Szoftvertechologia alapjai
Vizsgakérdések

Dallos Adém, Majnar Lészlo

2016. méjus 24.

Tartalomjegyzék

[1. Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a szoftverhez tartoz- |
[nakl] 7
2. M1 a szoftverfolyamat? Sorolja fel a szoftverfolyamat fobb tevékenységeit. | 7

|3. Sorolja fel a szoftverfolyamat altalanos modelljeit és jellemezze azokat néhany |

[_szébanl 7
4. Miért van szukség arra, hogy a szoftvertervezok szamara etikai kodexet allitsanak|
| ossze? Sorolja fel a fontosabb etikai eloirasokat.| 8
[6. Melyek az eredendd rendszertulajdonsigok? Hogyan csoportositjuk oket?| 8

6. Mi a kulonbség a funkcionalis és a nem-funkcionalis rendszertulajdonsagok |

[kozott? 9

[7. Melyek azok a tevékenységek, amelyek kozosek minden szoftverfolyamatban?| 9

[8. Vazolja fel a vizesés modellt, sorolja fel a modell elonyeit és hatranyait!| 10

9. Mi a formalis rendszerfejlesztés? Milyen elonyei és hatranyai vannak?) 10

[10.M1 az evolicios fejlesztési modell lényege? Miért nehéz karbantartani az igy |
| fejlesztett programokat?| 11

[11.M1 az ujrafelhasznalas orientalt fejlesztés lényege? Vazolja fel a folyamatot! |
| Milyen esetekben alkalmazhato?| 12

[12.Mi1 a kulonbség a CASE eszkozok, -eszkozkészletek és -kornyezetek kozott?| 12

|[13.Miért célszeru projektszervezetben végezni a szoftvertejlesztést?| 12

[14.Miért és milyen gondot okoz a szoftverprojekt vezetoje szamara, hogy a szoft- |
| ver nem lathato, megfoghato? Milyen modon lehet ezt a gondot csokkenteni?| 13

[15.Milyen tipusu terveket kell késziteni egy projekt tervezésekor?|

13

|16.Vazolja fel egy vizesés modell szerint végzendo fejlesztési projekt titemezését

| oszlopdiagram formaban!|

14

[17.Kisérelje meg felvazolni egy evolucios folyamat szerint végzendo fejlesztési

| projektterv oszlopdiagramjat!| 16
[18.Miért iterativ tevékenység a szoftverprojekt tervezése?| 16
[19.Milyen kockazatokat kulonboztethetiink meg egy szoftverfejlesztési projekt- |
| ben? Sorolja fel és jellemezze oket!| 16

|20.Sorolja fel a fontosabb szerepeket egy projektszervezetben! Ismertesse néhany

| szdban az egyes szerepek tevékenyseégeit!|

17

21.Mi1 a feladata a megvalosithatosagi tanulmanynak. Hol van a helye a szoft-

| verfolyamatban?|

18

|22.Sorolja fel a legfontosabb szempontokat, amelyeket egy tervezonek a fel-

| hasznaldol kovetelmények specifikalasakor tigyelnie kell!|

18

[23.Milyen veszélyeil vannak a természetes nyelv hasznalatanak a kovetelmények

| specifikalasakor? Milyen modon lehet ezeket csokkenteni?|

19

24.Egy nagy rendszer fejlesztése soran kiknek kell részt venniuk a telhasznaloi

| kovetelmények verifikalasaban? Miért?|

|25.Sorolja fel a rendszermodellek tipusait és jellemezze azokat egy mondatban!|

19

20

[26.Melyek a legfontosabb kuilonbségek a felhasznaldi és a rendszerkovetelmények

| specifikalasa kozott? Kiknek szolnak az egyes specifikaciok?)

20

27.Melyek a prototipuskészités céljai? Milyen prototipusok léteznek, melyik

[milyen célbdl készil?|

21

28.M1 a kulonbség az evolucios és az eldobhatd prototipus kozott? Melyiket

| 1 = Tal 7

21

[29.Mit jelent az adatbazis-programozas? Milyen rendszerek fejlesztésére alkal-

[_mas?

22

130.Melyek a prototipus készitésének elonyei? Ismertese a prototipuskészito tech-

| nikakat! Melyiket milyen esetben célszeru alkalmazni?|

22

[31.Mit tenne, ha egy eldobhato prototipust a megrendelo meg akarna vasarolni?

| Milyen érveket hozna fel allaspontja indoklasara?| 23
|32.Ismertesse a formalis specifikacio helyét és jelentoségét a szoftverfolyamat- |
[Dbanl 24

|133.Sorolja fel a formalis specifikacio elonyeit és hatranyait! Milyen tipusu rend- |
| szerek specifikalasakor alkalmazzak a formalis mdédszereket?) 25

134.Melyek azok a rendszerek, amelyeknél a formalis specifikaciot leginkabb al- |

 Tal K7 Miert? 26
135.Hol foglal helyet az architekturalis tervezés a szoftverfolyamatban? Mire |
| szolgal a rendszer architekturalis terve?| 26
[36.Kliens/szerver modell| 26
[37.Milyen el6nyei és hatranyai vannak a kliens/szerver modellnek?] 27

138.M1 a kulonbség a vékony- és a vastag kliens kozott? Melyik milyen célra |

[_alkalmas?] 27
139.Milyen modelleket alkalmaznak az objektumorientalt tervezésben? Melyik |
| : Tkal 7 28
[40.Mi a kulonbség a kozpontositott vezérlés és az esemény alapu vezérlési modell |
[kozott? 28
|41.Milyen vezérlési modellek alkalmazhatok parhuzamos rendszerekben?| 29

42.Milyen UML modellekkel abrazolhaté a rendszer és kornyezetének kapcsola- |

[ta? 29
43.Mire szolgalnak az objektumorientalt tervezésben alkalmazhaté diagramok? |
| Soroljon fel és jellemezzen néhanyat!| 29
[44.Ismertesse a valos ideju rendszerek fobb jellegzetességeit.| 30

45.Melyek a fo kulonbségek az atlagos adatfeldolgozo rendszerek és a valos ideju |

| | k kozott? 30

|46.Van-e szerepe a valds ideju rendszerek tervezésében a hardvertervezésnek? |

[Miért? 30

47.Milyen programnyelveket alkalmaznak a valosideju rendszerek programozasara?| 30

48.Miért kevessé alkalmas a Java programozasi nyelv szigoruan valos ideju rend- |
| szerek programozasara?| 31

49. Melyek a valos ideju futtatorendszerek fobb komponensei?| 31

[50.Melyek a szoftver ujrafelhasznaldsdn alapuld fejlesztés eldnyei és hatranyai?] 32

[61.Soroljon fel harom érvet, amely tamogatja a komponens alapu ujrafelhasznilast |
| és harmat, amely ellene szol!| 32

[52.Mi a programgenerator alapu ujrafelhasznalds Iényege? Milyen teriileteken |

| Tkal 7 33
[63.Miért alkalmazzak a generator alapu ujrafelhasznilast els8sorban az adatfel- |
| dolgozo, eBusiness rendszerek fejlesztésében?) 33
[64.Mi a komponens, milyen interfészei vannak?] 33
[65.Milyen nyelvek és kornyezetek alkalmasak a komponensek integrildsara?| 33

[56.Milyen hatranyai vannak az ujrafelhaszndlhatd komponensekkel torténd szoft- |
| verfejlesztésnek?| 34

[67.Mire szolgdnak az alkalmazasi keretrendszerek, hogyan csoportosithatdk?) 34

[68.Mi a ,,polcrdl levehet3” termék? Leginkibb milyen rendszerekben alkal- |
[_mazzak? 34

[59.Milyen nehézségei vannak a COTS termékek alkalmazdsanak?] 35

[60.Miért dragabb egy ujrafelhasznalhato komponens kifejlesztése az egyedi kom- |

| ponens kifejlesztésénél?| 35

35
62.Hogyan osztalyozhato az alkalmazascsaladok specializacioja’) 35
[63.Mi1 a kulonbség a tesztelés és a beloves kozott? Melyiknek mi a célja?| 36
[64.Mi a celja a szoftver verifikacigjanak és mi a validacio feladata?| 36

[65.Miért célszerili a szoftvertesztelés mellett atvizsgalast (inspekcid) is tartani?| 36

|66.M1 a programtesztelés feladata? Milyen alaptipusai vannak?| 37

|[67.Mire szolgal a szoftver atvizsgalasa? Mi a kulonbség az atvizsgalas és a tesz- |

I35 kozoit?) 37
[68.Milyen hianyossagokat lehet elsosorban felfedezni a programok atvizsgalasa |
[_sordn? 38
[69.M1 a Cleanroom szoftverfejlesztési folyamat lényege?| 38
[70.Ismertesse a grafikus felhasznaldi kezelofeluletek tervezésének alapelveit!| 38
[71.Miért fontos a grafikus felhasznaloi kezelofelilet gondos tervezése?| 39

[72.Miért célszeru egyes rendszerekben kulonbozo felhasznaloil feluleteket kidol- |
| gozni a gyakorlott és az alkalmi felhasznalok szamara?| 39

[73.Milyen alapelemeket hasznalunk a grafikus felhasznaldi kezelofeliileteken?| 39

[74.Milyen eszkozoket alkalmazhatunk a grafikus felhasznaloi kezelofeluleten a |
| felhasznalo tamogatasara®| 39

[75.Milyen elonyei és hatranyai vannak a parancsnyelv alkalmazasanak a fel- |

] o kadkban? 10
[76.Sorolja fel és jellemezze a felhasznaloi interakcidok fajtait!| 40
[77.Milyen lehetoségek vannak az informacié grafikus megjelenitésére?| 42

[78.Irjon példikat, amikor az informaciét célszerii grafikusan, analég médon meg- |
| jeleniteni.| 42

[79.Milyen szabalyokat kell betartani a szinek alkalmazasakor a grafikus felhasznaloi |

[__kezelofeluleten?] 43
180.Milyen szempontokat kell figyelembe venni a rendszer uzeneteinek szove- |
| gezésekor?| 43
81.Miért célszeru a sugorendszerbe tobb belépési pontot biztositani?| 44

82.M1 a teszteset és a tesztadat? Hogyan lehet a tesztadatok szamat csokkente- |

[ni? 44

183.M1 a ,,fekete doboz” és a ,,fehér doboz” tesztelési stratégia lényege? Melyiket |
| milyen esetben lehet alkalmazni?| 44

[84.Mit jelent a tesztadatok ekvivalencia-osztalyozasa? Irjon példat az ekvivalencia- |
| osztalyok alkalmazasara.| 45

85.Mi a célja az utvonaltesztelésnek? Mi a ciklomatikus komplexitas, hogyan |

| Tmithato?] 45
I86.Ismertesse az integracios tesztelési stratégiakat! Mi az osszefuggés e stratégiak |
| és a szoftverfolyamat modellje kozott?| 46
I87.Mi az intertésztesztelés, milyen hibakat lehet feltedni ilyen modon?| 47

|88.Melyek a tipikus interfészhibak? Milyen elveket kell alkalmazni az interfésztesztelés

89.Miért és miben kiilonbozik az objektumorientalt tesztelés a funkcioorientalt |

| | i [6sétal?] 49

[90.Milyen szinteket kulonboztethetuiink meg az objektumorientalt tesztelésben?| 50

91.M1 az objektumorientalt csoporttesztelés? A rendszerterv milyen elemeit |
| lehet felhasznalni a csoportteszteléshez?| 50

92.M1 a szoftver koltségbecslés celja? Milyen kérdésekre keresi a valaszt?| 50

93.Milyen modszereket ismer a szoftver koltségének elozetes becslésére?| 51

94.Hogyan értelmezheto a szoftver minosége? Milyen tényezokkel lehet a szoft- |
| verminoséget jellemezni?| 52

95.Ismertesse egy szervezeten belul a minoségkezelés tevékenyseégeit!| 53

96.Miért fontosak a minoségi szabvanyok a szoftverkeészitésben? Mi a termékszabvany
| és a folyamatszabvany kozti kulonbség?| 53

97.Mi az osszefuggés a szoftverfolyamatok és az eloallitott szoftver minosége |

[koz6tt?] 54

98.M1 a minoségi felilvizsgalat célja, milyen termékekre terjedhet ki?| 54

[99.Mire szolgal a szoftver mérése? Mondjon néhany példat a mérheto szoftver- |

| jellemzokre!| 55
[l0Asmertesse a CMM (Capability Maturity Model) céljat és lényegét!| 55
[L0IMiért fontos a szoftver koltségeinek becslése? Milyen tényezoket vehetiink |
| figyelembe a koltségbecslés soran?| 56
[L0Asmertesse a COCOMO 1II. koltségbecslési modszer modelljeit!| 56
103Roviditések listaja: 58
M04Forrasok: 58

1. Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a
szoftverhez tartoznak.

A szoftver: Szamitégép-programok és a hozzdjuk tartozé dokumentécidk dsszessége (Somerville
def.) A gyakorlatban hozzdtartoznak a szakteriileti ismeretek és azok dokumentécidi is, amelyek
alapjan a szoftvert kifejlesztették.

A szoftverhez tartozo termék: A programok és a hozza kapcsolédoé dokumentaciok.

2. Mi a szoftverfolyamat? Sorolja fel a szoftverfolyamat fobb
tevékenységeit.

A szoftverfolyamat: A szoftver termék eléallitasara iranyuld tevékenységek sora.
F6bb tevékenységek:

1. Szoftverspecifikacié: A szoftver feladatainak és a megszoritasoknak specifikdcidja.

2. Szoftverfejlesztés: A szoftver rendszer tervezése és elkészitése (programkészités, tesz-
telés).

3. Szoftvervalidacié: Annak bizonyitdsa, hogy az el6készitett rendszer a felhasznalé elvarasainak
megfeleléen miikodik.

4. Szoftverevolicié: A szoftver karbantartdsa és tovabbfejlesztése a valtozd igényeknek
megfelelGen.

3. Sorolja fel a szoftverfolyamat altalanos modelljeit és jellemezze
azokat néhany széban.

A szoftverfolyamat modellje a folyamat absztrakt reprezentédcidja.
e Vizesés modell: Az alapvet6 tevékenységek ondlld fazisok a folyamat soran.

e Evoluciés fejlesztés: A specifikacio, a fejlesztés és a validacié 6sszefonédik. Ez az alapja
a manapsag elterjedt alkalmazott agilis fejlesztési modszereknek.

e Formalis transzformaécidok: A kovetelmények matematikai modelljébdl, formélis transz-
forméciéval allitja el6 a szoftvert. Ez a modszer az 0se a mai modellkézpontu fejlesztésnek.

e Integracié djrafelhasznalhaté komponensekb6l: A rendszert meglévé komponensek
integraldsaval allitja elo.

4. Miért van sziikség arra, hogy a szoftvertervezok szamara eti-
kai kdédexet allitsanak Ossze? Sorolja fel a fontosabb etikai
eloirasokat.

Sziikségesség:

e Bizalmassag: A szoftvertervezonek tisztelnie kell a munkaaddja, vagy megrendelGje bi-
zalmat, attdl fliggetleniil, hogy alairtak-e titoktartasi nyilatkozatot.

e Hozzaértés: A tervezd nem vaéllalhat el olyan munkéat, amely meghaladja képességeit,
nem tintetheti fel hamis szinben tudasat, képességeit.

e Szellemi jogok: Tiszteletben kell tartania a szellemi tulajdonjogokat.

e Szamitégépes visszaélések: A tervezd nem hasznélhatja fel ismereteit arra, hogy masoknak
kozvetve, vagy kozvetleniil kart okozzon.

Elo6irasok:

e A helyi, nemzeti és nemzetkozi szabalyok ismerete és betartasa.

Etikus és bizalmat kelto viselkedés, ami tobb, mint pusztan a torvények betartasa.

A megbizé titkainak megtartdsa.

A szellemi tulajdonjogok tiszteletben tartasa.

A szamitégépes visszaélések megakaddlyozasa, ill. elkertilése.

5. Melyek az eredendo6 rendszertulajdonsagok? Hogyan csopor-
tositjuk 6ket?

A rendszer t6bb, mint komponenseinek halmaza. Alapvet6 tulajdonsigai tobbnyire nem szarmaztathatéak
a komponensek tulajdonsdgaibdl. A rendszer eredendd tulajdonsagai a komponensek kozti Ossze-

tett kapcsolatok, kolesonhatdsok kovetkezményei. Ezért az eredendd tulajdonsagok csak akkor
allapithatok meg és valnak mérhetévé, mikor megtortént a komponensek integracidja.

Eredendd rendszertulajdonsagok:

e A rendszer silya: Ez kiszdmithatd a komponensek silydbdl.

e A rendszer megbizhatésiaga: Nemcsak a rendszer komponenseitél, hanem azok kap-
csolatatol is fugg.

e A rendszer hasznslhatésdga: Osszetett tulajdonsag, amely nemcsak a hardver és szoft-
ver komponensektél flige, hanem a kornyezettdl és a miikodtetd, sét a felhasznalé embe-
rektol is.

Tulajdonsagok tipusai:

e Funkciondlis tulajdonsagok: A funkciondlis tulajdonsdgok akkor figyelheték meg, ha
a rendszer minden része egyiittmiikodik egy cél elérése érdekében. (pl. kerékpar!)

e Nem funkcionalis tulajdonsagok:

— Olyan rendszertulajdonsdgok, amelyeket a rendszer miikodési kornyezete is befolyésol.
Ezek gyakran kritikusak a szamitogép alapd rendszerek miikodése szempontjabdl,
ezért ezeket mar a tervezéskor definialni kell.

— Ilyenek lehetnek a megbizhatdsag, a teljesitmény, a biztonsdgossag, vagy a védelem.

6. Mi a kiillonbség a funkcionalis és a nem-funkcionalis rendszer-
tulajdonsagok kozott?

A funkcionalis tulajdonsagok akkor figyelhetOk meg, ha a rendszer minden része egyiittmiikodik

egy cél érdekében.

A nem funkciondlis tulajdonsagok pedig olyan rendszertulajdonsagok, amelyeket a rendszer
miikodési kornyezete is befolyasol. Pl.: teljesitmény, megbizhatdsag, biztonsag, védelem.

7. Melyek azok a tevékenységek, amelyek kozosek minden szoft-
verfolyamatban?

e Szoftverspecifikacié: A szoftver feladatainak és a megszoritasoknak specifikaciéja.

e Szoftverfejlesztés: A szoftver rendszer tervezése és elkészitése (programkészités, tesz-
telés).
e Szoftvervalidacié: Annak bizonyitasa, hogy az el6készitett rendszer a felhaszndlé elvardasainak

megfeleléen miikodik.

e Szoftverevolicié: A szoftver karbantartdsa és tovabbfejlesztése a valtozd igényeknek
megfelelGen.

8. Vazolja fel a vizesés modellt, sorolja fel a modell elonyeit és
hatranyait!

Kovetelmények
meghatarozasa

3

Rendszer- és
szoftvertervezés

h

¥

Implementacio
és egysegteszt

Integracio és
rendszerteszt

b

¥

Mikodtetés és
karbantartas

A vizesés modell elényei:
e JOl attekintheto és kovetheto fejlesztési projekt folyamatot eredményez.

e A folyamat termékei szerzédésekkel konnyen lefedhetOk. (specifikdcios és tervezési doku-
mentumok, program(ok), stb.)

o A tevékenységek jol, és pontosan tervezhetdk.
A vizesés modell hatranyai:

e Egymaistdl elkiiloniilt fazisokra osztja a projektet (koltséges egy korabbi fazishoz visszatérni
pl. specifikécids, vagy tervezési hiba esetén).

e Csak a projekt végén, az dtaddskor (a miikddtetés elsé 1épésekor) deriilnek ki a specifikédcids
hibék.

e Nem képes rugalmasan alkalmazkodni a felhasznaléi igények véltozdsaihoz.

e Csak a kovetelmények pontos ismeretében alkalmazhaté.

9. Mi a formalis rendszerfejlesztés? Milyen elonyei és hatranyai
vannak?

A vizesés modellhez hasonld, de a fejlesztés formalis matematikai eszkozokkel allitja el6 a fut-

tathaté programot a rendszerspecifikicié matematikai modelljébol, tobb transzformacios 1épésen

keresztiil.
Minden transzforméacié soran, 1épésenként kell végrehajtani a tesztelést.

10

Kovetelmeények Formalis Formalis Integracio és
meghatarozasa specifikacio transzformacio rendszerteszt
Formalis transzformaciok:

™ T2 T3 T4

) h h h

(Kﬁvetelmények) (R1) (R2) (R3 J Integracio és
meghatarozasa rendszerteszt
(G I) I 1 I)

A transzformaciok helyessegének bizonyitasa

Formalis rendszerfejlesztés eldnyei:
o Kritikus rendszerek esetén, ahol kulcskérdés a biztonsagossag, megbizhatosag, vagy védelem.
e A transzformacio és a bizonyitas részben automatizalhaté.
Formalis rendszerfejlesztés hatranyai:
e Specialis szakértelmet igényel.
e Egy rendszer kolcsonhatésait (pl. felhasznaldi interfész) nehéz formalisan specifikdlni.

o Komplex, nagy rendszereknél ez a mdodszer sem eredményez jobb mindséget, vagy koltség-
megtakaritast.

10. Mi az evolucios fejlesztési modell 1ényege? Miért nehéz kar-
bantartani az igy fejlesztett programokat?

Az alapgondolat: Ki kell dolgozni egy kezdeti implementéaciét, amelyet a felhasznédlé véleményezhet,
és azt kell finomitani az elfogaddsig. A specifikacié a fejlesztés és validacié parhuzamosan foly-
tathato tevékenységek.

Feltard fejlesztés: A kovetelmények feltardsa lépésenként, a megrendelével egyiittmiikbdve
torténik, folyamatosan kiegészitve a rendszert az \ij funkcidkkal, részekkel. (Ilyen az Agile médszerek
tobbsége.)

Eldobhaté prototipus: ,,Deszkamodellek” készitése és atadasa az ligyfélnek, a kévetelmények
pontosabb feltarasa érdekében.

Miért nehéz karbantartani? Azért nehéz karbantartani, mert minden miivelet egyszerre
folyik, és nincs részletes specifikicio.

11

11. Mi az ujrafelhasznalas orientalt fejlesztés lényege? Vazolja
fel a folyamatot! Milyen esetekben alkalmazhat6?

Miér 1étez6, ijrafelhasznalhatd szoftver-komponensek egységes szerkezetbe valé integralasa (kom-

ponens alapi rendszerfejlesztés). Polcrdl leveheté termékeket hasznél fel a fejlesztés sordn.

Gyakran beépiil a kordbban ismertetett folyamatokba. Az elérheté komponenseket megtaldlni,

azokat integralni nem egyszerii.
A folyamat modell:

Kévetelmények Komponensek Kévetelmények endszertervezeés
meghatarozasa elemzése modositasa Jrafelhasznaiass

Fejlesztés és Rendszer

integracio validacid

Milyen esetekben alkalmazhaté6?

Mind&ségjavitasa, koltségek és a fejlesztési id6 csokkentésének érdekében hasznalhaté. Csak ak-
kor hasznaljuk, ha tudjuk, hogy az adott komponens megfeleléen miikédik. Nagy rendszerek
épitésekor gyakran hasznalt stratégia a COTS termékek integraldsa. KiilonGsen a gyors fej-
lesztést kivandé eCommerce, eBusiness rendszerek korében. A fejlesztési idé nagysagrendekkel
csOkkenthetd.

12. Mi a kiilonbség a CASE eszkozok, -eszkozkészletek és -kornye-
zetek kozott?

e Eszk6zok (tools): Az egyes folyamatlépéseket tamogatjak, mint a terv konziszetcidjénak
ellenérzése, program forditas, teszteredmények Osszehasonlitasa, stb.

o Eszkozkészletek (workbench): A szoftverfolyamat egyes fazisait tdmogatjdk, mint pl.
specifikacié, vagy tervezés. Altaldban tobb, egymaéssal egytlittmiikodo eszkozbdl allnak.

e Kornyezetek (environments): A szoftverfolyamat tobb fontos, vagy valamennyi részét
tamogatjak. Legtobbszor tobb, integralt eszkozkészletbol allnak.

13. Miért célszerii projektszervezetben végezni a szoftverfejlesztést?

Azért célszerii, hogy a szoftver a tervezett {itemezés szerint, hataridére, a kovetelményeknek
megfelelGen késziiljon el. Tovabba a projekt menedzselésére azért van sziikség, mert a szoftverfej-
lesztés mindig kotott pénziigyi és megszabott idékeretek kozott folyik, amelyeket a megrendeld,
vagy a fejleszté szervezet jelol ki.

12

14. Miért és milyen gondot okoz a szoftverprojekt vezetoje szamara,
hogy a szoftver nem lathatd, megfoghaté? Milyen médon le-
het ezt a gondot csokkenteni?

Mivel a szoftver nem kézzel foghatd, tovabba a szoftverfejlesztés folyamata sincs szabvanyositva,
igy sokkal nehezebb meghatarozni, hogy mennyi idébe telik a fejlesztés, mennyi ember kellhet
hozza, mekkora ennek a koltsége. Tovabba a megrendel6 szamara nem nagyon tud a projekt
elkésziiltéig kézzel foghaté programot mutatni, amely igen csak megneheziti a dolgokat.

e A szoftverfejlesztési projekt gyakran egyedi, amely nem &altaldnosithaté folyamat.
e A projekt tervezést alfeladatokra kell bontani, és litemezni.

e Némely feladat futhat parhuzamosan is, ha a feladatok nem fiiggenek egymastol.

15. Milyen tipusi terveket kell késziteni egy projekt tervezésekor?

e Munkaterv, iitemezés: Az elvégzendé feladatok, iitemezésiik és Osszefliggéseik ter-
vezése.

e MinGségi terv: Meghatarozza a projektben hasznalandé mindségbiztositasi eljarasokat
és szabvanyokat.

e Validaciés terv: Meghatdrozza a rendszer validacidja soran hasznalandé mddszereket,
er6forrasokat, iitemezést.

o Konfiguracio-kezelési terv: Leirja a konfiguracid-kezelés eljardsait és strukturajat.
e Karbantartasi terv: A karbantartds kovetelményeinek, koltségeinek terve.

e Munkaerd-fejlesztési terv: Terv a projekten dolgozé csapat szaktudasanak, tapaszta-
latainak fejlesztésére.

13

16. Vazolja fel egy vizesés modell szerint végzendo fejlesztési pro-
jekt iitemezését oszlopdiagram formaban!

SoWa hézifeladatbdl:

Név | Kezdé détum ! Zaré détum

= @ Projektinditas 2016.03.11. 2016.03.16.
@ Projektszervezet felallitasa 2016.03.17. 2016.03.74.

o Piac elemzése 2016.03.15. |2016.03.16.

@ Feldll a projectszervezet 2016.03.17. 2016.03.17.

= @ Kovetelmények meghatarozasa 2016.03.17. 2016.04.18.
@ Megvalésithatésagi tanulmany 2016.03.17. 2016.03.18.

@ Erdforrasigények felmérése 2016.03.21. 2016.03.21.

© Kovetelmény specifikicié 2016.03.21. 2016.03.21.

o Demoprogram irdsa 2016.03.21. 2016.04.15.

© Aruhazzal valé szerzédés 2016.04.18. 2016.04.18.

@ Kévetelmény specifikdcid kész 2016.04.19, 2016.04.19.

= @ Sroftverterveres 2016.04.19. 2016.05.24.
o Adatgyijés 2016.04.19. 2016.05.06.

© VPS bérlése 2016.04.19. 2016.04.22.

@ Algoritmusok kivalasztasa 2016.04.19, 2016.04.25,

@ Szoftvermodell készitése 2016.04.26. 2016.05.16.

@ Adatok felvétele az adatbazisba 2016.05.17. 2016.065.23.

© Atervek validaldsa 2016.05.24, 2016.05.24.

@ Szoftverterv kész 2016.05.25. 2016.05.25.

= @ Szoftver implementacio 2016.05.25. 2016.10.72.
o Programterverés 2016.05.25. 2016.05.25.

© Programozads 2016.05.26. 2016.08.17.

% Program tesztelés 2016.08.18. 2016.10.12.

@ Program kész 2016.10.15. 2016.10.13.

B @ Integracid, rendszertervezés 2016.10.13. 2017.01.13.
o Modulok intergraldsa 2016.10.13. 2018.10.20.

© Rendszerteszt 2016.10.21. 2017.01.72.

@ Rendszerteszt kész 2017.01.13. 2017.01.13.

o Atadas 2017.01.16. 2017.01.16.

14

Nagyit | Kicsinyit Mainap ~ | Id6 hitra | Id6 elére Kritikus it megjelenitése | Alapterv..

2017
o = Program kasz| e
[mmu_.s tspis Iméjl_:s 'pfnus I]tils Iaugpsnus‘ igmq:lembér Ioktéber novemher Lt:ien:iamher l}aruar
é:m.;ﬂ'
|
4
|—
I
|
-
+
l—
i
&
o |
I
&

15

17. Kisérelje meg felvazolni egy evolicids folyamat szerint végzendo
fejlesztési projektterv oszlopdiagramjat!

Tazk Name

i ST
{[BEA 1241 18M1 26A1 03A2 1042 17H2 2442 S1H2 0701 1401 2101 2601 0402 1102 1802 2502 0403 1103 1803 2503 0104 08

Team assignmert
Requirements gathering
Analyziz

Review of analysis
Design

Design Rewiew
Task breakdown
Implementation 1.1
Test 14

Review 1.1
Implementation 1.2
Test1.2

Review 1.2
Implemertation 1.3
Test1.3

Review 1.3

Wirite help system
User training
Release 1

‘Wazh up meeting
Reguirements review
Analysis review
Design review
Implementation 2.1
Test 241

Revigw 2.1

= (=

18. Miért iterativ tevékenység a szoftverprojekt tervezése?

A szoftverprojekt tervezése egy folyamatos tevékenység. Amely a koncepcidé kidolgozasatdl a
rendszer ataddsaig tart. Az elérehaladast folyamatosan kovetni kell, projekttervet rendszeresen
feliil kell vizsgdlni és 4t kell dolgozni a valtozo allapotnak megfelelen (ezért iterativ).

19. Milyen kockazatokat kiilonboztethetiink meg egy szoftverfej-
lesztési projektben? Sorolja fel és jellemezze Oket!

A kockéazatkezelés a lehetséges kockdzati tényezdk azonositasat és a projektre gyakorolt hatasuk
minimalizalasara vonatkozé tervek készitését jelenti.

e Projekt kockazat: A projekt litemtervét, vagy az eréforrdsokat veszélyezteti.

e Termék kockazat: A szoftver minGségét, vagy teljesitményét veszélyezteti.

e Uzleti kockazat: A szoftver beszerzését, értékesitését veszélyezteti.

e Szervezeti kockazat: A fejlesztést végz6 szervezetet veszélyezteti.

16

20.

Sorolja fel a fontosabb szerepeket egy projektszervezetben!
Ismertesse néhany széban az egyes szerepek tevékenységeit!

Projektvezets (szakmai - adminisztrativ vezetd):

A projektvezeto felel6s a projektcélok megvaldsulasaért. Szakmai és adminisztrativ vezeto,
aki felel6s a projekt sikeres, hatdridore valé befejezéséért, a kezdetben meghatarozott ke-
retek kozott.

Rendszertervezo:
A rendszertervezés a szamitogép alapui rendszerek tervezésével foglalkozik (hardver, szoft-
ver, folyamatok) a szoftvertervezés ennek egy része.

Vezetd programozé:
A programozasi folyamat elérehaladasaért felels személy. Koriilotte helyezkednek el az
alabbiak.

Tartalék programozé:
Vezet6 programozd mellett 1év6 gyakorlott programozo.

Konyvtaros (adminisztrator):
A fejlesztési projekt dokumentécidinak és termékeinek (verzidk) elkészitéséért (készittetéséért),
rendben tartasaért felelds.

Tesztelo:
A modellek és termékek tesztelését, verifikaldsat végzi.

Miné6ségfelelss:
A min6ségbiztositasi szabdlyok betartasaért felel a teljes szoftverfolyamat soran.

Dokumentator

Operéaciés rendszer szakérto:
Az operacios rendszer kivéilasztasaért felel6s személy.

Adatbazis szakérto

Szakteriileti specialista:
Az alkalmazasi teriilet ismerGje, aki mar részt vett hasonlé rendszer kidolgozasaban.

CASE eszkoz szakérto:
A fejlesztés soran felhaszndlhaté CASE eszkozok kivalasztasaért felelés személy.

17

21. Mi a feladata a megvalésithatosagi tanulmanynak. Hol van a
helye a szoftverfolyamatban?

Feladata: Megalapozni azt a dontést, hogy érdemes-e a tervezett rendszert megvaldsitani.
Az alabbi kérdésekre ad valaszt:

e Mis, hasonld szervezeteknél milyen megoldasokat alkalmaztak hasonlé feladatokra.
e Mennyiben tamogatja a rendszer a megrendel6 altalanos célkitiizéseit.

o Megvalésithato-e a rendszer a tervezett koltségen beliil, az adott technoldgiaval, a kivant
hataridére.

e Integralhaté-e a rendszer mas, mar meglévd rendszerekkel.

Helye a szoftverfolyamatban: A megvaldsithatésagi tanulméany helye a kévetelménytervezés
folyamataban van a szoftverfolyamat soran.

22. Sorolja fel a legfontosabb szempontokat, amelyeket egy ter-
vezonek a felhasznaldi kovetelmények specifikalasakor tigyel-
nie kell!

e A felhasznaldéi kovetelményeket tigy kell megfogalmazni, hogy az informatikaban jaratlan
felhasznald is megértse.

o Ezért itt nem célszeri modelleket alkalmazni, hanem természetes nyelven, tablazatokkal
és diagramokkal kell a felhaszndléi kévetelményeket érthetové és egyértelmiivé tenni.

e A természetes nyelv alkalmazasanak nehézségei:

— Az egyértelmiiség és pontossdg hidanya
— A kovetelmények keveredése

— A kovetelmények 6tvozddése
e Dolgozzunk ki egységes formatumot az 6sszes kovetelmény leirdséra.

e Haszndljuk a nyelvet kovetkezetesen, pl. a sziikséges kdvetelményeket a , kell”, a kivanatos
kovetelményeket pedig a ,javallott” széval jelolhetjiik.

o Készitsiink glosszariumot a szovegben hasznalt fogalmak és roviditések magyarazatara.
e A fontos részeket vizualisan is emeljiik ki a sz6vegbol.

o Keriiljiik a szamitogépes zsargon hasznalatat.

18

23.

24.

Milyen veszélyei vannak a természetes nyelv hasznalatanak a
kovetelmények specifikalasakor? Milyen médon lehet ezeket
csokkenteni?

Félreérthet6ség: A szoveg irdja és olvasdja egy adott kifejezésen mas fogalmat ért, vagy
azonos fogalmakat eltér6é mdédon értelmez.

Félreérthet6ség csokkentése: Egy adott fogalom, definicié minél pontosabb, érthetébb
lefrasa az ir6 altal. Akar példék segitségével valéo megfogalmazas.

Tuilzott rugalmassag: Ugyanaz a kovetelmény sokféle médon irhaté le.

A modularitds hianya: A természetes nyelvben nincs egyértelmii lehet6ség az 6sszefliggések
jelolésére. Igy egy kovetelmény megvaltozasakor az Gsszes kovetelményt at kell vizsgalni,
hogy a kapcsolédé kovetelményeket megtalaljuk.

Strukturalt nyelvii specifikicié alkalmazasa:

— A természetes nyelv szabdlyozott, strukturalt alkalmazasa a kovetelmények leiraséara.

— Egyértelmiibbé teszi a kovetelmények specifikdcidjat, de kozben megtartja a természetes
nyelv rugalmassagat.

— A strukturat tirlapok vagy sablonok alkalmazasdval tdmogatjak. Kotelezd informécidk

feltiintetésével az lrlapon.

Egy nagy rendszer fejlesztése soran kiknek kell részt venniiik
a felhasznaloi kovetelmények verifikalasaban? Miért?

Meghatarozzak a kvetelményeket, ellendrzik
Megrendeldk > hogy megfelelnek-e az igényeknek. Gyakran
valtoztatnak!
Vezetdk .| Adokumentum alapjan készitik az arajanlatot,
“| és tervezik a fejlesztési folyamatot (projektet).

Rendszertervezok ——>| A kbvetelmények alapjan tervezik a rendszert. ‘

Rendszerteszt- A kovetelményekre tamaszkodva tervezik a
tervezdk validacios teszteket.

Karbantartas _| A kbvetelmények alapjan keszitik el a rendszer
tervezok “| karbantartasi tervét.

19

25.

26.

Sorolja fel a rendszermodellek tipusait és jellemezze azokat
egy mondatban!

Adatfeldolgozasi modell: Adatfolyam diagramok, az adatok feldolgozasat mutatjak a
rendszeren beliil.

Kompoziciés modell: Egyed-kapcsolat diagramok. Bemutatjik, hogyan épiilnek fel az
egyedek més egyedekbdl.

Architekturalis modell: Az alrendszereket mutatjiak be, amelyekbdl a rendszer felépiil.

Osztalymodell: Objektum osztély /6roklédési diagramok, az egyedek kozos tulajdonsiagait
abréazoljék.

Inger-valasz modell: Allapotétmenet diagramok, a rendszer belsé és kiilsé eseményekre
adott reakcioit irjak le.

Melyek a legfontosabb kiilonbségek a felhasznaléi és a rend-
szerkovetelmények specifikalasa kozott? Kiknek szélnak az
egyes specifikaciok?

Felhasznaléi kovetelmények: A rendszer szolgaltatdsainak kozérthet6 leirdsa, diagramokkal,
tablazatokkal, abrakkal. Itt nem célszerli modelleket alkalmazni, az egyértelmiiség érdekében.
Rendszerkovetelmények:

Strukturalt dokumentum a rendszer szolgaltatasainak részletes lefrasdaval (funkciondlis spe-
cifikacié). Ez a szerzddés alapja.

A rendszerkovetelmények a felhasznaldi kdvetelmények részletesebb és rendezett leirasat
adjék.

A rendszertervezés alapjaul szolgalnak, tartalmazhatjak a rendszer modelljeit.

A rendszerkovetelmények leirjak, hogy a rendszernek mit kell elvégeznie, majd a tervek
hatarozzak meg, hogy hogyan tegye.

Kinek a szamara késziilnek az egyes dokumentumok?

Felhasznal6i kovetelmények specifikacigja: Megrendel6 vezetdségének, a rendszer
végfelhasznédléinak, rendszertervezoknek és a szerzédéskotdknek.

Rendszer kévetelmények specifikacigja: A rendszer végfelhasznaldinak, a megrendeld
kozépvezetoinek, a rendszertervezoknek és szoftverfejlesztéknek.

Szoftver specifikdcié: A rendszertervezoknek, szoftverfejlesztoknek, tesztelknek és kar-
bantartoknak.

20

27. Melyek a prototipuskészités céljai? Milyen prototipusok léteznek,
melyik milyen célbdl késziil?
Céljai:
e A prototipus elsédleges célja az, hogy segitse a felhaszndlékat a rendszerkovetelmények
megértésében.
e A kovetelménytervezés része, a kovetelmények feltardsanak és validacidjanak eszkoze.

e A szoftverrendszer kezdeti verzidja, amely alkalmas a rendszer koncepciéjanak bemu-
tatdsara és kiprobalasara.
e A prototipus csokkenti a kévetelményekkel kapcsolatos kockdzatokat.

Prototipusok tipusai:

e Evoliciés prototipus: Célja egy miikod6 rendszer ataddsa a megrendelének. A legfon-
tosabb kovetelmények implementéalasaval egyszerli rendszer késziil, amelyet Gjabb kove-
telmények feltdrasaval fokozatosan egészitenek ki 1j funkciékkal.

¢ Eldobhaté prototipus: Célja a kovetelményspecifikacidobdl fakadd kockazat cstkkentése.
A prototipust egy kezdeti specifikdcié alapjan készitik, validalasra atadjdk a felhasznaldnak,
majd eldobjék.

28. Mi a kiilonbség az evolicios és az eldobhaté prototipus kozott?
Melyiket mikor érdemes alkalmazni?
e Evoliciés prototipus: Célja egy miikod6 rendszer ataddsa a megrendelének. A legfon-

tosabb kovetelmények implementalasdval egyszert rendszer késziil, amelyet tijabb kove-
telmények feltdrasaval fokozatosan egészitenek ki 1j funkcidkkal.

¢ Eldobhaté prototipus: Célja a kovetelményspecifikacidobdl fakadd kockazat cstkkentése.
A prototipust egy kezdeti specifikdcié alapjan készitik, validalasra atadjdk a felhasznalénak,
majd eldobjak.
Az eldobhaté prototipus nem tekinthetd végleges rendszernek, mert:
— A kivételek, hibak kezelése altalaban hidnyzik.
— T6bb rendszertulajdonsig kimaradhat a prototipusboél.
— Nem késziil specifikicié a hosszu tavi karbantartdsra.

— A prototipus még nem a megfelel6 struktira szerint épiil.
Alkalmazasi teriiletek:
e Evolicids prototipus: Weblap fejlesztésben és e-business alkalmazasokban hasznéljak.

e Eldobhaté prototipus: A kévetelmények validdlasa: a prototipus felfedheti a félreértéseket,
hibakat és hidnyossagokat a kévetelményekben

21

29. Mit jelent az adatbazis-programozas? Milyen rendszerek fej-
lesztésére alkalmas?

e Az evolicids fejlesztés az adatbazison alapuld tizleti alkalmazédsok teriiletén <aldnosan
alkalmazott technika.

o A kereskedelmi adatbazis-kezel6 rendszerek olyan 4GL fejleszt6 eszkozoket tartalmaz-
nak, amelyek tdmogatjak a lekérdezést/adatkezelést (SQL), tdblazatkezelést, jelentés ge-
neralast, felhasznaldi feliiletek tervezését, stb.

e Az adatfeldolgozési alkalmazédsokban sok kozos feladat van: adatbdzis manipuldcidk (ke-
resés, frissités, rendezés, stb.), egyszerii miiveletek, tirlapkezelés, stb. Egy 4GL-ben ezeket
altalanositjak.

e Gyakran integralhatok CASE eszkozokkel is. Ezek generalhatnak SQL-t, vagy alacsonyabb
szint kédot.

Adatbéazison alapulé rendszerek fejlesztésére alkalmas. (77)

30. Melyek a prototipus készitésének elonyei? Ismertese a pro-
totipuskészito technikakat! Melyiket milyen esetben célszeri
alkalmazni?

Prototipuskészités elényei:
e Segit felismerni a szoftver felhasznaldja és készitéje kozti félreértéseket.

e Kideriilhet, hogy hidanyzik valamely szolgaltatas, vagy ellentmondasok vannak a szolgaltatasok
kozott.

o A szoftverfolyamat elején mar egy — legalabbis részben, modellként - miikod6 rendszer all
rendelkezésre.

e A prototipus felhasznédlhaté a rendszer-specifikacié alapjaként.

e Téamogathatja a felhasznaldok képzését és a rendszertesztet is.
Prototipuskészité technikak:

e Evoliciés prototipus készitése:

— Célja egy miikdd6 rendszer dtadédsa a megrendelének. (esetleg korldtozott funkciona-
litassal)

A legfontosabb kévetelmények implementaldasaval egyszert rendszer késziil, amelyet
djabb kovetelmények feltarasaval fokozatosan egészitenek ki 1j funkcidkkal.

Az AGILIS fejlesztés alapveté mddszere.

— Weblap fejlesztésben és e-business alkalmazasokban hasznaljak.

22

— Olyan rendszereknél célszer(i alkalmazni, ahol nem készithet6 el elére a végleges spe-
cifikacié. Ilyenek altalaban az intenziv felhasznaldi interfész-hasznélatot igényld rend-
szerek.

— Nincs részletes rendszerspecifikacio, sokszor a részletes kovetelménydokumentum is
hidnyzik.

— A felhasznalé mar a rendszer fejlesztése kozben jelezheti, hogy milyen iranyban kivanja
folytatni a fejlesztést.

— A fejlesztéshez gyors, iterdlhaté fejleszté eszkozokre és médszerekre van sziikség.

— Mivel nem késziil kovetelményspecifikacid, a validécié is csak a rendszer bemutatasaval
torténhet.

— A specifikdcid, a tervezés és az implementacié dtlapolhaté.

— A rendszer inkrementumok sorozataként fejlédik, és keriil a felhasznaldhoz, vagyis
a felhaszndlé kulcsfigurai minden inkrementum tervezésében és értékelésében részt
vesznek.

— Gyors fejleszt6 eszkozok és technikak alkalmazhatok (CASE eszkozok, 4GL, folya-
matmodellezé nyelvek: BPML-Business Process Modeling Language).

— A felhaszndléi feliiletek GUI fejleszté eszkozokkel készithetdk.
e Eldobhatd prototipus készitése:

— Célja a kovetelményspecifikaciobdl fakado kockazat csokkentése.

— A prototipust egy kezdeti specifikicié alapjan készitik, validalasra atadjak a fel-
haszndalonak,majd eldobjak.

— A kovetelményspecifikdcié elkésziilte utdn nem hasznalhaté fel.
— Az eldobhaté prototipus nem tekinthetd végleges rendszernek, mert:

* A kivételek, hibak kezelése altaldban hianyzik.

* Tobb rendszertulajdonsag kimaradhat a prototipusbdl.

* Nem késziil specifikdcio a hosszi tavu karbantartdsra.

* A prototipus még nem a megfelel§ struktira szerint épiil.

31. Mit tenne, ha egy eldobhaté prototipust a megrendel6 meg
akarna vasarolni? Milyen érveket hozna fel allaspontja in-
doklasara?

Az eldobhaté prototipus nem tekinthet6 végleges rendszernek, mert:
o A kivételek, hibak kezelése dltalaban hianyzik.
e TGbb rendszertulajdonsag kimaradhat a prototipusbdl.
e Nem késziil specifikdcié a hosszi tavia karbantartésra.

e A prototipus még nem a megfelel§ struktira szerint épiil.

23

A vezeték gyakran nyomdést gyakorolnak a fejlesztékre, hogy egy miikodé eldobhaté prototipust
végleges rendszerként adjanak at. Ez nagyon veszélyes, mert:

e Az eldobhaté prototipus nem alakithaté gy, hogy a nem-funkciondlis kévetelményeknek
(teljesitmény, megbizhatésdg, skdldzhatésag, stb.) eleget tegyen.

e A prototipus rendszerint dokumentélatlan marad, mert a cél a gyors elkészités és bemu-
tatés.

o A viéltoztatdsok miatt a rendszer strukturaja altalaban romlik a fejlesztés soran.

e A prototipus készitésekor az altalanos szervezeti szabvényokat nem tartjak be. (minéségbiztositas,
technoldgiai fegyelem, projekt dokumentélas)

32. Ismertesse a formalis specifikacié helyét és jelentGségét a
szoftverfolyamatban!

Formalis specifikaci6: A formélis specifikacié egy matematikai jelolésrendszert alkalmaz, pon-
tosan specifikalt szétarral, szintaxissal és szemantikaval. A specifikalas és a tervezés nagymértékben
osszefonddik egymassal. Az architektira-tervezés adhatja az alapot egy specifikacié struktiurajahoz.

A szoftverspecifikacié folyamatanak elérehaladdsaval az tigyfél befolyasa csokken, a véllalkozo
befolyasa novekszik.

A vallalkozd befolyasanak novekedése

A megrendéiﬁ befoiyésénak csokkenése

kl:'eﬂ'gais Zr}éléik k__Retn(Ijsz_er- k|_,/Architekturalis Formalis Magasszintt
DUE e s Db e tervezes specifikacio tervezés
meghatarozasa specifikalasa

Specifikacio
Tervezes

A specifikacids és a tervezési tevékenységek egymassal parhuzamosan is végezhetdk:

Rendszer- .
kévetelmények Formalis

SPECiﬂkiﬂkacic')
Rendstekturalis

modellezés fervezes

Felhasznaloi
kdvetelmények
meghatarozasa

Magasszinti
tervezes

Formalis specifikaciés technikak:
e Algebrai megkozelités: A rendszert miiveletei és azok kapcsolatai alapjan irja le.

e Modell alapti megkozelités: A rendszert allapotmodellel specifikdlja, amely halma-
zokbdl és sorozatokbdl allé matematikai konstrukcidkat tartalmaz, a miiveleteket pedig
aszerint definidlja, ahogy azok a rendszer allapotat modositjak.

24

A formalis specifikacié alkalmazasa:
o A formalis specifikacid a szoftverfejlesztés kezdeti szakaszaban kivan nagyobb eréfeszitéseket.

o A kovetelmények alaposabb és részletesebb elemzése azzal jar, hogy kevesebb lesz a hiba
a kovetelményspecifikacioban.

o A kovetkezetlenségek és a hidnyossagok felfedhetok és kijavithaték a formélis modellekkel.

e Ezért a kovetelmények késon felfedezett hibaibdl eredd tobbletmunka lesz kevesebb.

33. Sorolja fel a formalis specifikacié elonyeit és hatranyait! Mi-
lyen tipusi rendszerek specifikalasakor alkalmazzak a formalis
modszereket?

Formalis specifikacié hatranyai: A formadlis mdédszerek - az elOzetes varakozasok ellenére
nem tudtak teret hoditani, mert:

e Kialakultak tobbé-kevésbé sikeres mddszerek, mint az OO tervezés, konfiguracidkezelés, a
strukturalt programozas, stb., amelyek javitottdk a szoftver mindségét.

° Ujabban a szoftver gyors piacra keriilése fontosabb, mint a minéség. A gyors fejlesztési
technikdk nem illeszkednek a formdlis mddszerekhez.

e A formalis modszerek csak korlatozottan alkalmazhatdk példaul a felhasznaléi interfészek,
feliiletek és munkafolyamatok specifikdlasara.

e A formalis médszerek nehezen, vagy egyaltaldn nem alkalmazhatok nagy rendszerek esetén.
o Még kevés eszkoz késziilt a formalis mddszerek tamogatasara.

e A formalis médszereknek csak korlatozott felhasznalasi lehet6ségei vannak. Alkalmazédsuk
kockézata és koltsége sok esetben nagyobb, mint a varhaté elonyok.

A formadlis specifikacié elényei:

e Azoknil a rendszereknél, amelyeket formalis modszerekkel fejlesztettek, a hibaardny joval
alacsonyabb volt.

e Ezért els6sorban kritikus rendszerek fejlesztésénél alkalmazzak, ahol a rendszer igen magas
verifikalasi és validalasi koltségeihez és az esetleges hibakbdl ered6 katasztréfa koltségeihez
képest még kifizet6d6 a haszndlata.

Milyen tipust rendszereknél alkalmazzak?

A nagy rendszereket alrendszerekre bontjak, amelyek kozott jol definidlt interfészeket kell spe-
cifikdlni. Az alrendszerek kozti interfészek specifikdlasa teszi lehet6vé, hogy az alrendszerek
fejlesztése egymastdl fliggetlenil torténjen. Az interfészek absztrakt adattipusokkal, vagy ob-
jektum osztalyokkal definidlhatok. A formaélis specifikicié algebrai megkozelitése kiilondsen al-
kalmas az interfészek pontos specifikdlasara. A formélis specifikaciét nyilt interfészek, kommu-
nikéciés protokollok definidldséara is alkalmazzak.

25

34. Melyek azok a rendszerek, amelyeknél a formalis specifikaciét
leginkabb alkalmazzak? Miért?

Elsosorban kritikus rendszerek fejlesztésénél alkalmazzdak, ahol a rendszer igen magas verifikdlasi
és validédlasi koltségeihez és az esetleges hibakbol ered6 katasztréfa koltségeihez képest még
kifizet6d6 a hasznélata.

35. Hol foglal helyet az architekturalis tervezés a szoftverfolya-
matban? Mire szolgal a rendszer architekturalis terve?

Kovetelmény
specifikacio

Tervezési tevékenységek

Interfész
tervezeés

Algoritmus
tervezés

Specifikacié

Architekturalis
tervezés
A A 4

Rendszer Szoftver Interfész omponens |Adatstruk-| |Algoritmus
architektura| specifikacid specifikacig specifikacig |tura spec. pecifikacid

Mire szolgal a rendszer architekturalis terve?

Az architekturalis tervezés az a tervezési folyamat, amelynek soran kijelolik a rendszert alkotd
alrendszereket és azt a keretrendszert, amely vezérli az alrendszereket és biztositja kozottik a
kommunikéciét. A folyamat végeredménye a szoftver architektira, amely a tervezés alapjdul
szolgdl. Ez a rendszertervezés folyamatanak kezdeti 1épcsofoka.

Feladata:

e Osszekotni a specifikacio és a tervezés folyamatéat.

e Kialakitani a rendszer alapveté strukturdjat és azt a keretrendszert, amely a rendszert
egységbe foglalja és miikodését iranyitja.

Gyakran egyes specifikacids tevékenységekkel parhuzamosan végezhets. A kezdeti architekturalis
elképzelések mar a specifikdciéban tiikrozodhetnek. Magaba foglalja a f& rendszerkomponensek
és azok vezérlésének, valamint kommunikéciéjanak meghatarozasat.

36. Kliens/szerver modell

Olyan osztott rendszermodell, amely bemutatja hogyan oszlanak meg az adatok és a feldol-
gozasok a komponensek kozott.

26

Elemei:

e Szerverek: Adatkezel6 szerverek, nyomtatészerverek, alkalmazas szerverek, kommunikacios
szerverek, stb.

e Kliensek: Tobbnyire 6nallé alrendszerek, amelyek hozzaférnek a szerverek szolgaltatasaihoz.
Egyszerre sok példanyban futnak.
Tipusai:

— Vékony kliens: Bongészo, szkriptekkel
— Vastag kliens: komplett kis alrendszer, helyi adatokkal, funkcidkkal

e Halbézat: A klienseknek biztosit hozzaférést a szerverek szolgdltatasaihoz.

37. Milyen el6nyei és hatranyai vannak a kliens/szerver modell-
nek?
El6nyo6k:
e JOl strukturalt, osztott architektira.
e Konnyen kiegészithet6 0j szerverrel (4j funkciéval).
e Alacsonyabb hardver kovetelményei vannak.
Hatranyok:

e Nincs megosztott, kozos adatmodell, mindegyik alrendszer a sajat szempontjai szerint
kialakitott adatmodellt hasznélja (ez elény a teljesitmény szempontjabdl).

e Redundans adatkezelés folyhat minden szerverben.

e Nincs kozponti név- és szolgdltatds nyilvantartds, nehéz megtalalni, hogy milyen szerverek
és szolgaltatdsok léteznek.

38. Mi a kiilonbség a vékony- és a vastag kliens kozott? Melyik
milyen célra alkalmas?

Vékony kliens: A vékony kliens egy minimalis eszkozokkel rendelkez6 kliens. Ez a kliens
tipus a sziikséges eréforrdsokat is a tévoli (host) gépen veszi igénybe. Egy vékony kliens fel-
adata tobbnyire kimeriil az alkalmazdasszerver altal kiilldott adatok grafikus megjelenitésében; a
tényleges, nagy mennyiségii adat mozgatasat, kezelését igényld feladatot az alkalmazas szerver
végzi el. (Pl.: Web bongész6bél futé alkalmazdsok)

Vastag kliens: A vastag kliens képes arra, hogy onmaga hajtson végre nagyobb adat-
mennyiségekkel feldolgozasokat, amikor a szerver inkabb elsddleges taroléként viselkedik. Ennek
ellenére, a kifejezés inkabb a szamitégép szoftverére vonatkozik, és egyre inkabb alkalmazzak
halézati szdmitégépek esetén, ahol a szamitogép jelentds halozati alkalmazdsokat (is) futtat.

27

39. Milyen modelleket alkalmaznak az objektumorientalt tervezésben?
Melyik mire alkalmas?

Objektum-modellek:

e A rendszer felbontdsa egyluttmiikodé objektumokra. Az objektumok egyéni dllapottal és
az allapotokon értelmezett miiveletekkel rendelkeznek.

e A rendszert jél definialt interfészekkel rendelkezd, lazan csatolt objektumokra bontja, ame-
lyek egymas szolgaltatasait veszik igénybe.

e Az objektum orientalt felbontas az objektum osztédlyok, attributumaik és muveleteik azo-
nositasat (felismerését és helyes modellezését) jelenti.

e Az implementacié soran a konkrét objektumok ezekbdl az osztalyokbdl jonnek létre. Az
objektumok miiveleteinek koordinalasat valamilyen vezérlési modellel abrazoljék.

Adatfolyam-modellek:

e A rendszer felbontasa funkcionalis modulokra, amelyek az inputokat outputokkd transz-
formaljak (csévezeték modellnek is nevezik). A modulok funkciondlis transzformécidk.

e Az adatfolyam modellben az inputot funkciondlis transzforméciék dolgozzék fel és ennek
eredményeként allitjak el az outputot.

e Tulajdonképpen megegyezik a UNIX shell ,pipe and filter” modelljével.

e Régota alkalmazzdk az adatfeldolgozasi rendszerek modellezésére. (féleg kotegelt, szek-
vencidlis adatfeldolgozds esetén)

e Interaktiv rendszerek modellezésére csak nagyon preciz specifikalassal alkalmas.

40. Mi a kiilonbség a kozpontositott vezérlés és az esemény alapi
vezérlési modell kozott?

Kozpontositott vezérlés: Egy alrendszer végzi a teljes rendszer vezérlését, inditja, leallitja,
stb. a tobbi alrendszert.

e Hivas-visszatérés modell: Fa-struktirdji modell, ahol a csticson van a vezérl6 alrend-
szer. A vezérlés hivasok sorozatan keresztiil jut el a modulokhoz. Leginkabb szekvencialis
rendszerekhez alkalmazhaté. (pl.: listafeldolgozas, listdzés, jelentésgeneralas)

e Kezel6-modell: Konkurens rendszerek modellezésére alkalmas. Egy kozponti rendszer-
komponens koordindlja, inditja, allitja le a rendszerfolyamatokat (komponenseket, vagy
alrendszereket), amelyek parhuzamosan is végrehajthaték. Alkalmazhaté szekvencidlis
rendszerekben is, ahol a vezérlé modul allapotvéltozdk értéke alapjan hivja meg az egyes
alrendszereket.

28

Esemény alapu vezérlés:
Minden alrendszer reagalhat az 6t érintd kiils6, vagy mas alrendszer altal generdalt eseményekre.
Eseményvezérelt rendszer lehet pl. egy tablazatkezelo is, ahol egy cella értékének megvaltozasa
mas celldkat is megvaltoztat, vagy mas alrendszert aktivizal.

e Broadcast-modell: Az eseményrél mindegyik alrendszer értesiil, és az reagal ra, ame-
lyiknek ez a feladata.

e Megszakitasvezérelt-modell: Valés idejii rendszerek modellje, ahol egy megszakitas-
kezel6 észleli az eseményt és elinditja az esemény feldolgozdsaért felelés alrendszert.

41. Milyen vezérlési modellek alkalmazhaték parhuzamos rend-
szerekben?

Konkurens rendszerek modellezésére alkalmas. Egy kozponti rendszerkomponens koordinélja,
inditja, allitja le a rendszerfolyamatokat (komponenseket, vagy alrendszereket), amelyek parhuzamosan
is végrehajthatok. Alkalmazhato szekvencislis rendszerekben is, ahol a vezérlé modul allapotvaltozdk
értéke alapjan hivja meg az egyes alrendszereket.

42. Milyen UML modellekkel abrazolhaté a rendszer és kornye-
zetének kapcsolata?

Kornyezeti modell:
o A rendszer hatdrainak dbrazolasara szolgdlnak (mi tartozik a rendszerhez és mi nem).

e A hatéarok kijelolése gyakran nem technikai, hanem tarsadalmi, vagy szocialis szempon-
toktdl is fiigg.

e A rendszer és kiilsé rendszerek kozti kapcsolatok abrazoldsa ugyancsak a kornyezeti mo-
dellek feladata.

e A kornyezeti modell dbrazolasi médja dltaldban egyszerii blokkdiagram.

43. Mire szolgalnak az objektumorientalt tervezésben alkalmaz-
hat6 diagramok? Soroljon fel és jellemezzen néhanyat!

e Alrendszer modellek: Az objektumok logikai csoportositasat mutatjak az Gsszefliggd
alrendszerekben.

e Szekvencia modellek: Az objektumok interakcidinak sorrendjét abrazoljak.

° Allapotmodellek: Bemutatjak, hogy egy objektum hogyan valtoztatja az allapotat,
valaszol bizonyos eseményekre.

¢ Egyéb modellek: Haszndlati eset modellek, 6roklédési modellek, osztalydiagramok, stb.

29

44. Ismertesse a valos ideju rendszerek fobb jellegzetességeit.

A valds idejii rendszerek olyan (gyakran beépiild) szoftverrendszerek, amelyek figyelik kornye-
zetiiket és adott (rovid) id6n beliil képesek reagalni a kornyezeti hatdsokra (ingerekre). Altaldban
inger-valasz tipusu rendszerek.

Vannak:

e Periodikus ingerek: 1ddzités hatasara végez valamit a rendszer.
e Aperiodikus ingerek: Rendszerteleniil bekovetkezo kiilsé inger hatasara kell valamit
csindlni.

A valés idejii rendszerek miikédésében az id6 kritikus tényezo.
A valés idejii rendszerek gyakran az dtlagosnal nagyobb felel6sségii feladatot latnak el.
A valés idejii rendszerekhez mindig tartoznak hardver eszkozok is:

e Erzékelsk, amelyek adatokat gytijtenek.

e Szabdlyozok, miikodtetok, amelyek a rendszer kornyezetét befolyasoljak.

45. Melyek a {6 kiilonbségek az atlagos adatfeldolgozo rendszerek
és a valés idejii rendszerek kozott?

Mig a korabban kialakult adatfeldolgozé rendszerek tervezése dltalaban az adatszerkezetek vagy
az adattransz-forméciok (funkcidk) megragadasaval kezdédik, addig az ilyen célrendszerek(valds
idejii rendszerek) tervezéi leggyakrabban a rendszert éré hatdsok (kiils6 események) és az er-
re adand6 valaszok — azaz a rendszer viselkedése — elemzésébdl indulnak ki. A viselkedés
megadasakor altaldban nem elegendé azt el6irni, hogy a rendszernek milyen kiilsé események
hatdsidra milyen valaszokat kell eléallitania, hanem a szdmitogépes rendszer valaszidejére is
megkotéseket kell tenni.

46. Van-e szerepe a valés idejii rendszerek tervezésében a hard-
vertervezésnek? Miért?

A rendszer hardver és a szoftver elemeit egytitt kell megtervezni, célszeriien elosztva a funkcidkat
a hardver és a szoftver kozott. A dontést azonban, hogy mit kell hardverben és mit szoftverben
megvaloésitani, célszerti halogatni, az optimalis megoldas megtaldlasa érdekében. Egy funkcié
sok esetben hardverrel jobb teljesitménnyel valésithatéo meg, de hosszabb fejlesztést igényel és a
valtozasok nehezebben kévethetok.

47. Milyen programnyelveket alkalmaznak a valdsideji rendsze-
rek programozasara?

e C: Lehetséges effektiv programokat irni, de nem feltétleniil tamogatja a parhuzamos folya-
matokat, vagy a megosztott eréforrasok kezelését. Ezeket azonban az opericios rendszer
megoldhatja.

30

e Ada: Valos idejii rendszerek programozasara késziilt, ezért tdmogatja a konkurenciat és
az Ujabb verzidi mar az litemezést és az idozitést is kezelik.

e JAVA: A Java tdmogatja a konkurenciat (szélak és szinkronizalt mddszerek), ezért alkal-

mas a kevéssé kritikusan valds idejii rendszerek fejlesztésére.

48. Miért kevéssé alkalmas a Java programozasi nyelv szigorian
valés ideji rendszerek programozasara?

Nem hasznalhaté szigorian real-time rendszerekhez, mert:

Nem lehet megadni egy szal végrehajtasi idejét.

A | szemétgylijtés” nem vezérelheto.

A megosztott eréforrasokat tartalmazé sorok méretét nem lehet lekérdezni.

A kiilonbo6z6 virtudlis gép implementaciok kiillonbozé idézitéssel futtatjak ugyanazt a szoft-
vert.

A futési ido tar- és processzorhasznalatdnak elemzése nem lehetséges.

49. Melyek a valos ideji futtatorendszerek f6bb komponensei?

A valés ideji futtatorendszer komponensei

Utemezési
informaciok
Valos idejii Megszakitas-
6ra Utemez6 kezelé
Folyamatok
erdforras
igenyei
Eréforrasra varo Eréforras- Szabad er6-
folyamatok listaj kezeld forrasok listaja
folyamat eréf ok
Inditando Eloszté Processzorok
folyamatok listaj Cal listaja

Folyamatok futtatasa

31

50. Melyek a szoftver tjrafelhasznalasan alapulé fejlesztés elonyei
és hatranyai?

El6nyo6k:
e Javulé megbizhatésag: A komponenseket mar tobb miikod6 rendszerben kiprébaltak.

e Alacsonyabb projektkockazat: A komponensek dra és adaptaldsi kéltsége pontosabban
tervezhetd.

e A szaktudas jobb kihaszndlasa: A specidlis szaktudés a komponensben testesiil meg,
nem sziikséges minden projekthez kiilon alkalmazni.

e Szabvanyossag: A szabvdnyoknak valé megfelelést a komponensek garantdljdk. (in-
terfészek, kommunikéciés és GUI szabvéanyok)

e Gyorsabb fejlesztés: Egy rendszer kifejlesztése gyorsabb, ha kevesebb eredeti fejlesztést
igényel.
Hatranyok:

e No6vekvo karbantartasi koltségek: A komponens forrdskédja és tervezési dokumentécidja
hidnyaban névekszik a karbantartas koltsége.

o Az eszkoztamogatas hianya: A CASE eszko6zok gyakran nem tamogatjik az Gjrafelhasznalést.

e A ”nem mi taldltuk ki” jelenség: Egy teljes rendszer kidolgozasa nagyobb szakmai
kihivés.
¢ A komponenskonyvtarak karbantartasa: Sokba keriil a komponenskonyvtarak feltoltése

és folyamatos karbantartdsa.

e Az ujrafelhasznialhaté komponensek megtalalasa és adaptalasa: Még nem fejlédtek
ki a komponensek megtalalasat és adaptalasat segité altaldanos technikak.

51. Soroljon fel harom érvet, amely tamogatja a komponens alapi
ujrafelhasznalast és harmat, amely ellene szdl!

El6nyo6k:

1. A komponens alapu fejlesztés beillesztheté a szabalyos szoftverfolyamatba.

2. A komponensek az objektumosztalyoknal sokkal absztraktabbak és kiilonéllé szolgaltatasoknak

tekinthetok.

3. A legtobb programozasi nyelvben hivatkozhatunk kényvtarban tarolt komponensekre.
Hatranyok:

1. A komponensek inkompatibilitdsa miatt a koltség- és idémegtakaritds a vartnal kevesebb
lehet (integraciés munkék).

2. Nehézséget okozhat a komponensek megtaldldsa (nincsenek szabvanyok a komponensek
tulajdonsdgainak lefrdsara, hidnyoznak az egységes komponens konyvtarak).

3. A kovetelmények valtozasat kovetd evolicio lehetetlen, ha a komponensek nem cserélheték.

32

52. Mi a programgenerator alapu ujrafelhasznalas lényege? Mi-
lyen teriileteken alkalmazzak?

A generdtor alapu tujrafelhaszndlas akkor lehetséges, ha egy programgenerator tartalmazza egy

szaktertilet alapvetd ismeretanyagét. (pl. adatfeldolgozds). Az ilyen programgenerdtorok tar-

talmazzdk a szabvanyos algoritmusokat és fliggvényeket, és ezek paraméterezését kovetoen a ge-

nerator automatikusan el6allitja a programot. A szakteriiletre kidolgozott nyelven, vagy jabban
grafikus eszkozokkel lehet elkésziteni a rendszer modelljét.

53. Miért alkalmazzak a generator alapu tjrafelhasznalast els6sorban
az adatfeldolgozd, eBusiness rendszerek fejlesztésében?

A generdtor alapu udjrafelhaszndlas igen koltséghatékony, de viszonylag kevés szakteriilethez
léteznek ilyen rendszerek.(pl.: adatfeldolgozd, e-business).
Ezzel a médszerrel konnyebben allithatok el6 az alkalmazasok, mint a komponens alapti médszerrel.

54. Mi a komponens, milyen interfészei vannak?

A komponensek szolgaltatdsokat nyujtanak a rendszer szdméra, a végrehajtis helyétdl és a
megvalositas nyelvétol fiiggetleniil.

e Egy komponens egy fliggetleniil végrehajthatd program, amely egy vagy tobb végrehajthato
objektumbdl all.

e A komponensek interfészeit publikdljak és minden interakcié ezeken az interfészeken ke-
resztil folyik. A komponens forraskédja sok esetben nem hozzaférhetd, belsé allapotai
nem lathatoak.

Komponens interfészei:
e Szolgaltatott interfészek: A komponens altal szolgaltatott interfészek.

e Sziikséges interfészek: Azok az interfészek, amelyeket a komponenst hasznalé rendszer-
nek, vagy kornyezetének kell biztositania.

55. Milyen nyelvek és kornyezetek alkalmasak a komponensek
integralasara?

A legtobb programnyelvben hivatkozhatunk konyvtdarban tdrolt komponensekre. Leggyakrab-

ban szkriptnyelveket hasznalnak komponensek integralasara.

Koztes integracids keretrendszerek: komponensek kézti kommunikaciét és informacidcserét tamogatd
szabvanyok és osztalyok. (Ilyen példaul a CORBA, JavaBean, COM, DCOM, stb.)

33

56. Milyen hatranyai vannak az ujrafelhasznalhaté komponen-
sekkel torténo szoftverfejlesztésnek?

Az ujrafelhasznalhatésag és a haszndlhatdsdg ellentmondésa: Minél dltaldnosabb interfésszel ren-
delkezik, anndl inkdbb tjrafelhasznalhaté, de annal bonyolultabb, vagyis kevésbé hasznalhaté.

57. Mire szolganak az alkalmazasi keretrendszerek, hogyan cso-
portosithaték?

A keretrendszer absztrakt és konkrét osztalyok gyijteményébdl és a koztilk 1év6 interfészekbdl
allé alrendszer-terv.

A keretrendszerek tigy implementalhatdék, hogy a terv részeit komponensek hozzaaddsdval egészitjiik
ki. Altaldban viszonylag nagy, ujrafelhasznalhaté egységek, de nem 6nallé alkalmazéasok.

Az alkalmazdsok tobb keretrendszer integraldsaval hozhatdk 1étre.

A keretrendszerek csoportositasa:

e A rendszer infrastruktiariajanak keretrendszerei: A rendszer infrastrukturalis alap-
jainak (kommunikécié, felhasznéloi feliiletek, titkositas, stb.) fejlesztését tamogatjdk.

o Koztes, integracios keretrendszerek: Komponensek kozti kommunikéciét és informacidcserét

tamogaté szabvanyok és osztalyok. (Ilyen példdul a CORBA, JavaBean, JMI, COM,
DCOM, .NET, stb.)

e Villalati alkalmazasok keretrendszerei: Az egyes specidlis szakteriileti alkalmazédsok
fejlesztését tamogatjdk. A szakteriileti tudédst tartalmazzék (pl. pénziigy, telekommu-
nikécid).

58. Mi a ,,polcrdl levehet6” termék? Leginkabb milyen rendsze-
rekben alkalmazzak?

A, polcrdl levehets”, COTS — Commercial Off-The-Shelf rendszerek dltaldban komplett alkal-
mazasi rendszerek, amelyek API-val rendelkeznek. Legtobbszor rendszerszoftver termékek, az
egyszeriu komponenseknél nagyobb funkcionalitassal.

Nagy rendszerek épitésekor gyakran hasznélt stratégia a COTS termékek integrélasa. Kiilonosen

a gyors fejlesztést kivand eCommerce, eBusiness rendszerek korében. A fejlesztési id6 nagysagrendekkel
csOkkenthetd.

34

59.

60.

61.

Milyen nehézségei vannak a COTS termékek alkalmazasanak?

A funkcionalitas és a teljesitmény nem tarthaté kézben: A COTS rendszerek
sokszor kevésbé effektivek mint azt a reklamokban igérik.

A COTS rendszerek egytittmiikédése bizonytalan: A kilonb6z6 COTS rendszerek
eltéro feltételezésekkel késziiltek (pl. sorkezelés), ezért az integracié nehéz lehet.

Az evolucié ellendrizhetetlen: A szallité és nem a felhaszndlé hatdrozza meg.

A COTS termékek tamogatasa: A szillité altal biztositott tdmogatas gyakran nem
terjed ki a rendszer teljes élettartamara.

Miért dragabb egy tjrafelhasznalhaté komponens kifejlesztése
az egyedi komponens kifejlesztésénél?

Az ujrafelhasznalhaté komponensek meglévé komponensek altaldanositasaval hozhatok 1étre.
Ehhez nagy tapasztalat kell(tehdt hozzaért6 személy).

Az ujrafelhasznalhaté komponensek fejlesztési koltségei tobbszorosen meghaladjak az egy-
szerl, specifikus komponensek koltségeit. Ezt egyetlen projekt koltségeibél nem lehet
fedezni, ezért kialakultak olyan szoftverfejleszté véllalatok, amelyek specializalodtak az
ujrafelhasznalhaté komponensek fejlesztésére.

Mi az alkalmazascsalad? Miért alakultak ki az alkalmazascsaladok?

Alkalmazas csalad: Az alkalmazdscsaldd az alkalmazasi rendszerek olyan termékcsalddja,
vagy termékvonulata, amelyek egy kozos, szakteriilet-specifikus architekturara épiilnek (,kozos

mag77

).

Kialakuldsanak célja: A kialakulds célja az volt, hogy az alkalmazdscsaldad magjat (szoftver
magjat) ujra feltudjak hasznélni, amikor egy 1j alkalmazdst szeretnénk fejleszteni.

62.

Hogyan osztalyozhaté az alkalmazascsaladok specializacidja?

e Platform specializacio: Az alkalmazas egyes verziéi kiilonbozé platformokra késziilnek

(pl. Windows, Solaris, Linux, ..), de a funkcionalitds azonos.

¢ Konfiguracids specializacié Az alkalmazas egyes verzidi kiilonboz6 perifériakkal képesek

egyiittmiikodni.(A periféridkat kezel6 komponensek kiilonboznek.)

e Funkcionadlis specializacio Az alkalmazas egyes verzidi eltéré funkcionalis kvetelmények

kielégitésére késziilnek.(A funkciondlis komponensek kiilénboznek.)

35

63. Mi a kiilonbség a tesztelés és a belovés kozott? Melyiknek
mi a célja?
Kiilonbségek:
e A verifikacid és validacio feladata a hibak, hidnyossagok létezésének felfedezése.
e A bel6vés ezen hibdk helyének lokalizélasa és kijavitédsa.

e A bel6vés a program viselkedésére vonatkozé feltételezések felallitasaval kezddédik, majd
ezen feltételezések vizsgalataval préobalja megtalalni a hibdkat.

e A bel6vés sordn felfedezett hibdk javitasa utan djra kell tesztelni a programot.
Tesztelés célja:

e Felfedni a rendszerben (esetleg mar a tervek szintjén) rejlé hibdkat, nem arrél megbizo-
nyosodni, hogy hibamentes a rendszer.

e Meggy06z6dni arrdl, hogy a rendszer egy-egy konkrét miikodési szituaciéoban hasznalhatéan
miikodik.

Belovés célja:

e A felfedett hibak helyének lokalizalasa és kijavitasa.

64. Mi a célja a szoftver verifikacigjanak és mi a validacio felada-
ta?

Verifikacié: Annak ellendrzése, hogy valéban a megfelelé terméket készitjik el, vagyis, hogy a
szoftver megfelel a specifikacionak.

Validacié: Annak bizonyitdsa, hogy a terméket jol készitjiik el, vagyis hogy a szoftver valéban
a megrendeld elvarasainak megfeleléen miikodik (esetleg a specifikdcidval ellentétesen).

A szoftvernek azt kell megvaldsitania, amit a felhasznédlé valéban elvar téle.
A verifikacié és validacié (V&V) folyamata a szoftver teljes életcikluséra kiterjed, a szoftver
folyamat minden fazisiban szerepet kap.

65. Miért célszerii a szoftvertesztelés mellett atvizsgalast (ins-
pekcid) is tartani?

Szoftver-atvizsgalds (inspekcid): A rendszer reprezenticidjénak elemzése (Kovetelmény-

specifikécid, tervek, grafikus dbrazolasok, forrdaskéd). A forraskdd elemzése automatizalhaté. (Statikus

verifikacid)

Miért célszerii inspekciét is tartani?

o A szoftver atvizsgdlas célja a hidnyossagok felderitése, a koltséges tesztelés helyett a hibak
kb. 60 %-a felfedhetd az atvizsgalas sordn.

36

A fejlesztési folyamat kezdetétdl alkalmazhatd, a dokumentumok (kévetelmények, tervek)
atvizsgalasaval.

Egy atvizsgdlas soran tobb hidnyossig felfedezhetd, amig egy teszt tobbnyire egy hibat fed
fel.(Legalabbis, ha egy hibat detektdl, a tesztelést abba kell hagyni, és a hiba kijavitasat
kovetSen 1jbdl elolrél kell kezdeni.)

Sok koltséges tesztelést elézhet meg.

66. Mi a programtesztelés feladata? Milyen alaptipusai vannak?

Szoftvertesztelés: A szoftver implementacidéjanak tesztadatokkal vald futtatdsa és a viselkedés
megfigyelése(Dinamikus verifikdcid).
Tipusai:

e Hianyossagok tesztelése

— Feladata a rendszer hibainak és hidnyossdgainak felfedése.
— Fajtai:
+ Komponens tesztek:
Fekete doboz, ekvivalencia-osztalyok, struktirateszt, itvonal-teszt

* Integréacios tesztek:
»Fentrél lefelé /lentrél felfelé”, interfészteszt, stressz-tesztek

* Objektumorientalt tesztelés

e Statisztikai tesztelés: A rendszer teljesitményének és megbizhatésaganak tesztelése,
valés helyzetekben (valés felhaszndléi inputtal és gyakorisaggal).

67. Mire szolgal a szoftver atvizsgalasa? Mi a kiilonbség az atvizsgalas
és a tesztelés kozott?

A szoftver atvizsgdlasdnak célja: A szoftver dtvizsgalds célja a hidnyossigok felderitése, a
koltséges tesztelés helyett a hibdk kb. 60 %-a felfedhetd az dtvizsgélds sordn.
Kiilonbségek:

o Egy atvizsgalas soran tobb hidnyossdg felfedezhetd, amig egy teszt tobbnyire egy hibat fed
fel.(Legalabbis, ha egy hibat detektdl, a tesztelést abba kell hagyni, és a hiba kijavitasat
kovetden 1jbdl elolrél kell kezdeni.)

o Az 4tvizsgdlds mér fejlesztési folyamat kezdetétél alkalmazhaté, a dokumentumok (kove-
telmények, tervek) atvizsgaldsival, mig a tesztek nem.

e Az inspekci6 alkalmas eszkoz arra, hogy ellendrizze, megfelel-e a program a specifikdcidnak.

37

68. Milyen hianyossagokat lehet els6sorban felfedezni a progra-
mok atvizsgalasa soran?
e Dokumentumokban és forraskédban rejlé hidnyossagok.

e Kovetelményekben és tervekben 1év6 hidnyossdgok felderitése.

69. Mi a Cleanroom szoftverfejlesztési folyamat lényege?

o A szoftverhibdk elkeriilését, nem pedig megtaldlasat és kijavitasat célzé szigoru atvizsgalasi
folyamat. (A név a félvezeté-gyartasbol szarmazik)

e A rendszer komponenseinek tesztelését helyettesiti dtvizsgalasokkal, megfelelnek-e a spe-
cifikaciénak.

e Inkrementalis fejlesztési mddszer, el6szor a kritikus inkrementumokat szallitja le.
o Statikus verifikdcié (szigoru atvizsgéalasok)
e A rendszer statisztikai tesztelése.

e Formalis specifikécié (dllapotdtmenet modell, strukturdlt programozas, csak néhény vezérlési
és adatabsztrakeids konstrukeié hasznélhato)

70. Ismertesse a grafikus felhasznaléi kezelofeliiletek tervezésének
alapelveit!

Alapelvek:

e A felhaszndléi jartassag figyelembevétele: A felilletnek olyan kifejezéseket és fogal-
makat kell hasznédlnia, amelyeket az atlagos felhasznalé ismer.

o A feliilet konzisztenciaja: Azonos meniiknek és parancsoknak azonos formatummal kell
rendelkeznitlik, hasonlé miiveleteket hasonlé médon és helyen kell jelezni és megvaldsitani.

e Minimalis meglepetés: A felhaszndloban kialakul egy modell a rendszer miikodésérél. A
hasonlo tevékenységeknek hasonlé hatast kell kivaltaniuk, kiilénben a rendszer kellemetlen
meglepetéseket okoz felhasznalé szamaéra.

e Visszaallithatésag: Minden helyzetben szamitani kel arra, hogy a felhaszndlé hibazhat,
ezért gondoskodni kell arrdl, hogy a hibét kijavithassa: Visszavonasi lehetdség (undo),
esetleg tObbszintli. Veszélyes tevékenységek megerésitése (pl. torlés), ,Puha torlés”

e A felhasznalé tamogatdasa: A felilletnek kénnyen elérhet6 segitd, vagy sugé rendszer-
rel kell rendelkeznie. A sigdt strukturalni kell, nem szabad til sok informéciét koézolni.
Elonyos a helyzetfiiggo siugd alkalmazésa.

e A felhasznaldk sokfélesége: Az alkalmi felhaszndlék tobb tdmogatast, a gyakorlott
felhasznalék egyszeriibb, gyorsabb miikodést varnak.

38

71. Miért fontos a grafikus felhasznaléi kezelofeliilet gondos ter-
vezése?

A felhasznalé a kezel6feliileten keresztiil keriil kapcsolatba a rendszerrel, ennek alapjan
alkot véleményt, csak ezutdn ismeri meg a rendszer funkcionalitasat.

A rosszul tervezett kezeltfeliilet gyakran katasztrofdlis hibakhoz vezet.

A szegényes, vagy kivetkezetlen felhasznaldi kezelofeliilet sok rendszer bukasahoz vezetett.

Nagy fejleszt6 szervezetekben szakértoket alkalmaznak (grafikus, pszicholégus, szakteriileti
szakértd), de kis/kozepes cégeknél gyakran a kezel6feliilet megtervezése is a szoftver tervezd
feladata.

72. Miért célszerii egyes rendszerekben kiilonb6z6 felhasznaléi
feliileteket kidolgozni a gyakorlott és az alkalmi felhasznalék
szamara?

Az alkalmi felhasznaldk tobb tamogatast, a gyakorlott felhaszndlék egyszertibb, gyorsabb miikodést

varnak. Az alkalmi felhasznalok inkdbb az ablakos, kattintgatés felhasznalds feliileteket szere-

tik, vagy a természetes nyelven miikéd6 parancssoros alkalmazasokat, mivel ezek megtanulasa

konnyebb. Mig a gyakorlottabb felhasznaldk inkdbb a terminélos (parancssoros), vagy meniis
felhasznaldi feliileteket kedvelik a gyors miivelet végrehajtas miatt.

73. Milyen alapelemeket hasznalunk a grafikus felhasznaléi ke-
zelofeliilleteken?

e Ablakok: Az ablaktechnikdval tobb ablakban egyszerre tobbféle informacié jelenithetd
meg.

e Tkonok: Az ikonokkal az informécié fajtai jelolheték: allomanyok, folyamatok, stb.

e Meniik: A meniitechnikdval a parancsok egy strukturalt meniibol vélaszthaték ki. A
felhasznalénak nem kell egy parancsnyelvet megtanulnia és parancsokat begépelnie.

e Pozicionalas: Egér, vagy mds eszkoz alkalmazhat6 egy mentipont kivalasztasara, vagy
egy ablakban a lényeges elemek meg- vagy kijelolésére.

o Grafika(szinek, képek): Grafikus elemek és szinek alkalmazdsa a szoveg mellett (vagy
helyett) dttekinthet6bbé teszi a képernyot.

74. Milyen eszkozoket alkalmazhatunk a grafikus felhasznaléi ke-
zelofeliileten a felhasznalé tamogatasara?

A kezeldfeliilet tervezésekor figyelembe kell venni a felhasznalok igényeit, gyakorlatat és képességeit.
A feliilletnek konnyen elérheté segits, vagy sigd rendszerrel kell rendelkeznie. A sugoét struk-
turdlni kell, nem szabad tul sok informaciét kozolni. Elényos a helyzetfiiggo sugd alkalmazasa.

39

75. Milyen elonyei és hatranyai vannak a parancsnyelv alkalmazasanak
a felhasznaldi interakciokban?

A felhasznalé parancsokat gépelve utasitja a rendszert (pl. Unix)
Parancsnyelv el6nyei:

e Egyszerii, olcsé termindlon is alkalmazhatd,

e Egyszertlien feldolgozhat6 (pl. fordité technikaval)

Bonyolult, egymésba agyazott parancsok is kezelhetdk,
e Rugalmas.
Parancsnyelv hatranyai:
e Nehezen tanulhatd, az dtlagos felhaszndlé szamaéara bonyolult.
o Gépelési gyakorlatot kivan.
e A hibakezelést (hibajelzés, visszavonés) nehéz megoldani.

A parancsnyelveket a gyakorlott felhaszndlé szaméra lehet alkalmazni. A meniirendszer alter-
nativdjaként célszeri biztositani.

76. Sorolja fel és jellemezze a felhasznaldi interakcidk fajtait!

Kozvetlen manipulacié: A felhaszndld kozvetleniil a képerny6én lathaté objektumot kezeli
(pl. torléshez kukaba viszi).

e Eldbnyei:

— Konnyen tanulhaté és gyors,

— A felhasznélé azonnal visszajelzést kap, igy a tévedés gyorsan visszavonhato.
e Hatranyai:

— Bonyolult lehet a felhasznalé tevékenységérdl (szandékardl) a megfeleld informéciét
begylijteni a program szamara,

— Csak akkor hasznélhato, ha a feladatok és objektumok egyértelmiien megkiilonboztet-
het6 ikonokkal reprezentalhatok.

Meniikivalasztds: A felhaszndlé a rendszer altal felkindlt (sokszor helyzet-fliggd) listdbdl
valaszthat, a kijelolést egér, vagy kurzormozgatdssal, roviditett név beirassal is végezheti. Al-
kalmazhat6 az egyszerii (pl. érint6képernyds) termindlokon is.

e Elbnyei:

— A felhasznélénak nem kell parancsokat megjegyeznie,
— Kevés gépelést igényel és a hibak konnyen kivédhetok,
- Allapotfiiggé sugo alkalmazhatd.

40

e Hatranyai:

— Az akcidk kozotti logikai Osszefiiggések (and, or) nem jelenitheték meg,
— Kevés valasztasi lehet6séget enged meg, a sok lehet6séghez strukturalni kell a meniiket.

— A gyakorlott felhaszndlé szamara lassu.

ﬁrlapkitﬁltés: Az trlap az aktuélis allapothoz alkalmazhaté. Olyan rendszerekben alkal-
mazzak, ahol sok adatot kell bevinni (pl. adatrogzités).

e Elbnyei:

— A felhasznaldi hibak felfedhetok és jelezhetdk, illetve kivédhetok,
— Legordiilo valasztéasi lehetdséggel sok felhasznaldi tévedés kizarhato,

— Konnyen megtanulhato.
e Hatranyai:
— Nagy képernyofeliiletet foglal.

Parancsnyelv: A felhasznilé parancsokat gépelve utasitja a rendszert (pl. Unix). A parancs-
nyelveket a gyakorlott felhasznalé szamara lehet alkalmazni. A meniirendszer alternativajaként
célszerii biztositani.

¢ Eldbnyei:

— Egyszeri, olcs6 terminalon is alkalmazhatd,
— Egyszeriien feldolgozhaté (pl. fordité technikéval)
— Bonyolult, egymésba agyazott parancsok is kezelhetok,

— Rugalmas.
e Hatranyai:

— Nehezen tanulhaté, az atlagos felhasznalé szaméra bonyolult.
— Gépelési gyakorlatot kivan.

— A hibakezelést (hibajelzés, visszavonés) nehéz megoldani.
Természetes nyelv:

e A felhasznalé a parancsokat természetes nyelven gépeli be, amelynek szotara korldtozott.
Az ilyen rendszerek altalaban specialis alkalmazasi teriiletet szolgalnak ki.

e A természetes nyelv megfeleld az alkalmi felhaszndlé szaméara de a gyakorlott felhasznalo
nem kedveli a til sok gépelés miatt.

e Beszédfelismeréssel kombinalva — szilikitett kifejezésekkel — ma is hasznaljak.

41

7.

Milyen lehetoségek vannak az informacié grafikus megjelenitésére?

A rendszer megjeleniti a felhasznald szaméra kozlendo informacidkat.

Ez az informdcié megjelenhet kozvetleniil szoveges formaban, vagy méds médon (pl. grafi-
kusan, akdr hang kiséretében).

A jél tervezett rendszerekben maga az informécié és az azt megjelenité szoftver kiilonvalik.

A Model-View-Controller (MVC) édltaldnosan alkalmazott architektira az adatok tobbféle
megjelenitését.

Az informécié lehet statikus informacio:

Ertéket kap a munkafdzis (session) kezdetén és ez a session ideje alatt nem valtozik meg,

Lehet numerikus, széveges, vagy grafikus.

Vagy dinamikus informacié:

e Megvaltozik a munkafizis alatt és a megvaltozott értéket a felhasznald szaméra meg kell

jeleniteni,

e Lehet numerikus, szoveges, vagy grafikus.

78.

Irjon példakat, amikor az informaciot célszerii grafikusan,
analég moédon megjeleniteni.

Digitalis megjelenités:

e Pontos értékeket kozol

e Kevés helyet foglal a képernyon.

Analég megjelenités:

e Egy pillantassal attekintheto

e Relativ értékeket is képes kozolni:

— Egy allandé értékhez képest (egy hatdrhoz kozeli értéket szinnel még kiilon ki lehet
emelni), vagy

— Korabbi minimalis-maximalis értékhez képest

42

79.

Milyen szabalyokat kell betartani a szinek alkalmazasakor a
grafikus felhasznaloi kezelofeliileten?

e Ne hasznéljunk til sok szint. Egy feliileten 4-5, egy rendszerben 7-8 szin a maximum.

e El0szor tervezziink monokrom feliileteket, utana adjuk hozzé a szineket.

e Az allapotvéltozasokat jelezziik szinvaltassal.

o A végrehajtando feladatokat jeloljiik szinkdddal, a kiilénbozo feladatokat kiillonboztessiik
meg szinekkel is.

e A szinkédolast alkalmazzuk kévetkezetesen a teljes rendszerben.

e Egyes szinkombinacidk zavardak, vagy farasztjik a szemet.

80. Milyen szempontokat kell figyelembe venni a rendszer iize-
neteinek szovegezésekor?
Szempontok:

e A hibailizenetek tervezése kiilontsen fontos: a kezd6 felhasznild ezekkel talalkozik a leg-
gyakrabban. A rossz, vagy szdmaéra érthetetlen hibaiizenetek miatt elutasithatja a rend-
szert.

e Agz tizeneteknek udvariasnak, elérevivonek és kovetkezetesnek kell lennie.

e A hibaiizenetek tervezésének meghatarozé tényezoje a felhasznald hattere, gyakorlata.

Az tizenetek szovegezése:

Szovegkornyezet: A tdjékoztaté rendszernek mindig a felhasznalo tevékenységéhez és a
rendszer aktudlis allapotdhoz igazodd tizenetet kell adnia.

Tapasztalat: A tapasztalt felhasznalét mér idegesiti az a kifejté magyardzat, amit a
kezd6 felhasznalé még hasznosnak tart és igényel. A téjékoztatd rendszernek mindkét
tizenettipust fel kell kinalnia.

Képzettség: Az iizeneteket a felhasznald képzettségéhez és gyakorlatdhoz kell igazitani.
A kiilonboz6 felhasznaldk szamaéara szant iizeneteket kiilonb6z6 modon, a szaméra érthetd
terminoldgidaval kell megfogalmazni.

Stilus: Az iizeneteket pozitiv médon épito jelleggel kell megfogalmazni. Egy iizenet soha
nem lehet sérté és nem gunyoldédhat.

Kultara: Hasznos, ha az iizenetek tervezdje tisztdban van azzal a kulturaval, ahol a
rendszert hasznélni fogjdk. Az egyik orszagban megfelels iizenetek a kulturalis kiilonbségek
miatt egy masik orszagban elfogadhatatlanok.

43

81. Miért célszerlii a sugérendszerbe tobb belépési pontot biz-
tositani?

A sig6 tervezése:
e A felhaszndlé segitségért, informaciéért fordul a sigdhoz.
e A sigé tervezésekor mindkét igényt figyelembe kell venni.
e TGbbféle lehetdséget kell biztositani, ehhez tobb belépési pontra van sziikség.

e A j6 sugorendszer hierarchikus szerkezetli, de bonyolult halés strukturaji, ahol az in-
forméciés egységek kozott sokféle kapcesolat van.

e ToObb ablak alkalmazasaval érthet6vé tehet6 a bonyolult hierarchia.
A sugoérendszer hasznalata:

e ToObb belépési pontra van sziikség, hogy a felhaszndlé a rendszer kiilonb6zé allapotaibdl
léphessen be.

e Ugyanakkor hasznos azt jelezni, hogy éppen hol jar a stigé hierarchidjaban.

e (Célszerli a korabban bejart ttvonalat is megjeleniteni, mert a bonyolult haléban kénnyen
elvész a felhaszndlé. Ez a visszalépéseket is tamogathatja.

82. Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok
szamat csokkenteni?

Teszteset: A tesztesetek a teszthez sziikséges inputok és a vart outputok specifikdcioi.
Tesztadat: A tesztadatok a rendszer tesztelésére kidolgozott input adatok.
Tesztadatok szamanak csokkentése: Ekvivalenciaosztalyok segitségével ?

83. Mi a ,,fekete doboz” és a ,,fehér doboz” tesztelési stratégia
lényege? Melyiket milyen esetben lehet alkalmazni?

Fekete doboz tesztelés:

e Funkcionalis tesztelésnek is nevezik.

A programot fekete doboznak tekintjiik, a tesztesetek a programspecifikacié alapjan késziilnek.

Nem foglalkozik a program implementéaciéjaval.

A tesztek tervezése a szoftverfolyamat korai szakaszéban megkezd6dhet.(Egyes Agilis médszereknél
el6bb, mint a program tervezése!)

Az el6relathatéan hibat okozé tesztesetek tervezéséhez szakteriileti ismeretekre van sziikség.

44

Fehér doboz tesztelés (Struktirateszt):

e Fehér doboz vagy iivegdoboz tesztelésnek is nevezik, mert a tesztek a program struktirajanak,
implementaciéjanak ismeretében késziilnek.

e A struktira és a kéd ismeretében ijabb ekvivalencia-osztalyok definidlhatdk.

o A tesztel$ a tesztesetek készitésekor elemzi a kddot, hogy biztositsa minden utasitéds leg-
alabb egyszeri végrehajtdsat (az Osszes lehetséges t-kombindcié tesztelésére nincs redlis
lehet3ség).

Alkalmazasi teriiletek:

e Az objektumokhoz kapcsolédd miiveletek tesztelése: Fliggvények, vagy eljarasok, fekete-
vagy fehér doboz eljarassal tesztelhetok.

e Fekete doboz tesztek: integriciés teszt, objektumosztalyok tesztelése.

84. Mit jelent a tesztadatok ekvivalencia-osztalyozasa? frjon példat
az ekvivalencia-osztalyok alkalmazasara.
Ekvivalencia-osztalyozas:

e A rendszer input és output adatait valamilyen kozos jellegzetesség szerint csoportositjak,
amelyekre a rendszer hasonlé médon reagal.

e A fejlesztok legtobbszor az inputok tipikus értékeit veszik figyelembe.

e A teszteseteket a hatdrértékek kozelében és az osztalyok kozepébdl célszerli kivalasztani.
Példa: Ha az input 5 jegyti valés szam 10.000 és 99.000 kozott, akkor az ekvivalencia-osztalyok:

e Azok a szdmok melyek kisebb 10.000-nél

e Azok a szamok melyek 10.001-99.000 kozott vannak

e Azok a szamok melyek 99.900-99.999 koz6tt vannak

e Azok a szamok melyek 99.999-nél nagyobbak

85. Mi a célja az utvonaltesztelésnek? Mi a ciklomatikus komp-
lexitas, hogyan szamithato?

Utvonal tesztelés célja:

e Az dtvonal tesztelés strukturalis tesztelési stratégia. Célja, hogy minden fiiggetlen dtvonalon
végighaladjon a teszt. Ekkor legalabb egyszer biztosan sor keriilt minden utasitas végrehajtasara,
és minden feltételes utasitds igaz és hamis eseteire.

e A kiindulas a program folyamat-grafja, amely a dontéseket reprezentdlé csomoépontokbdl
és a vezérlés iranyat képviselo élekbdl all. Eldallitasa viszonylag egyszerii, ha programban
nincs goto.

45

e Csak kisebb programok tesztelhetdk ilyen mdédon.
Ciklomatikus komplexitas:

o A fliggetlen utak szama a programban.

e CC megmutatja, hogy hany tesztet kell végrehajtani az 6sszes fliggetlen Ut végrehajtasihoz,
vagyis minden vezérl6 utasitas legalabb egyszeri végrehajtasahoz.

Nem lehet a fliggetlen utak Gsszes kombindacidjat végrehajtani.

e A dinamikus programelemzok a forditaskor kiegészité kédot adnak a programhoz, amelyek
mérik, hogy az egyes vezérld utasitasok hényszor keriiltek végrehajtasra.

Ciklomatikus komplexitas szamolasa:

CC = Elekszama — Csomépontokszama + 2

86. Ismertesse az integracios tesztelési stratégiakat! Mi az osszefiiggés
e stratégiak és a szoftverfolyamat modellje kozott?

Integracios tesztelés:

e Teljes rendszerek vagy alrendszerek tesztelése, amelyek el6zoleg mar tesztelt komponen-
sekbdl allnak.

A komponensek egyiittmiikodésébol szarmazd hibak feltdrasara szolgal.

Az integracios teszt fekete doboz tesztelés, a tesztek a specifikdcidobol szarmaznak.
e Komplex rendszerben az észlelt hibas eredménybdl nehéz a hiba helyére kovetkeztetni.

e Az inkrementdlis integraciés tesztelés némileg segit.
Integracios tesztelés stratégiai:

e Fentrol lefelé tesztelés:
A rendszer magas szintli komponenseit még a tervezés és az implementicié alatt in-
tegraljak. A még el-nem késziilt komponenseket azonos interfésszel késziilt ,,csonkok”
helyettesitik, ahol sziikséges. Ezeket fokozatosan kicserélik a kész elemekkel.(Evolicids
fejlesztésnél alkalmazhato)

Ateszielées
: sorrendje :
1. szint »1. szint -
2. szint 2. szint 2. szint

oy S0 S D

3. szintl csonkok

46

e Lentrdl felfelé tesztelés:
A hierarchia alsoé szintjein 1évé modulok integralasaval és tesztelésével kezdik, ahol a maga-
sabb szinteket tesztgeneratorok helyettesitik.(Inkrementdlis és djrafelhasznélds alapu fej-
lesztésnél alkalmazhatd)

Teszt
meghajtok
‘ N. szint| ‘ N. szint ‘ | N. szint ‘ ‘ N. szint ‘ | N. szint ‘

Atesztelés
sorrendje

Teszt
meghajtok

A gyakorlatban a kett6 kombindciéjat hasznaljdk.
Tesztelési stratégiak:

N-1 szint

o Szerkezeti validacié:
A fentrdl lefelé teszteléssel felfedhetdk a hibak a rendszerarchitektiuraban és a magas szintii
tervekben, még a folyamat korai szakaszdban. Ez a lentrdl felfelé tesztelésnél csak késobb
lehetséges.

¢ Rendszerdemonstracio:
A fentrol lefelé integracié koran lehet6vé teszi a korlatozott demonstraciét. Ujrafelhasznalhatd
komponensek alkalmazasaval a lentrol felfelé megkozelitéssel is lehetséges.

e Tesztimplementacio:
A programcsonkokat nehéz implementalni, a lentrdl felfelé tesztelés tesztmeghajtoit vala-
mivel egyszeriibb, de mindenképpen jelentos addicionalis fejlesztést igényel.

e Tesztmegfigyelés:
A tesztek eredményét mindkét mddszernél nehéz megfigyelni. Mesterséges kornyezetre,
extra kédra van szikség. Kiulonosen a fentrdl lefelé megkozelitésnél, ahol a magasabb
szintek sokszor nem szolgaltatnak outputokat.

87. Mi az interfésztesztelés, milyen hibakat lehet felfedni ilyen
modon?

Interfésztesztelés:

47

e Interfésztesztelésre akkor van sziikség, amikor egy nagyobb rendszer Osszeépitésekor mo-
dulokat vagy alrendszereket integralunk.

e Az interfésztesztelés az objektumorientdlt fejlesztésnél fontos (kiilonésen objektumok és
osztélyok ujrafelhaszndldsakor), mert az objektumokat az interfészeikkel definidljuk.

Felderithet6 hibak:
e Célja az interfészek specifikicids- (félreértések), vagy implementéciés hibainak felfedése.
Nem felderithetd hibak:

e Egyedi objektum tesztelésével az interfészhibdkat nem lehet felfedni. A hibdk az objektu-
mok kozti interakcidkban jelentkeznek, nem egy egyedi objektum sajatossidgaiként.

88. Melyek a tipikus interfészhibak? Milyen elveket kell alkal-
mazni az interfésztesztelés tervezésekor?

Tipikus interfészhibak:

e Interfész hibas alkalmazasa:
Egy hivé komponens hibaja lehet: rossz tipust vagy sorrendii paraméterek, hibas szdmu
paraméter, stb.

o Interfész félreértése:
A hivé komponens hibasan értelmezi az interfészt, vagy a hivott komponens valaszait.

e Id6zitési hibak:
A hivé és a hivott komponens kiilonbozé sebességgel miikédik (osztott memoria, vagy
tizenettovabbitd interfész esetén), és a hivott nem aktudlis informéciét kap.

48

Interfésztesztelés iranyelvei:

o A teszteket gy kell tervezni, hogy a paraméterek értékei a hatarértékek kozelében legye-
nek.

e A pointer jellegli paramétereket null értékkel is tesztelni kell.

e Olyan tesztesetet is tervezni kell, amely a hivott komponens hibdjat okozza. (A speci-
fikdcids hibak tobbsége a hibdk értelmezésébdl fakad.)

o Uzenettovabbit6, vagy interaktiv rendszereknél terhelési (stressz) tesztet kell végrehajtani.

e Osztott memoridju interfészeket a komponensek aktivalédédsa sorrendjének megvaltoztatasdval

is tesztelni kell (szinkronizaciés hibék).

89. Miért és miben kiilonbozik az objektumorientalt tesztelés a
funkcidorientalt rendszerek tesztelésétol?

Objektumorientalt tesztelés:
e A komponens- és integracios tesztelés az objektumorientalt rendszereknél is alkalmazhaté.
e Fontos kiilonbségek:

— A tesztelend6 objektumok komponensként gyakran nagyobbak, mint az egyszerii
fiiggvények.(A fehér doboz tesztelés nehezebben alkalmazhatd.)

— Az objektumok lazdn kotédnek, és a rendszernek/alrendszernek nincs egyértelmii
teteje.

— Az ujrafelhasznalt komponensek kédjahoz nem mindig lehet hozzdjutni, elemezni.
Megkiilonboztetések:
e A funkcibéorientalt rendszereknél:

— A rendszer alapveté program-egységei (figgvények — modulok) jél elkiilénithetok,
— Ezek kiilon tesztelhetok.

e Az objektumorientalt rendszerek esetén:

— Az ilyen megkiilonboztetés nem lehetséges, az objektumok lehetnek egyszerii (pl.
lista), vagy komplex entitdsok (pl. egy alrendszer objektumai),

— Olykor nincs egyértelmii hierarchia az objektumok kozott, ezért az integracids tesztek
(fentrol lefelé, vagy lentrél felfelé) nem alkalmazhatdk.

49

90.

91.

Milyen szinteket kiilonboztethetiink meg az objektumorientalt
tesztelésben?

Az objektumokhoz kapcsol6dé miiveletek tesztelése:
Fiiggvények, vagy eljarasok, fekete- vagy fehér doboz eljarassal tesztelhetok.

Objektumosztalyok tesztelése:
A fekete doboz eljaras alkalmazhaté, de az ekvivalencia-osztalyokat a miiveletsorozatokra

is ki kell terjeszteni.

Egyiittmiik6d6 objektumcsoportok tesztelése:
Forgatékonyv alapjan kijelolheté az objektumok csoportja.

Objektumorientalt rendszer tesztelése:
A rendszerkévetelmények verifikacidja és validacidja méas rendszerekhez hasonléan térténhet.

Mi az objektumorientalt csoporttesztelés? A rendszerterv
milyen elemeit lehet felhasznalni a csoportteszteléshez?

Objektumorientalt csoporttesztelés:

e Haszndlati eset vagy forgatékonyv alapjan: A tesztek a felhaszndl6i interakciékon

alapulnak. Elonye, hogy a felhasznalok altal leggyakrabban hasznélt részeket teszteli.

e Szdiltesztelés: A rendszernek egy eseményre adott valaszat vizsgalja, amint az a rend-

szeren keresztulhalad.

e Objektum egyilittmiikodési teszt: Az objektumok egylittmiikodésének egy sorozatéat

vizsgalja, amely akkor ér véget, ha egy objektummiivelet nem hiv meg més objektum-

szolgaltatast.

Elemek:

e Forgatékonyv alapjan kijelolhet6 az objektumok csoportja.

92.

Mi a szoftver koltségbecslés célja? Milyen kérdésekre keresi
a valaszt?

Kérdések:

e Mekkora munkdt igényel egy feladat elvégzése?

e Mennyi id6be keriil a feladat végrehajtdasa?

e Mennyi a tevékenység Osszes koltsége?

Koltségbecslés célja: Valaszt adni a kovetkezo koltségelemekre a szoftverfejlesztési projekt
soran:

e A hardver és szoftver koltségei a karbantartassal egyiitt,

o Utazasi és képzési koltségek,

e Munkakoltségek (bér, kozteher, helység, kisegité munkak, kommunikacié, rekredcio, ...)

20

93. Milyen modszereket ismer a szoftver koltségének elGzetes
becslésére?

Funkciépontok:
e A program jellemzo6inek kombinacidjan alapuld, nyelv-fiiggetlen mdodszer.
e Méri az alabbi jellemzsket:

— Kiils6 bemenetek és kimenetek
— Felhasznaldi interakcidk
— Kiils6 interfészek

— A rendszer altal hasznalt fajlok
e Mindegyikhez silyozasi tényez6t rendel:

— Egyszerii kiils6 bemenet: 3

— Bonyolult bels6 allomanyok: 15

e A sulyozasi tényezét egy szervezeten beliil, hasonlé jellegii szoftverek készitése soran gyiijtott
statisztikak alapjan finomitja.

A funkciéopontok szamitasa:

e A funkciépontok (FP) alapjan a kdédsorok szaméra (LOC — Lines Of Code) lehet kdvet-
keztetni:

e LOC = AVC * FP ahol:
AVC nyelvfiiggs szorzéfaktor (200-300 az assembly és 2-40 a 4GL nyelvekre)

e A funkciépont szamitds nagyon sok szubjektiv elemet tartalmaz.

e Automatikus szamitdsa nem lehetséges, mert a specifikdcié alapjan kell a funkciépontokat
megbecsiilni.

Objektumpontok:

e 4GL vagy més magas szintli nyelvek esetén a funkcidépontok alternativaja. Magas szinti
specifikicié alapjan konnyebben becsiilheto.

o Az objektumpont (NTC) nem azonos az objektumok szamdval, hanem az aldbbiakbdl
szamithato:

— A kiilon megjelenitendé képerny8k szama, az egyszertitl (1), a nagyon bonyolultig
3);
— A készitend§ jelentések szdma (2 — 5 — 8)

— A 4GL kiegészitése miatt sziikséges 3GL modulok szama (10)

o1

A termelékenység becslése:

e Valésideji, beiiltetett rendszerek: 40 — 160 LOC / hé
e Rendszerprogramok: 150 — 400 LOC / hé

o Kereskedelmi alkalmazasok: 200 — 800 LOC / hé

e Objektumpontban szdmolva a termelékenység 4 és 50 pont / hénap kozotti, az eszkoztamogatottsdgtol
és a fejleszték képességeitdl fiiggden.

Algoritmikus koltségmodellezés COCOMO:
e Empirikus modell, a projektek gyakorlatabol gytijtott adatokon alapul.
o J6l dokumentalt, hosszu tapasztalat 4ll mogotte. (elsé verzié: 1981)
e A COCOMO 2 (1995) harom szint{i modellt alkalmaz:

— Korai prototipuskészités szintje
— Korai tervezés szintje

— Poszt-architekturalis szint

94. Hogyan értelmezheto6 a szoftver minosége? Milyen tényezokkel
lehet a szoftverminoséget jellemezni?

A szoftver minGsége:
e A mindség altalaban azt jelenti, hogy a termék megfelel specifikdciéjanak.
e Mindenki mast ért mindség alatt:

— A felhasznalé: A szoftver azt végezze amit elvarok téle, és gy miikodjon ahogy
én kivanom.” (Ebbe beleérti a gazdasigossagot, megbizhatdsdgot, stb. és a ki nem
mondott elvarasokat is.)

— A fejleszts: , A szoftver feleljen meg a specifikdcionak” (Beleérti a karbantarthatdsagot,
ujrafelhasznalhatdésagot, stb.)

e Az ISO definicidja: ,,Annak mértéke, amennyire a szoftver tulajdonsdgai (a mindségi
jellemzék) megfelelnek a kovetelményeknek.”
De: mint tudjuk a szoftverkovetelmények gyakran nem teljesek és nem kovetkezetesek A
szoftver specifikaciéjat nehéz teljessé tenni, tehat a specifikdcionak valé megfelelés nem
garantalja, hogy a felhaszndlé elégedett lesz a termékkel.

Tényezok:
e Biztonsagossag
e Biztonsag

o Megbizhatdsag

92

96.

Rugalmassig
Robusztussag
Erthetéség
TesztelhetOség
Adaptélhatosig
Modularitas
Komplexitas
Hordozhatoség
Hasznalhatésag

Ijjrafelhasznélhatéség

Hatékonysag
Megtanulhatésag
Ismertesse egy szervezeten beliil a minGségkezelés tevékenységeit!

Miné6ségbiztositas: Szabvanyok és szervezeti eljarasok alkalmazasa.

Mindségtervezés: Egy konkrét projekthez alkalmas eljarasok és szabvanyok kivélasztasa
és adaptalasa.

Mindéségellendrzés: Annak biztositdsa és ellenOrzése, hogy a fejleszté csapat alkalmazza
a mindségi szabvanyokat és eljarasokat.

A mindségkezelés lehetdleg legyen fiiggetlen a projektvezetéstol.

Miért fontosak a minoségi szabvanyok a szoftverkészitésben?
Mi a termékszabvany és a folyamatszabvany kozti kiilonbség?

Miért fontosak?

A szabvanyok adjdk a keretet a hatékony mindségkezeléshez.
Lehetnek: nemzetkozi-, nemzeti-, szervezeti- és projektszabvanyok.

A szabvényok a legjobb gyakorlat és a korabbi projektek hibdinak Osszegytijtott adatai
alapjan késziilnek.

Kiterjednek a szoftvertervezés terminologidira, programozasi nyelvekre, jelolésrendszerre,
programozasi médszerekre, ellenorzésre, validalasra.

Folytonossagot biztositanak egy valtozé szervezetben, az 1j résztvevok a helyi szabvanyok
megismerésével hamarabb be tudnak kapcsolédni a munkéba.

93

Termékszabvanyok: A termékszabvanyok olyan tulajdonsiagokat irnak el6, amelyek a termék
minden elemére nézve kotelezoek:

e Dokumentdcids szabvanyok (pl. dokumentumok szerkezete)
e Kdédolasi szabvanyok (programozési stilus, programnyelv haszndlat)

Folyamatszabvanyok: A folyamatszabvanyok a szoftverfejlesztés alatt kdvetendd folyamato-
kat hatdrozzak meg (pl. a specifikdcio, tervezés, stb. folyamata, mddszerei, dokumentumai).

97. Mi az osszefiiggés a szoftverfolyamatok és az eloallitott szoft-
ver minosége kozott?

e A termék mindsége alapvetben fligg az eléallitasa soran alkalmazott folyamatok minéségétol
(pl. iparszerii gyartdsnal).

Ez a szoftverfejlesztésnél is igy van, de sok mindségi jellemzé nehezen mérhetd, szamszertiisithetd.

Ugyanakkor a szoftvert egyedileg tervezik, a szoftverfejlesztés nem mechanikus folyamat.

A szoftverfejlesztés folyamata és a termék mindsége kozott erds Osszefiiggés van, de ez
nagyon Osszetett és alig megfoghatd.

C)sszefiiggés a szoftverfolyamatok és az elGallitott szoftver minésége kozott:
Szoftvernél ez nem ilyen egyszerii mert:

o A szoftverfejlesztésben az egyéni képzettség és gyakorlat kiillonosen fontos.

o Kiilso tényezOk, mint az alkalmazas 1jszeriisége, vagy a piacra vitel siettetése, befolyasoljak
a minoséget.

98. Mi a mindségi feliilvizsgalat célja, milyen termékekre terjed-
het ki?

Elterjedt médszer a folyamatok és a termékek minoségének ellenorzésére. Szakértok egy cso-
portja figyelmesen atvizsgélja a szoftver komponenseit, a teljes szoftvert és a dokumentacidkat.
Atnézik a specifikdcidkat, terveket, kédot, tesztterveket. Az eredményes feliilvizsgalat a szoftver
vagy a dokumentdcié elfogadasat jelenti. Az észrevételek kijavitasa utdn Gjabb feliilvizsgalatra
keriilhet sor. A vezetés a feliilvizsgdlatok eredményei alapjan kovetheti a projekt elérehaladdsét.
Feliilvizsgalat tipusai:

e A terv vagy a program vizsgilata, mint a VV esetén (a termék mindségét vizsgélja)
e Az elérehaladés vizsgélata (a folyamat és a termék mindségét vizsgalja)

e A mindség vizsgalata (a folyamat és a termék minéségét vizsgalja)

o4

99. Mire szolgal a szoftver mérése? Mondjon néhany példat a
mérheto szoftverjellemzokre!

A szoftver mérés szamszertisithet értékeket allit el§ a szoftvertermék vagy —folyamat jellemz6ibél.
Célja a technikak és folyamatok objektiv 0sszehasonlitasa, a mindség mérése.
Mérhet6 szoftverjellemzsok:

e Biztonsagossag
e Biztonsag

e Megbizhatdsig
e Rugalmassig

e Robusztussag
° Erthet(ﬁség

o TesztelhetOség
e Adaptalhatdsag
o Modularitas

e Komplexitas

e Hordozhatdsag
e Haszndlhatoséig

° Ujrafelhasznélhatéség

100. Ismertesse a CMM (Capability Maturity Model) céljat és
lényegét!

A CMM - Capability Maturity Model a szervezet folyamatainak alkalmassagat méri, osztalyozza

és értékeli.

A CMM-modell szintjei:

e Kezdeti: Nincsenek hatékony vezetési eljardasok, vagy hidnyzik a szervezet azok kovetke-
zetes alkalmazasara.

o Ismételhetd: Azonos tipusi projektekben ismételve a vezetési, minGségbiztositasi és
véaltozéaskezelési eljarasokat sikeres lehet (a siker egyéni teljesitményektdl fiigg).

e Meghatarozott: A folyamatokat mar definidltdk, de a vezetési folyamatok még nem
tudjak azokat kovetkezetesen, maradéktalanul biztositani.

e Menedzselt: Mar vannak definialt és bevezetett folyamatok, de azok folyamatos fej-
lesztése még nem biztositott.

e Optimalizalt: A folyamatok dllandé fejlesztése definidlt és biztositott.

95

101. Miért fontos a szoftver koltségeinek becslése? Milyen tényezoket
vehetiink figyelembe a koltségbecslés soran?

Becslést adhatunk arra, hogy:
e Mekkora munkét igényel egy feladat elvégzése
e Mennyi id6be keriil a feladat végrehajtasa
e Mennyi a tevékenység Gsszes koltsége
Figyelembe vehetjiik a:

e Piaci lehetGségeket

A koltségbecslés bizonytalansagait

A szerzédéses feltételeket

A kovetelmények valtozékonysagat

A fejleszt6 gazdasagi helyzetét

102. Ismertesse a COCOMO II. koltségbecslési moédszer modell-
jeit!
o Empirikus modell, a projektek gyakorlatabdl gytijtott adatokon alapul.

e J6l dokumentalt, hosszu tapasztalat &ll mogotte. (elsé verzié: 1981)

A COCOMO 2 haromszintli modellje:
e Korai prototipuskészités szintje: Becslés objektumpontok alapjan.
e Korai tervezés szintje: Funkciopontok alapjin a forrdskédok szamat becsli.

e Poszt-architekturalis szint: Az architektira terv elkészilte utan becsli a szoftver
méretét.

Korai prototipukészités szintje:
e Prototipuskészitést és ujrafelhasznalast is figyelembe vesz.

o A fejlesztéi produktivitdst objektumpontokkal szédmolja és a CASE hasznélatot is bekal-
kulélja.

e A formula:
PM = (NOP « (1 — %reuse))/PROD

Ahol: PM — a munka emberhénapban, NOP — az objektumpontok szama, PROD - pro-
duktivitas

o6

Korai tervezési szint:
e A kovetelmények tisztdzasa utan végezhetd a becslés.

e Az alabbi képlettel szamol:

PM = Ax Méret® « M + PM,,

Ahol: M=PERS*RCPX*RUSE*PDIF*PREX*FCIL*SCED

PM,, = (ASLOC % (AT/100))/AT PROD

A = 25 a kezdeti szamitdsban

B = 1,1 — 1,24 a projekt mérete, ijdonsaga fiiggvényében.
M = projekttényezok:

PERS — személyi képességek,

RCPX — termék megbizhatdsag,

RUSE — sziikséges ujrafelhasznalés,

PDIF — platform nehézségei

PREX — személyek gyakorlata,

FCIL - tamogat6 eszkozok,

SCED - iitemezés

ASLOC = automatikusan generalt kodsorok,
AT = aut. rendszerkdd,

ATPRO = termelékenység,

Poszt-architekturalis szint:

e Ugyanazt a formulat alkalmazza, mint a korai tervezési becslés, de két tényezot figyelembe
vesz:
— A kovetelmények valtozékonysaga,
— A lehetséges ujrafelhasznalds mértéke.
o A sziikséges 1j kddsorok szamanak becslésekor statisztikai és egyéb értékeket is figyelembe
vesz, mint:
— A korédbbi hasonlé projektek hidnya,
— A fejlesztés rugalmassaga,
— A csapat Osszetartdsa,

— A folyamat fejlettsége.

o7

103. Roviditések listaja:

e COTS: Commercial Off-The-Shelf - Polcrdél levehetd termékek

e 4GL: 4th Generation Language - 4. generacios nyelvek

e SQL: Structured Query Language - Strukturalt lekérdezényelv

e BPML: Business Process Modeling Language - Uzleti folyamatok modellezésének nyelve
e GUI: Graphical User Interface - Grafikus felhasznaloi feliilet

e OO: Obeject Orientated - Objektum orientalt

e UML: Unified Modeling Language - Altaldnos céli leiré nyelv

e CORBA: Common Object Request Broker Architecture -

e COM: Component Object Model - Komponens alapi objektum modell

e DCOM: Distributed Component Object Model - Megosztott komponens alapi objektum
modell

e API: Application Programming Interface - Alkalmazdsprogramozési interfész
e VV: Verification Validation - Verifikaci6 és validacio

e MVC: Model View Controller

e CC: Cyclomatic Complexity - ciklomatikus komplexitas

e FP: Function Point - Funkciépont

e LOC: Lines of Code - kdodsorok szama

e AVC: nyelvfiiggb szorzofaktor

e 3GL: 3rd Generation Language - 3. generacids nyelvek

e CMM: Capability Maturity Model

e COCOMO: Constructive Cost Model

104. Forrasok:

e Veto Istvan 2016-os eloadés és gyakorlati diai.

e 2007-es tétel kidolgozas:
https://wiki.itk.ppke.hu/twiki/pub/PPKE/Szoftvertechnol%c3%b3giaAlapjai/ Vizsgatetelek07.doc

o Egyéb webes jegyzetek.

o8

	Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a szoftverhez tartoznak.
	Mi a szoftverfolyamat? Sorolja fel a szoftverfolyamat fobb tevékenységeit.
	Sorolja fel a szoftverfolyamat általános modelljeit és jellemezze azokat néhány szóban.
	Miért van szükség arra, hogy a szoftvertervezok számára etikai kódexet állítsanak össze? Sorolja fel a fontosabb etikai eloírásokat.
	Melyek az eredendo rendszertulajdonságok? Hogyan csoportosítjuk oket?
	Mi a különbség a funkcionális és a nem-funkcionális rendszertulajdonságok között?
	Melyek azok a tevékenységek, amelyek közösek minden szoftverfolyamatban?
	Vázolja fel a vízesés modellt, sorolja fel a modell elonyeit és hátrányait!
	Mi a formális rendszerfejlesztés? Milyen elonyei és hátrányai vannak?
	Mi az evolúciós fejlesztési modell lényege? Miért nehéz karbantartani az így fejlesztett programokat?
	Mi az újrafelhasználás orientált fejlesztés lényege? Vázolja fel a folyamatot! Milyen esetekben alkalmazható?
	Mi a különbség a CASE eszközök, -eszközkészletek és -környezetek között?
	Miért célszeru projektszervezetben végezni a szoftverfejlesztést?
	Miért és milyen gondot okoz a szoftverprojekt vezetoje számára, hogy a szoftver nem látható, megfogható? Milyen módon lehet ezt a gondot csökkenteni?
	Milyen típusú terveket kell készíteni egy projekt tervezésekor?
	Vázolja fel egy vízesés modell szerint végzendo fejlesztési projekt ütemezését oszlopdiagram formában!
	Kísérelje meg felvázolni egy evolúciós folyamat szerint végzendo fejlesztési projektterv oszlopdiagramját!
	Miért iteratív tevékenység a szoftverprojekt tervezése?
	Milyen kockázatokat különböztethetünk meg egy szoftverfejlesztési projektben? Sorolja fel és jellemezze oket!
	Sorolja fel a fontosabb szerepeket egy projektszervezetben! Ismertesse néhány szóban az egyes szerepek tevékenységeit!
	Mi a feladata a megvalósíthatósági tanulmánynak. Hol van a helye a szoftverfolyamatban?
	Sorolja fel a legfontosabb szempontokat, amelyeket egy tervezonek a felhasználói követelmények specifikálásakor ügyelnie kell!
	Milyen veszélyei vannak a természetes nyelv használatának a követelmények specifikálásakor? Milyen módon lehet ezeket csökkenteni?
	Egy nagy rendszer fejlesztése során kiknek kell részt venniük a felhasználói követelmények verifikálásában? Miért?
	Sorolja fel a rendszermodellek típusait és jellemezze azokat egy mondatban!
	Melyek a legfontosabb különbségek a felhasználói és a rendszerkövetelmények specifikálása között? Kiknek szólnak az egyes specifikációk?
	Melyek a prototípuskészítés céljai? Milyen prototípusok léteznek, melyik milyen célból készül?
	Mi a különbség az evolúciós és az eldobható prototípus között? Melyiket mikor érdemes alkalmazni?
	Mit jelent az adatbázis-programozás? Milyen rendszerek fejlesztésére alkalmas?
	Melyek a prototípus készítésének elonyei? Ismertese a prototípuskészíto technikákat! Melyiket milyen esetben célszeru alkalmazni?
	Mit tenne, ha egy eldobható prototípust a megrendelo meg akarna vásárolni? Milyen érveket hozna fel álláspontja indoklására?
	Ismertesse a formális specifikáció helyét és jelentoségét a szoftverfolyamatban!
	Sorolja fel a formális specifikáció elonyeit és hátrányait! Milyen típusú rendszerek specifikálásakor alkalmazzák a formális módszereket?
	Melyek azok a rendszerek, amelyeknél a formális specifikációt leginkább alkalmazzák? Miért?
	Hol foglal helyet az architekturális tervezés a szoftverfolyamatban? Mire szolgál a rendszer architekturális terve?
	Kliens/szerver modell
	Milyen elonyei és hátrányai vannak a kliens/szerver modellnek?
	Mi a különbség a vékony- és a vastag kliens között? Melyik milyen célra alkalmas?
	Milyen modelleket alkalmaznak az objektumorientált tervezésben? Melyik mire alkalmas?
	Mi a különbség a központosított vezérlés és az esemény alapú vezérlési modell között?
	Milyen vezérlési modellek alkalmazhatók párhuzamos rendszerekben?
	Milyen UML modellekkel ábrázolható a rendszer és környezetének kapcsolata?
	Mire szolgálnak az objektumorientált tervezésben alkalmazható diagramok? Soroljon fel és jellemezzen néhányat!
	Ismertesse a valós ideju rendszerek fobb jellegzetességeit.
	Melyek a fo különbségek az átlagos adatfeldolgozó rendszerek és a valós ideju rendszerek között?
	Van-e szerepe a valós ideju rendszerek tervezésében a hardvertervezésnek? Miért?
	Milyen programnyelveket alkalmaznak a valósideju rendszerek programozására?
	Miért kevéssé alkalmas a Java programozási nyelv szigorúan valós ideju rendszerek programozására?
	 Melyek a valós ideju futtatórendszerek fobb komponensei?
	Melyek a szoftver újrafelhasználásán alapuló fejlesztés elonyei és hátrányai?
	Soroljon fel három érvet, amely támogatja a komponens alapú újrafelhasználást és hármat, amely ellene szól!
	Mi a programgenerátor alapú újrafelhasználás lényege? Milyen területeken alkalmazzák?
	Miért alkalmazzák a generátor alapú újrafelhasználást elsosorban az adatfeldolgozó, eBusiness rendszerek fejlesztésében?
	Mi a komponens, milyen interfészei vannak?
	Milyen nyelvek és környezetek alkalmasak a komponensek integrálására?
	Milyen hátrányai vannak az újrafelhasználható komponensekkel történo szoftverfejlesztésnek?
	Mire szolgának az alkalmazási keretrendszerek, hogyan csoportosíthatók?
	Mi a „polcról leveheto” termék? Leginkább milyen rendszerekben alkalmazzák?
	Milyen nehézségei vannak a COTS termékek alkalmazásának?
	Miért drágább egy újrafelhasználható komponens kifejlesztése az egyedi komponens kifejlesztésénél?
	Mi az alkalmazáscsalád? Miért alakultak ki az alkalmazáscsaládok?
	Hogyan osztályozható az alkalmazáscsaládok specializációja?
	Mi a különbség a tesztelés és a belövés között? Melyiknek mi a célja?
	Mi a célja a szoftver verifikációjának és mi a validáció feladata?
	Miért célszeru a szoftvertesztelés mellett átvizsgálást (inspekció) is tartani?
	Mi a programtesztelés feladata? Milyen alaptípusai vannak?
	Mire szolgál a szoftver átvizsgálása? Mi a különbség az átvizsgálás és a tesztelés között?
	Milyen hiányosságokat lehet elsosorban felfedezni a programok átvizsgálása során?
	Mi a Cleanroom szoftverfejlesztési folyamat lényege?
	Ismertesse a grafikus felhasználói kezelofelületek tervezésének alapelveit!
	Miért fontos a grafikus felhasználói kezelofelület gondos tervezése?
	Miért célszeru egyes rendszerekben különbözo felhasználói felületeket kidolgozni a gyakorlott és az alkalmi felhasználók számára?
	Milyen alapelemeket használunk a grafikus felhasználói kezelofelületeken?
	Milyen eszközöket alkalmazhatunk a grafikus felhasználói kezelofelületen a felhasználó támogatására?
	Milyen elonyei és hátrányai vannak a parancsnyelv alkalmazásának a felhasználói interakciókban?
	Sorolja fel és jellemezze a felhasználói interakciók fajtáit!
	Milyen lehetoségek vannak az információ grafikus megjelenítésére?
	Írjon példákat, amikor az információt célszeru grafikusan, analóg módon megjeleníteni.
	Milyen szabályokat kell betartani a színek alkalmazásakor a grafikus felhasználói kezelofelületen?
	Milyen szempontokat kell figyelembe venni a rendszer üzeneteinek szövegezésekor?
	Miért célszeru a súgórendszerbe több belépési pontot biztosítani?
	Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok számát csökkenteni?
	Mi a „fekete doboz” és a „fehér doboz” tesztelési stratégia lényege? Melyiket milyen esetben lehet alkalmazni?
	Mit jelent a tesztadatok ekvivalencia-osztályozása? Írjon példát az ekvivalencia-osztályok alkalmazására.
	Mi a célja az útvonaltesztelésnek? Mi a ciklomatikus komplexitás, hogyan számítható?
	Ismertesse az integrációs tesztelési stratégiákat! Mi az összefüggés e stratégiák és a szoftverfolyamat modellje között?
	Mi az interfésztesztelés, milyen hibákat lehet felfedni ilyen módon?
	Melyek a tipikus interfészhibák? Milyen elveket kell alkalmazni az interfésztesztelés tervezésekor?
	Miért és miben különbözik az objektumorientált tesztelés a funkcióorientált rendszerek tesztelésétol?
	Milyen szinteket különböztethetünk meg az objektumorientált tesztelésben?
	Mi az objektumorientált csoporttesztelés? A rendszerterv milyen elemeit lehet felhasználni a csoportteszteléshez?
	Mi a szoftver költségbecslés célja? Milyen kérdésekre keresi a választ?
	Milyen módszereket ismer a szoftver költségének elozetes becslésére?
	Hogyan értelmezheto a szoftver minosége? Milyen tényezokkel lehet a szoftverminoséget jellemezni?
	Ismertesse egy szervezeten belül a minoségkezelés tevékenységeit!
	Miért fontosak a minoségi szabványok a szoftverkészítésben? Mi a termékszabvány és a folyamatszabvány közti különbség?
	Mi az összefüggés a szoftverfolyamatok és az eloállított szoftver minosége között?
	Mi a minoségi felülvizsgálat célja, milyen termékekre terjedhet ki?
	Mire szolgál a szoftver mérése? Mondjon néhány példát a mérheto szoftverjellemzokre!
	Ismertesse a CMM (Capability Maturity Model) célját és lényegét!
	Miért fontos a szoftver költségeinek becslése? Milyen tényezoket vehetünk figyelembe a költségbecslés során?
	Ismertesse a COCOMO II. költségbecslési módszer modelljeit!
	Rövidítések listája:
	Források:

