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We would like to have a wavelet basis, where any signal can be decomposed
uniquely.
Remember from linear algebra:
Rank of matrix A should equal dimension of x for unique solution
according to https://en.wikipedia.org/wiki/Rank_(linear_algebra): 
rank is “dimension of the vector space generated (or spanned) by its columns”; 

“maximal number of linearly independent columns of A”. 

The row and column ranks are the same! 

with orthogonal (or more precisely orthonormal) decomposition, 𝐴𝑇 = 𝐴−1, so 

that x =𝐴𝑇𝑦. (transpose of matrix equals its inverse). This is computationally
more efficient
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•projection: many different x’s could have produced y
•not given enough constraints (undetermined system): can provide any number of 
solutions
•too many atoms with which to solve the problem: overcomplete basis x

•For obtaining x the inverse of A has to be calculated. However, A is not square, 
meaning that the regular formula is not worknig. Instead this, the Moore-Penrose
pseudoinverse is calculated:
𝐴

†
= 𝑝𝑖𝑛𝑣 𝐴 = 𝐴𝐴𝑇 −1𝐴𝑇;

% minimise ║xest║2 subject to y = Axest

Here the l2 minimization of x is a constrain, helping to choose one solution from the
infinite set of solutions
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not all y’s can be synthesised using just a few atoms (dim(𝑥) < (dim(𝑦)): we are
asking for too much (overdetermined system with too many constrain not allowing a 
solution) that we cannot synthesise with our undercomplete basis (set of atoms)

𝐴
†
= 𝑝𝑖𝑛𝑣 𝐴 = 𝐴𝐴𝑇 −1𝐴𝑇;
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Overcomplete, see last lecture – windowed fourier’s overcompleteness-explanation
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𝜓 is the motherwavelet

For the CWT if we want to get the spectrogram at (u,s), we calculate the similarity of 
the signal to the wavelet with (u,s). 
This is the same, as taking the convolution of the signal with the wavelet at scale s 
(and zero shift, u, as the convolution will take all possible shifts), and taking the uth

value from the resulting array. So the convolution gives a whole row of the
spectroram.

The power of 2 (dyadic) in the discrete u and s will guarantee the orthogonality of the
atoms completeness of the system.

(Orthogonal arrays are independent, maximum number of them is the dimension
complete system with unique solution)

Mallat: A wavelet tour of signal processing pp. 3,92,102
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https://it.mathworks.com/help/wavelet/ref/cwtold.html
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Sörnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological 
Applications, p. 289
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Remember the uncertainity boxes:

Short wavelets have bad frequency resolution, good time resolution (on the top tall
but small-width rectangles)

Long wavelets have good frequency resolution, bad time resolution (in the bottom, 
wide but small-height rectangles)

With increasing s, the function𝜓
𝑡−𝑢

𝑠
will be more dilated, „streched out”  lower

frequency, longer timewindow

Mallat: A wavelet tour of signal processing, pp. 20

Sörnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 290-291
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If not only the baisis, but the signal too is discrete, 𝑤𝑛,𝑘 𝑡 = ׬
−∞

+∞
𝑦 𝑡 𝜓𝑢,𝑠

∗ 𝑡 𝑑𝑡

turns into a sum too.

Small coefficients most likely represent noise. This way we can efficiently filter our
signal: we discard the small-amplitude compinents.
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Approximate coefficient is a smoothed version of the original signal, while the detail
coefficient is the high frequencies included into the original signal. Approximate
coefficients can also be decomposed into another approximate and detail 
coefficients.

Mallat: A wavelet tour of signal processing, p. 20; Matlab Wavelet Toolbox User’s
Guide v1, 1-19, 1-27, 3-18;

Sörnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 292-297

for added flexibility/confusion, look up wavelet packets...
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Remember, that low scale == high frequency, short time window
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integral of wavelet ψ = 0
integral of scaling Φ = 1

• wavelet and scaling complement each other,
• ψ+Φ covers entire spectrum of interest – they will split the signal into 2
• however, phase of Φ not determined by this requirement

Matlab Wavelet Toolbox User’s Guide v1, 6-7
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Given a signal 𝑠 of length 𝑁, the DWT consists of at most log2𝑁 steps. Starting 
from s, the first step produces two sets of coefficients: approximation 
coefficients A1 and detail coefficients D1. Convolving s with the decomposition
lowpass filter f and the decomposition highpass filter g (defined by the wavelet
family, ), followed by dyadic decimation (downsampling), results in the approximation 
and detail coefficients respectively (the convolution by the filter is: 𝑦 ∗ 𝜓𝑠

∗ 𝑢 ).
The next step splits the approximation coefficients A1 in two parts using the same 
scheme, replacing s by A1, and producing A2 and D2, and so on.

Decomposition of signal S to required level by recursive filtering f, g and dyadic ↓×2 

downsampling (to obtain the next scale, and the same filter can be used)
Approximation and detail recovery: ↑×2 (insert 0 between samples) and apply
conjugate mirror filters f', g'

NB: Existence of f', g' non-trivial result due to ↓ aliasing

iterative ↑×2 and convolution of f '  with itself leads to Φ;
iterative ↑×2 and convolution of g' with itself leads to ψ

Matlab Wavelet Toolbox User’s Guide v1, 1-23 – 1-25
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Multiresolution analysis of evoked potential using the Coiflet-4.
(a) The approximation signals (b) the detail signals
at different scales. The original signal is shown at the top left of the figure.

If noise filtering is needed, the reconstruction stops after some step – high resolution
details are not added back. 
Or, low amplitude coefficients are discarded also filtering

Sörnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 311-312
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(a) An evoked potential and the related DWT using the Daubechies-4 wavelet. 
(b) The same signal as in (a), but with noise added.
Note that the noise is concentrated in the detail coefficients of the finest scales

Sörnmo and Laguna: Bioelectrical Signal Processing in Cardiac and Neurological
Applications, pp. 311-312
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JPEG: 
Wavelet transform:
irreversible: the CDF 9/7 wavelet transform. It is said to be "irreversible" because it 
introduces quantization noise that depends on the precision of the decoder.
After the wavelet transform, the coefficients are scalar-quantized to reduce the 
number of bits to represent them, at the expense of quality. The output is a set of 
integer numbers which have to be encoded bit-by-bit. The parameter that can be 
changed to set the final quality is the quantization step: the greater the step, the 
greater is the compression and the loss of quality. 

quantization
https://en.wikipedia.org/wiki/JPEG_2000#Quantization

denoising, soft or hard thresholds:

https://www.mathworks.com/help/wavelet/ug/wavelet-denoising-and-
nonparametric-function-estimation.html#f8-22146

denoising, adaptive tresholding:
https://www.mathworks.com/help/wavelet/ug/wavelet-denoising-and-
nonparametric-function-estimation.html#f8-50819
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The type of wavelet analysis best suited for your work depends on what you want to 
do with the data.

If your goal is to perform a detailed time-frequency analysis, choose the continuous 
wavelet transform (CWT).
• The CWT is superior to the short-time Fourier transform (STFT) for signals in which 

the instantaneous frequency grows rapidly, such as in a hyperbolic chirp.
• The CWT is good at localizing transients in nonstationary signals
• Analytic wavelets are used for cwt (Morse, Morlet, Bump). These wavelets have

one-sided spectra, and are complex valued in the time domain (we have seen such
thing with Hilbert-transform). Because the wavelet coefficients are complex 
valued, the CWT provides phase information: it means that signal can be 
reconstructed, as both magnitude and phase information is needed for
reconstruction.

In a multiresolution analysis (MRA), you approximate a signal at progressively 
coarser scales while recording the differences between approximations at 
consecutive scales. You create the approximations and the differences by taking the 
discrete wavelet transform (DWT) of the signal.
• The DWT provides a sparse representation for many natural signals.
• On a log2 scale, the difference between consecutive scales is always 1. In the case 

of the CWT, differences between consecutive scales are finer.
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• When generating the MRA, you can either subsample (decimate) the 
approximation by a factor of 2 every time you increase the scale or not. In the 
decimated DWT, translations are integer multiples of scale (leads to minimally
redundant ~ orthogonal). For the nondecimated DWT, translations are integer 
shifts. A nondecimated DWT provides a redundant representation of the original 
data, but not as redundant as the CWT. Your application not only influences your 
choice of wavelet, but also which version of the DWT to use.

If preserving energy in the analysis stage is important, you must use an orthogonal 
wavelet. An orthogonal transform preserves energy. An orthogonal basis also makes
the calculation of the coefficients easier: 𝑥 = 𝐴𝑇𝑦. Consider using an orthogonal 
wavelet with compact support. Keep in mind that except for the Haar wavelet, 
orthogonal wavelets with compact support are not symmetric – they have nonlinear 
phase, making exact reconstruction impossible.

If you want to find closely spaced features, choose wavelets with smaller support, 
such as haar, db2, or sym2.

Minimally redundant representations obtained with decimated DWT, using
orthonormal wavelet.families are a good choice for compression, when you want to 
remove features that are not perceived. An orthogonal wavelet, such as a Symlet or 
Daubechies wavelet, is a good choice for denoising signals. 
A biorthogonal wavelet can also be good for image processing (but not energy-
preserving). Biorthogonal wavelet filters are symmetric, having linear phase which is 
a very critical for image processing. Using a biorthogonal wavelet filter will not 
introduce visual distortions in the image. Using a wavelet with many vanishing 
moments (like biorthogonal wavelets) results in fewer significant wavelet coefficients
 compression is improved. They can also have better regularity (n-times
differentiable)  smoother reconstruction.

The CWT of a signal provides a highly redundant representation of a signal. There is 
significant overlap between wavelets within and across scales. Also, given the fine 
discretization of the scales, the cost to compute the CWT and store the wavelet 
coefficients is significantly greater than the DWT.

https://de.mathworks.com/help/wavelet/gs/choose-a-wavelet.html
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