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Today’s goal

* What kind of noises are possible?
* Learning the theory of the following filters:
* Synchronized averaging
* Ad hoc filters (moving average, pole-zero, band filters)
* Wiener filtering
 Adaptive filtering

* Hopefully getting an idea, what kind of filter to use for a given
task

Biomedical Signal Processing
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Motivation

y=X+n

* We have (additive?) noise in the system
* We want to remove it

* Do we know anything about x, n, <x,n>?
Biomedical Signal Processing

The goal is to eliminate the additive noise from the system.

We have to know, whether the noise is independent from the signal, and whether it is
random.

If not, what is their relation? It has to be included into the model.

If noise is multiplicative, take log, then filter (homomorphic filtering)
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ECG noise
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An example is the ECG signal. It has multiple noise components, as listed above.
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Techniques

* Synchronised averaging
* Ad hocfilters

* moving average

* pole-zero design

« filter classes (Butterworth, Chebyshev)
* Wiener filtering

* Adaptive filtering

Biomedical Signal Processing
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Synchronised averaging

In this method similar segments are cut out from the signal, they are aligned,
and averaged. In this case the cardiac cycles are collected
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Synchronised averaging

To find the similar events, the autocorrelation of the signal is calculated
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To find the similar parts of the signal, the autocorrelation is calculated. This plot
shows, that with each shift, how big the correlation between the original and its
shifted version is. Note, that this plot is symmetric, because shifts are calculated in
both + and — directions.

At the peak shifts the cycles overlap, there the signal can be cut. (red lines)

If you have annoted data, like the QRS location of ECG signals, the autocorrelation
step can be skipped, and the data can be cut using these reference points.
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Synchronised averaging
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When is it good?

voltage (mV)

It will take away important informations from a cardiac signal.

It can be useful when we have multiple measurements of the same event (from
multiple detectors, or if the signal is assumed to be constant. This can be an
ultrasound measurements of the tissue. Another example is evoked potentials: in the
oddball paradigm a negative potential can be observed at 300 ms upon the the sound
of the deviant stimulus. From one EEG measurement this would be very noisy, but
using synvhronized averaging this can be avoided.
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Synchronised averaging

ECG cycls number 3
Think: €00 oy ramber s
* What assumptions are made?
* Under these assumptions, how
does the SNR develop with N [ y—

averages? w/_\_/\

1
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When you do time domain averaging on the vibration signal from a real machine, the
averaged time record gradually accumulates those portions of the signal that are
synchronized with the trigger, and other parts of the signal, such as noise and any
other components such as other rotating parts of the machine, etc., are effectively
averaged out.

The method assumes that similar events build up the signal. We also assume, that
the noise is not correlated (with itself or with the signal)!!!

If we have an important anomaly, it will disappear.

Linear filters (wiener filter, pole-zero filter, butterworth-chebyshev-elliptic filters) fail
to work when the spectrum of the noise and that of the signal overlap. With
synchronized averaging this problem can be solved.

http://azimadli.com/vibman/synchronousaveraging.htm
Why is it working?
The useful signal is assumed to be the same through cycles, so its average is the
same. The white noise, on the other hand, flattens out with more and more average.
The SNR improves with the number of samples, N.

y=x+n

The SNR can be calculated as:



SNR = % , signal power (E (x?)) over noise variance

The variance is the square of the standard deviation, which is constant for the noise:

Var(X) = E[(X — n)?] = E[X?] — E[X]? = Cov(X,X)
E(m?) = var(n) = o?

Rule for variances: for two uncorrelated variables

var(a+ b) = var(a) + var(b)

For the same variable, however, there is a square scaling if a scalar is present:
var(ka) = k? var (a)

Variance of averaged noise:

N N
1 1

1 1 ) )
var NZni =m2var(ni)=mN0 =5

i=1 i=1
Power of averaged signal is the same, as that of 1 signal, S (as we assume that x is
identical through cycles)

S
SNRayg = —— =N - SNR,
0-2

==

10
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Ad hoc filters

* Working in discrete time domain
* What are FIR and IIR filters?
* Overview
* Types we will cover
* thoughts about the z-transform
* moving average
* pole-zero design
* filter classes (Butterworth, Chebyshev)

11

Biomedical Signal Processing

»Ad hoc is a Latin phrase meaning literally "for this." In English, it generally signifies a
solution designed for a specific problem or task, non-generalizable, and not intended
to be able to be adapted to other purposes”

https://en.wikipedia.org/wiki/Ad_hoc
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Biomedical Signal Processing

These filters can be written in the form of a transfer function of a system. (See slides
of previous lecture for the definition of a transfer function.

Pole: a substitution value s of the transferfunction G(s), where its denominator is
zero, causing a a division by 0 = infinite value of G(s) (going to the sky)

Zero: a substitution value of G(s), where the nominator is zero = zero value of G(s)
(by the ground)

12
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From Fourier to Z
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The continuous Fourier transform maps a continuous function x(t) to the real-valued
function X(w), w € R (if X(w) is calculated only for discrete ws, than it is a fourier
discrete function).

The Laplace transform maps a continuous function x(t) to the complex-valued
function X(s),s € C

The discrete Fourier transform maps a discrete function x(n) to the real-valued
function X(w), w € R

The discrete Z-transform maps a discrete function x(n) to the complex-valued
function X(z) ,z € C

The discrete form of the Fourier transform converts into the discrete Z-transform with
a simple substitution of z « e/®T
,It gives a tractable way to solve linear, constant-coefficient difference equations.”

https://en.wikipedia.org/wiki/Z-transform

13
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From Fourier to Laplace/Z
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Biomedical Signal Processing

The Laplace transform is a complex-valued function, it takes frequency values on the
whole frequency plane. The Fourier transform is real valued, it is drawn along the
imaginary axis of the Laplace trasform.
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Quick recap on stability

Domain of Laplace transforms Domain of z-transforms
ourier Transform 4 -
Fos e b s-plane A / z-plane
: » .
U_u Fourier Transform % i
@‘v_ Domain 8{

el ;
T, : ‘ Wit
: ] Jimi
cay r/‘/ /g_. branch ¢ T

Tt Fraquency b
|

-«
T<E
Ao e r g <Nvm9::#t"ﬂl='ﬂi
I I T 3 cossngmemen
$  frequency wil cause
W w aliasing

A\
Biomedical Signal Processing

Laplace transform:
If this pole is on the negative half-plane, the solution is stable (the exponential is not
exploding, as digcussed in the previous lecture)

Z-transform (z  e/®T)
In the discrete form, using the Z-transform, the poles have to be within the unit
circle to have a stable solution.

The doamin of the Fourier transform is the imaginary axis of the Lablace transorm (or
unit circle of the Z-transform, no damping).s = jw

15
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Filters in the z-domain
x(m)
b(1)
O—— yim)
=a(n)
YUn + A1Yn—1 + ...+ aN,Yn—-N, — bIIn + ...+ bN;,quNh
Y(z) . by + byz~? +...+bNbZ_N"
X(z)  l+az7l'+..+ay,zNe
_ L Ny—N, b1z + .. + by,

zNa +a12Na=1 4 . 4 ap,
.

Biomedical Signal Processing

From up to down:

* Signal flow diagram of the system

* 1/0 model of the system. x; is the input datapoint, y; is the output datapoint at
time i. The order of the equation is N,.

* Z-transform of the system, in the form of the transfer function
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Filters in the z-domain

H(z) = Y(z) — yNo—Na bz ..+ bn,
X(2) ZNa + ayzNe—1 4+ . +ap,

= G(z —01)(z — 02)...(z — oy, ) «<—zeros
(z —p1)(z — p2)...(z — pn, ) <—poles
(7T — 01)(e7“T — 05)...(e7“T — op,)
(94T — p1)(e“T — ps)...(e7T — pn,)

conversion to frequency response

Biomedical Signal Processing

As described previously, the zeros can be calculated as the roots of the nominator,
the poles are the roots of the denominator.

If we go from the Z-domain to the Fourier domain, only a simple substitution has to
be done: z « e/@T

Calculating in the Z-domain is easier, in the Fourier form the physical frequency
response can be read.

17
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Quick recap on stability

We would like to have a pole:

p=a+bj
Laplace transform Z - transform
}’(f) - py(t) = x(t) Yn = PVn-1 = Xn-1
LIy(O1(s —p) = L[x(0)] Zlym)](1 -pz~') = Z[x(W)]z"*
Lly®)] 1 Zlym)_ 2zt 1
Llx(®)] s-p Zx(n)] 1-pz' z-p

() = yoeP" = ypeelt

Biomedical Signal Processing

p € C is a complex number.

A simple continuous diff.eq. is y = py + x. The solution is in the form of y,e*te?/t
using the Laplace transform, the pole is p.

If this pole is on the negative half-plane, the solution is stable (the exponential is not
exploding, as discussed in the previous lecture)

In the discrete form, using the Z-transform, the poles have to be within the unit
circle to have a stable solution.
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Bode diagram of a low-pass filter

To see the magnitude and phase response of a filter, the Bode diagam should be
drawn. It will tell us, how the filter modifies signals with different frequencies.

Magnitude response: % , absolute value of the transfer function
Phase response: 4 (%), the angle of the transfer function

If i know, what frequencies | want to eliminate or enhance, | have to place the poles

and zeros of the filter in a way, which results in the desired Bode diagram.

. .. T output
Note that magnitude is in dB!! —20log, p—— )
- if output=input, log(1) =0

- If output = input*0.01), —20log,,(100) = —40

19
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Pole-zero placement

If we know, what frequencies we want to eliminate or enhance, we have
to place the poles and zeros of the filter in a way, which results in the
desired Bode diagram.

Types:
* FIR/IIR
* LP, HP, BP, notch

Lowpass: Both zeros at -1 Bandreject: The zexos on the unit circle
and at the same angle as the poles

Not easy!! @

Highpass: Bothzeros at 1 Bandpass: Azeroatland -1

Biomedical Signal Processing

Location of poles and zeros: influences magnitude
Location of poles: influences stability
Location of zeros: determines phase linearity

If we have zeros in the system, we are talking about an IIR (infinite impulse response,
as the output depends on previous output(s)). Otherwise, we are talking about a FIR
filter. FIR filters are usually easier to design, but for nice properties a high order (many
electronic components) might be needed. On the other hand, IIR filers can be
computationally more efficient, as the complex networks can be implemented with a
lower order = lower number of components. The same response function can
usually be implemented by both FIR and IIR structure.

From the perspective of the frequency response we can design lowpass, highpass,
single/multi bandpass and notch filters

Coming up: MATLAB demo on wiki zfiltdes.m

Wolfram demo (e.g.
http://demonstrations.wolfram.com/TransferFunctionAnalysisByManipulationOfPoles
AndZeros/)

FilterDesign pdf

(http://faculty.ksu.edu.sa/ghulam/Documents/CEN352/DSP_CEN352 FilterDesign.pd

20


http://demonstrations.wolfram.com/TransferFunctionAnalysisByManipulationOfPolesAndZeros/
http://faculty.ksu.edu.sa/ghulam/Documents/CEN352/DSP_CEN352_FilterDesign.pdf

f)
dsp_iir.pdf (http://staff.neu.edu.tr/~fahri/dsp iir.pdf)

20
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MOVI“g'average fllte rs response of Hanning [1 2 1] filter
g
1 o
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Biomedical Signal Processing

In moving average filters a number of previous inputs is averaged to obtain the ith
output of the filter. These filters in the above implementation have no poles, only
zeros.

Moving average filters in the I/O form on the left, and the frequency and phase
response of the Hanning-filter (framed in red on the left).

Zeros:z2 +2z+1=0 - —

this frequency is attenuated heaviliy)
The magnitude is in dB!!! 0 means no difference (log(1)), very negative numbers
mean big attenuation

Poles : @ - FIR filter
—2i2'4 — = 1, zerois at ,full frequency” (the amplitude at

21
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Moving-average filters

response of 8-point moving average filter

1

Yo = 5 (;En + :Cn—l)
1

Yn = Z (-’En + 2,1 + xn—2)
1

Yn = g (:En + ...+ xnf'T)

Biomedical Signal Processing

Poles: @ - FIR filter
Zeros: at %, ¥, %, 1 normalized frequency (the amplitude at this frequency is 0)

22
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Filter classes

* So far, ,played around” with different filters, seen their response

* How about being able to design a filter based on quantitative criteria?

Butterworth Chebyshev type 1 Chebyshev type 2 Elliptic

Biomedical Signal Processing

Magnitude response of the filters

* Butterworth filter: maximally flat magnitude filter, with a mild slope after the
cutoff frequency. It means, that the frequencies which are passed are preserved
smoothly, but after the cutoff frequency many frequencies remain present with
some amplitude.

* Chebysev type I: it has ripples in the pass-band, but has a sharp slope, and the
eliminated frequencies are cut smoothly.

* Chebysev type Il it has a smooth pass band, sharp rolloff, but ripples in the
eliminated frequency.

* Elliptic: ripples in both pass and cut band, but very sharp rolloff.

Our choise of filter depends on the task. Do we want to keep the passed frequencies
perfectly, or eliminate the cut-band completely? Do we need a sharp cutoff?

23
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Butterworth filter

o LP: |H(jw)]? = iy

e Filter completely defined by
cut-off frequency w, and filter order N

A(w) /dB

e Completely flat (no ripples)

o S| _ =0i<2N-1
e Matlab: wired 57!
[b,a] = butter(N,Wn) note 20N dB/decade rolloff
[b,a] = butter(1,0.5)
b=[0.5 0.5]
a=[1 1 ]

Biomedical Signal Processing

When the Butterworth filter is designed as a lowpass filter, its magnitude response is:

|H(jw)|? = ;ZN, where w, is the cutting frequency, and N is the order of the
1+(w%)
filter.

These are the 2 parameters that have to be defined also in matlab. (N, W,,)
The magnitude response is (2N — 1)-times differentiable. The derivate in the pass-

band is zero > completey flat, there are no ripples. It can be seen in the plot, that
the higher the filter order, the steeper the rolloff is.

24
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Chebyshev filter (Type 1)

¢ \Very similar to Butterworth

e Chebyshev polynomial function
T, modulates response, causing
ripples in the pass-band but also a
steeper roll-off 1o

1
14277 (£)

G(w) / dB

|Hn(jw)| =

L~
L]

Matlab:
b,a] = chebyl (n,eps,Wc)
eps is in dB w/fwy

Biomedical Signal Processing

The magnitude response is
. 1
|Hy(jo)| = ——,

1+62T,§(wic)
where € is the ripple factor, w, is the cutoff frequency and T}, is a Chebyshev
polynomial of the nth order.

o — o
2
bl
-
S

The Chebyshev polynomials type I:
To(x) =1

T,(x) =x

Tn+1(x) = ZXTn(X) - Tn—l(x)

The Chebyshev polynomials type I:
Up(x) =1

Uy(x) = 2x

Un+1(x) = ZXUn(X) - Un—l(x)
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Wiener filter: Introduction

\‘.\‘\ene,,

How about designing an
optimal filter using

knowledge of the signal gnd still
and noise spectral (or

autocorrelation) O
characteristics? O/)amp.\o

Biomedical Signal Processing

26
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Wiener filter

The Wiener filter statistically minimizes the mean square error

between the observed process (y) containing noise (n) and the
unknown desired process (x).

Desired
Input Output
y=x+n | . ,J
Sx = ? (Rx (T)) m;:-:lt;:im mrr:'i‘;tion
Sn = F(Ry (7)) i
The filter: L‘ v:vgnj.r 'J
Sx
H(m) T Sx+Sn I
Actual

QOutput

Biomedical Signal Processing

Sp and Sy, is the power spectral density (PSD) of the related signal. It is calculated as

the Fourier transform of the (auto)correlation functions. The autocorrelation R, (7) is
E[x(®)x(t + 1)].

The Wiener filter is linear. It is assumed, that the signal is stationary (its statistical
parameters are not changing with time) and the noise is independent, additive.

27
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Wiener filter derivation (lIR)

Sy(w) = Sy(w) + Sp(w)

E:C(w) = H(w) - Sy (w) How to obtain S, (w),S,(w)?

_ Siw) _ (W _—
H(w) = Sy(@) — \Sy(@)+Sp(w) /™

To understand its function better, divide it by S, (w)-
1
Sn(w) .

s

1
~ SNR

Biomedical Signal Processing

In line 1: orthogonality (independence) between the signal and noise is assumed
In line 2 we assume that the noise can be filtered out from the observed signal by
H(w) to obtain the original one.

In line 3 the power spectrum of the estimated signal S, (w) is assumed to equal

the real original signal S, (w), again because of signal orthogonality.
In line 4 % is the inverse of the SNR: with high SNR (low noise), the filter will

give back the observed signal y; with weak signals the filter will go to 0.

Obtaining S, (w) can be problematic. The signal can be assumed to have a
parametric shape, like exponential or Gaussian (method#0). It can also be estimated
by averaging similar signals( method#1), or a mathematical model (method#2, last
lecture) of the signal.

S, (w) for white noise is its variance, square of standard deviation. But if we do
not know it, S, (w) can be directly calculated from the observation, and S, (w) =

Sy (w) - Sx(w)

for details, see S6rnmo and Laguna (2005): Bioelectric Signal Processing, p 245-250

28
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Wiener filter: Applications |

Hw) Sx
w)=—""—"" -5 dB 548 B Filter
Sx+5n [ e e
]l ————————— —————— z
_ 5 None (a)
g Su(e™) : WWM M .J\-\_,.‘., ‘
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; ) : \WM of Mot N
-4 el
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1
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o
Figure 4.26: Performance of time-invariant, a posteriori “Wiener” filtering for
different signal-to-noise ratios. (a) The ensemble average and the desired signal
: (thin line). The filtered ensemble average results from a filter whose frequency
) - - _ response is either (b) clipped or (c) smoothed and clipped. (d) The filtered ensemble
0 0.1 0.2 0.3 04 0.5 average using the optimal filter, defined in (4.170).

Normalized frequency

Biomedical Signal Processing

The first plot shows the power spectrum of the signal and noise, and the ideal wiener
filter calculated from them.

On the right hand side it can be seen, how the filter acts under different SNR values
(columns).

The thin line represents the ideal signal. Here it is estimated as the average of the
ensemble (method#1).

In the first row the original observation y is plotted. The second uses a LP filter, the
third a smoothed LP filter. The last row is the ideal Wiener filter.

Note that here we are talking about power spectra — some textbooks may use
S (), S%(w), S (w) where Sx etc refers to magnitude spectra

29
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Another example...

o
100 200 300 400 500 800 700
05
i.
0.5
100 200 300 400 500 600 700
Time In ms

Figure 3.47 From top to bottom: one cycle of the noisy ECG signal in Figure 3.5 (labeled as
Original); a piece-wise linear model of the desired noise-free signal (Model); and the output
of the Wiener filter (Restored).

Biomedical Signal Processing

In this case the signal power spectrum is estimated from a mathematical model of
the ECG (method#2).
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Adaptive filtering
ylk] = w[k] + no[K]
ny []C], nz[k‘], ey U [k‘}
EEG signal with EOG artefact ilk] = ylk] - Zw-x[k]
o y=x+n, . X
“ EEG *
S VAV VYV ) n “ flo
e} i é
f; n, “
EOG \Z(/
Then channels
My e
X

Biomedical Signal Processing

The signal is not always stationary, when previous filters are not efficient. The
frequency, mean value, variance, etc. can change with time, when new methods are
necessary. A solution would be to clip the signal dependng on these properties, and
filter the segments separatedly. But it is not always efficient.

We can try to remove noise based on reference signal.

Adaptive: signal-dependent; adapt with time

Examples: EOG interference in EEG (eye muscle movements) or maternal
interference in fetal ECG.

In the image an EEG signal with EOG artefact can be observed. The first two lines are
the EMG recording from the eye movement. The second two rows are EEG signals
with the artefact present. The last two rows are the filtered timelines.

In the system model the observation y is composed of x, the EEG signal with some
noise n0. This n0 is the EOG noise — in this case only n1 and n2, the two channels.
With some weight we would like to substract these EOG recording from the signal.
These weights can change with time, as in each instant (k) EOG can corrut the EEG
differently.

How are weights w_1,...,w_M updated?

Idea: minimize norm of the estimated signal X.

31



Assume: n1,..nM are correlated with n0 (as it is composed of the eye movements),
and x is uncorrelated with nO,n1,..nM.

LMS (least mean square, to have minimum norm of X) filter:

Wik+1 = Wi + 24 Xy - nyg, Where i is the convergence factor
(https://en.wikipedia.org/wiki/Adaptive_filter)

Concept: very simple! If error positive, subtract more from signal, in proportion to

previous reference data point and error signal data point. Likewise if error is negative.

If correct weight is not changing, eventually, applied weight will “lock onto” correct
weight. If slowly changing, it will follow it.
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An interesting question from lab

* Why don’t we simply multiply by zero the unwanted
frequencies, and transform back?

Spectrum of the short ECG A 10s segment of the ECG
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Biomedical Signal Processing

We multiply by a rectangular window in the frequency domain == convolution with a
sinc function in the time domain
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Summary on Classmarker ©

Some of ya'll before and after filters

Biomedical Signal Processing
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The z-transform — “just a function”!

Consider a time series x,, = z¢, 1. T2, 3, ..., Where z,,.o = 0.
Example: z, =0,1,1,2,3,5, ....
Using the definition of the z-transform,

oo
Z{z,} = Z Tpz "

n=—oo
= 2z 422427343270+
x10'% X(2)=z 4z 2427%434452° Y(z) =z%+z°+272+3z+5
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Biomedical Signal Processing

generating functions, first introduced by de Moivre.

Take (from Wolfram’s Mathworld) example of generating function for Fibonacci
numbers, f(x) = x/(1-x-x"2) = x + x*2 + 2x*3 + 3x"4

So in other words, a generating function has the property that its polynomial
coefficients gives a number series that is of interest to us.
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