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An interesting question from lab

* Why don’t we simply multiply by zero the unwanted frequencies,

and transform back?
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An interesting question from lab

* Why don’t we simply multiply by zero the unwanted frequencies,
and transform back?
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The BSP Flow Chart
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Today’s goal

* What events can interest us?

* Getting to know the classical detection pipeline:
* Linearfiltering
* Envelope detection (non-linear transformation
* Decision rules:
* Adaptive thresholding

* Pan Tompkins algorithm
* Hidden Markov

Biomedical Signal Processing
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Motivation

* Detect events — e.g. QRS complex

* Separate superimposed events
* S;: bicuspid and tricuspid AV
* S,: aortic and pulmonary
* intramuscular/cortical EMG/EEG

Inferior Vena Cava

Biomedical Signal Processing

Detection:
Finding ,events’, like the QRS complex, muscle contraction, dichroitic notch...

Separation:

In the S1 sound both the closure of the bi- and tricupsid valves can be heard. Similarly
in S2 the aortic and pulmonary valves close simultaneously. In an EEG signal facial
muscles can compromise the signal, like EOG last time.

In event detection one task can be to separate these events.
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The classical pipeline (for QRS detection)

Non-linear
Linear filtering > transformation > Decision rule
for the envelope
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The classical pipeline

Linear filtering:

« remove noise, EMG signal and other ECG signal components (P-wave, T-wave)
* center frequency of QRS: 10-25 Hz

* bandwidth: 5-10 Hz

Non-linear transformation to detect the envelope of the signal:
* Finding the local energy
* Hilbert transformation

Decision rule:
* Is the peak of the envelope above a set threshold?
* Or adaptive thresholding
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LINEAR FILTERING

Biomedical Signal Processing
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Linear filtering

* Filters from previous class,
eg. Butterworth bandpass/bandstop filters
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Differentiation based filtering
* Accentuate features AND remove noise/other components
* Simple possibility: differentiation-based filtering
ECG ECG
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Noise and ,other components can be viewed equally, it deends only on your point of
view.

Why is it good, why not?

For accentuating the sharp changes in the QRS complex (10-25 Hz), and smoothing
the lower frequency components (P&T ~0Hz, baseline wander ~<1 Hz) a
differentiation can be useful. However, higher frequency noise will be also amplified,
as visible above.

10
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How to remove the baseline wander (caused by breathing and/or cable movement)
The baseline wander is well visible in the top line of the figure on the left. The
frequency of the wander varies, just like the heart rate, making the two frequency
bands sometimes to overlap

1.) in the second row a simple time-invariant HPF is used, filtering out frequencies
above the threshold. However, the overlapping baseline and QRS bands can not be
separated.

2.) For solving the overlap, adaptive filtering can be used. When the heartrate is
higher, the QRS band will be shifted. With different heartrates a different threshold
for the separation is efficient,, as depicted on the middle left image. If we detect the
heartrate thorough the ECG recording, the threshold can be set adaptively.

3.) Another method uses the found events. The Q peaks are fitted onto a polynomial,
and this polynomial is substracted from the signal.

This is kind of the chicken-egg causality, as if we want to detect events, where the
first step is filtering, how can ve detect the events? However, this can be useful with
manually annoted recordings.

11
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ENVELOPE
DETECTION

Biomedical Signal Processing
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Envelope detection — simple possibilities
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https://www.semanticscholar.org/paper/Digital-Envelope-Detection%3A-The-
Good%2C-the-Bad%2C-and-Lyons/0a2a92f9967444ac0579bc5f1b81655a0174c75a

Examples for envelope detection

The problem solved by envelope detection is to acquire a fluctuating-amplitude
sinusoidal discrete signal where the positive-amplitude fluctuations, i.e., the
sinusoid’s envelope, contain some sort of desired information and to extract that
information.

An example of such a sinusoid is the amplitude modulated radio-frequency (RF) signal
shown in Figure on the left. The dashed curve in that figure represents the RF signal’s
m(n) envelope, and it is the goal of envelope detection to extract and make available
that envelope signal as shown in Figure

a) ,The negative values of the RF signal are set to zero (thresholding, half-wave
rectification). The high-frequency oscillation is filtered out by a low-pass filter.
Due to the harmonics, i.e., multiples of the incoming fc carrier frequency,
generated by the nonlinear half-wave rectification in (a), and possible spectral
aliasing depending on the system’s fs sample rate, careful spectrum analysis of
the half-wave rectified sinusoid is necessary to help you determine the
appropriate cutoff frequency of the digital low-pass filter.”

b) This filter uses the square-law detector.

13



(A[1 + m(t)]cos(Zthct))2 = A%[1 + 2m(t) + m?(t)]cos?(2nf,t) =

1
A%[1 + 2m(t) + mz(t)]z[l + cos(4nf,t)]
now we will have terms of m(t), which contain no high-frequency carrier, we can
obtain it with aLPF

13
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Envelope detection — general possibilities |

How can you define the ,envelope’?

Local energy
r(t) is the local average of
square of integral

r(t) = fmx(t +1)?h(r)dr

Convolution with a
Hanning-window
- local information

Biomedical Signal Processing

Local energy:
We calculate the energy as the square of the signal. To have local information about

the changes of this energy;, it is convolved with a Hanning function 2 Moving
average. The width of this function will give the ,locality

14
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Envelope detection — local energy

Let’s see, how method | performs on a simple signal.
What can be the drawback of the method?
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Biomedical Signal Processing

As before with moving average: how big should the window be? We should now the
frequency of the events..

15
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Envelope detection — general possibilities Il

How can you define the ,envelope’?

Hilbert transform
r(t) is a modulator of a
complex sinusoid

observed signal Hilbert

t
x(t) = Re{x(t) + jy(t)} =
Re{a(f/)} = Re{r(t)e’™}

analytical ]
Modulator carrier

(envelope)

Biomedical Signal Processing

Hilbert transform:

We can define the observed signal as the real part of a supposed complex signal (we
can measure only real things’). The imaginary part of this signal is the Hilbert
transform. And most importantly, this made-up complex signal is such, that its
magnitude is the envelope of the observed signal.

16
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Envelope detection — Hilbert transform
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Biomedical Signal Processing

The concept of the Hilbert transform is that the observed signal is the real part of a
complex signal, which has an absolute value equaling the envelope.
But how can this complex signal be determed?

Magnitude
=

2X(f) forf>0

0 otherwise

The Hilbert transform can be calculated from the observed signal.
Hilbert transform: calculated in the frequency domain. Its FFT is the FFT of the
observed signal multiplied by jsign(f). It means a phase shift of 90 degrees.

This way the analytical signal will be 0 for the negative frequencies, and 2*X(f) for the

positive frequencies.
From this we can see, that a(t) is complex, as the real part of the spectrum is

symmetric,
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Envelope detection - Il

Let’s see, how method Il performs on a sine.
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The hilbert transform, 90°phase shift of a sine is a cosine

Remember, for a nice result the signal should be around 0 (substract the mean of the
signal)

https://pdfs.semanticscholar.org/b460/c670670f1eafd291eb5868ac86304983fc21.pd
f
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Envelope
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Biomedical Signal Processing

a) Local energy detector: a discrete FIR- filter. N samples are delayed, each of them
is multiplied by the corresponding nth value of the n-point Hanning function. The
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7’4

Local energy detector

Modulated |
Y,

n-Hanning|

®

+

a)

integral in discrete time is a finite sum.

Hilbert envelope detector: The Hilbert transform of the signal is calculated by a
FIR filter (see next slide). The original signal is also stored, it is delayed by the
group delay of the Hilbert FIR to have a synchronous output. The envelope is
calculated as the square root of the sum of the squares of the input (1) and Hilbert

(Q) signals

Envelope detection - implementation
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FIR Hilbert transformer
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Biomedical Signal Processing

h(n) is the inverse Fourier of H(f) = j - sign(f), the impulse response function
turning the observed signal to its Hilbert transform.
This impulse response is not absolutely summable, so an approximation of it has to

be defined for realization, either as an IIR or FIR.

20
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Examples of envelope detection - comparison

ECG
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Biomedical Signal Processing
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Examples of envelope detection - comparison

What kind of signal is this?

T T T T T T
2+ ——s2 4
abs(hilbert(S2))
onvi 2),hann( 100)),'same’)
15 & |
1| B
" i
05 I » ) 4
\ (M I
AR AUV o NUIVA A AV Al (L N
v ava( (VAN 2 avavawavavavAWA} - V.—fg-e\‘\““‘“wu“ R ‘/NW‘ Vsl
,}‘ \ Yy Hy ™
[V \
| [ |
05} | | 1
1‘ | ‘\
| - L ) A L [
0 0.2 04 06 08 1 12
time (s)

Biomedical Signal Processing

PCG

Hilbert transform does not need parameters ©
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Examples of envelope detection - comparison

What kind of signal is this? What is the event?
20

EMG ‘
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Biomedical Signal Processing

why not use abs(hilbert(.)) here? would follow signal too closely, here it’s nice to be
able to set integration time ourselves

23
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DECISION RULES

Biomedical Signal Processing
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Detection rule — example for QRS

What should the threshold be?
* Use previous events’ threshold

* Forgetting function for ,older’ events

Tax

z(n)

Biomedical Signal Processing

A constant threshold as detection rule is rarely working.

A solution is to pick the previously found event(s), and use its threshold for
calculating the detection threshold of the next event.

If you use n number of previous events as reference for the threshold, older events
should have less of an influence. This can be realized by taking them into account
with linearly/exponentially decaying weight.

In the latter, useful to keep threshold constant during ,,eye-closing period” 160-200

ms (Sérnmo: ,,absolute refractory period during which the heart is unresponsive to
electrical stimuli”)

25
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EXAMPLES - QRS

Biomedical Signal Processing

26
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Pan-Tompkins algorithm for QRS detection

The parameters are for f;= 200Hz

* Lowpass FIR filter with integer coefficients
y(n) = 2y(n=1)=y(n—=2)+1/32[x(n) = 2x(n = 6) + x(n — 12)]

* Highpass FIR filter with integer coefficients
y(n)= y(n—1)+[-1/32x(n) + x(n — 16) — x(n —17) + x(n — 32)/32]

* Derivative operation
y(m) =1/8 [2x(n) +x(n—1) —x(n — 3) — 2x(n — 4)]

* Squaring

* Integration
y(n) =1/N[x(n—(N—-1))+--+x(n)],N =30

* Adaptive thresholding

Biomedical Signal Processing

Note the steps, discussed earlier!

27
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Pan-Tompkins adaptive thresholding

SPKI =0.125 PEAKI + 0.875 SPKI
(if PEAKI is the signal peak)
For peak to be signal peak, it must NPKI = 0.125 PEAKI + 0.875 NPKI

either
if PEAKI is the noi k
* exceed Threshold I1 in first step @ 18150 NG peso)
of analysis THRESHOLD I1 = NPKI + 0.25 (SPKI - NPKI)

* or if such cannot be found, {2
Threshold 12 if searchback is THRESHOLD 12 = 0.5 THRESHOLD 11

applied (whereupon a more . . :
cgﬁ'\plicat(ed set of rules applies where all the variables refer to the integration waveform:
’

PRSIl Tkl PEAKI is the overall peak
SPKI is the running estimate of the signal peak,
NPKI is the running estimate of the noise peak,
THRESHOLD 11 is the first threshold applied, and
THRESHOLD 12 is the second threshold applied.

Biomedical Signal Processing

Threshold I1 is the first, ,dumb”’ threshold to be exceeded; running estimate which
basically asks for noise peak to be exceeded by 25% of difference between signal
peak and noise peak

12 is half of this, where we search back for first instance of 12 after we failed to find 11
within some time frame where we expect it
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Pan-Tompkins examples

Identify the detection steps!
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Biomedical Signal Processing
Left:

a) Original signal

b) Bandpass filtered

c) Differntiated

d) Squared

e) Moving-window Integration

f) Original signal delayed by filter delays (to be comparable with f)
g) Location of R-peaks

Noise contained signal on the right:
a) Original

b) Bandpass filtered

¢) Moving-window integration

d) Delayed original ECG

e) R eak locations
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OTHER METHODS

Biomedical Signal Processing
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Hidden Markov Model

School-

Biomedical Signal Processing

Task: observing whether | am sleeping at 9 o’clock, or | am at the university, guess
whether it is a schoolday or a weekend day

* The hidden states of the HMM: School day or Holiday

* The observed states: | am sleeping at 9 o’clock, | am at the University at 9 o’clock

* The initial probabilities: 0.7 for having a schoolday (~5/7), 0.3 for having s holiday.

» State transitions: If it is a holiday, with 0.5 probability the next day will be holiday
too, with 0.5 it is a schoolday (if it is Saturday, Sunday is holiday, if it is Sunday,
Monday is school day). If it is schoolday, with 4/5 probability the next day will be
too

* Observation probabilities: if it is a schoolday, | am at the university at 9o’clock
usually (0.8), sometimes still in bad (0.2). If it is a holyday, most likely | will be in
bad (0.9), or rarely | go to the university (0.1)

31
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Detection rule - Hidden Markov Model
R
f. = 250Hz
~=
(#)
P P 80 20
/\ PQ ST ISO PQ 60 15
" b ’ QRS 100 25
S Qr 100 25
4 T 160 40
ISO 80 20

Biomedical Signal Processing

It is natural to view the ECG signal as the result of a generative process, in which each
waveform feature is generated by the corresponding cardiological state of the heart.
In addition, the ECG state sequence obeys the Markov property, since each state is
solely dependent on the previous state. Thus, hidden Markov models (HMMs) would
seem ideally suited to the task of segmenting an ECG signal into its constituent
waveform features.

In HMM modeling, there are two classical methods, i.e., the Baum-Welch algorithm
and the supervised learning algorithm for obtaining the parameters of the system.

A symple example: for a simple forward model (all states happens, no skipping of

waves)

- State transition: depending on the length of the wave: for P wave 19/20 samples is
followed by a P sample, 1 by a PQ, etc...

- Pbservation: a gaussian mixture model. Each state is observed correctly more likely
in the middle of the segment, in the edges it overlaps with other waves.
Observation probability: probability of wave during its own duration divided by
sum of all probabilities during the particular wave’s duration

https://papers.nips.cc/paper/2347-markov-models-for-automated-ecg-interval-
analysis.pdf
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Detection rule - Hidden Markov Model

Biomedical Signal Processing

An HMM is a stochastic state machine, characterized by the following parameter set:
A = (4B, )

where A is the matrix of state-transition probabilities (probability of stayingin S
state, or going to R state), B is the observation probability (eg. probability of
measuring the P wave), and 7 is the initial state probability.

The HMMs can model a waveform sequence namely, the duration of each waveform
and interval within a beat. Moreover, the intra-individual variability of the beat
length, particularly due to the heart rate variations, can be incorporated into the
model state transitions. Another advantage of the HMM:s is their ability to carry out
at the same time three different tasks: beat detection, segmentation and
classification. Furthermore, the HMMs replace the heuristic rules commonly used for
waveform detection, which generally requires thresholds

(PDF) ECG Signal Analysis through Hidden Markov Models. Available from:
https://www.researchgate.net/publication/6872005 ECG Signal Analysis through
Hidden Markov_Models [accessed Aug 31 2018].

33
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Detection of P wave

* Find QRS complex
* Extract QRS complex (set it to isoelectric line)

* Then search P wave (second largest in amplitude out of P, QRS, T)

Biomedical Signal Processing
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Wavelet decomposition

* S1, S2 sounds

Heart Cycles
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Biomedical Signal Processing

We will discuss wavelet decomposition in later lectures.

f is the frequecy of the wavelets found to build up the signal:
Low f coefficients detect heart sounds (LF energy detection, like envelope)
High f coefficients differentiate between S1, S2

(A wavelet decomposition can be realized by matching ursuit, see next slide)

A biomedical signal segmentation algorithm for event detection based on slope
tracing
. 10.1109/IEMBS.2009.5333874

35
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Matching pursuit for PCG
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Biomedical Signal Processing

Also to be discussed on later lectures

Assume you have model S1, S2 waves. Than you use these signal with different
amplitudes and shifts, and try to build up the original signal step-by-step: you find the
shift-amplitude pair which correlates best with the signal, substract it, and repeat,
until the norm goes under a threshold.

The shifts used for the building will tell you the location of the events.

Left: Original signal
Right: Model built from sample waves

36
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Other events? How to detect?

* BP, PPG

* heart cycle, dicrotic notch
+ EMG

* movement
* EEG

* sleep spindle

* epilepticseizure

Biomedical Signal Processing

Feature? (dicrotic notch, inversion)
Energy in some freq band? (EMG, EEG)
Maybe more than one feature — cf later classification lecture

37
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Summary on Classmarker

Biomedical Signal Processing
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Motivation (4): http://commons.wikimedia.org/wiki/File:Heart_labelled_large.png

QRS detection (6): SL pp. 381, 428, 487

Heart-rate-dependent base-line removal (8): SL pp. 467-470

Envelope detection (10): Addm Balogh (2012): Analysis of the Heart Sounds and Murmurs of Fetuses and Preterm Infants, p. 36-37
Hilbert-transform-based envelope detection (11): SL pp. 501-503

Envelope detection on biomedical device (12): SL p. 503

Detection rule (15): SL pp. 504-507

Pan-Tompkins algorithm for QRS detection (16): Pan and Tompkins (1985): A real-time QRS detection algorithm; R p. 187-190
Pan-Tompkins adaptive thresholding (17): Pan and Tompkins (1985): A real-time QRS detection algorithm

Pan-Tompkins examples (18): Pan and Tompkins (1985): A real-time QRS detection algorithm

Detectiog riJIe using Hidden Markov Model: Coast et al. (1990): An Approach to Cardiac Arrhythmia Analysis Using Hidden Markov
Models

Sparse decomposition (24): Malioutov (2001): a sparse signal reconstruction perspective for source localization with sensor arrays,
p.33

Matching pursuit (25), Basis pursuit as Linear Programming problem (26): Matching pursuit vs Basis Pursuit (27): Gyongy and
Coviello (2011): Passive Cavitation Mapping with Temporal Sparsity Constraint

Matchinghpudrsuit for PCG (28): Zhanget al. (1998): Analysis-synthesis of the phonocardiogram based on the matching pursuit
metho

R: Rangayyan (2002): Biomedical Signal Analysis: A Case Study Approach

SL: Sornmo and Laguna (2005): Bioelectric Signal Processing
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