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Wavelets and Sparsity Trilogy

Nov. 05.: Wavelets I: Time-Frequency Representation
Nov. 12.: Wavelets Il: Decomposition
Nov. 19.: Sparsity

Biomedical Signal Processing
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Today’s goal

* How can a signal be decomposed using wavelets? How
does it depend on the completeness and orthogonality of
the wavelet basis?

* From CWT to DWT - what is the difference?

* Multiresolution analysis: filtering and compressing using
the wavelet coefficients

* Wavelet properties

Biomedical Signal Processing



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Decomposition

signal array wavelets coefficients

time (s)

y = A4-x
Xest :Aily

* What guarantees a unique solution of x?

» How simplifies x = A~ 'y if A is orthogonal?
Biomedical Signal Processing

We would like to have a wavelet basis, where any signal can be decomposed
uniquely.

Remember from linear algebra:

Rank of matrix A should equal dimension of x for unique solution

according to https://en.wikipedia.org/wiki/Rank_(linear_algebra):

rank is “dimension of the vector space generated (or spanned) by its columns”;
“‘maximal number of linearly independent columns of A”.

The row and column ranks are the same!

with orthogonal (or more precisely orthonormal) decomposition, AT = A1, so
that x =ATy. (transpose of matrix equals its inverse). This is computationally
more efficient
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Overcomplete basis = underdetermined system

# atoms ”
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?
y = Ax + n; Too many possibilities for

x.¢ =AYty  decomposition of y
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*projection: many different x’s could have produced y

*not given enough constraints (undetermined system): can provide any number of
solutions

*too many atoms with which to solve the problem: overcomplete basis x

*For obtaining x the inverse of A has to be calculated. However, A is not square,
meaning that the regular formula is not worknig. Instead this, the Moore-Penrose
pseudoinverse is calculated:

AT = pinv(4) = (4AT)14T;

% minimise || Xest || , subject toy = Ax
Here the 12 minimization of x is a constrain, helping to choose one solution from the
infinite set of solutions
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Undercomplete basis = overdetermined system
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Biomedical Signal Processing

not all y’s can be synthesised using just a few atoms (dim(x) < (dim(y)): we are
asking for too much (overdetermined system with too many constrain not allowing a
solution) that we cannot synthesise with our undercomplete basis (set of atoms)

At= pinv(4) = (AAT) 14T,
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Question

Does the continuous wavelet
transform use a complete,
overcomplete, or undercomplete
basis?

Biomedical Signal Processing

Overcomplete, see last lecture — windowed fourier’s overcompleteness-explanation
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From continuous to discrete transform

* Continuous wavelet transform (CWT):

+00

Wiy s} = [ yOvis@de =y pi@
u,s €R ; -
t—u

* Discrete wavelet basis:
wavelet family only evaluated at a discrete set of s, u

nk €Z, s =25 = k2"

Yri(t) =272 (27"t — k)

Biomedical Signal Processing

P is the motherwavelet

For the CWT if we want to get the spectrogram at (u,s), we calculate the similarity of
the signal to the wavelet with (u,s).

This is the same, as taking the convolution of the signal with the wavelet at scale s
(and zero shift, u, as the convolution will take all possible shifts), and taking the uth
value from the resulting array. So the convolution gives a whole row of the
spectroram.

The power of 2 (dyadic) in the discrete u and s will guarantee the orthogonality of the
atoms = completeness of the system.

(Orthogonal arrays are independent, maximum number of them is the dimension 2>
complete system with unique solution)

Mallat: A wavelet tour of signal processing pp. 3,92,102
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From continuous to discrete
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https://it.mathworks.com/help/wavelet/ref/cwtold.html
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Dyadic decomposition

In the choice of waveletswithn,k €Z, s=2" u=k- 2",
2™ guarantees a complete and non-redundant basis
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Sérnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, p. 289
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Dyadic wavelet basis

n k€, s=2", u=k-2"
lpu,i\'(t) =272, lfi(z_”t — k)
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Remember the uncertainity boxes:

Short wavelets have bad frequency resolution, good time resolution (on the top tall
but small-width rectangles)

Long wavelets have good frequency resolution, bad time resolution (in the bottom,
wide but small-height rectangles)

With increasing s, the function Y (t_Tu) will be more dilated, ,streched out” = lower
frequency, longer timewindow
Mallat: A wavelet tour of signal processing, pp. 20

Sérnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 290-291
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Dyadic discrete decomposition...
Yni(t) = 2720 (2"t — k)

+oo
Wiy, i)} = | y(©yy(t)dt

-—00

... and reconstruction

y(t} - Z wn,kq;[)n,k(t)
n.k

* What resolution of n,k is necessary?

* |dea: separate signal into wavelet components and a ,,bag” of
remaining wavelet components

Biomedical Signal Processing

If not only the baisis, but the signal too is discrete, wy, ,(t) = fj;o vy, (t)dt
turns into a sum too.

Small coefficients most likely represent noise. This way we can efficiently filter our
signal: we discard the small-amplitude compinents.

13
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Multiresolution signal analysis

Concept of approximation and

Signal and Approximation(s) Signal and Detaiks)
wy H
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Biomedical Signal Processing

Approximate coefficient is a smoothed version of the original signal, while the detail
coefficient is the high frequencies included into the original signal. Approximate
coefficients can also be decomposed into another approximate and detail
coefficients.

Mallat: A wavelet tour of signal processing, p. 20; Matlab Wavelet Toolbox User’s
Guide v1, 1-19, 1-27, 3-18;

Sérnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 292-297

for added flexibility/confusion, look up wavelet packets...

14
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Multiresolution signal analysis

* Approximation and achieved using low-pass filter fand

at lowest scale
* LPF f: discretised scaling function ®
* What is ®? Any function that satisfies:

* orthonormality between discrete translations of @ at same scale
* orthonormality between @ and y at same scale

Biomedical Signal Processing

Remember, that low scale == high frequency, short time window

15
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Example wavelet/scaling pairs
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integral of wavelet =0
integral of scaling ® =1

* wavelet and scaling complement each other,

* P+® covers entire spectrum of interest — they will split the signal into 2
* however, phase of @ not determined by this requirement

Matlab Wavelet Toolbox User’s Guide v1, 6-7

16
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Analysis Synthesis
Decomposition Wavelet Reconstruction
DWT Coefficients IDWT

1

Biomedical Signal Processing

Given a signal s of length N, the DWT consists of at most log, N steps. Starting

from s, the first step produces two sets of coefficients: approximation

coefficients A; and detail coefficients D,. Convolving s with the decomposition
lowpass filter f and the decomposition highpass filter g (defined by the wavelet
family, ), followed by dyadic decimation (downsampling), results in the approximation
and detail coefficients respectively (the convolution by the filter is: y * 3 (u)).

The next step splits the approximation coefficients A, in two parts using the same
scheme, replacing s by A;, and producing A, and D,, and so on.

Decomposition of signal S to required level by recursive filtering f, g and dyadic | x2
downsampling (to obtain the next scale, and the same filter can be used)
Approximation and detail recovery: 1x2 (insert 0 between samples) and apply
conjugate mirror filters f', ¢'

NB: Existence of ', g’ non-trivial result due to | aliasing

iterative 'x2 and convolution of f' with itself leads to ®;
iterative %2 and convolution of g' with itself leads to y

Matlab Wavelet Toolbox User’s Guide v1, 1-23 — 1-25

17
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BSP reconstructiT:
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Multiresolution analysis of evoked potential using the Coiflet-4.
(a) The approximation signals (b) the detail signals
at different scales. The original signal is shown at the top left of the figure.

If noise filtering is needed, the reconstruction stops after some step — high resolution
details are not added back.
Or, low amplitude coefficients are discarded = also filtering

Sérnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 311-312
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Biomedical Signal Processing

(a) An evoked potential and the related DWT using the Daubechies-4 wavelet.
(b) The same signal as in (a), but with noise added.
Note that the noise is concentrated in the detail coefficients of the finest scales

Sérnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 311-312
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What can it be used for?

Thresholding the coefficients is a way of filtering
* Soft vs. Hard threshold?

* Non-stationary noise (adaptive thresholding)
Quantizing the coefficients leads to compression
« JPEG-2000 ,

Biomedical Signal Processing

JPEG:

Wavelet transform:

irreversible: the CDF 9/7 wavelet transform. It is said to be "irreversible" because it
introduces quantization noise that depends on the precision of the decoder.

After the wavelet transform, the coefficients are scalar-quantized to reduce the
number of bits to represent them, at the expense of quality. The output is a set of
integer numbers which have to be encoded bit-by-bit. The parameter that can be
changed to set the final quality is the quantization step: the greater the step, the
greater is the compression and the loss of quality.

quantization
https://en.wikipedia.org/wiki/JPEG_2000#Quantization

denoising, soft or hard thresholds:

https://www.mathworks.com/help/wavelet/ug/wavelet-denoising-and-
nonparametric-function-estimation.html#f8-22146

denoising, adaptive tresholding:

https://www.mathworks.com/help/wavelet/ug/wavelet-denoising-and-
nonparametric-function-estimation.htmI#f8-50819

20
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Property Explanation
Analytic eresult: real and imaginary part 90° out of phase with each other
(no negative frequencies) +allows reconstruction
Or‘thogonal *makes orthogonal decomposition possible
(wavelets are orthogonal) *preserves energy
Biorthogonal *many vanishing moment
(invertible, but not necessarily orthogonal) slinear phase (important for images)
Compact support *numerically simple (often good approx. for non-compact bases)
(zero outside some boundary) +length influences the recoverable feature-size
Existence of scaling function *necessary for fast orthogonal decomposition
Explicit *can wavelet be defined by analytical expression or are functional
equations necessary to express them?
Number of vanishing moments sremove mean, DC, parabolic, etc. from signal
More moments, sparser representation possible suseful for compression
Regularity eregular wavelets () extract smooth signals
how many times differentiable? sirregular wavelets () highlight fractal structure
Symmetric slinear phase (important in e.g. image processing/compression)

Biomedical Signal Processing

The type of wavelet analysis best suited for your work depends on what you want to
do with the data.

If your goal is to perform a detailed time-frequency analysis, choose the continuous

wavelet transform (CWT).

* The CWT is superior to the short-time Fourier transform (STFT) for signals in which
the instantaneous frequency grows rapidly, such as in a hyperbolic chirp.

* The CWT is good at localizing transients in nonstationary signals

* Analytic wavelets are used for cwt (Morse, Morlet, Bump). These wavelets have
one-sided spectra, and are complex valued in the time domain (we have seen such
thing with Hilbert-transform). Because the wavelet coefficients are complex
valued, the CWT provides phase information: it means that signal can be
reconstructed, as both magnitude and phase information is needed for
reconstruction.

In a multiresolution analysis (MRA), you approximate a signal at progressively

coarser scales while recording the differences between approximations at

consecutive scales. You create the approximations and the differences by taking the

discrete wavelet transform (DWT) of the signal.

* The DWT provides a sparse representation for many natural signals.

* On alog, scale, the difference between consecutive scales is always 1. In the case
of the CWT, differences between consecutive scales are finer.



* When generating the MRA, you can either subsample (decimate) the
approximation by a factor of 2 every time you increase the scale or not. In the
decimated DWT, translations are integer multiples of scale (leads to minimally
redundant ~ orthogonal). For the nondecimated DWT, translations are integer
shifts. A nondecimated DWT provides a redundant representation of the original
data, but not as redundant as the CWT. Your application not only influences your
choice of wavelet, but also which version of the DWT to use.

If preserving energy in the analysis stage is important, you must use an orthogonal
wavelet. An orthogonal transform preserves energy. An orthogonal basis also makes
the calculation of the coefficients easier: x = ATy. Consider using an orthogonal
wavelet with compact support. Keep in mind that except for the Haar wavelet,
orthogonal wavelets with compact support are not symmetric — they have nonlinear
phase, making exact reconstruction impossible.

If you want to find closely spaced features, choose wavelets with smaller support,
such as haar, db2, or sym2.

Minimally redundant representations obtained with decimated DWT, using
orthonormal wavelet.families are a good choice for compression, when you want to
remove features that are not perceived. An orthogonal wavelet, such as a Symlet or
Daubechies wavelet, is a good choice for denoising signals.

A biorthogonal wavelet can also be good for image processing (but not energy-
preserving). Biorthogonal wavelet filters are symmetric, having linear phase which is
a very critical for image processing. Using a biorthogonal wavelet filter will not
introduce visual distortions in the image. Using a wavelet with many vanishing
moments (like biorthogonal wavelets) results in fewer significant wavelet coefficients
- compression is improved. They can also have better regularity (n-times
differentiable) 2 smoother reconstruction.

The CWT of a signal provides a highly redundant representation of a signal. There is
significant overlap between wavelets within and across scales. Also, given the fine
discretization of the scales, the cost to compute the CWT and store the wavelet

coefficients is significantly greater than the DWT.

https://de.mathworks.com/help/wavelet/gs/choose-a-wavelet.html

21



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Useful references

* Matlab Wavelet Toolbox https://www.mathworks.com/products/wavelet.html

help wavelet

waveletAnalytzer (also reached by Apps->WaveletAnalyzer)
waveletSignalDenoiser (ditto)

Student suggestion:

* Wavelet tutorial http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

Biomedical Signal Processing
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