ﬁ Pazmany Péter Catholic University

¥ Faculty of Information Technology and Bionics

Biomedical Signal Processing
2018-2019 Autumn

Signal Genesis - Equations

Lecturer: Janka Hatvani
Responsible lecturer: dr. Miklos Gydngy

Biomedical Signal Processing




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

filtering
(denoising)

event
detection

=

feature
extraction
(dimension
transformation
and reduction)

classification
and diagnosis

Biomedical Signal Processing




Pazmany Péter Catholic University

' Faculty of Information Technology and Bionics

Today’s goal

Giving a mathematical model for the biomedical signals

Single oscillators

* linear (2nd heart sound)

* non-linear (2nd heart sound, AP, cardiac pacemaker)
Coupled oscillators

* two or more coupled (ECG)

* train of coupled: propagation of AP, blood pressure (BP)
Multiscale events (heart murmur in PPG, EEG)

Biomedical Signal Processing

What is oscillation? Examples?

All interesting biomedical signals can be said to arise from oscillators.

How can we construct an oscillator using some simple mathematical relations?
Perhaps simplest is y(k) = -y(k-1), representing a pole at z=-1

In continuous domain, simplest is y’”’-y = 0 — we cannot achieve oscillation with just
first and zero order term.

Why not? 1. Momentum needs to carry object across zero line (no overshoot with y=-
x) 2. Particle needs to be able to have both +ve and —ve velocities at single position,
this cannot be achieved with y’ = f(x)




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

What is oscillation?

Oscillation is the repetitive variation, typically in time, of some
measure about a central value (often a point of equilibrium) or
between two or more different states. wmmmmy

Estrogen levels from puberty 1o postmenopause /

Pregnancy

Biomedical Signal Processing
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Mass-spring damper system — a simple oscillator
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* Transfer function (G(s)) and zeros (z) /poles (p)
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G(s) =

As the solution should not explode, poles must be nonpositive 2 stability
constrain for the poles to be on the nonpositive haltplane.

Two methods for solving this second-order differential equation:

* Solving the equation with probe function : Ae®t is the probe function, its
derivative is sAe®t, second derivative is s*Ae*t

mi+cx+kx =0, x = Aest
(ms?AeSt + csAeSt + kAest) = 0
the trivial solution is A = 0. We devide by Ae*t for the relevant solutions
ms?+cs+k=0

—c+Vc? —4mk
S =
12 2m
—c+Vc2—4mk —c—Vc2—-4mk
x(t) = Aest = Aje”  2m + A,e” 2m

A1, can be calulated from the boundary conditions, x(0), x(0)

* Solving the equation with the Laplace transform:

Lx(®)](s) = sLIx(©](s) — x(0)



L[x()](s) = s2L[x()](s) — sx(0) — x(0)
mx+cx+ kx =0,
m(s?L[x()](s) = sx(0) — £(0)) + c(sL[x()](s) — x(0)) + kL[x(D)](s) = 0
L[x()](s) - {ms? + cs + k} — msx(0) — mx(0) — cx(0) =0
msx(0) + mx(0) — cx(0)

Lx@]16s) = ms? +cs+k
_ msx(0) + mx(0) — cx(0)
S R TR ey
_ M + 4, /partial fraction decomposition

s—8§; S—5,
LTLx(®)](s)] = Ae5rt + Ayesat

If there is no damping (c=0), the solution is a constant oscillation (no real-valued
exponential is present):

(no damping)c = 0:s = ij\/%;x = Ae<ij‘/%>t

.|k
Here we can see, that the undapmed natural frequency is \/;

If the system is overdamped, there is no oscillation (no imaginary component of the
exponential)

c _c
(overdamping) c>>2Vmk:s =0, X = A+ Be( m)t

Observe that the complex number +j.,/k/m is on the imaginary axis, on the limit of
stability = the function is neither damped, nor exploding
On the other hand, —% has a negative real part, will thus be damped.

The transfer function:
The Laplace transform of the system:

X(s) =F(s)

L[x()](s) - {ms? + cs + k}

= AL[f(t)](s) /note, that the constant boundary conditions are omitted
@) A

LIFOI(s) msZ+cs+k
We are searching the effect of the system on the input, how the output is different
from the input
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Fourier vs Laplace

Transforms of sin(t)

I L aplace
LS
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34
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X
0
X2
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imag(s)=jw 5 -5 real(s)

Biomedical Signal Processing

The Laplace transform is a complex-valued function, it takes frequency values on the

whole frequency plane. The Fourier transform is real valued, it is drawn along the
imaginary axis of the Laplace trasform.
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Mass-spring damper system

mx+cx+kx=0

k
wy = ‘]; : undamped natural frequency

poles of systermn

imag

c
=——: damping ratio
¢ zAfmk ping

k

ag.la"ﬁmmmnﬂmb%

Standard form of stable 2nd order systems
without zeros:
X+ 2{wox + wix = Kwif
K w3 Kw?
6(s) =5———— - G(jw) = .
s+ 2{wys + wj

—w? + 2jwlwy + w}

Biomedical Signal Processing

Omega, zeta and K are the common notations in a standard second order system,

and these units will have more engineering relevance.

The poles of the system can be observed on the plot: only the negative half plane
is concerned (because of stability). Where conjugate pole-pairs are present, the
oscillation will be visible, but when the real part of the pole is less than -1,

overdamping will occur.

P1,P2 = —Cwo £ "U(Z)((z -1)

Stability condition:
P1,P2<0- @, {>0
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Mass-spring damper system

f <€
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Biomedical Signal Processing

http://en.wikipedia.org/wiki/File:Damping_1.svg
The poles as a function of zeta will have the following values, and the damping can be
observed as explained on the previous slides.

s=—{wo * ‘/wé(zz -1

undamped: { = 0:s = +jwg; x = Ae(FJ@0t

underdamped: 0 < { < 1:s = —{wy t jwo 1 — (% x = Ae(_{“’o)te(ij(‘)"V =02
critically damped: { = 1:s = —wgy; x = (A + Bt)e @0t

overdamped: { > 1:s = w, (\/((2 -1) —(),—wo (\/((2 -1) +C) ~s;+s;, =0,—-2{w,
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https://wwwyoutube.com/watch?v=>5/bpcsH80us
https://wwwyoutube.com/watch?v=urYWaHfel6g

In the figure above you can see, that under different damping factors ({) how the
amplitude response of the system for different input forcing frequecies (w)
changes. When there is no damping, - blue line - if the system is forced at its
natural frequency (w,) , the response is infinity - disastorous resonance occurs. If
there is some damping, than the maximum response of the system (at its

resonant frequency, w,.) will be finite. If the damped system is left alone, it will
resonate at w,,

The difterence between the natural and resonant frequency of a damped system:
Ifyou imagine yourself in a swing, if youstart swinging from some height, and you
stay still, the swing will move with its natural frequency, depending on the length
of the chain (and finally stop, depending on the damping factor). But if someone
strats pushing you near the natural frequency (not exactly, but close to it), the
energy will build up and you will swing higher and higher. This is the resonant
frequency; and can be calculated as the maximum of the second derivative of the
transfer function.

Frequencies at which the response amplitude is a relative maximum are known as the
system's resonant frequencies. At resonant frequencies, small periodic driving forces



have the ability to produce large amplitude oscillations, due to the storage of
vibrational energy. When damping is small, the resonant frequency is approximately
equal to the natural frequency of the system, which is a frequency of unforced
vibrations. (wikipedia)

Resonance can be calculated where the amplitude response has its maximum (so the
derivative of the function has to be calculated, and where it equals 0, we have the
maximum)

X(s) _ 1 B 1
F(s) s2+4 20wys + ws C(s—a)(s—ay)

X(jw)|2 .y -1

? = [(0? — w§)? + 4% wiw?]

F(jw) w? — wi — j2{wow
Resonance:
F(jw) W
d(i)z = 2[(w? - ) + 2670} L

W, = woy/1 — 272
Natural frequency: previous slide, using the Laplace transform

Even your body does have a resonant frequency!

,The main concern is the body’s resonant frequency. At the resonant frequency there
is maximum displacement between the organ and the skeletal structure, placing
biodynamic strain on the body tissue involved.”
https://ore.exeter.ac.uk/repository/bitstream/handle/10871/19515/C155.pdf?s
equence=1
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Example simulations using ode45

f~10Hz fi=10Hz  f=99Hz f=7.1Hz

=2
=1

, =0 =01 =05 _ I
step  ofaansaA  ofts 0 ot}
2 - 2 . 2 2 .
0 05 1 0 o5 1 0 o5 1 0 o5 1
2 . 2 - 2, 2
] I’ =5 Hz O{\rf\ylif'\#\r 0(\',/\,(%{/:\./.-‘. O R O e Aot
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Biomedical Signal Processing

We have an oscillation with a natural frequency of 10 Hz. The different columns
represent different damping factors in the system, the resonance frequency (f;.) is
calculated for each case.

The oscillation is forced by an external impulse (f;) as listed in the left column.

With the step function as external force no resonance is reached, and with increasing
damping the signal flattens out earlier.

When the external force has a frequency of 5Hz (still far from the resonance
frequency), with no damping the two frequency modulate each other. With stronger
damping the 10Hz signal disappears from the signal, and only the 5Hz remains.

10 Hz matches the natural frequency, the resonance occurs as expected (disastorous
resonance, explosion), with more damping the effect is less prominent (resonant
frequency is farther away from the natural, has a lower response)

The 15 Hz signal acts similarly as the 5Hz.

10
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Why is this relevant? Heart sounds

Isovolumic
relaxation

Leoval Ejection Rapid inflow

sovolumic .
4 Diastasis
Superior contraction
Vena Cava | Atrial systole
1
- Adrtic Aottic valve

valve
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doses

] A-vralve
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@
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| N
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™

—
Electrocardiogram

Inferior Vena Cava Diastole systole

Biomedical Signal Processing

http://commons.wikimedia.org/wiki/File:Heart_labelled_large.png

Phonocardiogram

http://upload.wikimedia.org/wikipedia/commons/9/9a/Wiggers_Diagram.png

The second heart sound can be modeled with a simple Mass-Spring-Damper system.

11
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Why relevant? Heart sounds

@
4

Sabbah and Stein (1976): Investigation of the theory and mechanism of the origin of
the second heart sound

first mode §
vibration w
FORGE=AP g
Y #

B
)

BETWEEN A0 & LV
: OURING DIASTOLE

AP (MM HGI

P

N B e T

2
@
5

Biomedical Signal Processing

mX, + DXy + Kx, = Apra®

1
6

Blick, Sabbah and Stein (1979): One-dimensional model of diastolic semilunar valve
vibrations productive of heart sounds
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Non-linearization of MSD system

f <

m C k

mx + c(x)x + k(x)x = Af

Duffing (non — linear restoring force): k(x) =1 + dx?
Van der Pol (non — linear damping): c¢(x) = u(x%* —1)

Biomedical Signal Processing

With non-linear system we can express more biomedical signals.
The damping or the restoring for is not linear (cx; kx), but a non-linear function of x.
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Duffing oscillator

i+ ax+ ﬁ:x + yx3 = § cos(wt)

\ ) rigid frameI
amount of Nonlinearity
damping of restoring usoidal
sinusoigal
_fO rce exciting force
< > beam
linear amplitude
) of driving ,
stiffness force i
N N
o magnets| j|
5 S 1

Biomedical Signal Processing

http://community.wolfram.com/groups/-/m/t/241732
https://www.youtube.com/watch?v=KZF5k4L_Yao

A Duffing oscillator has a non-linear restoring force. In a physical representation a
magnet is giving the non-linearity, the resonating frame gives the external driving
force, the beam has a stiffness like the spring constant.

14
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Duffing oscillator
X+ok+ e+’ =0

a=03,p=1,v=0 a=03,p=1,v=3
10 3

x(m)
o

() 10 20 30 40 50 0 10 20 30 40 50
time (s) time (s)

Biomedical Signal Processing

https://www.youtube.com/watch?v=KZF5k4L_Yao

The left plot has no non-linearity, simple MSD-system
The right has some non-liearity: the frequency of the oscillation decreases with time

An extension of the pendulum equation.

Pendulum:

https://en.wikipedia.org/wiki/Pendulum_(mathematics)

ddtheta + g/l sin(theta) = 0, linearization of sin(theta) to first two terms: theta —
thetan3/3!

Derivation of pendulum equation: force in direction of momentary movement is mg
sin(theta), so linear acceleration is g sin(theta), and angular acceleration is obtained
from dividing by length

15
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Duffing oscillator
3
X+ox+ pPx+m =0
=03 p=1,4=3 E;2 heart sound
3 1
2 3
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’ g
3 8
o0 3 Oﬂw
p
-1 g
205
2 s
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time (s) time (s)

Biomedical Signal Processing

A heart sound can also be modeled by a duffing oscillator. Observe the decreasing
frequency of the waveform.
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Van der Pol oscillator
=10
3
2
1
X—pu(l-x)x+x=0  Eo
-1
-2
-30 10 20 3IU 40 50
time (s)

Biomedical Signal Processing

A Van der Pol oscillator can be turned into the FitzHug.Nagumo model.

3 d
Apply Liénard’s transformation y « x — x? - Tx

(https://en.wikipedia.org/wiki/Van_der_Pol_oscillator) to get:

-_ x3
x=-plx-—

1
y=-x
u

Compare with FitzHugh-Nagumo (simplified Hodgkin-Huxley):

. x3
X=—U x_?_y + Lext

y=x+a-—by

17
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Mix ‘em up ¥ +a(e = g+ x(x+d)x+e)/de=0
a,deu>0u<d

a=1,d=3,e=3.5 =1 phase plot

Biomedical Signal Processing

Grudziniski and Zebrowski (2004): Modeling cardiac pacemakers with relaxation
oscillators

A mixture of the Duffing and Van der Pol oscillator can be used to model the cardiac

cycle.
The limit cycle is a stable path on the phase plot, representing a stable oscillation in
the time domain, where the system is converging.

18
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Why relevant? Cardiac pacemaker

a=1,d=3, e=35, ;=1

SA Node

50
time (s)

Biomedical Signal Processing

Grudziniski and Zebrowski (2004): Modeling cardiac pacemakers with relaxation
oscillators

http://www.cvphysiology.com/Arrhythmias/A004.htm

19
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Relaxation oscillators

In relaxation oscillators a long relaxation period — during
which the system approaches an equilibrium point - is
alternating with a short impulsive period in which the
equilibrium point shifts.

* Electronic/mechanical relaxation oscillators

* Geysers
* Watermill

* Hodgkin-Huxley model

Biomedical Signal Processing

In electronics a relaxation oscillator is a nonlinear electronic oscillator circuit that
produces a nonsinusoidal repetitive output signal, such as a triangle wave or square
wave 121314 The circuit consists of a feedback loop containing a switching device
such as a transistor, comparator, relay,>! op amp, or a negative resistance device like
a tunnel diode, that repetitively charges a capacitor or inductor through a resistance
until it reaches a threshold level, then discharges it again. 216l

In a geyser: ascending gas or vapor becomes trapped beneath the roof of a cavity that
is laterally offset from the eruption conduit

The above discussed oscillators (duffing, van der pol), can act as a relaxation
oscillator.

20


https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Linear_circuit
https://en.wikipedia.org/wiki/Electronic_oscillator
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https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Comparator
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https://en.wikipedia.org/wiki/Op_amp
https://en.wikipedia.org/wiki/Negative_resistance
https://en.wikipedia.org/wiki/Tunnel_diode
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Inductor
https://en.wikipedia.org/wiki/Relaxation_oscillator#cite_note-Du-4
https://en.wikipedia.org/wiki/Relaxation_oscillator#cite_note-HyperPhysics-6
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C‘iI c2
L] i

Spark-gap transmitter.

Pearson-Anson relaxation oscillator.

Biomedical Signal Processing

See https://www.youtube.com/watch?v=2222teHxi00 for Pearson Anson relaxation
oscillator

Spark-gap transmitter. From http://en.wikipedia.org/wiki/Spark-gap_transmitter
From http://en.wikipedia.org/wiki/Relaxation_oscillator

http://feng-shui-
orenda.com/pics/upload/20100706065738 141%20%20water%20mill.JPG

Some more examples for relaxation oscillators. Electrical representation of a sparkgap

transmitter and the switch of a neon lamp, and a water mill. The buckets on the
wheel of the mill fill up until a thresold is reached, causing a turn of the wheel.

21
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Biomedical Signal Processing

Electrical representation of the cell membrane for the Hodgkin-Huxley model.
Voltage-gated ion channels have electrical conductances that depend on both voltage
and time.

A current source (,,filling the bucket”) excites the membrane, then sudden discharge
by voltage gated channels

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley _model
http://icwww.epfl.ch/~gerstner/SPNM/node14.html

22
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Coupled oscillators after Feynman’s LoP

mx, +k x,+k (x, —x,)=0
1 a1 p\M 2 . . ,
WO ways to view system:
b _ 1. transfer of energy from one
mxz + kaxz - kb (xl - x2 ) - 0 body to another
2.  superposition of two
constant-amplitude motions

Biomedical Signal Processing

In nature many times different oscillators are n reaction, they are ,coupled’. It results
in a system of differential equations.

In matrix form the Laplace transform of the equation is:

Good demonstration of the modes and the coupling:
https://www.youtube.com/watch?v=CjJVBvDNxcE

23
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Why relevant? ECG (coupled action potentials)

Sérnmo and Laguna (2005): Bioelectric Signal
Processing

4

sinus brachycardia controller activated

Lopez et al. (?): Simulation and control of heart rhythm dynamics

Biomedical Signal Processing

Lopez et al models oscillator of sinoatrial (SA) node, atrioventricular node (AV), as
well as third oscillator to represent propagation through ventricles.

The rythm of the SA node synchronises the rest of the nodes. Ventricular flutter is a
result of decoupling between the nodes.

cf Denis Noble from Oxford who did (as far as | know) first modelling of electronic
circuity of heart, as well as later work by Gari Clifford (incl synthetic ECG generator
based on phase advance model)

24
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Train of (branched) coupled oscillators

* Cable/1-D wave
equation

* Why relevant?
* propagation of
action potentials
* propagation of
blood pressure

Biomedical Signal Processing

When modeling a neuronal network, the branching of the oscillation has to be
considered, as well as the coupling between the neurons.

We can model the propagation as coupling between oscillators

Kali: Lecture notes on computational neuroscience
Rangayyan (2002): Biomedical Signal Analysis: A Case Study Approach

25
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Biomedical Signal Processing

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931755/

,We conclude that interactions occur between the oscillatory processes, both within
and between the cardiovascular and the neuronal systems. The strengths and
directions of these interactions may be used, in principle, for characterization of the
state of the organism as demonstrated here for the case of deep anesthesia.”

26
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* Example: sound of stenoses

Sequence of normalized averaged vorticity
magnitude contours for pulsatile flow through
the 75 % eccentric stenosis

Turbulance as a coupled oscillation

..... Theoretical wideband spectrum
0.9H w— Spectrum of the systole with murmur H
w Spectrum of the diastols (no murmur)

Normalized
e o 9o
o

[} NSO 200 300
. Fre.quency[HZ] X
The theoretical wideband spectrum is an
estimation of the wall pressure fluctuations

of a stenosed tube (matches the blue line)

Biomedical Signal Processing

Seeing a ,noise-like’ structure in a plot does not mean that it is not useful
information.

Turbulances are multiscale events, meaning that it has well separable structures at
different scales (fractal patterns). Turbulances are difficult to model, a possibility is to
couple large order oscillations to small order oscillations = multiscale event

An example is the stenoses when the vein is pinched at a point, as on the left image.
It will lead to turbulance during systolic high pressure.

Nonetheless, the genesis of murmurs is still not completely understood. The
mathematical theory behind this question is described by the laws of fluid dynamics,
namely by the Navier-Stokes equations

In a pinched, stenosed tube the spectrum (fourier) will have a wideband structure, a
guasi white-noise shape. The spectrum can be estimated by:

2
PSD(f) = p?Du® (5) Fuz (22

D

u
fD\ _ 0.00208
Fa ) =7 oy
1+20(L2)
u

In the right image it can be seen, that the blue systolic heartsound spectrum really

27



has a wideband spectrum as estimated by the above equation (dashed line), while
the diastolic (red) has a normal shape.

Balogh (2012) (top figure taken from Varghese et al., 2007)

27
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EEG as a multiscale event

s ,the interaction of
- e different physical
recoings processes occurring at
b largely separated scales”
aangn” W Both brain activity and

turbulence is multiscale

Biomedical Signal Processing

Another example for multiscale processes is the EEG signal. On the scale of the
neurons bursts of 300-500Hz can be detected too, but on an EEG signal only lower
frequencies, large-field synchronized oscillations can be detected, the single cell will
be invisible (alpha-wave).

On the microscale you can see a neuron, on the macroscale you can experience
cognition ©
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EEG - signal modifiers among scales

* Individual cells

* Excitation: inhibitory, excitatory + others
* Passive bandpass filtering

* Propagation

* Strong local connections

* Local population

* Small-world oscillations , Local Connectivity -
Globdl Connectivity — Greater Processing
Greater Collaboration Speed and Power

Biomedical Signal Processing

Some properties of EEG signal genesis.
* The waves are generated by individual neuron = on large scale, however, these
are invisible.

Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations
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EEG rhytms — Individual cells
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Biomedical Signal Processing

Diagram of voltage recording from neuron shows wide class of oscillatory
behaviuor that can be achieved even by one cell in isolation.

Chattering cells (class of pyramidal neurons in neocortex) have intraburst
spike rates of 300-500 Hz. To do with currents within cells.

,Bursts may provide a reliable singal for the rhythmicity to be transmitted
across probabilistic and unreliable synapses”

(A) A chattering neuron recorded in vivo from the cat visual cortex shows
rhythmic bursting

in the gamma frequency range. (B) A model chattering neuron endowed with a
ping-pong

interplay between two electrotonic compartments.

|

20ms
20mV

model

Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations
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Filtering

On the membrane:
LPF - The charge separation makes the membrane a capacitor

Biological membrane Equivalent circuit representation

Im —

In

Biomedical Signal Processing

On the membrane:

LPF: The charge separation makes the membrane a capacitor. The leaky channels let
ions pass through the membrane, but have some resistency = the passive ion
channels are RC circuits, LPFs.

HPF: the flow of cation current can oppose the membrane
hyperpolarization/depolarization in the subthreshold region. (There exist separate ion
channels for this purpose, funny currents from prev. lecture) Its kinetics is very slow,
filtering out subthreshold slow changes.

BPF: like the 5-10 Hz of thalamic cells

Durig propagation:

High frequencies will be absorbed in the tissue (like shortwave radiosignals in the air,
or good resolution high frequency ulrasound in deeper tissues)

In the synapses a post synaptic potential will only be generated upon a sudden

change in the potential, slow electrical waves from the local field potential will not
result in the emtying of synaptic vesicles
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Filtering

On the membrane:
HPF - slow kinetics of subthreshold cation currents

Biomedical Signal Processing

On the membrane:

LPF: The charge separation makes the membrane a capacitor. The leaky channels let
ions pass through the membrane, but have some resistency = the passive ion
channels are RC circuits, LPFs.

HPF: the flow of cation current can oppose the membrane
hyperpolarization/depolarization in the subthreshold region. (There exist separate ion
channels for this purpose, funny currents from prev. lecture) Its kinetics is very slow,
filtering out subthreshold slow changes.

BPF: like the 5-10 Hz of thalamic cells

Durig propagation:

High frequencies will be absorbed in the tissue (like shortwave radiosignals in the air,
or good resolution high frequency ulrasound in deeper tissues)

In the synapses a post synaptic potential will only be generated upon a sudden

change in the potential, slow electrical waves from the local field potential will not
result in the emtying of synaptic vesicles

32



Pazmany Péter Catholic University
Q¥ Faculty of Information Technology and Bionics

. . Neuron
Filtering
5
On the membrane: -
. . . ©
BPF - If both is present in a cell, they will $
. - ° passive properties
oresonate”, resulting in bandpass =
filtering. &
g
90 - - = 2
e pyramidal cell (simulation) 2 Membrane active
g 80 resonator cartoon (simulation) ‘9' properties due to
= 70 stellate cell (simulation) ) resonant currents
c theoretical result <+
S 60 .
g 50 80
@ @
i $ §‘° I\
E 10 :'; EZO 7 ’Resonar-\f’~~‘
requency
. 0 10 20 30 40 50 %% 50 100 150 200 250
frequency [Hz] Freauency (Hz)

Biomedical Signal Processing

On the membrane:

LPF: The charge separation makes the membrane a capacitor. The leaky channels let
ions pass through the membrane, but have some resistency = the passive ion
channels are RC circuits, LPFs.

HPF: the flow of cation current can oppose the membrane
hyperpolarization/depolarization in the subthreshold region. (There exist separate ion
channels for this purpose, funny currents from prev. lecture) Its kinetics is very slow,
filtering out subthreshold slow changes.

BPF: like the 5-10 Hz of thalamic cells,
https://www.researchgate.net/figure/Principles-of-resonance-and-short-term-
plasticity-of-synapses-A-Resonance-in-neurons_fig2 232236950

Durig propagation:
High frequencies will be absorbed in the tissue (like shortwave radiosignals in the air,
or good resolution high frequency ulrasound in deeper tissues)

In the synapses a post synaptic potential will only be generated upon a sudden

change in the potential, slow electrical waves from the local field potential will not
result in the emtying of synaptic vesicles
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Filtering

During propagation: 44
Tissue acts as LPF
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Biomedical Signal Processing

On the membrane:

LPF: The charge separation makes the membrane a capacitor. The leaky channels let
ions pass through the membrane, but have some resistency = the passive ion
channels are RC circuits, LPFs.

HPF: the flow of cation current can oppose the membrane
hyperpolarization/depolarization in the subthreshold region. (There exist separate ion
channels for this purpose, funny currents from prev. lecture) Its kinetics is very slow,
filtering out subthreshold slow changes.

BPF: like the 5-10 Hz of thalamic cells

Durig propagation:

High frequencies will be absorbed in the tissue (like shortwave radiosignals in the air,
or good resolution high frequency ulrasound in deeper tissues)

In the synapses a post synaptic potential will only be generated upon a sudden

change in the potential, slow electrical waves from the local field potential will not
result in the emtying of synaptic vesicles
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Filtering
During propagation: SYNAPTIC TRANSMISSION
Synapses act as HPF

o
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Presynaptic 0 \
-70

©
© 5
@ Synaptic Delay |
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receptors activate
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Biomedical Signal Processing

On the membrane:

LPF: The charge separation makes the membrane a capacitor. The leaky channels let
ions pass through the membrane, but have some resistency = the passive ion
channels are RC circuits, LPFs.

HPF: the flow of cation current can oppose the membrane
hyperpolarization/depolarization in the subthreshold region. (There exist separate ion
channels for this purpose, funny currents from prev. lecture) Its kinetics is very slow,
filtering out subthreshold slow changes.

BPF: like the 5-10 Hz of thalamic cells

Durig propagation:

High frequencies will be absorbed in the tissue (like shortwave radiosignals in the air,
or good resolution high frequency ulrasound in deeper tissues)

In the synapses a post synaptic potential will only be generated upon a sudden

change in the potential, slow electrical waves from the local field potential will not
result in the emtying of synaptic vesicles
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EEG rhytms - Pair synchrony

Reciprocal Reciprocal Electrical
inhibition excitation coupling

o o Uu

(b) (©)

Biomedical Signal Processing

Synchronization on a small scale

Some common models of two-cell networks. (a) Two cells that are reciprocally
coupled by synaptic inhibition can produce out-of-phase oscillatory activity
(half-centre oscillation). (b) Bottom: Two cells coupled with reciprocal excitation can
oscillate in phase, but the action potentials are not necessarily time locked. (c)
Electrical coupling is due to ion channels (gap junctions) that span the membranes of
two cells and allow free flow of ions between the two. Electrically coupled cells
typically demonstrate synchronous activity, which may be oscillatory even if the two
cells are not rhythmically active in isolation.

http://www.els.net/WileyCDA/ElsArticle/refld-a0000089.html
Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations
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EEG rhytms — Local synchrony
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Biomedical Signal Processing

Synchronization on a larger scale.

A group of neurons can also generate oscillatory activity. Through synaptic
interactions the firing patterns of different neurons may become synchronized and
the rhythmic changes in electric potential caused by their action potentials will add
up (constructive interference). That is, synchronized firing patterns result in
synchronized input into other cortical areas, which gives rise to large-amplitude
oscillations of the local field potential. These large-scale oscillations can also be
measured outside the scalp using electroencephalography (EEG)

and magnetoencephalography (MEG). (Wikipedia,
https://en.wikipedia.org/wiki/Neural_oscillation)

The Kuramoto model explaines synchronization of larger populations. See the
animation ,phase synchrony’.

Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations
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https://en.wikipedia.org/wiki/Interference_(wave_propagation)
https://en.wikipedia.org/wiki/Local_field_potential
https://en.wikipedia.org/wiki/Electroencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
https://upload.wikimedia.org/wikipedia/commons/transcoded/9/9e/KuramotoModelPhaseLocking.ogv/KuramotoModelPhaseLocking.ogv.360p.webm

Pazmany Péter Catholic University
Q¥ Faculty of Information Technology and Bionics

Connectedness & Synchronization

* Mean number of connections
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before synchrony occurs == 200 .
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Biomedical Signal Processing

When mean number of effective connections Msyn,eff reaches a certain threshold,
then synchrony occurs.

Note correction term 1/N to account for network size effect.

Network synchrony seems to be defined as average of cross-correlations:
http://www.jneurosci.org/content/16/20/6402.long

(Wang and Buzsaki: Gamma Oscillation by Synaptic Inhibition in a Hippocampal
Interneuronal Network Model, JNeurosci 1996)

Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations
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From micro- to macroscale

What happens with the signal between the micro- and 2 \
macroscale ?
? \

* the speed of neural communication is limited

* higher frequencies confined locally (filtering)

[ [

1 15
* Synchronization of activity through coupling (threshold) o0 ey )
The power density of EEG is
inversely proportional to
frequency in the cortex

Biomedical Signal Processing

Causes of small-world structure (few long range connections)

» widespread slow oscillations modulate faster local
events

- limited speed of neuronal communication due to axon conduction and synaptic

delays

- higher frequency oscillations confined locally, the period of oscillation is
constrained by the size of the neuronal pool

- ,The power density of EEG or local field potential is inversely proportional to
frequency in the mammalian cortex, [...] perturbations at low frequencies can
cause a cascade of energy dissipation at higher frequencies [...] widespread slow
oscillations modulate faster local events”

- perturbations at low frequencies can cause a cascade of energy dissipation at

higher frequencies (the modulation)

figure: Power spectrum of EEG from the right temporal lobe in a sleeping human
subject. Subdural recording. Note the
near-linear decrease of log power with increasing log frequency from 0.5 to 100 Hz.
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Buzsdki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
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EEG rhytms — Small-world

Regular network Small-world network Random network
Local efficiency Optimal balance Global efficiency
Specific abilities Broad abilities

General ability

Biomedical Signal Processing

The local connections are strong within a small populkation, leading to a small-world
structure. An optimally connected network will lead to local efficiency, meaning that
communication among close neurons is cheap, but sending information to farther

parts is expensive. However, fueling a random network, where communication
among different areas is ideal, needs a lot of energy.
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EEG rhytms — Small-world
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,Mean number of connections needs to reach
a threshold before synchrony occurs”

Biomedical Signal Processing

Figure 8. Trade-off between synchronization by long-range connections
and minimization of the

network wire cost

(A) Oscillations in a network of interneurons coupled by inhibitory synapses,
with local

(Gaussian) connectivity (spatial length is 20 neurons, in a network of 4000
neurons). The

network is essentially asynchronous. Upper panel: spike raster of sample
neurons; middle

panel: the voltage trace of a representative neuron; lower panel: the population
firing rate.

(B) Oscillations in a network with local and long-range connections.
Neurons are connected

with Gaussian distributed synapses (as in A) but p = 25% of the synapses
are reconnected

with a power law distribution. Note strong oscillatory rhythm. (Wang2010)

Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations
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EEG rhythms — Cognition

« ,detection and amplification of weak signals”
* shutting out the environment
* temporal coordination

» ,consolidation and combination of learned
information

* ,representation by phase information”

Biomedical Signal Processing

Buzsaki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations

Why is oscillation important on the large scale?

+ ,detection and amplification of weak signals” (e.g. amplification of
thalamocortical oscillations)

* shutting out the environment by the ,increased committment to an oscillatory
network” : sleep spindles (7-14 Hz every 1-3 s)

* temporal coordination: <<, binding” of the various features into a coherent
cognitive percept>>y (30-80 Hz)

» ,consolidation and combination of learned information” slow (<1 Hz)

» ,representation by phase information” 0 (4-8 Hz)

Also discussed at previous class ©
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EEG rhytms — Propagation
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Biomedical Signal Processing

Sensory processing, decision making, motor action all engage selective neural
populations.

Localized neural activity either remains spatially confined in time, or propagates as a
wave

among neural pools that are spatially separated but engaged in the same
computation or

behavioral state. Wave propagation has been observed on multiple spatial scales.

Figure 9. Propagating waves

(A) Rostrocaudal phase shift of 40 Hz oscillation during rapid eye movement (REM)
sleep

as measured using MEG. (A1) shows synchronous activation in 37 channels during a
600 ms

period. The oscillation in the left part of trace Al has been expanded in trace A2 to
show

five different recording sites over the head. The five recording sites of trace (A2) are
displayed in diagram (A3) for a single epoch, to illustrate the phase shift for the
different 40

Hz waves during REM sleep. The direction of the phase shift is illustrated by an arrow
above diagram (A3). The actual traces and their sites of recordings for a single epoch
are

shown in diagram (A4) for all 37 channels (ft: femtotesla). (B) Voltage-sensitive dye
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imaging of propagating waves in rat visual cortex in vivo. A rat visual cortex was
imaged
through a cranial window. (B1) A snapshot of visually evoked cortical activity
propagating
Buzsdki and Draguhn (2004): Neuronal Oscillations in Cortical Networks
Wang (2010): Neurophysiological and Computational Principles of Cortical
http://www.scholarpedia.org/article/Thalamocortical_oscillations

43



Pazmany Péter Catholic University

) Faculty of Information Technology and Bionics

ClassMarkerVf

Home Take a Tour Pricing Contact Us

Summary

Test taker registration for Taking online tests

Register to Take your Tests on ClassMarker!
] #., m You can stay anonym
= N Registration Code *
1 From the sheet
First name * Last name *
4 . Anything Anything
- Username * Password *
] Anything, but remember it
-
Emall address Select your Country *

Not necessary United States v

Email address is optional. ClassMarke

https://www.classmarker.com/register/

Biomedical Signal Processing




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

EXTRA
MATERIAL

Biomedical Signal Processing

45



[ Pazmany Péter Catholic University

| Faculty of Information Technology and Bionics

ey

Hodgkin-Huxley

IP ------------------------------ 1 Il

i i

| inside K" i

| = - - - P 1 oA ant

| Y ! cl= 91 Ik INa

i + + + + E -T— R K Na
y Nz W UKS= UNg

i outside E T T T
S, . 1

=Ic()+ > k(D)
k

C% = — ;Ik(t) +I(t) = —gi(u—w) — gr(u —uk) — gna(u — una) + I(t)

Biomedical Signal Processing

Voltage-gated ion channels have electrical conductances that depend on both voltage
and time.

A current source (,,filling the bucket”) excites the membrane, then sudden discharge
by voltage gated channels

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley _model
http://icwww.epfl.ch/~gerstner/SPNM/node14.html
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Biomedical Signal Processing

http://icwww.epfl.ch/~gerstner/SPNM/nodel14.html,
http://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley _model



