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Wavelets and Sparsity Trilogy

Nov. 05.:    Wavelets I: Time-Frequency Representation

Nov. 12.:    Wavelets II: Decomposition

Nov. 19.:    Sparsity
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Today’s goal

• What is sparsity, and why do we seek it?

• Sparsity-inducing regulizer functions (ℓ𝒑, 𝑻𝑽, 𝑻𝒊𝒌𝒉𝒐𝒏𝒐𝒗)

• How to solve the problem?

• Synthesis approach (eg. soft-thresholding)

• Analysis approach (eg. Matching/Basis pursuit)

• ADMM
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What is sparsity?

„sparse matrix or sparse array is a matrix in which most of the
elements are zero”
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Do you remember point processes?

What is sparsity?

MUAP signals
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And the DWT?

What is sparsity?
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From last lecture:

• „The DWT provides a sparse representation for many natural
signals”

„A natural signal is said to be sparse, if it can be compactly
expressed as a linear combination of a few number of basis
vectors.”

What is sparsity?
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• Data compression

• Denoising

• Superresolution, inpainting, deblurring

• Source separation (next lecture)

• Efficient data acquisition tenchniques

Why sparsity?
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𝒚 = 𝑨 ⋅ 𝒙 + 𝒏

This problem is underdetermined (because of the noise, and/or
basis overcompleteness)

• It can have infinite number of solutions

• To choose one solution from this set, we add some regularization
functions (𝜙(𝑥))

The inverse problem
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A whole set of 
possible solutions…

Underdetermined problem

The inverse problem
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Underdetermined problem

𝜙(𝑥)
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Is there a solution for the inverse problem?
And how stable is it?

• Consider it without noise: 𝑦 = 𝐴𝑥

• Using the singular value decomposition 𝐴 = 𝑈ΣV∗

𝑥 = 𝑈ΣV∗ −1𝑦 = 𝑉∗−1Σ−1U−1y = VΣ−1U∗y

where Σ = diag(𝜎1, 𝜎2, … , 𝜎𝑛)

so that Σ−1 = diag(1/𝜎1, 1/𝜎2, … , 1/𝜎𝑛)

• There exists a solution, if 𝝈𝒊 ≠ 𝟎, ∀ 𝑖 ∈ {1,2, … , 𝑁}

• Stability: if 𝜎𝑖 is near zero, its inverse will ‚explode’.

Measure of stability is the condition number: 𝑘 =
𝑚𝑎𝑥𝑖 𝜎𝑖

𝑚𝑖𝑛𝑖 𝜎𝑖
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𝒚 = 𝑨 ⋅ 𝒙 + 𝒏

How to obtain a sparse 𝒙?

• Synthesis approach: using the wavelet basis 𝐴 calculate an initial
𝑥. With small modifications induce sparsity (regularization, like
thresholding the coefficients)

• Analysis approach: estimate x directly while ensuring sparsity
(like Matching/Basis Pursuit)

How to induce sparsity?
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How to add the regularizer 𝜙(𝑥)?

• Forward model:
𝒚 = 𝑨𝒙 + 𝒏

• Synthesis approach:

min
𝒙

𝜙(𝑥)

subject to: 𝒙 − 𝒙𝟎 𝟐

𝟐
≤ 𝝐

• Analysis approach:

min
𝒙

𝜙(𝑥)

subject to: 𝒚 − 𝑨𝒙
𝟐

𝟐
≤ 𝝐

• What are 𝛕, ϕ(x)?

→ min
𝑥

𝒙 − 𝒙𝟎 𝟐

𝟐
+ 𝜏 𝜙(𝑥)

→ min
𝑥

𝐲 − 𝐀𝐱
𝟐

𝟐
+ 𝜏 𝜙(𝑥)
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What can be a regularizer 𝜙(𝑥)?

• 𝑥 𝑝
𝑝

for 0 ≤ 𝑝 < 2 is the ℓ𝒑-(pseudo)norm.
Non-sparse solutions are penalized
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What can be a regularizer 𝜙(𝑥)?

• 𝑥 𝑇𝑉 = ∫ 𝑥′ 𝑢 𝑑𝑢 is the total variation regulizer. It will promote
piecewise constant solutions.
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What can be a regularizer 𝜙(𝑥)?

• Γ𝑥 2
2, where Γ is the Tikhonov matrix, hence the name: 

tikhonov-regularization.
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Solution of the synthesis approach

min
𝑥

𝒙 − 𝒙𝟎 𝟐

𝟐
+ 𝜏 𝜙(𝑥)

Solving this problem is equivalent to the so-called Moreau Proximal mapping. 

𝐩𝐫𝐨𝐱𝝉,𝝓(x0) = argmin
𝑥
(𝜙(x) +

1

2𝜏
𝑥 − 𝑥0 2

2)

𝜏
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Solution of the synthesis approach

• For most regularizer function the proximal operator has no analytic solution.

• One counter-example: for 𝝓 𝒙 = 𝒙 𝟏

𝒑𝒓𝒐𝒙𝝉,𝝓 𝒙𝟎 = ቐ

𝒙𝟎 − 𝝉
𝟎

𝒙𝟎 + 𝝉

𝒙𝟎 ≥ 𝝉

𝒙𝟎 < 𝝉
otherwise

This is the soft-thresholding function

• For other functions numerical solutions: 
ISTA, FISTA, TwIST algorithms
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Solution of the analysis approach

min
𝑥

𝐲 − 𝐀𝐱
𝟐

𝟐
+ 𝜏 𝜙(𝑥)

Ideas:

• ℓ𝟎 (matching pursuit): find elements one by one in a greedy manner

• ℓ𝟎: relax discontinuous problem to continuous ℓ𝒑; 𝒑 ∈ [𝟎, 𝟏] or
smooth x

• ℓ𝟏 (basis pursuit): employ linear programming techniques

• ℓ𝒑, ℓ𝑻𝑽: look for general optimization techniques to solve the problem
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Greedy optimization

• Locally optimal action for each iteration

• Advantage: conceptually simple and computationally inexpensive 
algorithm

• Disadvantage: often suboptimal

• Example: solving the coin-problem.
You pay 0.36 €,  by placing the largest
coin that fits the remaining sum
(residual) at each iteration.



Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Biomedical Signal Processing

Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Biomedical Signal Processing

Greedy optimization
Matching Pursuit

• Problem:

min
𝑥

𝐲 − 𝐀𝐱
𝟐

𝟐
+ 𝜏 𝒙 𝟎

𝟎

• The algorithm:

1. Initialize the residual with your signal: 𝑟 ← 𝑦

2. Find the atom index 𝑗 having the maximal absolute value 𝑚 of inner 
product with your residual: 𝑗,𝑚 ← argmax𝐴𝑟

3. Substract from the residual the projection of the residual to the found 
atom 𝑟 = 𝑟 − 𝐴𝑗𝑚

4. Repeat 2-3. until 𝑟 reaches a threshold
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Greedy optimization
Orthogonal Matching Pursuit

• Apply Gram-Schmidt orthogonalization on signal basis of N atoms to get 
orthogonal basis

• Apply MP on orthogonal basis

• Can convert back to original signal basis

• Advantage: guaranteed to converge in N steps

• Disadvantage: sparsity will be in orthogonal basis and not in original basis – less 
information about the physical problem
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Basis Pursuit

• Problem in the unconstrained form:

min
𝑥

𝒙 𝟏
𝟏 subject to 𝒚 = 𝑨𝒙

• This is a support minimization problem, a solution is the Simplex method:

𝒙 𝟏 =෍

𝒊

𝒙𝒊 =෍

𝒊

(𝒙𝒊
+ + 𝒙𝒊

−)

𝐰𝐡𝐞𝐫𝐞

൝
𝒙𝒊
+ = 𝒙𝒊, 𝒙𝒊

− = 𝟎 𝒊𝒇 𝒙𝒊 ≥ 𝟎

𝒙𝒊
+ = 𝟎, 𝒙𝒊

− = 𝒙𝒊 𝒊𝒇 𝒙𝒊 < 𝟎

• Substituting this to the original problem allows to perform linear minimization
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Matching Pursuit vs. Basis Pursuit
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Alternating Direction Method of Multipliers

min
𝑥

𝐴 ⋅ 𝑥 − 𝑦 2
2 + 𝜏 𝜙(𝑥)

Too complex …

min
𝑥,𝑔

𝐴 ⋅ 𝑥 − 𝑦 2
2 + 𝜏𝜙(𝑔)

𝑠. 𝑡. 𝑔 = 𝑥

Make it unconstrained using the augmented Lagrangian form

min
𝑥,𝑔

𝐴 ⋅ 𝑥 − 𝑦 2
2 + 𝜏𝜙(𝑔) + 𝜆 𝑥 − 𝑔 +

𝜇

2
𝑥 − 𝑔

2

2

9



Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Biomedical Signal Processing

Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Biomedical Signal Processing

• The algorithm:

1. Minimize for 𝑥:

min
𝒙

𝑨 ⋅ 𝒙 − 𝒚 𝟐
𝟐 + 𝝀 𝒙 − 𝒈 +

𝝁

𝟐
𝒙 − 𝒈 𝟐

𝟐

2. Minimize for 𝑦:

min
𝒙

𝝉𝝓(𝒈) + 𝝀 𝒙 − 𝒈 +
𝝁

𝟐
𝒙 − 𝒈 𝟐

𝟐

3. Update the Lagrangian, 𝝀
𝜆𝑘+1 = 𝜆𝑘 + (𝑥𝑘 − 𝑔𝑘)

• These subproblems are easier to solve, than the original problem. Either by an 
analytic solution (like the sub-thresholding for the ℓ1-proximal operator), or by
numerical solution (like the gradient descent, Newton-method)

Alternating Direction Method of Multipliers
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Convergence


