCG or ECG/EEG/EMG leads
* severalrecordings of heart beat/pulse or ERP

Biomedical Signal Processing

separation in different signal domains (e.g. t/f/t-f):

- eg. the frequency of the maternal and fetal heart rate is different, we can try to
separate them in the frequency domain. Smilar can be, if the 2 sources are
separate in time, and with some windowing we can separate them.

separation using several channels/trials

today we are going to be talking about latter. However, clearly we can make several
channels by running a set of filters through a signal and then trying to run these
algorithms on it
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Source separation
Non-biomedical examples

Recording 1 Component 1
¢ ¢
Recording 2 Component 2
9 ¢

Biomedical Signal Processing

The problem:

We have two microphones in a room. Two people are talking, both of their voices are
recorded on the microphones. Using the two measurements, try to separate the
voice of the two speker.

What if we had 3 microphones, and the ,third’ speaker’ would be a noise, like the
buzzing of some equipments in the room? In this case We will separate to 3 sources,
but one of them (with the smallest amplitude) will be the noise. By neglecting this
component, we implemented dimension reduction.

6. Non-biomedical examples: http://cnl.salk.edu/~tewon/Blind/blind_audio.html
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Source separation
Non-biomedical examples

sources

Biomedical Signal Processing

The problem:

We have two images. In some process these images are getting mixed. With the
source separation algorithm try to separate the two images from each other.

7. Non-biomedical examples: http://www.biologie.uni-regensburg.de/
Biophysik/Theis/research/tutorialOnBSS.pdf
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Model

e N components X mapped to N channels of recordings Y using N x N
mixing matrix A

e [ samples in time, frequency, or any other suitable basis

Y = AX
find Ast. X = Ay

Biomedical Signal Processing

The N components in matrix X are the N speaker in the room. The N channels in
matrix Y are the N microphones. The mixing matrix can contain the different weights
of the components — eg. depending on their distance from the microphone.

If the model is not linear (the 2 sources are not additive), but multiplicative mixing:
take the logarithm of the model to come to a linear model.

Haven’t we found this problem of source mixing before in our earlier lectures?
(breathing+ECG, EEG+EMG, etc.)

However, in those tasks we had some information about the sources to be separated
(eg. We used the different frequency of the breathing and ECG). When the smixing
matrix A is unknown, it needs to be estimated: blind source separation

* Not all components may be sources: rest considered noise = This is dimension
reduction.

* model generally cannot cope with more sources than available signal channels; in
this case we need to have sparsity of the data in order to perform separation

* Choose your basis of representation well (e.g. may help with sparsity)
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Biomedical Signal Processing

Left: On the 2 electrodes X we are measuring 2 signals. The ground truth, which
should be reconstructed is in Y. X~ is the estimated version using source separation.

Right: scatter plot of the plot on the left. The axis are the green/blue amplitues, one
asterisk is one timepoint.
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From Fourier(/Wavelet) transforms to
Component Analysis
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Biomedical Signal Processing
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From Fourier(/Wavelet) transforms to
Component Analysis

Let’s design a data-dependent basis!

2
2, 3 %
L t ¥
ot o

PCA i ICA
¢ PCA — uncorrelated * |CA — uncorrelated
(x1x2) = (a1 }x2) P(xy =a,x,=b) =

P(x; = a)P(x, = b)
Biomedical Signal Processing

PCA: Finds principal components of the dataset. Each succeeding step finds direction
that explains most variance.

It removes correlations, but not higher order dependence. Some components are
more important than others, vectors are orthogonal.

ICA: the pdf of x is equal to the multiplication of each marginal pdf of x.

separation by statistical independence — higher order statistics are analysed
compared to the variance (2nd order statictics). This statistic can be Minimization of
mutual information, Maximization of non-Gaussianity

Removes correlations and higher order dependence. All components are equally
important, vectors are non-orthogonal.

http://compneurosci.com/wiki/images/4/42/Intro_to_PCA_and_ICA.pdf

10. Separation by independence: Hyvarinen and Oja: Independent Component
Analysis: Algorithms and Applications

Niedermeyer and Silva (2005): Electroencephalography: Basic Principles, &c

10
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Principal Component Analysis (PCA)
Y = AX
Squared: Y @ Y* = AX ® X* A"

Y ® Y* = Ry, the covariance of the data
Ry == 1411?‘)(14l

Ry is diagonal (as the components are supposed to
be uncorrelated). So it is actually an SVD!

SVD of Ry = UDU"

A« URy «D .

Biomedical Signal Processing

&) is the symbol for outer product
SVD: singular value decomposition. U is the matrix of eigenvectors, D is the diagonal

matrix of eigenvalues.
We calculate the singular value decomposition of the correlation matrix Ry .

With the substitution A ¢— U} RX «— D we know the
eigenvectors transforming us to the new
basis. The eigenvalues in D correspond to
their importance: the heighest eigenvalue
is the most important dimension.

Fine to assume that sources are uncorrelated. But is it not a problem to assume that
transformation is also orthogonal?

We have example in 2D where even the second signal is recovered reasonably well.
What happens when we have more than 2 signals?

11



11. Principal Component Analysis (PCA):
https://en.wikipedia.org/wiki/Principal_component_analysis

11
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PCA

Biomedical Signal Processing

http://setosa.io/ev/principal-component-analysis/

extracting relevant information from confusing data sets

PCA is a way of identifying patternsin

data, and expressing the data in such a way as to highlight their similarities and
differences.

https://www.google.fr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uac
t=8&ved=2ahUKEwiPzJbG-
ereAhUih6YKHS1pBL8Qjhx6BAgBEAM&url=https%3A%2F%2Fwww.researchgate.net
%2Ffigure%2Flllustration-of-principal-component-analysis-A-As-a-minimal-example-
we-consider-

a_figl 263968032&psig=A0OvVaw195Gm_OMHweAyFak99rbFX&ust=1543077435477
411

12
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PCA Results — ECG decomposition
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Biomedical Signal Processing

This is example of having several trials rather than several channels. We performs
eigendecomposition of covariance matrix and find principal components.
Note that here, components will be uncorrelated with each other.

13
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Independent Component Analysis (ICA)

* Measure of independence:

* non-Gaussianity is maximised (cf. central limit theorem); using
higher than second-order statistics (e.g. kurtosis)

* mutual information is minimised using higher order statistics

* ICA cannot separate Gaussian distributed data from each other!

Biomedical Signal Processing

14
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Estimation of higher order moments

* Central moments:

1. Mean: E(X)

2. Variance:E( (X-E(X) )? )
3. Skewness: E( (X-E(X) ) )

Positive Skew

* Kurtosis
E(X4) - 3(E(X?))? =
E(X*)—3 for zero mean and unit variance

* classical measure of non-Gaussianity

[ A\
* value may depend on a few outliers "L /*’/ ]

Biomedical Signal Processing

23. Estimation of higher order moments: Hyvarinen and Oja: Independent

Component Analysis

kurtosis

15
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Mutual information

Biomedical Signal Processing

from wikipedia
mutual information closely related to entropy.
evaluation of a function of the joint and marginal probabilities.

Point to note: mutual information is always equal or greater than 0, and only exactly
0 when there is independence.

Remember indepedence? We could also evaluate it as p(x,y)-p(x)p(y).

But Ml can be nicely defined in terms of individual higher moments of variables.

24. Mutual information.

16
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Finding the ICA directions

* Pre-whitening with PCA helps

* Normalise to zero-mean, unit variance (can
transform back afterwards)

* Maximize non-Gaussianity
1. Gradient ascent
2. FastICA

https://research.ics.aalto.fi/ica/fastica/

Biomedical Signal Processing

Optimization procedure to maximize non-Gaussianity, however it is defined.

25. Finding the ICA directions: http://www.biologie.uni-regensburg.de/
Biophysik/Theis/research/tutorialOnBSS.pdf
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ICA: biomedical examples

Muscular activity Eye blinks
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Biomedical Signal Processing

Left: ICA on EEG + ECG signals (p. 743, 772)

Right: ICA on 12-lead ECG (p. 755). Right, going down: increasing levels of kurtosis
Comon (2010): Handbook of Blind Source Separation

26. ICA: biomedical examples: Comon (2010): Handbook of Blind Source Separation
(pp. 743,755,772)
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PCA vs ICA
Sources Source distributions
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https://pdfs.semanticscholar.org/16fc/90913c1074f568ac9ca81cf0al0fcc00c379.pdf
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PCA vs. ICA
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PCA vs. ICA
PCA components Component distributions
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Rx = cov(Measurements);
[V, D] = eig(Rx);
C_pca = Measurements*V;

21
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PCA vs. ICA
ICA Components Component distributions
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Biomedical Signal Processing

Assumption:
* Gaussianity and
uncorrelatedness

Assumptions:

* statistical
independence

+ Equally important
components

http://mail.tgmp.org/RegularArticles/vol06-1/p031/p031.pdf

23
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Matlab EEGlab

% Download link: http://sccn.ucsd.edu/eeglab/downloadtoolbox.html

> eeglab;

> % Help->Web Tutorial; opens http://sccn.ucsd.edu/wiki/EEGLAB

% File-> Load Existing Dataset

v

> % (eeglab_data.set, eeglab_data_epochs_ica.set)
> % Plot -> Channel data (scroll)

> % Plot -> Component activations (scroll)

>

% Plot -> Component maps (in 2-D) '323(;‘; wave (8-13 Hz)
*p.

1 2 3 4 5 —P3a/P3b
N —target / non-target
Q @ —frontal-central / parietal
*EOG
Biomedical Signal Processing

ICA components happen to be nicely concentrated in different parts. Does not
automatically follow but it’s nice.

27. MATLAB EEGlab S. Makeig et al. (2002), Dynamic Brain Sources of Visual Evoked
Responses, Science 295, pp. 690-694

24
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Extra material

Biomedical Signal Processing

25
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More sources than mixtures

@ < ® ﬂ { Fig. 1. lllustration of basis vectors in a 2-D
# 9 e data space with two sparse sources (top)
{ or three sparse sources (bottom). (a) PCA
e, W, finds orthogonal basis vectors. (b) ICA
" representation finds independent basis
vectors. (c) ICA cannot model the data
I j distribution  adequately with three
. ,[__. . £ | sources, but (d) the overcomplete ICA
L representation finds three basis vectors
that match the underlying data
o mw e w0 s distribution.

Biomedical Signal Processing

Sparsity of signals. Think of speech earlier. One, two, three

" Y
@ ®)

28. More sources than mixtures: Lee et al. (1999): Blind source separation of more
sources than mixtures using overcomplete representations

Fig. 1. lllustration of basis vectors in a 2-D data space with two sparse sources (top) or
three sparse sources (bottom). (a) PCA finds orthogonal basis vectors. (b) ICA
representation finds independent basis vectors. (c) ICA cannot model the data
distribution adequately with three sources, but (d) the overcomplete ICA
representation finds three basis vectors that match the underlying data distribution

26
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wuar | \ ‘ ‘ .
1. Filtering (bandpass) ' 1' T ¢ 1 | ;
2. Event detection ‘ | l | |

3. Feature extraction pa —‘HLW"*‘“‘*'—"H*‘J‘—“H‘#——’*—#-“*-
4. Clustering ., '

5. Resolution (of superimposed) £ | J J X .
firing time model? ) \f o .

EMG d

Biomedical Signal Processing

30, 31. Intramuscular EMG decomposition: S6rnmo p. 392-395

27
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Intramuscular EMG decomposition

Resolution of superimposed waveforms

* add to cluster only if cannot be generated from
linear superposition of existing cluster members

* assuming knowledge of waveforms, perform
error minimisation

. second norm
sub-second norm: sparse decomposition (compressed sensing)
matching pursuit, basis pursuit

Biomedical Signal Processing

30, 31.

Intramuscular EMG decomposition: SGrnmo p. 392-395

28
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Spike sorting

Setting the threshold:

*  manual

* multiple of standard deviation

* 5 median{|x|/0.6745}

Feature extraction:

*  PCA, wavelet coefficients, other
shape descriptors

Superimposed spikes

* linear superposition of existing
waveforms

*  firing time model?

Biomedical Signal Processing

iii) |-

iv) | -

29
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Inverse source problem

Take a modification of our simple model:

where we know A(R) as a function of source locations R

Possibilities:

e the source locations r need to be estimated
e more (putative) sources than channels

Solutions:

e (robust) beamforming
e regularized inversion
e subspace-based methods

Biomedical Signal Processing

30
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The forward matrix A(R)

Suppose A;; describes propagation of source signal from source at r; to
sensor at r;
Possibilities:

e pressure field

1 9°
a = 0; [V2+55-5t_—2]p:s(r,t)

s(rs e —x'|/c) 13
o off AEHIETT 0] g
p(r) _/ dx|r — 1’| J
LF free-field: A;; = e®I"~%il /|r; — x|
HF: Al‘j = e(—u+j2f)|r;—r_,\/|ri —_ l‘jl

e clectromagnetic field b =k, )= G-v.) 1 a-v,)
ViV =V. J/o SO dmr gy Ao e, v [

1 V-J, . p(r') cosf
Voo = | 228yl [ SIS0
dro /; R dr (r) [g dro|r —r'|? a8

Biomedical Signal Processing

Ponsey p. 180

35. The forward matrix A(R): Niedermeyer and Silva (2005): Electroencephalography:
Basic Principles, &c, p. 119
http://www.uzh.ch/keyinst/NewLORETA/TechnicalDetails/TechnicalDetails.htm
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Example: phonocardiography

Pressure Gradient. 3B

R )

FIG. 4. (Color online) Pressure gra-
dients throughout the interior of the
model af due 1o a source associated
with the left coronary arery,
(a) x-pressure gradients at 50 Hz,
(b) y-pressure gradients a1 50 Hz,
(c) x-pressure gradients at 600 Hz,
(d) y-pressure gradients st 600 Hz.
Colorbar units: dB ref 1 Pum.

36: Example: phonocardiography. Cooper et al. (2011): Acoustic source separation for
the detection of coronary artery sounds

32
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Example: EEG

* LORETA: low-resolution brain electromagnetic tomography (standardized and
exact: SLORETA, eLORETA): regularized inversion, maximum smoothness

* FOCUS (focal underdetermined system solver): sparse solution

* Laplacian: indicator of current sources, highlights underlying sources better than
potential maps

VYV =V.J/o

Biomedical Signal Processing

37. Example: EEG. Niedermeyer and Silva (2005): Electroencephalography: Basic
Principles, &c, p. 829-834, http://www.uzh.ch/keyinst/loreta.htm
http://www.uzh.ch/keyinst/NewLORETA/TechnicalDetails/TechnicalDetails.htm
Gorodnitsky and Rao Sparse signal reconstruction from limited data using FOCUSS: &c
http://virt.uni-pannon.hu/index.php/in-english/research/1090-professor-laboratory-
for-bioelectric-neuroimaging

33



