
1



2



3



The goal is to eliminate the additive noise from the system. 
We have to know, whether the noise is independent from the signal, and whether it is 
random.
If not, what is their relation? It has to be included into the model.

If noise is multiplicative, take log, then filter (homomorphic filtering)
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An example is the ECG signal. It has multiple noise components, as listed above.
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To find the similar parts of the signal, the autocorrelation is calculated. This plot
shows, that with each shift, how big the correlation between the original and its
shifted version is. Note, that this plot is symmetric, because shifts are calculated in 
both + and – directions. 
At the peak shifts the cycles overlap, there the signal can be cut. (red lines)

If you have annoted data, like the QRS location of ECG signals, the autocorrelation
step can be skipped, and the data can be cut using these reference points.
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When is it good?

It will take away important informations from a cardiac signal.
It can be useful when we have multiple measurements of the same event (from

multiple detectors, or if the signal is assumed to be constant. This can be an
ultrasound measurements of the tissue. Another example is evoked potentials: in the
oddball paradigm a negative potential can be observed at 300 ms upon the the sound
of the deviant stimulus. From one EEG measurement this would be very noisy, but
using synvhronized averaging this can be avoided.
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When you do time domain averaging on the vibration signal from a real machine, the 
averaged time record gradually accumulates those portions of the signal that are 
synchronized with the trigger, and other parts of the signal, such as noise and any 
other components such as other rotating parts of the machine, etc., are effectively 
averaged out.
The method assumes that similar events build up the signal. We also assume, that
the noise is not correlated (with itself or with the signal)!!!
If we have an important anomaly, it will disappear.  

Linear filters (wiener filter, pole-zero filter, butterworth-chebyshev-elliptic filters) fail
to work when the spectrum of the noise and that of the signal overlap. With 
synchronized averaging this problem can be solved.

http://azimadli.com/vibman/synchronousaveraging.htm
Why is it working?
The useful signal is assumed to be the same through cycles, so its average is the
same. The white noise, on the other hand, flattens out with more and more average. 
The SNR improves with the number of samples, N.

𝑦 = 𝑥 + 𝑛

The SNR can be calculated as:
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𝑆𝑁𝑅 =
𝑆

𝜎2
, signal power (𝐸 𝑥2 ) over noise variance

The variance is the square of the standard deviation, which is constant for the noise:
Var(X) = 𝐸 𝑋 − 𝜇 2 = 𝐸 𝑋2 − 𝐸 𝑋 2 = 𝐶𝑜𝑣(𝑋, 𝑋)
𝐸 𝑛2 = 𝑣𝑎𝑟(𝑛) = 𝜎2

Rule for variances: for two uncorrelated variables
𝑣𝑎𝑟(𝑎 + 𝑏) = 𝑣𝑎𝑟(𝑎) + 𝑣𝑎𝑟(𝑏)
For the same variable, however, there is a square scaling if a scalar is present:
𝑣𝑎𝑟(𝑘𝑎) = 𝑘2 𝑣𝑎𝑟 (𝑎)

Variance of averaged noise:
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Power of averaged signal is the same, as that of 1 signal, S (as we assume that x is 
identical through cycles)

𝑆𝑁𝑅𝑎𝑣𝑔 =
𝑆

1
𝑁 𝜎2

= 𝑁 ⋅ 𝑆𝑁𝑅1
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„Ad hoc is a Latin phrase meaning literally "for this." In English, it generally signifies a 
solution designed for a specific problem or task, non-generalizable, and not intended 
to be able to be adapted to other purposes”

https://en.wikipedia.org/wiki/Ad_hoc
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These filters can be written in the form of a transfer function of a system. (See slides
of previous lecture for the definition of a transfer function.

Pole: a substitution value 𝑠 of the transferfunction 𝐺 𝑠 , where its denominator is 
zero, causing a a division by 0 infinite value of 𝐺(𝑠) (going to the sky)
Zero: a substitution value of 𝐺(𝑠), where the nominator is zero zero value of 𝐺(𝑠)
(by the ground)
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The continuous Fourier transform maps a continuous function x(t) to the real-valued
function X(𝜔), 𝜔 ∈ ℝ (if 𝑋(𝜔) is calculated only for discrete 𝜔s, than it is a fourier
discrete function).
The Laplace transform maps a continuous function x(t) to the complex-valued
function X(s) , s ∈ ℂ
The discrete Fourier transform maps a discrete function x(n) to the real-valued
function X(𝜔), 𝜔 ∈ ℝ
The discrete Z-transform maps a discrete function x(n) to the complex-valued 
function X(z) , z ∈ ℂ

The discrete form of the Fourier transform converts into the discrete Z-transform with
a simple substitution of 𝑧 ← 𝑒𝑗𝜔𝑇

„It gives a tractable way to solve linear, constant-coefficient difference equations.”

https://en.wikipedia.org/wiki/Z-transform
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The Laplace transform is a complex-valued function, it takes frequency values on the
whole frequency plane. The Fourier transform is real valued, it is drawn along the
imaginary axis of the Laplace trasform.
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Laplace transform:
If this pole is on the negative half-plane, the solution is stable (the exponential is not 
exploding, as discussed in the previous lecture)

Z-transform (𝑧 𝑒𝑗𝜔 𝑇)
In the discrete form, using the Z-transform, the poles have to be within the unit 
circle to have a stable solution.

The doamin of the Fourier transform is the imaginary axis of the Lablace transorm (or
unit circle of the Z-transform, no damping). s = 𝑗𝜔
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From up to down:

• Signal flow diagram of the system
• I/O model of the system. 𝑥𝑖 is the input datapoint, 𝑦𝑖 is the output datapoint at

time i. The order of the equation is 𝑁𝑎 .
• Z-transform of the system, in the form of the transfer function
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As described previously, the zeros can be calculated as the roots of the nominator, 
the poles are the roots of the denominator.

If we go from the Z-domain to the Fourier domain, only a simple substitution has to
be done: 𝑧 ← 𝑒𝑗𝜔𝑇

Calculating in the Z-domain is easier, in the Fourier form the physical frequency
response can be read.
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𝑝 ∈ ℂ is a complex number.
A simple continuous diff.eq. is ሶ𝑦 = 𝑝𝑦 + 𝑥. The solution is in the form of 𝑦0𝑒

𝑎𝑡𝑒𝑏𝑗𝑡

using the Laplace transform, the pole is 𝑝.

If this pole is on the negative half-plane, the solution is stable (the exponential is not 
exploding, as discussed in the previous lecture)
In the discrete form, using the Z-transform, the poles have to be within the unit 
circle to have a stable solution.
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Bode diagram of a low-pass filter

To see the magnitude and phase response of a filter, the Bode diagam should be 
drawn. It will tell us, how the filter modifies signals with different frequencies.

Magnitude response: 
𝑌 𝑧

𝑋 𝑧
, absolute value of the transfer function

Phase response: ∡
𝑌 𝑧

𝑋 𝑧
, the angle of the transfer function

If i know, what frequencies I want to eliminate or enhance, I have to place the poles 
and zeros of the filter in a way, which results in the desired Bode diagram.

Note that magnitude is in dB!! −20 log10(
𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡
)

- if output = input , log(1) = 0
- If output = input*0.01), −20log10 100 = −40
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Location of poles and zeros: influences magnitude
Location of poles: influences stability
Location of zeros: determines phase linearity

If we have zeros in the system, we are talking about an IIR (infinite impulse response, 
as the output depends on previous output(s)). Otherwise, we are talking about a FIR 
filter. FIR filters are usually easier to design, but for nice properties a high order (many
electronic components) might be needed. On the other hand, IIR filers can be 
computationally more efficient, as the complex networks can be implemented with a 
lower order lower number of components. The same response function can
usually be implemented by both FIR and IIR structure.

From the perspective of the frequency response we can design lowpass, highpass,
single/multi bandpass and notch filters

Coming up: MATLAB demo on wiki zfiltdes.m
Wolfram demo (e.g. 
http://demonstrations.wolfram.com/TransferFunctionAnalysisByManipulationOfPoles
AndZeros/)
FilterDesign pdf 
(http://faculty.ksu.edu.sa/ghulam/Documents/CEN352/DSP_CEN352_FilterDesign.pd
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f)
dsp_iir.pdf (http://staff.neu.edu.tr/~fahri/dsp_iir.pdf)
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In moving average filters a number of previous inputs is averaged to obtain the ith

output of the filter. These filters in the above implementation have no poles, only
zeros. 

Moving average filters in the I/O form on the left, and the frequency and phase 
response of the Hanning-filter (framed in red on the left).

Poles : ∅ FIR filter 

Zeros: 𝑧2 + 2𝑧 + 1 = 0 →
−2± 4 −4

2
= 1 , zero is at „full frequency” (the amplitude at

this frequency is attenuated heaviliy)
The magnitude is in dB!!! 0 means no difference (log(1)), very negative numbers
mean big attenuation
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Poles: ∅ FIR filter
Zeros: at ¼, ½ , ¾ , 1 normalized frequency (the amplitude at this frequency is 0)

22



Magnitude response of the filters

• Butterworth filter: maximally flat magnitude filter, with a mild slope after the 
cutoff frequency. It means, that the frequencies which are passed are preserved 
smoothly, but after the cutoff frequency many frequencies remain present with 
some amplitude.

• Chebysev type I: it has ripples in the pass-band, but has a sharp slope, and the 
eliminated frequencies are cut smoothly.

• Chebysev type II: it has a smooth pass band, sharp rolloff, but ripples in the 
eliminated frequency.

• Elliptic: ripples in both pass and cut band, but very sharp rolloff.

Our choise of filter depends on the task. Do we want to  keep the passed frequencies 
perfectly, or eliminate the cut-band completely? Do we need a sharp cutoff?

23



When the Butterworth filter is designed as a lowpass filter, its magnitude response is:

𝐻 𝑗𝜔 2 =
1

1+
𝜔

𝜔𝑐

2𝑁, where 𝜔𝑐 is the cutting frequency, and 𝑁 is the order of the

filter.
These are the 2 parameters that have to be defined also in matlab. (𝑁,𝑊𝑛)

The magnitude response is (2𝑁 − 1)-times differentiable. The derivate in the pass-
band is zero completey flat, there are no ripples. It can be seen in the plot, that
the higher the filter order, the steeper the rolloff is.
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The magnitude response is 

𝐻𝑛 𝑗𝜔 =
1

1+𝜖2𝑇𝑛
2 𝜔

𝜔𝑐

,

where 𝜖 is the ripple factor, 𝜔𝑐 is the cutoff frequency and 𝑇𝑛 is a Chebyshev
polynomial of the 𝑛th order.

The Chebyshev polynomials type I:
𝑇0(𝑥) = 1
𝑇1 𝑥 = 𝑥
𝑇𝑛+1 𝑥 = 2𝑥𝑇𝑛 𝑥 − 𝑇𝑛−1(𝑥)

The Chebyshev polynomials type I:
𝑈0(𝑥) = 1
𝑈1 𝑥 = 2𝑥
𝑈𝑛+1 𝑥 = 2𝑥𝑈𝑛 𝑥 − 𝑈𝑛−1(𝑥)
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𝑆𝑛 and 𝑆𝑦 is the power spectral density (PSD) of the related signal. It is calculated as

the Fourier transform of the (auto)correlation functions. The autocorrelation 𝑅𝑥(𝜏) is 
𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)].

The Wiener filter is linear. It is assumed, that the signal is stationary (its statistical
parameters are not changing with time) and the noise is independent, additive.
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In line 1: orthogonality (independence) between the signal and noise is assumed
In line 2 we assume that the noise can be filtered out from the observed signal by
𝐻(𝜔) to obtain the original one.
In line 3 the power spectrum of the estimated signal ෪𝑆𝑥(𝜔) is assumed to equal
the real original signal 𝑆𝑥 𝜔 , again because of signal orthogonality.

In line 4  
𝑆𝑛 𝜔

𝑆𝑥 𝜔
is the inverse of the SNR: with high SNR (low noise), the filter will

give back the observed signal y, with weak signals the filter will go to 0.

Obtaining 𝑆𝑥 𝜔 can be problematic. The signal can be assumed to have a
parametric shape, like exponential or Gaussian (method#0). It can also be estimated 
by averaging similar signals( method#1), or a mathematical model (method#2, last 
lecture) of the signal.
𝑆𝑛 𝜔 for white noise is its variance, square of standard deviation. But if we do
not know it, 𝑆𝑦 𝜔 can be directly calculated from the observation, and  𝑆𝑛 𝜔 =

𝑆𝑦 𝜔 − 𝑆𝑥 𝜔

for details, see Sörnmo and Laguna (2005): Bioelectric Signal Processing, p 245-250
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The first plot shows the power spectrum of the signal and noise, and the ideal wiener
filter calculated from them.

On the right hand side it can be seen, how the filter acts under different SNR values
(columns). 
The thin line represents the ideal signal. Here it is estimated as the average of the
ensemble (method#1).
In the first row the original observation y is plotted. The second uses a LP filter, the
third a smoothed LP filter. The last row is the ideal Wiener filter.

Note that here we are talking about power spectra – some textbooks may use 
𝑆𝑦
2 𝜔 , 𝑆𝑥

2 𝜔 , 𝑆𝑛
2 𝜔 where Sx etc refers to magnitude spectra
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In this case the signal power spectrum is estimated from a mathematical model of 
the ECG (method#2).
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The signal is not always stationary, when previous filters are not efficient. The 
frequency, mean value, variance, etc. can change with time, when new methods are
necessary. A solution would be to clip the signal dependng on these properties, and 
filter the segments separatedly. But it is not always efficient.

We can try to remove noise based on reference signal.
Adaptive: signal-dependent; adapt with time
Examples: EOG interference in EEG (eye muscle movements) or maternal
interference in fetal ECG.

In the image an EEG signal with EOG artefact can be observed. The first two lines are
the EMG recording from the eye movement. The second two rows are EEG signals
with the artefact present. The last two rows are the filtered timelines.

In the system model the observation y is composed of x, the EEG signal with some
noise n0. This n0 is the EOG noise – in this case only n1 and n2, the two channels. 
With some weight we would like to substract these EOG recording from the signal. 
These weights can change with time, as in each instant (k) EOG can corrut the EEG 
differently.
How are weights w_1,…,w_M updated?

Idea: minimize norm of the estimated signal ෤𝑥.
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Assume: n1,..nM are correlated with n0 (as it is composed of the eye movements), 
and x is uncorrelated with n0,n1,..nM.
LMS (least mean square, to have minimum norm of ෤𝑥) filter:
𝑤𝑙,𝑘+1 = 𝑤𝑙,𝑘 + 2𝜇 ෤𝑥𝑘 ⋅ 𝑛𝑙,𝑘, where 𝜇 is the convergence factor
(https://en.wikipedia.org/wiki/Adaptive_filter)

Concept: very simple! If error positive, subtract more from signal, in proportion to 
previous reference data point and error signal data point. Likewise if error is negative. 
If correct weight is not changing, eventually, applied weight will “lock onto” correct 
weight. If slowly changing, it will follow it.
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We multiply by a rectangular window in the frequency domain == convolution with a 
sinc function in the time domain
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generating functions, first introduced by de Moivre.
Take (from Wolfram’s Mathworld) example of generating function for Fibonacci 
numbers, f(x) = x/(1-x-x^2) = x + x^2 + 2x^3 + 3x^4
So in other words, a generating function has the property that its polynomial 
coefficients gives a number series that is of interest to us.

36


