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Detection:
Finding ‚events’, like the QRS complex, muscle contraction, dichroitic notch…

Separation: 
In the S1 sound both the closure of the bi- and tricupsid valves can be heard. Similarly 
in S2 the aortic and pulmonary valves close simultaneously. In an EEG signal facial 
muscles can compromise the signal, like EOG last time.
In event detection one task can be to separate these events.
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The classical pipeline

Linear filtering:
• remove noise, EMG signal and other ECG signal components (P-wave, T-wave)
• center frequency of QRS: 10-25 Hz
• bandwidth: 5-10 Hz

Non-linear transformation to detect the envelope of the signal:
• Finding the local energy
• Hilbert transformation

Decision rule:
• Is the peak of the envelope above a set threshold?
• Or adaptive thresholding
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Noise and ‚other components can be viewed equally, it deends only on your point of 
view.

Why is it good, why not?
For accentuating the sharp changes in the QRS complex (10-25 Hz), and smoothing
the lower frequency components (P&T ~0Hz, baseline wander ~<1 Hz) a 
differentiation can be useful. However, higher frequency noise will be also amplified, 
as visible above.
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How to remove the baseline wander (caused by breathing and/or cable movement)
The baseline wander is well visible in the top line of the figure on the left. The 
frequency of the wander varies, just like the heart rate, making the two frequency
bands sometimes to overlap

1.) in the second row a simple time-invariant HPF is used, filtering out frequencies 
above the threshold. However, the overlapping baseline and QRS bands can not be 
separated.

2.) For solving the overlap, adaptive filtering can be used. When the heartrate is 
higher, the QRS band will be shifted. With different heartrates a different threshold 
for the separation is efficient,, as depicted on the middle left image. If we detect the 
heartrate thorough the ECG recording, the threshold can be set adaptively. 

3.) Another method uses the found events. The Q peaks are fitted onto a polynomial, 
and this polynomial is substracted from the signal.
This is kind of the chicken-egg causality, as if we want to detect events, where the 
first step is filtering, how can ve detect the events? However, this can be useful with 
manually annoted recordings.
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https://www.semanticscholar.org/paper/Digital-Envelope-Detection%3A-The-
Good%2C-the-Bad%2C-and-Lyons/0a2a92f9967444ac0579bc5f1b81655a0174c75a

Examples for envelope detection

The problem solved by envelope detection is to acquire a fluctuating-amplitude 
sinusoidal discrete signal where the positive-amplitude fluctuations, i.e., the 
sinusoid’s envelope, contain some sort of desired information and to extract that 
information.
An example of such a sinusoid is the amplitude modulated radio-frequency (RF) signal 
shown in Figure on the left. The dashed curve in that figure represents the RF signal’s 
m(n) envelope, and it is the goal of envelope detection to extract and make available 
that envelope signal as shown in Figure

a) „The negative values of the RF signal are set to zero (thresholding, half-wave
rectification). The high-frequency oscillation is filtered out by a low-pass filter. 
Due to the harmonics, i.e., multiples of the incoming fc carrier frequency, 
generated by the nonlinear half-wave rectification in (a), and possible spectral 
aliasing depending on the system’s fs sample rate, careful spectrum analysis of 
the half-wave rectified sinusoid is necessary to help you determine the 
appropriate cutoff frequency of the digital low-pass filter.”

b) This filter uses the square-law detector. 
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𝐴 1 + 𝑚 𝑡 cos 2𝜋𝑓𝑐𝑡
2
= 𝐴2 1 + 2𝑚 𝑡 + 𝑚2 𝑡 cos2 2𝜋𝑓𝑐𝑡 =

𝐴2 1 + 2𝑚 𝑡 + 𝑚2 𝑡
1

2
1 + cos 4𝜋𝑓𝑐𝑡

now we will have terms of 𝑚(𝑡), which contain no high-frequency carrier, we can
obtain it with aLPF
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Local energy:
We calculate the energy as the square of the signal.  To have local information about
the changes of this energy, it is convolved with a Hanning functionMoving
average. The width of this function will give the ‚locality
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As before with moving average: how big should the window be? We should now the
frequency of the events..
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Hilbert transform:
We can define the observed signal as the real part of a supposed complex signal (we 
can measure only real things’). The imaginary part of this signal is the Hilbert
transform. And most importantly, this made-up complex signal is such, that its
magnitude is the envelope of the observed signal.
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The concept of the Hilbert transform is that the observed signal is the real part of a 
complex signal, which has an absolute value equaling the envelope.
But how can this complex signal be determed?

The Hilbert transform can be calculated from the observed signal. 
Hilbert transform: calculated in the frequency domain. Its FFT is the FFT of the
observed signal multiplied by 𝑗𝑠𝑖𝑔𝑛(𝑓). It means a phase shift of 90 degrees. 

This way the analytical signal will be 0 for the negative frequencies, and 2*X(f) for the
positive frequencies.
From this we can see, that a(t) is complex, as the real part of the spectrum is 
symmetric, 
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The hilbert transform, 90°phase shift of a sine is a cosine
Remember, for a nice result the signal should be around 0 (substract the mean of the
signal)

https://pdfs.semanticscholar.org/b460/c670670f1eafd291eb5868ac86304983fc21.pd
f
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a) Local energy detector: a discrete FIR- filter. N samples are delayed, each of them
is multiplied by the corresponding nth value of the n-point Hanning function. The 
integral in discrete time is a finite sum.

b) Hilbert envelope detector: The Hilbert transform of the signal is calculated by a 
FIR filter (see next slide). The original signal is also stored, it is delayed by the
group delay of the Hilbert FIR to have a synchronous output. The envelope is 
calculated as the square root of the sum of the squares of the input (I) and Hilbert
(Q) signals
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ℎ(𝑛) is the inverse Fourier of 𝐻 𝑓 = 𝑗 ⋅ 𝑠𝑖𝑔𝑛(𝑓), the impulse response function
turning the observed signal to its Hilbert transform.
This impulse response is not absolutely summable, so an approximation of it has to
be defined for realization, either as an IIR or FIR.
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PCG

Hilbert transform does not need parameters
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why not use abs(hilbert(.)) here? would follow signal too closely, here it’s nice to be 
able to set integration time ourselves
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A constant threshold as detection rule is rarely working. 

A solution is to pick the previously found event(s), and use its threshold for
calculating the detection threshold of the next event.
If you use n number of previous events as reference for the threshold, older events
should have less of an influence. This can be realized by taking them into account 
with linearly/exponentially decaying weight.
In the latter, useful to keep threshold constant during „eye-closing period” 160-200 
ms (Sörnmo: „absolute refractory period during which the heart is unresponsive to 
electrical stimuli”)

25



26



Note the steps, discussed earlier!
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Threshold I1 is the first, „dumb”’ threshold to be exceeded; running estimate which
basically asks for noise peak to be exceeded by 25% of difference between signal
peak and noise peak
I2 is half of this, where we search back for first instance of I2 after we failed to find I1 
within some time frame where we expect it
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Left:
a) Original signal
b) Bandpass filtered
c) Differntiated
d) Squared
e) Moving-window Integration
f) Original signal delayed by filter delays (to be comparable with f)
g) Location of R-peaks

Noise contained signal on the right:
a) Original
b) Bandpass filtered
c) Moving-window integration
d) Delayed original ECG
e) R eak locations
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Task: observing whether I am sleeping at 9 o’clock, or I am at the university, guess
whether it is a schoolday or a weekend day

• The hidden states of the HMM: School day or Holiday
• The observed states: I am sleeping at 9 o’clock, I am at the University at 9 o’clock
• The initial probabilities: 0.7 for having a schoolday (~5/7), 0.3 for having s holiday.
• State transitions: If it is a holiday, with 0.5 probability the next day will be holiday

too, with 0.5 it is a schoolday (if it is Saturday, Sunday is holiday, if it is Sunday, 
Monday is school day). If it is schoolday, with 4/5 probability the next day will be 
too

• Observation probabilities: if it is a schoolday, I am at the university at 9o’clock 
usually (0.8), sometimes still in bad (0.2). If it is a holyday, most likely I will be in 
bad (0.9), or rarely I go to the university (0.1)
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It is natural to view the ECG signal as the result of a generative process, in which each 
waveform feature is generated by the corresponding cardiological state of the heart. 
In addition, the ECG state sequence obeys the Markov property, since each state is 
solely dependent on the previous state. Thus, hidden Markov models (HMMs) would 
seem ideally suited to the task of segmenting an ECG signal into its constituent 
waveform features. 

In HMM modeling, there are two classical methods, i.e., the Baum-Welch algorithm 
and the supervised learning algorithm for obtaining the parameters of the system.

A symple example: for a simple forward model (all states happens, no skipping of 
waves)
- State transition: depending on the length of the wave: for P wave 19/20 samples is 

followed by a P sample, 1 by a PQ, etc…
- Pbservation: a gaussian mixture model. Each state is observed correctly more likely

in the middle of the segment, in the edges it overlaps with other waves. 
Observation probability: probability of wave during its own duration divided by
sum of all probabilities during the particular wave’s duration

https://papers.nips.cc/paper/2347-markov-models-for-automated-ecg-interval-
analysis.pdf
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An HMM is a stochastic state machine, characterized by the following parameter set:
𝜆 = 𝐴, 𝐵, 𝜋
where A is the matrix of state-transition probabilities (probability of staying in S 
state, or going to R state) , B is the observation probability (eg. probability of 
measuring the P wave), and 𝜋 is the initial state probability.

The HMMs can model a waveform sequence namely, the duration of each waveform 
and interval within a beat. Moreover, the intra-individual variability of the beat 
length, particularly due to the heart rate variations, can be incorporated into the 
model state transitions. Another advantage of the HMMs is their ability to carry out 
at the same time three different tasks: beat detection, segmentation and 
classification. Furthermore, the HMMs replace the heuristic rules commonly used for 
waveform detection, which generally requires thresholds

(PDF) ECG Signal Analysis through Hidden Markov Models. Available from: 
https://www.researchgate.net/publication/6872005_ECG_Signal_Analysis_through_
Hidden_Markov_Models [accessed Aug 31 2018].
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We will discuss wavelet decomposition in later lectures.

f is the frequecy of the wavelets found to build up the signal:

Low f coefficients detect heart sounds (LF energy detection, like envelope)

High f coefficients differentiate between S1, S2

(A wavelet decomposition can be realized by matching ursuit, see next slide)

A biomedical signal segmentation algorithm for event detection based on slope 

tracing

, 10.1109/IEMBS.2009.5333874
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Also to be discussed on later lectures

Assume you have model S1, S2 waves. Than you use these signal with different 
amplitudes and shifts, and try to build up the original signal step-by-step: you find the 
shift-amplitude pair which correlates best with the signal, substract it, and repeat, 
until the norm goes under a threshold. 
The shifts used for the building will tell you the location of the events.

Left: Original signal
Right: Model built from sample waves
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Feature? (dicrotic notch, inversion)
Energy in some freq band? (EMG, EEG)
Maybe more than one feature – cf later classification lecture
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