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When the signal is stationary, it can be composed from constant-amplitude sinusoidal
waves. (The coefficients 𝑐𝑘s are not time-dependent)

The non-stationarity of a signal can be caractherized many different ways:
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Two frequencies are present in the signal, but not simultaneously. From the spectrum
we can not tell, whether they are separated in time, or happen together (next slide)
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We would like to have a plot, where the frequency components corresponding to a 
time instant are represented with a colorbar.

In this kind of ‚music’ an image is embedded in the spectrogram. What does it sound
like?
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Biomedical examples:
The change of EEG oscillation frequencies in an awake subject (the amplitude of the
frequency component is plotted in gray dots: the bigger/darker the dot, the stronger
the frequency)
The spectrogram of a fibrillation on an ECG. From the tim-frequency representation it 
is easy to read the change.

http://doi.org.ololo.sci-hub.cc/10.10
https://www.ncbi.nlm.nih.gov/pubmed/750346288/0967-3334/26/5/R01
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why would we want to do that?
does windowed Fourier transform create an undercomplete or overcomplete basis?
overcomplete, because several instances of Y(f,u) can produce the same signal (e.g. 
modulate sine);
so the transform will probably contain another implicit constraint in it (such as 
miminum l2 energy)
this overcomplete basis, or underdetermined system causes an ambiguity in 
frequency
how can we quantify this ambiguity?
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full window: no time resolution
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half window (with half overlap), more temporal resolution
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even better temporal resolution, but with larger frequency uncertainty
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and even higher frequency uncertainty, but now with good localization of temporal 
change
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The Fourier transform of a rectangular funtion is a sinc f
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product of two widths much lower in case of Gaussian – better compromise can be 
reached
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product of two widths lower in case of Gaussian – better compromise can be reached
for the time-frequency uncertainity:
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This uncertainity can also be expressed by the variance of the two gaussian functions:
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http://www.ee.iitb.ac.in/student/~pawar/Wavelet%20Applications/Chapters_revie
w/ch03_Gr3_Gr2.pdf
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http://en.wikipedia.org/wiki/Dennis_Gabor
Gabor, Dennis. "Theory of communication. Part 1: The analysis of information." 

Electrical Engineers-Part III: Radio and Communication Engineering, Journal of the 
Institution of 93.26 (1946): 429-441.

Available to download from bigwww.epfl.ch/chaudhury/gabor.pdf
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We have a chirp signal (frequency increasing constantly from 20Hz to 100Hz, like a a
sound getting higher and higher. In the increase of the frequency there is a 
discontonuity at 0.2 and 0.8 s.)

We choose a Gabor-window with different frequencies (20, 50, 80), but same width
(0.2)
Green and blue are for the real and imaginary parts of the function

If we convolve the chirp with the different-frequency-Gabors, the resulting amplitude
will be the strongest where the frequency of the chirp and Gabor is the most similar.
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The previous slide is presented differently.
With the frequency axis the frequency of the Gabor-function is changed. Along the 
time direction the result of the convolution with the chirp is shown  a spectrogram.

It can be read from the spectrogram that the frequency increases continuously, 
except for 2 discontinuities at  around 0.2 and 0.8 – with this window-size the 
discontinuity is not sharp.
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The chirp signal is the same.
Here the Gabor function has a shorter length (~0.5 s), and the same frequencies 
(20,50,80 Hz)

Here the convolution shows a broader response – we can not tell precisely, where the 
frequency of the chirp and Gabor matches.
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We can see the same here: it is more difficult to tell, what frequency components the 
signal has at the exact time.
However, the discontinuities are more definite, we can tell exactly, when it occurs.
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Now the Gabor functions are changed differently: 
The higher frequency is obtained on shorter and shorter windows, fixing the number
of cycles.
With the long window the frequency response is sharp, with short window it is 
smeared.
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As expected, on low frequencies the time resolution is bad, the frequency resolution
is good. On higher frequency it will change: good time and bad frequency resolution.
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Instead of continuous change, here the frequency changes from cycle to cyle in 
discrete steps. Note that now the frequency is decreasing!
It causes that high frequencies have short segments, low frequencies have long
segments in the signal.

Now the mask Gabor windows have the same length with the signal, and different
frequencies.
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Remember, in this signal the frequency changes from 100 to 10 in steps of 10, and 
the corresponting time is longer and longer.
The low frequeny components are easier to localize with the windows, as they are
longer in time.
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Now again the cyclenumber of the Gabor windows is fixed, having higher frequencies
on shorter windows.
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With these windows the frequency change of the signal is well presented. We can
see, that the higher frequency components are shorter, the lower ones are longer
crvature of the curve. Furthermore the plot is more defined.
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𝝈𝒕
𝟐 ⋅ 𝝈𝝎

𝟐 ≤ 𝟏/𝟒 can be thought of as the area of a rectangle, having sides 𝜎𝑡 and 𝜎𝜔
can not be larger than a limit.

Fixed window

The standard deviation of the Gaussian function is related to its length, as seen
before.

If the time-widow is fixed, the frequency-window (resolution) will also be fixed.

Fixed number of cycles

If the time-window has a fixed number of oscillations, the length of it will change
depending on its frequency.

Shorter time-windows will detect fast high-frequency changes with bad f-resolution. 
Longer windows will not detect fast changes well, but will have nice LF-resolution.

Mallat: A wavelet tour of signal processing pp. 16,18
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𝜓(𝑡) is a motherwavelet: a function with zero mean, finite ℓ1 and unity ℓ2 norms. 

We can define a wavelet-basis from the motherfunction. It will be translated (shifted) 
with u, and dilated (streched) by 1/s (inverse of central frequency).

The scaling term s ensures that ℓ2 norm remains 1.

Similar to the Fourier transform, a function y(t) can be expressed as the integral of 
such wavelets. 𝜓∗ 𝑡 is the complex conjugate. It can be rewritten in the form of a 
convolution product with

𝜓𝑠
∗ 𝑢 =

1

𝑠
𝜓∗ −

𝑡

𝑠

Mallat: A wavelet tour of signal processing pp. 3,92,102
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With shorter windows (lower rows of the plot) represent the quick changes better. 
Long windows on the top have better frequency-resolution.

https://www.originlab.com/doc/Origin-Help/Continuous-WaveTrans
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a) Acquisition of two ECG Leads, which correspond to lead 1 and 3 on scheme 1. b) 
Generation of g ( x ), which is the projection of the Vectocardiogram on the QRS 
vector. c) A continuous wavelet transform is applied on g ( x ). Seven important 
modulus maximum lines, annotated Sg1 to Sg7 , can be observed on this figure

https://www.researchgate.net/profile/Jacques_Felblinger/publication/224461105/fig
ure/fig2/AS:302732910055433@1449188558784/Description-of-the-presented-
method-a-Acquisition-of-two-ECG-Leads-which-correspond.png
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