A SZOFTVERTECHOLOGIA ALAPJAI

PPKE ITK, 2017. joNIUS 17.

WRITTEN BY

KOMPORDAY ANDRAS

2016

TARTALOMJEGYZEK

1. A szoftvertervezés és mas tervezési folyamatok Gsszehason-
litasa

1.1. Miért célszerd projektszervezetben végezni a szoftverfejlesztést?

1.2. Miért és milyen gondot okoz a szoftverprojekt vezetGje szama-
ra, hogy a szoftver nem lathatd, megfoghat6é? Milyen mdédon
lehet ezt a gondot csokkenteni? L.

1.3. Milyen tipust terveket kell késziteni egy projekt tervezésekor?

2. A szoftverfolyamat fazisai és modelljei, szoftverfejlesztési stra-

tégiak
2.1. A szoftverfolyamat fazisai

2.2. A szoftverfolyamat modelljei, szoftverfejlesztési stratégiak

3. A CASE eszkozok, rendszerek és osztalyozasuk
3.1. Az eszkozkészlet komponensei Lo
3.2. Osztalyozasuk

4. A szoftverfejlesztési projekt jellemzdi, litemezése, a projekt
kockazatai, a kockazatok kezelése

5. A szoftverkévetelmények tipusai, a kévetelmények elemzése

5.1. Funkcionalis kévetelmények

5.2. Nem-funkcionélis kbvetelmények

6. Tervezés ujrafelhasznilassal, komponensek felhasznalasa
6.1. Mi a komponens, milyen interfészei vannak?

6.2. Milyen héatranyai vannak az ajrafelhasznalhaté komponensek-
kel torténd szoftverfejlesztésnek?

12

13

6.3. Mire szolganak az alkalmazasi keretrendszerek, hogyan cso-
portosithatok? 16

. A szoftverkovetelmények specifikdlasa, dokumentalasa, for-
malis specifikaci6, interfészspecifikacio, viselkedésspecifika-

cid 17
7.1. Kovetelménytervezés oL 17
7.2. A szoftverkovetelmények tipusai 17
7.3. A kovetelmények specifikalasao 18

7.3.1. Felhasznéloi kovetelmények 18

7.3.2. Rendszerkévetelmények 19
7.4. Formalis kovetelményspecifikaci6 PDL hasznalataval 19
7.5. Imterfész specifikacio oL 19
7.6. A kovetelmények teljessége, konzisztenciaja 20
7.7. A formdlis moédszereko 20

7.7.1. Formalis specifikdciéo 21
7.8. Interfészspecifikdsié 22
7.9. Viselkedésspecifikacioo 22

. A szoftverkévetelmények, a kovetelmények feltarasanak, va-

lidalasanak és kezelésének moédszerei 23
8.1. Kovetelmények feltarasa és elemzése 23

8.1.1. Nézbpont-orientalt feltdras. 24
8.2. A kovetelmények validélasa L. 25
8.3. A koévetelmények kezelése 25

. A rendszermodellek tipusai, kornyezeti és viselkedési model-
lek, adatmodell tipusok 26

9.1. Rendszermodellek 26

9.2. Adatmodelleko oo 27
9.2.1. Adatszétarako oL 28
9.2.2. Amodell 28
9.2.3. A rendszermodellek tipusai 28

10.0bjektumorientalt rendszermodellek, o6réklédési modellek,

az objektumok viselkedésének modellezése 29
10.0.1. Objektumosztaly 29
10.0.2. Objektum 30

10.1. Oroklédési modell 31

10.2. Viselkedési modell oL 31

11.Szoftverprototipus készitése, a prototipusok fajtai, prototi-

puskészités és adatbazis programozas 31
11.1. Rendszerprototipus készitése 31
11.1.1. A prototipusok alkalmazasa 32
11.1.2. A prototipuskészités elényei 32
11.1.3. A prototipuskészités folyamata 32
11.1.4. Elényei és hatranyai 32
11.1.5. A prototipuskészités helye a szoftverfolyamatban . . . 33
11.2. Evoltciés prototipuskészités 33
11.2.1. Az evoluacios prototipuskészités folyamata 34
11.2.2. Az evolucios prototipuskészités jellemzéi 34
11.2.3. Elényei 34
11.2.4. Hatrdnyaio 34

12.

11.2.5. A prototipus, mint specifikdcié 35

11.3. Eldobhat6 prototipus készitése 35
11.3.1. A prototipuskészités folyamata 35
11.3.2. A prototipus atadésa 36

11.4. Gyors prototipuskészitési technikak 36
11.4.1. Fejlesztés magas szintd nyelven 36
11.4.2. Prototipuskészité nyelvek 37

11.5. Adatbéazis-programozas 37

11.6. Prototipuskészités tjrafelhasznalassal 38

11.7. Felhasznaloi feliiletek prototipusai. 39

Architekturalis tervezés, a rendszer strukturalasa, rendszer-

modellek, vezérlési modellek 39

12.1. Architekturalis tervezés 39
12.1.1. Feladata 39
12.1.2. A rendszerstruktara meghatarozasa 40
12.1.3. A jol megtervezett architektura elényei 40
12.1.4. Az architekturalis tervezés tevékenységei 40

12.2. Alrendszerek és modulok L 41

12.3. Architektira modelleko 41

12.4. Az architektara és a kévetelmények 42

12.5. A rendszer strukturalasa 42

12.6. Vezérlési modelleko 42
12.6.1. Kozpontositott vezérlés: 43
12.6.2. Eseményalapt vezérlés: L. 43

13.0bjektumorientalt tervezés, UML diagramok, az objektum-

interfész specifikacio 44
13.1. Az objektumorientalt tervezés 44
13.1.1. Az objektumorientalt tervezés lényege 44
13.1.2. Az objektumorientalt tervezés elényei 44
13.1.3. Objektumok és objektumosztalyok 45
13.2. Az UML modellezési nyelv 45
13.3. Az objektuminterfész specifikacidja 46
13.3.1. A kommunikacié tipusai 46
13.3.2. Objektumosztalyok kozotti kapcsolatok 46
13.3.3. Objektumorientalt tervezési folyamat 48

14.Felhasznaléi feliiletek tervezése, alapelvek, megjelenités, fel-

hasznal6i tamogatas 48
14.1. Grafikus feliiletek 48
14.1.1. A grafikus kezel6feliilet elényei 49
14.1.2. A felhasznalocentrikus centrikus tervezés 49
14.2. A felhasznaloi kezel6feliiletek tervezésének alapelvei 49
14.2.1. Tervezési alapelvek 49
14.2.2. A felhasznAlo és a rendszer kapcsolata 50
14.3. Az interakciok fajtaio 50
14.3.1. Kozvetlen manipulacié: 50
14.3.2. Menitikivalasztas: 51
14.3.3. Parancsnyelv: oo 52
14.3.4. Természetes nyelv: 53
14.3.5. T6bbszoros felhasznéléi interfészek 53

14.4. Az informacié megjelenitése 53

14.4.1. A megjelenités modjanak kivalasztasa 53
14.4.2. Analdg és digitalis megjelenités L. 54
14.4.3. Figyelmeztets széveg megjelenitése 54
14.4.4. Hibatlizenetek 55
14.5. A felhasznélod tamogatasa 55
14.5.1. A stgo tervezése 55
14.5.2. A stgd6 informaciotartalma 56
14.5.3. Felhasznél6i dokumentécio 56

15.0sztott rendszerek architektirai, tobbprocesszoros architek-

tarak, kliens-szerver architekturak 56
15.1. Az osztott rendszerek jellemzGi: 57
15.1.1. Hatrdnyaio 57
15.1.2. Tervezési kérdések Y
15.1.3. Tébbprocesszoros architekrtarak 58
15.2. Taroldsi modell oL 58
15.2.1. Megosztott tarolok alkalmazésa 58
15.3. Osztott rendszerek architektarai 59
15.3.1. Absztrakt gép modell (réteges modell) 59
15.4. Kliens-szerver architekttra 59

16.Verifikaci6 és validacio, a verifikacio tervezése, verifikacios és

validacios modszerek 60
16.1. Programteszteléso oo L 61
16.2. V& V tervezése o 62

16.2.1. A szoftver tesztterv strukturaja 62

16.2.2. Inspekci6 (atvizsgalas) 62

16.2.3. Cleanroom folyamat 63
17.Szoftvertesztelés, a hidnyossagok tesztelése, tesztelés és be-

16vés, integracios tesztelés 63

17.1. Mi a programtesztelés feladata? Milyen alaptipusai vannak? . 63

17.2. Mi a kiilonbség a tesztelés és a belovés kozott? Melyiknek mi
acélja? ..o 64

17.3. Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok
szamat csokkenteni? Lo 64

17.4. Mit jelent a tesztadatok ekvivalencia-osztalyozasa? Irjon pél-
dat az ekvivalencia-osztalyok alkalmazéséra. 65

17.5. Mi a ,fekete doboz” és a ,fehér doboz” tesztelési stratégia 1é-

nyege? Melyiket milyen esetben lehet alkalmazni? 65
17.5.1. Utvonal tesztelés 66
17.5.2. Ciklomatikus komplexitas 66
17.6. Ismertesse az integracios tesztelési stratégiakat! Mi az Ossze-
fliggés e stratégiak és a szoftverfolyamat modellje kozott? . . 66
17.6.1. Az integracios tesztelés stratégiai 67
17.6.2. A tesztelési stratégiak L. 67

18. A szoftver minGség fogalma, mingségbiztositasi szabvanyok,

a minGség tervezése, szoftverkarbantartas 67
18.1. A szoftver minGsége 67
18.2. Mingségkezelés a szoftverprojektben 68
18.2.1. MinGségtervezéso 68
18.2.2. Mingség feliilvizsgalat 69
18.3. Mingségbiztositasi szabvanyok 70

18.4. Mi az Gsszefiliggés a szoftverfolyamatok és az elGéllitott szoft-
ver mindsége k6zott? Lo

18.5. Az ISO 9000 szabvany

1 A SZOFTVERTERVEZES ES MAS TERVEZESI FOLYAMATOK OSSZE-
HASONLITASA

A szoftverfejlesztési projekt kiillonbozik mas, hagyomanyos projektektdl:

e A szoftver nem kézzelfoghato.

e A termék egyedi, nem altalanosithato.

A szoftverfejlesztési projekt gyakran egyedi, nem altalanosithatd, mint
a gépészeti, épitési projektek.

A szoftverfejlesztés folyamata nincs szabvanyositva.

Sok szoftver projekt egyedi.

1.1 MIERT CELSZERU PROJEKTSZERVEZETBEN VEGEZNI A SZOFTVERFEJ-
LESZTEST?

e A projektvezetés feladata, hogy a szoftver a tervezett iitemezés sze-
rint, hataridére, a kévetelményeknek megfelelGen késziiljon el.

e A projektmenedzsmentre azért van sziikség, mert a szoftverfejlesz-
tés mindig kotott pénziigyi és megszabott idSkeretek kozott folyik,
amelyeket a megrendeld, vagy a fejleszts szervezet jelol ki.

A szoftverfejlesztési projekt kiilonbozik mas, hagyomanyos projektektdl.
A szoftverfejlesztési projekt gyakran egyedi, nem altalanosithatdé, mint a
gépészeti, épitési projektek. Ennek okai:

e A szoftver nem kézzelfoghato.

e A termék egyedi, nem altalanosithato.

o A szoftverfejlesztés folyamata nincs szabvanyositva.

1.2 MIERT ES MILYEN GONDOT OKOZ A SZOFTVERPROJEKT VEZETOJE
SZAMARA, HOGY A SZOFTVER NEM LATHATO, MEGFOGHATO? MI-
LYEN MODON LEHET EZT A GONDOT CSOKKENTENI?

Rizsa

1.3 MILYEN TIPUSU TERVEKET KELL KESZITENI EGY PROJEKT TERVE-
ZESEKOR?

e A szoftverfolyamat dokumentumai — Cél: a szoftverfejlesztés tamogatasa,
dokumentélasa a vélasztott folyamatmodell és technologia igényei szerint. e
A szoftverprojekt dokumentumai — Cél: tdmogatni a szoftverfejlesztés, mint
projekttevékenység tervezését, vezetését, kovetését, hataridére és a kivant
eredménnyel vald befejezését. e A mindségbiztositas dokumentumai — Cél:
biztositani és bizonyitani a projekt termékeinek (szoftver és dokumentacio)
mingségét. e Projekt el6készité dokumentumok — Javaslatok, elétanulma-
nyok, stb. e A projekt végrehajtasat tamogatdé dokumentumok — Projektin-
dit6 dokumentum — Jegyzskonyvek (projektértekezletekrsl, megbeszélések-
r6l, stb.) — Jelentések (a vezetésnek, a megrendelének) — Beszamolok (a
vezetSknek, a projekt résztvevdinek) e A projekt lezarasanak dokumentu-
mai — Ertékelések — Beszamolok

2 A SZOFTVERFOLYAMAT FAZISAI ES MODELLJEI, SZOFTVERFEJ-
LESZTESI STRATEGIAK

2.1 A SZOFTVERFOLYAMAT FAZISAI

A szoftverfolyamat a szoftver termék elGallitasara iranyulo tevékenységek so-
ra. Nincs egységes, minden szoftver kidolgozéasara alkalmas folyamat. Em-
beri és szervezeti tényezdk is varidlhatjak. Az altalanos tevékenységek:

e Szoftverspecifikicid: a szoftver feladatainak és a megszoritdsoknak spe-
cifikacioja

e Szoftverfejlesztés: a szoftver rendszer elkészitése

e Szoftvervalidacio: annak bizonyitasa, hogy az elkészitett rendszer a
kovetelményeknek megfelelgen mitkodik

e Szoftverevolucid: a szoftver tovabbfejlesztése a valtozd igényeknek meg-
felelGen

2.2 A SZOFTVERFOLYAMAT MODELLJEI, SZOFTVERFEJLESZTESI STRATE-
GIAK

A szoftverfolyamat modellje a folyamat absztrakt reprezentacioja. Altalanos
folyamatmodellek:

10

Vizesés modell: az alapvet§ tevékenységek 6nallo fazisok. Jol attekinthe-
t6, kovethetd fejlesztési folyamatot eredményez. A folyamat termékei
szerzédésekkel konnyen lefedhetsk (specifikicios és tervezési dokumen-
tumok, program(ok), stb.). Egymaéstol elkiiloniilt fazisokra osztja a
projektet (koltséges egy korabbi fazisra visszatérni, pl. specifikicios
vagy tervezési hiba esetén). Csak a projekt végén, atadaskor dertil-
nek ki a specifikicioés hibdk. Nem képes rugalmasan alkalmazkodni a
megrendeldi igények valtozésaihoz. Csak a kévetelmények pontos is-
meretében alkalmazhato.

Fézisai:

Kovetelmények elemzése és meghatirozasa
Rendszer- és szoftvertervezés
Implementéaci6 és egységteszt

Integraci6 és rendszerteszt

Miikodtetés és karbantartas

Gt e

Evolucioés fejlesztés: Alapgondolata, hogy ki kell dolgozni egy kezdeti imp-
lementaciot, amelyet a felhasznald véleményezhet és azt finomitani kell
az elfogadasig. A specifikicio, fejlesztés és validacié 6sszefonodik.

Feltaro fejlesztés : a kivetelmények feltarasa lépésenként, a megren-
del6vel egylittmiikodve torténik, folyamatosan kiegészitve a rend-
szert 1) funkciokkal, részekkel.

Eldobhaté prototipus: ,Deszkamodellek” készitése és atadésa az iigy-
félnek, a kovetelmények pontosabb feltarasa érdekében.
Elényok: e kis vagy kozepes interaktiv rendszerek, esetleg nagy
rendszerek felhasznéloi interfészének tervezésére alkalmas
e rovid életciklusi rendszerek esetén elényos.
Hatranyok: e A projekt elgrehaladasa nem koévethetd
e A rendszerek strukturajaval nem foglalkozik

e Specialis eszkozoket és ismereteket igényel (pl. gyors model-
lez§ eszkozok alkalmazésa)

Formalis rendszerfejlesztés: A vizesés modellhez hasonld, de a fejlesztés
a kovetelmények matematikai modelljébdl, formalis transzformécioval
allitja el§ a szoftvert, tobb transzformaécios lépésen keresztiil. Minden
transzformécié soran, 1épésenként kell végrehajtani a tesztelést.

Elényok:

1. Kritikus rendszerek esetén, ahol kulcskérdés a biztonsig és
megbizhatosag

11

2. A transzformacié és bizonyitas részben automatizalhato.
Héatranyok:
1. Specialis szakértelmet igényel

2. Egy rendszer kolcsonhatésait (pl. felhasznaloi interfész) ne-
héz forméalisan specifikalni.

3. Komplex, nagy rendszereknél ez a modszer sem eredményez
jobb mindgséget vagy koltségmegtakaritast

Ujrafelhasznalas alapt fejlesztés: a rendszert mar létezd, tujrafelhasz-
nalhat6 komponensek integralasaval allitja elg. Jellemzg ra a COTS
(Commercial off the Shelf) termékek felhasznalasa.s gyakran beépiil a
korabban ismertetett folyamatokba.

Lépései:
A kovetelmények meghatarozasa
Komponens elemzés

Rendszertervezés tjrafelhasznaléssal

Fejlesztés és integréaciod

A

Rendszer validacio

3 A CASE ESZKOZOK, RENDSZEREK ES OSZTALYOZASUK

A CASE (Computer Aided Software Engineering - szamitdgéppel tamoga-
tott szoftver-fejlesztés) eszkozOk a szoftverfolyamat egyes lépéseit, pl. a
terv konzisztencidjanak ellenérzését, program forditast, a teszteredmények
Osszehasonlitdsat tamogatd programok. Ezekbdl az eszkézokbdl épiilnek fel a
teljes fazisokat (pl. specifikicios vagy tervezési fazist) tamogato eszkdzkész-
letek. Egy szoftverfolyamatot nagyrészt, vagy teljesen lefedd eszkozkészlet-
gytjteményt CASE rendszernek vagy kornyezetnek neveziink. Ezek legtébb-
szOr tObb, integralt eszkozkészletbsl allnak.

3.1 Az ESZKOZKESZLET KOMPONENSEI

e Diagramszerkeszt6(k)

Modell elemzg és ellenérzé eszkozok

Adatbazis tarolo és lekérdezd eszkozok

Adatszotarak

12

Koédgeneratorok

3.2 OSZTALYOZASUK

Jelentésgenerald eszk6zok
Urlap definialo eszkozok

Import/export eszkézok

A fejlesztési életciklusban valé elhelyezkedésiik szerint:

Upper CASE | mely stratégiai tervezésre projektvezetésre szolgal

Middle CASE , mely a rendszerelemzési és tervezési fazisok munkajat ta-

mogatja

Lower CASE | mely egyszeriibb rendszerspecifikiciok készitésére szolgal

Eszkoztipus

Példak

Tervezsi eszkozok
Szerkeszt§ eszkozok
Valtoztataskezel§ eszkozok
Konfiguraciokezel§ eszkozok
Prototipuskészits eszkozok
Modszertamogat6 eszkozok

Nyelvi feldolgozé eszk6zok
Programelemzé eszkodzok

Tesztel6 eszkozok
Nyomkédvets eszkozok

Dokumentacios eszk6zok
Ujratervezési eszkozok

PERT eszkozok, becslési eszkozok, tabla-
zatkezel6k

Text editor, diagramszerkesztk, szoveg-
szerkeszt6k

Kovetelmény kovethetSségi eszkozok, val-
tozasvezérls rendszerek

Verzidkezel rendszerek, rendszerépits esz-
kozok

Nagyon magas programnyel-
vek,felhasznéloi interfész generatorok
TervszerkesztSk, adatszotarak, kodgenera-
torok

Forditok, értelmezsk
Keresztreferencia generatorok,
elemzdk, dinamikus elemzdk
Tesztadat generatorok, allomany 6sszealli-
tok

Interaktiv nyomkovets, belovs rendszerek
Arculattervezé programok, képszerkesztsk
Kereszthivatkozési rendszerek, program
djrastrukturalé rendszerek

szintd

statikus

1. tablazat. CASE-eszk6zok funkcionalis osztalyozéasa

13

4

A SZOFTVERFEJLESZTESI PROJEKT JELLEMZOI, UTEMEZESE, A
PROJEKT KOCKAZATAI, A KOCKAZATOK KEZELESE

A kockazatkezelés a lehetséges kockazati tényez6k azonositasat és a projektre
gyakorolt hatasuk minimalizalasdra vonatkozo tervek készitését jelenti.

A kockazat tipusai:

Projektkockazat: A projekt litemtervét, vagy az ercforrasokat veszélyez-

teti,

Termékkockazat: A szoftver minGségét, vagy teljesitményét veszélyezteti

Uzleti kockazat: A szoftver beszerzését, vagy fejlesztését végzé szervezetet

5

5.1

5.2

veszélyezteti

A SZOFTVERKOVETELMENYEK TIPUSAI, A KOVETELMENYEK
ELEMZESE

FUNKCIONALIS KOVETELMENYEK

A rendszer altal nytujtando szolgaltatasok leirasa: hogyan reagaljon a
rendszer az egyes bemenetekre, illetve mit tegyen egyes helyzetekben.
A rendszer funkcioit, illetve szolgaltatasait tartalmazzak.

A szoftver tipusatol, a varhato felhasznalastol és a felhasznaloktol fiig-
genek.

A felhasznaloi funkcionéalis kovetelmények <alanosan irjak le, hogy
mit kell elvégeznie a rendszernek.

A funkcionalis rendszerkévetelmények részletesen irjak le az egyes funk-
ciok bemeneteit, kimeneteit, a kivételeket, stb.

NEM-FUNKCIONALIS KOVETELMENYEK

A rendszer funkcioira és szolgaltatasaira vonatkozo megszoritasok, id6-
beli korlatok, a fejlesztési folyamatra vonatkozd korlatozéasok, szabva-
nyok.

14

e A rendszerfunkcidkon kiviili kévetelmények, mint a megbizhatosag, va-
laszids, tarigények, vagy az [/O eszkozok tulajdonsagaira, az interfé-
szek adatformatumaira, stb. vonatkoz6 megszoritasok.

e Ide tartoznak a fejlesztés modszereire, a mindségellenérzésre, a fej-
lesztBeszkozokre (CASE) vonatkozo kovetelmények, vagy a rendszeren
kiviili (pl. jogi) megkotések is.

e Még a funkcionalis kovetelményeknél is kritikusabbak lehetnek (pl. re-
piil6gép iranyitas — megbizhatosag)

A nem-funkcionalis kovetelmények osztalyozasa

A termékre vonatkozo6 kovetelmények: A termék viselkedését hatéroz-
zék meg (pl. sebesség, megbizhatosag, hordozhatosag, stb.)

Szervezeti kovetelmények: A megrendeld és a fejleszt§ szervezete altal
tamasztott szabalyzatok és igyrendek kévetelményei (modszertan, prog-
ramozasi nyelv, stb.)

Kiils6é kévetelmények: A rendszeren és a fejlesztésen kiviili kdvetelmé-
nyek. (egylittmiikodés més rendszerekkel, jogszabalyi, etikai, stb.)

A kovetelmények elemzése és specifikalasa koltséges folyamat, és megtor-
ténhet, hogy a vezetSknek ilyen hidnyos informéciok mellett kell elkésziteniiik
a rendszer kifejlesztésére vonatkozo kiindulési koltségbecslést. Ilyen esetek-
ben gyakran alkalmazott stratégia, hogy a fejleszts szervezet és a megrendeld
a projekt koltségében allapodik meg elészor, majd a megéllapitott fejlesztési
koltség altal megszabott korlatok betartédsaval hoznak dontéseket a rendszer
elvart minimalis funkcionalitasarol.

6 TERVEZES UJRAFELHASZNALASSAL, KOMPONENSEK FELHASZ-
NALASA

Kialakulasanak oka az, hogy az objektumorientalt fejlesztés nem tamogat-
ja az udjrafelhasznalast. A komponensek az objektumosztalyoknél sokkal
absztraktabbak és kiilonalld szolgaltatasoknak tekintheték. A komponen-
sek szolgaltatdsokat nytjtanak a rendszer szamara, a végrehajtas helyétél
és a megvalositas nyelvétdl fliggetleniil. A komponens forraskodja altalaban
nem hozzaférhetd, belsé allapotai nem lathatoak.

15

6.1 MI A KOMPONENS, MILYEN INTERFESZEI VANNAK?

A komponensek szolgaltatasokat nytujtanak a rendszer szaméra, a végrehaj-
tas helyétsl és a megvaldsitas nyelvétdl fliggetleniil. A komponensek mérete
az egyszeri fiiggvénytdl a teljes alkalmazési rendszerig terjed.

e Egy komponens egy fiiggetleniil végrehajthaté program, amely egy
vagy tobb végrehajthatoé objektumbol all.

e A komponensek interfészeit publikiljak és minden interakci6 ezeken az
interfészeken keresztiil folyik. A komponens forraskodja éltalaban nem
hozzaférhets, bels6 allapotai nem lathatoak.

Szolgaltatott interfészek A komponens altal szolgaltatott interfészek.

Sziikséges interfészek Azok az interfészek, amelyeket a komponenst hasz-
nélé rendszernek, vagy kornyezetének kell biztositania.

A komponens alapt fejlesztés beilleszthets a szabalyos szoftverfolyamat-
ba, ha beépitjiik abba az tjrafelhasznélassal kapcsolatos tevékenységeket:

e Komponensek specifikilasa,
e Komponensek megtalalésa,

o A tervek (esetleg a kovetelmények) modositésa a meglelt komponensek
tulajdonsagainak megfeleléen. Ez az alkalmazkodé ujrafelhaszna-
las

6.2 MILYEN HATRANYAI VANNAK AZ UJRAFELHASZNALHATO KOMPONEN-
SEKKEL TORTENO SZOFTVERFEJLESZTESNEK?

o Az djrafelhasznalhatésag és a hasznalhatésag ellentmondasa:
Minél altalanosabb interfésszel rendelkezik, annél inkdbb wjrafelhasz-
néalhaté, de annal bonyolultabb, vagyis kevésbé hasznalhato.

e Az ujrafelhasznalhato komponensek fejlesztési koltségei tobbszordsen
meghaladjak az egyszert, specifikus komponensek koltségeit. Ezt egyet-
len projekt koltségeibsl nem lehet fedezni, ezért kialakultak olyan szoft-
verfejleszt§ vallalatok, amelyek specializalodtak az tjrafelhasznélhato
komponensek fejlesztésére.

e Az altaldnos komponensek kevésbé effektivek, tobb eréforrast hasznal-
nak és végrehajtasi idejiik hosszabb, mint a specifikus komponenseké.

16

6.3 MIRE SZOLGANAK AZ ALKALMAZASI KERETRENDSZEREK, HOGYAN
CSOPORTOSITHATOK?

Definici6é: A keretrendszer absztrakt és konkrét osztélyok gytijteményébdl
és a koztiik 1év6 interfészekbdl allo alrendszer-terv. A keretrendszerek tugy
implementalhaték, hogy a terv részeit komponensek hozzidadaséval egészitjiik
ki. Altalaban viszonylag nagy, tjrafelhasznalhato egységek, de nem 6nallo
alkalmazésok.

Az alkalmazasok tobb keretrendszer integralasaval hozhatok létre. A
keretrendszer altalanos struktiira, amely a konkrét alkalmazas létrehozasakor
konkrét osztalyokkal kibGvithetd.

A keretrendszer kibdvitése az alabbiakat jelenti:

e A kertrendszer absztrakt osztalyainak kiegészitése konkrét osztalyok-
kal.

e Miiveletek hozzdadasa, amelyek meghivhatok a keretrendszer altal ke-
zelt események bekovetkezésekor.

A keretrendszerek hatranya a bonyolultsag. Sok idét igényel az effektiv
hasznalatukhoz sziikséges megismerésiik.

A keretrendszerek fajtai:

e A rendszer infrastruktarijanak keretrendszerei a rendszer inf-
rastrukturalis alapjainak (kommunikacio, felhasznaloi feliiletek, stb.)
fejlesztését tamogatjak.

o Koztes integracids keretrendszerek a komponensek kozti kommu-
nikéaciot és informacioeserét tamogatd szabvanyok és osztalyok. (Ilyen
példaul a CORBA, JavaBean, COM, DCOM, stb.)

e Vaillalati alkalmazasok keretrendszerei az egyes specidlis szak-
teriileti alkalmazéasok fejlesztését tamogatjik. A szakteriileti tudast
tartalmazzak (pl. pénziigy, telekommunikacio).

17

7 A SZOFTVERKOVETELMENYEK SPECIFIKALASA, DOKUMENTA-
LASA, FORMALIS SPECIFIKACIO, INTERFESZSPECIFIKACIO, VI-
SELKEDESSPECIFIKACIO

7.1 KOVETELMENYTERVEZES

A kovetelmények a rendszer szolgaltatasainak és a megkotéseknek leirasai. A
kovetelménytervezés feladata annak felmérése, hogy a rendszer majdani fel-
hasznaloja (megrendelGje) mit var a szoftvertsl, azoknak a koriilményeknek
meghatarozésa, amelyek a rendszer fejlesztését és miikodtetését befolyasol-
jak.

A kovetelmények dokumentuma: A kovetelmények dokumentuma, (Sys-
tem Requirements Specification — SRS) irja le, hogy mit varnak a tervezett
rendszertdl, vagyis mit kell megvaldsitania a tervezéknek. A dokumentum-
nak nem a rendszer tervét kell tartalmaznia, hanem a kovetelmények defini-
cioit és specifikacidjat vagyis azt, hogy mit kell tennie a rendszernek és nem
azt, hogy hogyan.

Folyamata:

1. Megvalosithatosigi tanulméany
2. A kovetelmények feltarasa és elemzése
3. A kovetelmények validalasa

4. A kovetelmények kezelése, valtozaskezelés

7.2 A SZOFTVERKOVETELMENYEK TIPUSAI
Felhasznaloi kévetelmények A rendszer szolgaltatasainak kozérthets le-
irdsa, diagrammokkal, tdblazatokkal, abrakkal, a felhasznalo szdmara.

Rendszerkovetelmények Strukturalt dokumentum a rendszer szolgélta-
tasainak részletes lefraséval (funkcionalis specifikicio). Ez a szerz6-
dés alapja.

Szoftver specifikacié A szoftver kdvetelmények részletes leirasa a fejlesz-
ték szamara.

18

7.3 A KOVETELMENYEK SPECIFIKALASA

A kovetelményeket az olvasod szaméra egyértelmten, pontosan kell leirni. A
pontatlan kévetelmény specifikacié félreértéseket eredményez. Példaul:

o A felhaszndlo kévetelménye: ,,Minden dokumentum tipushoz megfeleld
megjelenitdt kell biztositani”

o A fejlesztd értelmezheti gy, hogy csak eqy szdveges megjelenitére van
sziikség, gy az dsszetett dokumentumokat nem lehet olvasni.

7.3.1. Felhasznaléi kévetelmények

A felhasznaloi kovetelményeket gy kell megfogalmazni, hogy az informa-
tikdban jaratlan felhasznal6 is megértse, ezért itt nem célszerti modelleket
alkalmazni, hanem természetes nyelven, tdblazatokkal és diagrammokkal kell
a felhasznaloi kdvetelményeket érthet6vé tenni.

A természetes nyelv alkalmazasanak nehézségei:

1. Az egyértelmiiség és pontossag hianya
2. A kovetelmények keveredése

3. A kovetelmények 6tvozddése

Javaslatok a felhasznal6i kovetelmények leirasara:

1. Dolgozzunk ki egységes formatumot az Osszes kovetelmény leirdséra.
Hasznaljuk a nyelvet kovetkezetesen, a sziikséges kovetelményeket a
Hkell”, a kivanatos kovetelményeket pedig a ,,javallott” széval jelolhet-
jiik.

2. Készitsiink glosszariumot a szévegben hasznalt fogalmak és roviditések
magyarazatara.

3. A fontos részeket vizualisan is emeljiik ki a szdvegbdl.

4. Keriiljik a szamitogépes zsargon hasznalatét.

19

7.3.2. Rendszerkovetelmények

A rendszerkovetelmények a felhasznaloi kovetelmények részletesebb és
rendezett leirasat adjak. A rendszertervezés alapjaul szolgalnak, tartalmaz-
hatjék a rendszer modelljeit. Sokszor a szerz6déshez csatoljék, ezért a rend-
szer teljes és konzisztens meghatéarozasat kell tartalmazniuk. A rendszerko-
vetelmények leirjak, hogy a rendszernek mit kell elvégeznie, majd a tervek
hatarozzak meg, hogy hogyan tegye.

7.4 FORMALIS KOVETELMENYSPECIFIKACIO PDL HASZNALATAVAL

A programleir6 nyelvek (PDL — Program Description Language) olyan, prog-
ramozasi nyelvbdl szarmazo, de rugalmasabb nyelvek, amelyekkel egyértel-
miibben lefrhaték egyes kdvetelmény tipusok. Példaul:

e Amikor egy mivelet tevékenységek sorozatédbol all és fontos azok sor-
rendje, vagy

e Hardver és szoftver interfészeket kell specifikilni.

Hatranyai:

e A PDL nem alkalmas a szakteriileti kovetelmények definialasara,
e A jelolések csak programozoi ismeretekkel értelmezhetdk,

o A kovetelmények leirasa inkdbb egy tervezési specifikdcidhoz hasonlit
és nem a rendszer megértését segité modell.

7.5 INTERFESZ SPECIFIKACIO

Egy 4j rendszernek legtobbszor mas, mar meglévs rendszerekkel kell egytitt-
miikédnie. Az interfészeket a kdvetelmények kozott kell specifikalni.

Az interfészek tipusai:

1. Proceduralis interfészek — eljarasok hivasa egy masik (al)rendszerbdl

2. Adatszerkezetek, amelyek az egyik (al)rendszertdl egy masikhoz kertil-
nek

20

3.

Adatreprezentaciok

c sz

A formalis jelolések egyértelmiivé teszik az interfészek definiciojat.

7.6

7.7

A KOVETELMENYEK TELJESSEGE, KONZISZTENCIAJA

. A kovetelményeket elvileg mindenre kiterjed&en, és ellentmondésmen-

tesen kell leirni.

. A teljesség azt jelenti, hogy a felhasznal6 altal igényelt Gsszes szolgal-

tatasnak szerepelnie kell.

A leiras konzisztens, ha nincs konfliktus, vagy ellentmondas a rendszer
szolgaltatéasai kozott.

. A nagyméretii, komplex rendszereknél ez a gyakorlatban megoldhatat-

lan.

Bonyolult rendszerekben ellentmondasok lehetnek a nem-funkcionalis
kovetelmények kozott. Ezért a kovetelményeket fontossdg szerint su-
lyozni kell.

A FORMALIS MODSZEREK

A mérnoki tudoményokban altalanosan elfogadott a matematikai modellezés
és elemzés alkalmazasa a tervezési folyamatokban. A szoftvertervezés azon-
ban még nem tudott kialakitani mindenki altal hasznalhaté6 modszereket,
bar széles korben folynak a kutatésok a szoftvermingség javitésa érdekében.

A szoftvertechnologia teriiletén a formélis modszerek a szoftver matema-

c sz

tartozik:

A formalis specifikacio,
A specifikici6 elemezése és bizonyitésa,
A transzformacios fejlesztés

A program verifikilas

A formalis moédszerek - az el6zetes varakozéasok ellenére — nem tudtak
teret héditani, mert:

21

1. Kialakultak tobbé-kevésbé sikeres modszerek, mint az OO tervezés,
konfiguraciokezelés, a strukturalt progra-mozas, stb., amelyek javitot-
tak a szoftver minGségét.

2. Ujabban a szoftver gyors piacra keriilése fontosabb, mint a mindség. A
gyors fejlesztési technikdk nem illeszkednek a formélis médszerekhez.

3. A formaélis médszerek csak korlatozottan alkalmaz-hatok példaul a fel-
hasznaloi interfészek, feliiletek és munkafolyamatok specifikalasara.

4. A formalis modszerek nehezen, vagy egyaltalan nem alkalmazhatok
nagy rendszerek esetén.

A formaélis modszereknek csak korlatozott felhasznaléasi lehet&ségel van-
nak. Alkalmazéasuk kockézata és koltsége sok esetben nagyobb, mint a var-
hato elényok.

Ugyanakkor azoknal a rendszereknél, amelyeket formélis modszerekkel
fejlesztettek, a hibaarany alacsonyabb volt.

Ezért elsGsorban kritikus rendszerek fejlesztésénél alkalmazzak, ahol a

rendszer igen magas validalasi koltségeihez és az esetleges hibakbol eredd
katasztrofa koltségeihez képest még kifizet6ds a hasznalata.

7.7.1. Formalis specifikaci6

e A formalis specifikicié egy matematikai jelolésrendszert alkalmaz, pon-
tosan specifikalt szoétarral, szintaxissal és szemantikaval.

A specifikilas és a tervezés nagymeértékben Gsszefonodik egymassal.

Az architektira-tervezés adhatja az alapot egy specifikicio struktira-
jahoz.

A szoftverspecifikacio folyamatanak elérehaladaséval az tigyfél befolya-
sa csokken, a vallalkozo befolyasa novekszik.

Formalis specifikacios technikak:

Algebrai megkozelités: A rendszert mtveletek és azok kapcsolatai alap-
jan irja le.

22

Modell alapi megkozelités: A rendszert allapotmodellel specifikalja, amely
halmazokbdl és sorozatokbol all6 matematikai konstrukcidkat tartal-
maz, a miveleteket pedig aszerint definidlja, ahogy azok a rendszer
allapotat modositjak.

Még kevés eszkoz késziilt a formalis modszerek tamogatasara

A formalis specifikacioé alkalmazasa A formalis specifikicio a szoftver-
fejlesztés kezdeti szakaszaban kivan nagyobb erdfeszitéseket. A kovetelmé-
nyek alaposabb és részletesebb elemzése azzal jar, hogy kevesebb lesz a hiba a
kovetelményspecifikacioban. A kovetkezetlenségek és a hidnyossagok felfed-
het6k és kijavithatok a formalis modellekkel. Ezért a kovetelmények késén
felfedezett hibaiboél ereds tobbletmunka lesz kevesebb.

A formalis specifikiaciot nyilt interfészek, kommunikécios protokollok de-
finidlasara is alkalmazzak.

7.8 INTERFESZSPECIFIKASIO

A nagy rendszereket alrendszerekre bontjak, amelyek k6zott jol definialt in-
terfészeket kell specifikalni. Az alrendszerek kozti interfészek specifikalasa
teszi lehetévé, hogy az alrendszerek fejlesztése egyméstol fiiggetlentil tortén-
jen. Az interfészek absztrakt adattipusokkal, vagy objektum osztalyokkal
definidlhatok. A formalis specifikacid algebrai megkozelitése kiilondsen al-
kalmas az interfészek pontos specifikilasara.

7.9 VISELKEDESSPECIFIKACIO

Az algebrai specifikaciés technikak nehézséget okozhatnak, amikor az objek-
tumok miiveletei nem fiiggetlenek annak allapotatol. A formélis specifikaci-
Ok gyakorlati alkalmazasaban jobban elterjedtek a modell alapt specifikdcios
modszerek.

A modell alapu specifikiacié a rendszerspecifikaciot a rendszer allapot-
modelljeként fejezi ki. (Ilyen nyelvek tobbek kozott a VDM, a B és a Z).
A 7 a rendszereket halmazokkal és a halmazok k6zotti relacidkkal modelle-
zi. Kombinalja a formalis és az informalis lefrasokat és grafikus dbrézolast
alkalmaz. Kiilonosen alkalmas interfészek és szoftver specifikilasara (ISO
szabvany lesz).

23

A 7Z sémak konzisztenciaja

Az 0sszes séméban konzisztensnek kell lenniiik a predikdtumoknak. Egy
sémaban nem lehet olyan &llitads, ami ellentmond egy méasik séma predika-
tuméanak. Az inkonzisztencia a kiévetelmények ellentmondaséara hivja fel a
figyelmet.

Az ellentmondasokat a rendszer implementéalasa el6tt fel kell oldani.

8 A SZOFTVERKOVETELMENYEK, A KOVETELMENYEK FELTARA-
SANAK, VALIDALASANAK ES KEZELESENEK MODSZEREI

A kovetelmények a rendszer szolgaltatasainak és a megkotéseknek lefrasai. A
kovetelménytervezés feladata annak felmérése, hogy a rendszer majdani fel-
hasznaloja (megrendelGje) mit var a szoftvertsl, azoknak a kortilményeknek
meghatéarozasa, amelyek a rendszer fejlesztését és miikodtetését befolyasol-
jak.

8.1 KOVETELMENYEK FELTARASA ES ELEMZESE

Az informatikusok interjukat készitenek és workshopokat tartanak a megren-
dels kulcsembereivel (szakteriileti képviselsk, vezetsk, és majdani felhaszna-
16k), hogy felderitsék, milyen szolgaltatasokat kell biztositania a rendszernek.

A kovetelmények feltarasa bonyolult, mert:

A kulcsemberek gyakran nem tudjak, hogy mit varhatnak és varnak
egy szamitogépes rendszertdl.

e A kulcsemberek a sajat szakteriiletiik fogalmait hasznaljak, a kovetel-
ménytervezSknek ezeket kell megértenitik.

e Az egyes szakteriileteknek kiilonb6z6 elvarasai vannak.

e Egyes kulcsfigurdk a sajat poziciojuk erdsitésére akarjik felhasznalni
az 1j rendszert.

e A kornyezet valtozasa folyamatosan modositja a kovetelményeket, a
valtozasokat kovetni kell.

24

8.1.1. Nézdpont-orientalt feltaras

Nagy rendszerek kiilonbozé felhasznalodi kiillonb6z6 nézépontbol 1atjak
a rendszer szolgaltatasait, eltéré kovetelményeik vannak, amelyek gyakran
atfedik egymast, sokszor ellentmondanak egymasnak. A rendszerkévetelmé-
nyek feltdrasat és elemzését tehat tobb perspektivabol kell végezni, nincs
egyetlen helyes Gt a probléma megkozelitésére.

A néz6pont-orientalt szemlélet felismeri a kiilonb6z8 perspektiviakat és
segit a kiilonb6z6 kulcsszereplék egymasnak ellentmondé kévetelményeinek
felfedésében. A néz&pontok kiviilrél tekintik a rendszert, igy strukturaljak a
kovetelmények feltarasat. Foleg interaktiv rendszerekhez alkalmas.

A nézdépontok tipusai

Adatforras vagy adatnyelS: Az adatok elGéllitdsdnak és feldolgozasanak
nézdépontjai. Az elemzés kiterjed az Gsszes adatforrasra és adatnyeldre,
tovabba a feldolgozésok azonositasara és vizsgéalatara.

Reprezentacios eszkozkészlet: A kiilonb6zd tipusiu rendszermodellek né-
z6pontjai. Ezek 0sszehasonlitasabdl kittinik, melyek azok a kdvetelmé-
nyek, amelyeket az egyes rendszermodellek hibasan értelmeznek.

A szolgaltatasok fogaddja: A rendszer szolgéltatasait felhasznalo (em-
ber, mésik rendszer, stb.) nézépontjai.

Moaodszerek a kévetelményelemzéshez Céljuk a rendszerkévetelmények
strukturalt feltard-sanak, elemzésének, tervezésének tamogatésa.

Tipusok:

Néz6pont orientalt médszerek: (pl. VORD — Viewpoint-Oriented Re-
quirements Definition)
Forgatékonyvek: e Esemény forgatokonyvek
o Leirjak, hogyan hasznaljak a rendszert a gyakorlatban.
e Hasznalati esetek (Az UML-nél foglalkozunk vele).
Etnografia: A rendszerek tarsadalmi, szervezeti kornyezete, az emberek

munkavégzési modja felsl kozeliti a rendszerkévetelményeket. Gyak-
ran kiegésziil a prototipus-készitéssel.

25

8.2 A KOVETELMENYEK VALIDALASA

Feladata annak igazolasa, hogy a kovetelmények a megrendels kivansagainak
megfelel§ rendszert definialjak. A hibés, vagy hidnyos kévetelmények nagy
veszteségeket okoznak, ezért a validacio igen fontos:

A hibas kovetelmények javitasa a rendszer dtadésa utan gyakran széz-
szor annyiba keriil, mint egy implementéacios (pl. programozasi) hiba
kijavitasa.

Az érvényesség ellendrzése: A felhasznalo altal elére nem latott funkciok
feltarasa.

Az ellentmondas-mentesség ellendrzése: Ellentmondoé megszoritasok, vagy
rendszerfunkciok kisztirése.

A teljesség ellendrzése: Annak ellendrzése, hogy a dokumentum a fel-
hasznalo altal kért Osszes funkciot tartalmazza-e.

A megvalosithatosag ellendrzése Az elképzelt rendszer megvalosithato-
e a rendelkezésre all6 technologiaval, a tervezett id6 alatt, az adott
koltséggel.

Az igazolhatosag ellendrzése: A rendszerkovetelmények dokumentumai
alkalmasak-e arra, hogy utdlag igazoljdk, az atadott rendszer teljesiti
a kovetelményeket.

8.3 A KOVETELMENYEK KEZELESE

A kovetelmények kezelése a kovetelmények valtozasanak kovetésére, kézben-
tartasara szolgélo folyamat.

A kovetelmények soha nem lehetnek teljesek és konzisztensek.

e A szoftverfolyamat soran 1j kdvetelmények meriilnek fel, ahogy az {iz-
leti kérnyezet valtozik, és a feladat megértésében elbbre jutunk.
e A kiilénbo6z6 nézépontok kiillonbozé kovetelményeket tamasztanak a

rendszerrel szemben, amelyek gyakran ellentmondanak egymasnak.

A kovetelménykezelés soran fel kell késziilni a kévetelmények véltozéasara.
Ehhez sziikség van:

26

1. A kovetelmények egyedi azonositasara (1d. Specifikacio).
2. A valtozaskezelés folyamatanak kidolgozéaséara.
3. A kovetelmények és az Osszefiiggések valtozasdnak kovetésére.

4. A valtozasok és hatasuk elemzésére.

CASE eszk6z0k tamogathatjak a valtozéskezelést.

9 A RENDSZERMODELLEK TiPUSAI, KORNYEZETI ES VISELKEDESI
MODELLEK, ADATMODELL TiPUSOK

9.1 RENDSZERMODELLEK

A rendszermodellezés segiti az elemziket a rendszer funkcionalitasdnak meg-
értésében. Egyes modellek alkalmazhatok a felhasznéléval folytatott kom-
munikicidoban is. A kiilénb6z6 modellek eltérd nézépontbdl abrazoljak a
rendszert:

e A kornyezeti modellek a rendszer kornyezetét és kapcsolatait mu-
tatjak be.

— A rendszer hatarainak abréazolasara szolgalnak (mi tartozik a rend-
szerhez és mi nem)

— A hatarok kijelolése gyakran nem technikai, hanem tarsadalmi,
vagy szociélis szempontoktol is fiigg.

— A rendszer és kiils§ rendszerekkel valé kapcsolatainak abrazolasa
az architekturalis modell feladata.

— A kornyezeti modell abrazolasi modja altalaban egyszertd blokk-
diagram.

e A folyamatmodell a teljes munkafolyamatot bemutatja.

— A folyamatmodell alapjan lehet kijelolni, hogy a folyamat mely
részeit kell tAmogatnia, vagy elvégeznie a szamitdégépes rendszer-
nek.

— A folyamatok és a folyamatok kozti informécié aramlas bemuta-
taséra adatfolyam modellek hasznalhatok.

e A viselkedési modellek a rendszer atfogd viselkedésének leirdsara
szolgalnak. Tipusai:

27

— Adatfolyam modellek: Bemutatjik, hogyan dolgozza fel a rend-
szer az adatokat. Modellezik az adatfeldolgozéast a rendszerben.

x Azt mutatjak be, hogyan aramlanak végig az adatok a fel-
dolgozasi 1épések sorozatan és milyen atalakuldson mennek
keresztiil.

x Segitik az elemzéket abban, hogy megértsék, mi torténik a
rendszerben.

* Egyszer(jelolésrendszert alkalmaznak, ezért a megrendeld is
kénnyen megérti.

* Funkcionalis szempontbdél modellezik a rendszert, és alkalma-
sak a rendszer kiils6 adatkapcsolatainak abréazolasara is.

— Allapotatmenet modellek: Bemutatja, hogyan reagal a rend-
szer a kilonbo6zs eseményekre. A rendszer viselkedését modelle-
zik, a belsd és kiils§ eseményekre adott valaszokat irjak le.

x Gyakran hasznaljak valosidejd rendszerek modellezésére.

x A rendszer allapotait csomopontként, az eseményeket nyilak-
kal jeloli. Egy esemény hatasara a rendszer egyik allapotabol
egy masik allapotba kertil.

x Az allapotdiagramok az UML jel6lésrendszer részét képezik.

x Feltételezi, hogy a rendszer egy adott idSpontban a lehetséges
allapotok egyikében van.

— A rendszer viselkedésének leirdsdhoz mindkét tipusra sziikség van.

e A szerkezeti modellek a rendszer felépitését, illetve az adatok szer-
kezetét abrazoljak.

9.2 ADATMODELLEK

A nagy rendszerek sokféle adatot tarolnak és dolgoznak fel, nagyméretd adat-
bézisokat alkalmaznak. Az adatbazisok sok esetben a rendszertdl fiiggetlentil
léteznek, maskor a rendszerrel egyiitt kell létrehozni azokat.

Az adatmodellek a rendszer altal feldolgozott adatok logikai szerkeze-
tének meghatarozasara szolgalnak. Az adatbéazis tervezésben széles korben
alkalmazzék 6ket. Leginkibb elterjedt az egyed-tulajdonsag-kapcsolat
modellezése.

Az egyedeket miveletekkel nem rendelkezd, egyszertisitett objektumosz-
talyoknak tekinthetjiik, igy az UML osztalymodellje hasznalhaté az adatok
modellezésére is.

28

Az UML nem tartalmaz kiilon jeldlésmédot az adatmodellezésre, az ada-
tokat az objektumok és a koztiik 1évs kapcsolatok segitségével modellezi.

Az adatmodelleket gyakran adatfolyam-modellekkel egyiitt hasznaljak

9.2.1. Adatszotarak

Az egyed-tipus-kapcsolat modelleket célszertd kiegésziteni adatszotarral.
Az adatszotar tartalmazza az Osszes nevet, ami a modellben szerepel, az
egyedleirasokat, kapcsolatokat és tulajdonsagokat.

El6nyei:

1. Névkezelés, a néviitkozések kizarésa,

2. Szervezeti informaciok tarolasa, tAmogatja az elemzést, tervezést, imp-
lementaciot és evoluciot.

3. Sok CASE eszkoz tartalmazza az adatszétar tamogatéast.

9.2.2. A modell

A modell absztrakt leirasa egy olyan rendszernek, amelynek kévetelmé-
nyeit el6z6leg mar Osszegytijtotték, rendszerbe foglaltak és elemezték. Az
absztrakt modell jellemzGje, hogy részleteket hagy el, egyszertsit. Kiemeli a
lényeget. Vagyis rendszermodell nem egy mésik reprezentacioja a rendszer-
nek.

9.2.3. A rendszermodellek tipusai

Adatfeldolgozasi modell: Adatfolyam diagramok, az adatok feldolgoza-
sat mutatjak a rendszeren beliil.

Kompoziciés modell: Egyed-kapcsolat diagramok. Bemutatjak, hogyan
épiilnek fel az egyedek més egyedekbdl.

Architekturalis modell: Az alrendszereket mutatjik be, amelyekbdl a rend-
szer felépiil.

Osztalymodell: Objektum osztaly/oroklédési diagramok, az egyedek kozos
tulajdonsagait abrazoljak.

29

Inger-valasz modell: Allapotatmenet diagramok, a rendszer belsd és kiilss
eseményekre adott reakcioit irjak le.

10 OBJEKTUMORIENTALT RENDSZERMODELLEK, OROKLODESI MO-
DELLEK, AZ OBJEKTUMOK VISELKEDESENEK MODELLEZESE

A rendszerkovetelményeket (f6leg interaktiv rendszerek esetében) gyakran
objektum-modellel irjak le. Az objektummodell objektumosztalyokkal mo-
dellezi a rendszert. Az objektummodellek természetes modon tiikrozik az
altaluk manipulélt valos vilagbeli egyedeket. Az elvont, magasabb szintd
egyedeket ezzel a megkozelitéssel nehezebb modellezni.

10.0.1. Objektumosztaly

Koz06s tulajdonsaggal rendelkezd objektumok halmazénak és az objektu-
mok altal nyujtott szolgaltatasoknak (miiveleteknek) absztrakcioja.

Jellemzdbi:

1. Hasonl6 tulajdonsagu objektumok halmaza: Szerkezeti és viselke-
désbeli jellemz6k hasonloséiga.

2. Az osztalynak van neve: A nevet az osztélyba tartozé 6sszes objektum
Orokli.

3. Lehetnek attribttumai, paraméterei: Hozzaférési moédok: public,
private, protected.

4. Tartoznak hozza szolgaltatasok, miiveletek: Az osztily minden ob-
jektumara, vagy az osztaly egészére vonatkozd mitiveletek.

5. Tartozhat hozza import feliilet: Az Aaltala igényelt szolgaltatasok
definicioi.

6. Rendelkezhet megvaldsitasi résszel: A megvalositas leirasa.
7. Van lathato és lathatatlan része
8. Lehet absztrakt vagy konkrét osztaly

9. Lehet paraméteres (sablon) osztaly

30

10.0.2. Objektum

Az objektumok az objektumosztaly példanyai, végrehajthato egyedek, az
objektumosztaly tulajdonsagaival és szolgaltatésaival.

Az objektumok jellemzdi:

1. Azonosithat6: Az objektumok egyméstol megkiilonboztethetdk, flig-
getlentl az allapotuktol.

2. Tulajdonsagok, attribtitumok tartoznak hozza: Ezek lehetnek ko-
tott, formalis paraméterek is.

3. Allapot tartozik hozza: Az attributumok konkrét értékei az objektum
mindenkori allapotat hatarozzék meg.

4. Miiveletek tartoznak hozza: Ezek lehetnek leképezések, tevékenysé-
gek, események.

5. Korlatozott lathatosaggal rendelkezik: van lathato része (export és
import miiveletek) és van lathatatlan része (az abréazolas és a szolgal-
tatasok megvalositasanak részletei).

Egy adott szakteriilet egyedeinek objektumosztilyba sorolasa tobb
rendszerben is felhasznalhato.

Néhany objektummodell fajta:

e Oroklsdési modell
o Aggregécios modell

o Viselkedési modell

A rendszerek felhasznéloi szamara a funkcionalis modellek (pl. adatfo-
lyam diagram) konnyebben érthetSek, mint az objektummodellek.

10.1 OROKLODESI MODELL

Az objektumosztalyokat taxonémidba szervezi. A taxondémia olyan oszta-
lyozési séma, amely megmutatja, egy osztily hogyan kapcsolédik més osz-

31

talyokhoz, kozos tulajdonsdgokon és szolgéaltatasokon keresztil. Az osztaly-
hierarchia tervezése az egyik legnehezebb feladat, mivel az egyes dgakon ke-
riilni kell a duplikalast.

Az alacsonyabb szinten 1évG osztélyok: 6roklik a magasabb szintd oszta-
lyoktol tulajdonsagaikat és szolgaltatasaikat rendelkezhetnek specialis tulaj-
donsagokkal és szolgaltatasokkal is.

Objektumaggregacio

Egyes objektumok mas objektumokbdl épiilnek fel, azok aggregatuma-
ként. Az aggregacios modell azt mutatja meg, hogy hogyan keletkezik tobb
osztalybol egy aggregalt osztaly.

10.2 VISELKEDESI MODELL

Az objektumok viselkedése az altaluk biztositott miiveletek sorrendjének ab-
razolasaval torténhet (szekvencia diagram). A szekvencia diagram voltakép-
pen egy forgatokonyv, amely a hasznalati eseten alapul.

A szekvencia diagramok mellett az UML-ben egyiittmtikodési diagramo-
kat is hasznalunk, ahol az objektumok altal valtott tizenetek sorozatat ab-
razoljuk.

11 SZOFTVERPROTOTIPUS KESZITESE, A PROTOTIPUSOK FAJTAI,
PROTOTIPUSKESZITES ES ADATBAZIS PROGRAMOZAS

11.1 RENDSZERPROTOTIPUS KESZITESE

A prototipuskészités a kovetelménytervezés része, a kovetelmények felta-
rasanak és validacidjanak eszkoze.

A prototipus a szoftverrendszer kezdeti verzidja, amely alkalmas a rend-
szer koncepciojanak bemutatisara és kiprobélasara. Korabban tgy tekin-
tették, hogy a prototipus alacsonyabb rendd a kivant rendszernél. Ma a
prototipus- és a normal rendszer kozti hatar fokozatosan elmosodik és sok
rendszert az evoliciés modell alapjan készitenek.

32

11.1.1. A prototipusok alkalmazasa

A felhasznalo nem latja eldre, hogyan fogja hasznalni az j rendszert. A
prototipus elsédleges célja az, hogy segitse a felhasznalokat a rendszerkdve-
telmények megértésében:

A kovetelmények feltarasa: a prototipussal a felhasznalok megtapasz-
talhatjak, hogyan fogja a rendszer a munkajukat taAmogatni.

A kovetelmények validalasa: a prototipus felfedheti a hibakat és hia-
nyossagokat a kovetelményekben.

11.1.2. A prototipuskészités elényei

o Felfedi a szoftver felhasznéldja és készitGje kozti félreértéseket. Csok-
kenti a kovetelményekkel kapcsolatos kockazatokat.

e Kideriilhet, hogy hidnyzik valamely szolgaltatéas, vagy ellentmondasok
vannak a szolgéltatasok kozott.

o A szoftverfolyamat elején mar egy — legalabbis részben - miik6ds rend-
szer all rendelkezésre.

e A prototipus felhasznalhaté a rendszer-specifikacio alapjaként.

e Tamogathatja a felhasznalok képzését és a rendszertesztet.

11.1.3. A prototipuskészités folyamata

1. Prototipusfeladatok megallapitasa - Prototipuskészitési terv
2. Prototipus funkcidinak meghatarozésa - Vazlat kidolgozasa
3. Prototipus fejlesztése - Futtathato prototipus

4. Prototipus kiértékelése - Kiértékelési jelentés

11.1.4. Elényei és hatranyai

Elényok:

e A rendszer hasznalhatobb lesz.

33

A rendszer jobban illeszkedik a felhasznal6 igényeihez.

Javul a tervezés minGsége.

Gyorsabban elkésziil a rendszer.

A fejlesztéshez kevesebb erdforrasra van sziikség (koltségesokkentés).

Veszélyek:

e Eldobhato prototipust végleges rendszerként hasznalnak (teljesitmény,
funkcionalitas, megbizhatosag)

e A gyors fejlesztésbdl és az iteraciobol fakado hibak: valaszidd, rendszer-
struktira

11.1.5. A prototipuskészités helye a szoftverfolyamatban

Evoluciés prototipus készitése: Célja egy miikdds rendszer atadasa a
megrendelének. A legfontosabb kiévetelmények implementaléasaval egyszert
rendszer késziil, amelyet Gijabb kovetelmények feltarasaval fokozatosan egé-
szitenek ki j funkcidkkal. Weblap fejlesztésben és e-business alkalmazésok-
ban hasznaljak.

Eldobhaté prototipus készitése: Célja a rendszerkévetelmények felta-
rasa és validalasa. A nem teljesen megértett kovetelmények megvaldsitasa
és bemutatésa segiti a feltarast. A kdvetelményspecifikacio elkésziilte utan
nem hasznélhato6 fel.

11.2 EvOLUCIOS PROTOTIPUSKESZITES

Olyan rendszereknél célszeri alkalmazni, ahol nem készithetd el elére a speci-
fikacio. Ilyenek altaldban az intenziv felhasznéléi interfész-hasznalatot igény-
16 rendszerek.

Nincs részletes rendszerspecifikacio, sokszor a részletes kdvetelménydoku-
mentum is hidnyzik. s A fejlesztéshez gyors, iteralhaté fejleszts eszkozokre
és modszerekre van sziikség. Mivel nem késziil kovetelményspecifikacio, a
validaci6 is csak a rendszer bemutatasaval torténhet.

34

11.2.1. Az evolicios prototipuskészités folyamata

1. Absztrekt specifikacio készitése

[\

. Prototitpus épitése
3. Prototipus hasznélata
4. Ha megfelel§ a rendszer: a rendszer atadéasa

5. Egyébként: Uj Prototipus épitése

11.2.2. Az evolucios prototipuskészités jellemzsi

A specifikicid, a tervezés és az implementacio atlapolhato.

e A rendszer inkrementumok sorozataként fejlédik, és keriil a felhaszné-
l6hoz, vagyis a felhasznalo kulcsfigurai minden inkrementum tervezé-
sében és értékelésében részt vesznek.

Gyors fejleszt6 eszkozok és technikék alkalmazhatok (CASE eszkozok,
4GL, modellez§ nyelvek: BPMIL-Business Process Modeling Langu-

age).

A felhasznaloi feliiletek GUI fejleszt6 eszkézokkel készithetdk.

11.2.3. Elényei

Felgyorsul a rendszerfejlesztés. A gyors fejlesztés, az 0j rendszer siir-
g8s hasznélatba vétele gyakran fontosabb mint a koévetelmények részletes
feltardsa, vagy a hosszi tava karbantarthatosag.

Novelhets a felhasznalo elkGtelezettsége: A felhasznalok bevonasa a
rendszerfolyamatba azt eredményezi, hogy a rendszer nagyobb valdszintiség-
gel felel meg az elvarasoknak, és a hasznalatba vételkor a felhasznélék méar
ismerik azt és tudjak alkalmazni.

11.2.4. Hatranyai
Vezetési problémak A jelenlegi vezetési modszerek a vizesés modellre al-

kalmazhatok. Az 0j technologidk alkalmazasahoz specialis ismeretekre, eset-
leg mas munkatarsakra van sziikség.

35

Karbantartasi problémak A folytonos véltozasok a prototipus szerke-
zetének sériilését okozhatjak, a dokumentéicié hianya és a speciélis fejleszté
eszkozok a karbantartast veszélyeztetik.

Szerz6déskotési problémak A fix aras szerzédéshez elére ismerni kell
a rendszer vazlatos kévetelményeit és tervét. A réaforditas alapu szerzédést
pedig a megrendel§ nem fogadja el.

11.2.5. A prototipus, mint specifikaci6

Egyes kovetelményeket (mint pl. a biztonsag-kritikus funkciokat) nem
lehet a prototipusba beépiteni, igy nem fognak szerepelni a specifikacio-
ban. Egy implementacié nem lehet egy szerzédés jogi melléklete. A nem-
funkcionélis kévetelmények nem tesztelhetdk teljes mértékben.

11.3 ELDOBHATO PROTOTIPUS KESZITESE

Célja a kovetelményspecifikiaciobol fakado kockéazat csokkentése. A prototi-
pust egy kezdeti specifikicié alapjan készitik, svalidalasra dtadjak a felhasz-
nalénak, majd eldobjak. Az eldobhat6 prototipus nem tekinthet végleges
rendszernek, mert:

1. T6bb rendszertulajdonsag kimaradhat a prototipusbdl,

2. Nem késziil specifikicio a hosszi tava karbantartéasra.

3. A prototipus még nem a megfelel§ struktira szerint épiil.

11.3.1. A prototipuskészités folyamata

1. A kovetelmények korvonalazasa

2. Prototipusfejlesztés

w

. Prototipus kiértékelése

e

. Prototipus elfogadésa vagy 0j prototipus fejlesztése
5. Rendszerspecifikici6 készitése
6. Szoftverfejlesztés (ujrafelhaszndlhats komponensekkel)

7. A rendszer validalasa: elfogadas vagy tovabbi fejlesztés

36

8. A szoftver atadasa

11.3.2. A prototipus atadasa

A vezetSk gyakran nyomast gyakorolnak a fejleszt&kre, hogy egy miikddd
eldobhat6 prototipust végleges rendszerként adjanak at. Ez nagyon veszé-
lyes, mert:

e A prototipus nem alakithato gy, hogy a nem-funkcionélis kévetelmé-
nyeknek (teljesitmény, megbizhatdsag, stb.) eleget tegyen.

e A prototipus rendszerint dokumentalatlan marad, mert a cél a gyors
elkészités és bemutatas.

e A valtoztatdsok miatt a rendszer strukturija altalaban romlik a fej-
lesztés soran.

e A prototipus készitésekor az altalanos szervezeti szabvanyokat nem
tartjak be (mingségbiztositas, technologiai fegyelem, projekt dokumen-
talas).

11.4 GYORS PROTOTIPUSKESZITESI TECHNIKAK
A gyors prototipuskészitéshez az alabbi technikik alkalmazhatok:

1. Fejlesztés dinamikus, magas szintd nyelven,
2. Adatbézis-programozas,

3. Komponensek és alkalmazasok Gsszeépitése.

A gyakorlatban ezeket egyiittesen alkalmazzak.

A legtobb prototipuskészits eszkoz tartalmazza a vizualis programozas
tamogatésat, ahol grafikus szimbolumok reprezentaljak a fiiggvényeket, ada-
tokat, feldolgozo szkrtipteket. Az eszkoz a rendszer vizualis reprezentécioja-
bol generalja a végrehajthatd programot.

11.4.1. Fejlesztés magas szintii nyelven

Olyan nyelvek, amelyek hatékony futasi ideji adatkezels eszkozoket tar-
talmaznak. Korabban a nagy rendszerek fejlesztéséhez nem hasznaltak ilye-

37

neket, mert nagy teljesitményti futtaté rendszereket igényelnek, ami noveli a
tarigényt, csokkenti a futasi teljesitményt.

Némely nyelv olyan integrilt tamogaté kornyezetet tartalmaz, amely fel-
hasznalhato a gyors prototipuskészitéshez. A magas szinti nyelvek tobbsége
fejlett felhasznaloi interfész fejleszt képességekkel rendelkezik.

11.4.2. Prototipuskészité nyelvek

Szempontok az alkalmas nyelv kivalasztasdhoz:

Az alkalmazasi teriilet jellege: Természetes nyelvii feldolgozashoz a Lisp,
vagy a Prolog alkalmasabb.

A felhasznaléi interakcid jellege: Az intenziv web alapu felhasznaloi in-
terakcio kidolgozasara a Java, vagy Smalltalk tobb eszkozt kinal.

A tamogatasi kérnyezet: A nyelvvel egyiitt sokféle eszkoz és komponens
segiti a prototipuskészitést.

A rendszerprototipus kiilonbo6z8 részei kiillonb6z6 nyelven programozha-
tok. A kiilonb6zd nyelven irt részek koézotti kapcesolatot kommunikécios ke-
retrendszer teremtheti meg.

Nagy rendszerek prototipusanak készitésekor nincs egyetlen idealis nyelv.
A rendszer egyes részei az igényeknek megfelels leginkabb alkalmas nyelven
késziilhetnek. Mivel a nyelvek eltéré egyedfogalmakat hasznalhatnak, a ré-
szek kozti adat- és vezérlési kapcsolatok sok addicionélis kodot igényelhetnek.

11.5 ADATBAZIS-PROGRAMOZAS

Az evolicios fejlesztés az adatbézison alapuld kis-, kozepes tizleti alkalma-
zéasok teriiletén altalanosan alkalmazott technika. A kereskedelmi adatbéazis-
kezel6 rendszerek olyan 4GL fejleszt§ eszkozoket tartalmaznak, amelyek ta-
mogatjak a lekérdezést/ datkezelést (SQL), tablazatkezelést, jelentés gene-
ralast, felhasznaldi feliiletek tervezését, stb.

Az adatfeldolgozéasi alkalmazasokban sok k6z0s jegy van: adatbazis mani-
puléaciok (keresés, frissités, rendezés, stb.), egyszerti miveletek, tirlapkezelés,
stb. Egy 4GL-ben ezeket altaldnositjak. Gyakran integralhatok CASE esz-
kozokkel is. Ezek generalhatnak SQL-t, vagy alacsonyabb szintd kodot.

38

Negyedik generacios nyelvek (4GL)

Tulajdonségok:

Interaktiv, gyakran grafikus trlapgeneralas,

Urlapkezelés (strukturalt trlapok osszekapcsolasa, mezGellendrzés)

Web-es kapcsolatok (bongészd)

Nagy tar- és er6forras igény

Elemei:

Adatbéazis-kezelS rendszer, ez koti 0ssze az Osszes tobbi elemet

Adatbazis-programozasi nyelv

Interfész-generétor

Tablazatkezels

Jelentésgenerator

Hatrany: Szabvanyok hidnya (gyarto-specifikus)

11.6 PROTOTIPUSKESZITES UJRAFELHASZNALASSAL

Az alkalmazas szintjén: Teljes alkalmazasi rendszerek integralasa a pro-
totipusba tugy, hogy egymas funkcioit megosztva hasznéljak. (Példaul szab-
vanyos szovegszerkesztd alkalmazasa a szovegszerkesztésre.)

A komponensek szintjén: Az egyedi komponensek integralasa egy szab-
vanyos keretrendszerbe. (Példaul egy szkriptnyelv, mint a Visual Basic, vagy
olyan integraciés keretrendszer, amely CORBA, szabvanyon alapul, vagy
net, JavaBean futtatasra alkalmas.)

39

11.7 FELHASZNALOI FELULETEK PROTOTIPUSAI

A felhasznalot be kell vonni a felhasznaloi feliiletek tervezésébe, a fejlesz-
t6 nem erdltetheti ra sajat elképzeléseit. A prototipusok készitése segit a
felhasznalok bevonasaban. A felhasznaloi interfész fejlesztése a rendszer-
fejlesztési koltségek novekvs hanyadat adja.

Az interfész-generatorok segitenek abban, hogy a felhasznalok gyorsan
turalt programot generalnak. A web alapu felhasznaloi interfészek készitésére
jol ismert weblap tervezd eszkozok léteznek.

12 ARCHITEKTURALIS TERVEZES, A RENDSZER STRUKTURALA-
SA, RENDSZERMODELLEK, VEZERLESI MODELLEK

12.1 ARCHITEKTURALIS TERVEZES

A rendszertervezés folyamatanak kezdeti lépcs6foka. Az architekturalis ter-
vezés az a tervezési folyamat, amelynek soran kijelolik a rendszert alkotd
alrendszereket és azt a keretrendszert, amely vezérli az alrendszereket és
biztositja kozottik a kommunikaciot. A folyamat végeredménye a szoftver
architektira, amely a tervezés alapjaul szolgal.

Az architekturalis tervezés célja a rendszer egylittmiikods alrendszerekké
valo felbontasa.Az architektura terv altalaban egyszert blokkdiagram forma-
jaban abrazolja a rendszer (mindenki altal megérthetd) struktarajat. Rész-
letesebb modellek is alkalmazhatok, amelyek megmutatjak:

1. Hogyan osztjak meg egymas kozt az alrendszerek az adatokat,

2. Hogyan kommunikalnak egymaéassal.

12.1.1. Feladata

Osszekotni a specifikacio és a tervezés folyamatat. Kialakitani a rendszer
alapvetd strukturajat és azt a keretrendszert, amely a rendszert egységbe
foglalja és miikddését iranyitja.

Gyakran egyes specifikicios tevékenységgekkel parhuzamosan végezhetd.
Magaba foglalja a f6 rendszerkomponensek és azok vezérlésének, valamint
kommunikéciéjanak meghatarozasat.

40

12.1.2. A rendszerstruktira meghatarozasa

A bonyolult rendszerek egymaéssal lazan Osszefliged részfeladatokbol all-
nak, amelyek onalléan végrehajthatok, de egymassal vezérlési és adatcsere
kapcsolatban allnak. Példa: banki szolgaltaté rendszer alrendszerei:

Kozponti feladatok: Ugyfélnyilvantartas, konyvelés, szamlavezetés, be-
tétkezelés, hitelkezelés, kartyakezelés, vezetsi informécios rendszer, stb.

Ugyfeélkiszolgalassal kapcsolatos feladatok:

o Ugyfél tranzakciok: Személyes kiszolgalas a bankfiockban, telefonos-,
Internetes tranzakciok, kartyas vasarlasok, ATM, pénzforgalom, hite-
lezés, értékpapir forgalom, stb. (egyéni- és vallalati tigyfelek szaméara)

e Bankkozi tranzakciok: Atutalasok, hitelek, fedezet-igazolas, értékpapir-
miiveletek, stb.

12.1.3. A jo6l megtervezett architektiura elényei

A tervezbi megbeszélések alapjat képezi. A tervezés kulcsszereplSi
szaméra érthetévé teszi a rendszer vazat.

Tamogatja a kritikus kérdések korai elemzését. Az architektiura terv
alapjan megitélhetd, hogy a rendszer eleget fog-e tenni olyan kritikus kdve-
telményeknek, mint a teljesitmény, meghizhatésag, karbantarthatosag, ska-
lazhatosag.

Megalapozza az Gjrafelhasznalhatosagot. Az alrendszerekre bontas és
azok f6 tulajdonsdgainak meghatérozasa lehetGséget ad wjrafelhasznalhato
komponensek kifejlesztésére (vagy felhasznalasara), termékesaladok kidol-
gozésara, amelyben az azonos feladatokat djrafelhasznalhatdé komponensek
oldjak meg.

12.1.4. Az architekturalis tervezés tevékenységei

1. A rendszer strukturalasa: A rendszert tobb alrendszerre bontjuk
és azonositjuk a kommunikacios igényeket az alrendszerek kozott.

41

2. A vezérlés modellezése: Altalanos modell késziil a rendszer részei
kozotti vezérlési kapcsolatokrol.

3. Modularis felbontas: Az azonositott alrendszerek modulokra bon-
tasa és a modulok kozti kapcsolatok azonositasa.

Az architekturalis tervezés tevékenységei tobbnyire nem
szekvencialisan, hanem pathozamosan folynak.

12.2 ALRENDSZEREK ES MODULOK

Alrendszer: Az alrendszer olyan — szolgaltatasaik alapjan — egységként
kezelhet6 komponensek rendszere, amely 6nalléan oldja meg feladatat. Mo-
dulokbdl, vagy maés alrendszerekbdl all, szabvanyos interfészen keresztiil ve-
heti igénybe méas alrendszerek szolgaltatasait.

Modul Olyan rendszer-komponens, amely szolgéltatas(oka)t nydjt mas
moduloknak és igénybe veszi mésok szolgaltatasait, de nem tekinthetd flig-
getlen alrendszernek. Mas, egyszeriibb modulokbol (komponensekbsl) all.

12.3 ARCHITEKTURA MODELLEK

Az architekturalis tervezés soran architektura modellek késziilnek, amelyek
kiilonb6z8 nézépontokbdl abrazoljak a rendszer architektirajét:

Statikus szerkezeti modell: A kiilonallo alrendszereket és rendszerkom-
ponenseket dbrézolja.

Dinamikus folyamatmodell: Megmutatja, hogy a rendszer hogyan szer-
vezddik folyamatokba miikodése alatt.

Interfészmodell: Az alrendszerek kozotti interfészeket abrazolja.

Kapcsolatmodell: Az alrendszerek kozti adatfolyammal mutatja be a kap-
csolatokat.

Architekturalis stilusok

Egy rendszer architekturalis modellje legtobbszor valamilyen altaldnos
modellezési stilus szerint késziil. Ilyen stilusok alkalmazasa egyszertibbé és

42

egységesebbé teszi a rendszer architektira definiadldsat. A heterogén, nagy
rendszerek architektirdja azonban nem abrézolhatd egységes stilusban. Az
eltérs funkcioju részek eltérd modellezést kivannak. A tervezéknek kell meg-
talalniuk a feladatra leginkdbb alkalmas modellezési stilust.

12.4 Az ARCHITEKTURA ES A KOVETELMENYEK

A rendszer architekturaja kihat a nem-funkcionéalis rendszerkévetelmények
kielégitésére, igy meghatarozza a:

Teljesitményt: Egy rendszer teljesitménye jobb lesz, ha nagyméretd mo-
dulokbdl all, mert kevesebb kommunikacié zajlik a modulok kézott.

A védelmet: A jobb védelem érdekében rétegezett szerkezetet célszerd al-
kalmazni, a kritikus rendszerelemeket a legbelst rétegben elhelyezve.

A biztonsagot: A biztonsaggal kapcsolatos miiveletek egy, vagy néhany
alrendszerben legyenek.

A rendelkezésre allast: Redundans komponensek alkalmazasaval novel-
hetd.

A karbantarthatésagot: Sok 6nallo, konnyen valtoztathaté komponens-
bél kell felépiilnie.

12.5 A RENDSZER STRUKTURALASA

A rendszer egylittmiikods alrendszerekké valo felbontésa. Az architekti-
ra terv altaldban egyszert blokkdiagram forméjaban &brazolja a rendszer
(mindenki altal megérthets) strukturajat. Részletesebb modellek is alkal-
mazhatok, amelyek megmutatjék, hogy

e hogyan osztjak meg egymas kozt az alrendszerek az adatokat, illetve

e hogyan kommunikalnak egyméssal.

12.6 VEZERLESI MODELLEK

A strukturalis rendszermodellek az alrendszerekre valo felbontast abrazoljak,
nem tartalmaznak vezérlési informaciokat. A vezérlési modellek az alrend-
szerek kozotti vezérlési folyamatokat modellezik.

43

12.6.1. Kozpontositott vezérlés:

Egy alrendszer végzi a teljes rendszer vezérlését, inditja, leéllitja, stb. a
tobbi alrendszert.

Hivas-visszatérés modell: Fa-struktiraji modell, ahol a csticson van a
vezérls alrendszer. A vezérlés hivasok sorozatan keresztiil jut el a modulok-
hoz. Szekvencialis rendszerekhez alkalmazhato (pl. listafeldolgozas, listazas,
jelentésgeneralas).

Kezelé modell: Konkurens rendszerek modellezésére alkalmas. Egy koz-
ponti rendszerkomponens koordinalja, inditja, allitja le a rendszerfolyama-
tokat (komponenseket, vagy alrend-szereket), amelyek parhuzamosan is vég-
rehajthatok. Alkalmazhatd szekvencialis rendszerekben is, ahol a vezérld
modul allapotvaltozok értéke alapjan hivja meg az egyes alrendszereket.

12.6.2. Eseményalapt vezérlés:

Minden alrendszer reagéilhat az 6t érint& kiils6 vagy mas alrendszer altal
generalt eseményekre. A kornyezet altal generalt események iranyitjak a
rendszert. Az esemény nemcsak binéaris jel, hanem érték valtozéasa is lehet.
Az esemény idGzitése az eseményt feldolgozd alrendszer hatalyan kiviil esik.

Eseményvezérelt rendszer lehet pl. egy tablazatkezels is, ahol egy cella
értékének megvaltozasa més cellakat is megvaltoztat, vagy maéas alrendszert
aktivizal.

Broadcast modell: Az eseményrsl mindegyik alrendszer értesiil, és az
reagal r4, amelyiknek ez a feladata.

Megszakitasvezérelt modell: Valos idejd rendszerek modellje, ahol egy
megszakitas-kezelG észleli az eseményt és elinditja az esemény feldolgozasaért
felelGs alrendszert.

44

13 OBJEKTUMORIENTALT TERVEZES, UML DIAGRAMOK, AZ OB-
JEKTUMINTERFESZ SPECIFIKACIO

13.1 Az OBJEKTUMORIENTALT TERVEZES

Az objektumorientalt fejlesztés az alabbi — Osszefiiggs, de kiilonallo - fazi-
sokbol all:

1. Objektumorientalt elemzés (OOA): Az alkalmazas objektumori-
entalt modelljének kidolgozasa.

2. Objektumorientalt tervezés (OOD): A kivetelményeknek megfe-
lels szoftverrendszer objektumorientalt modelljének kidolgozéasa.

3. Objektumorientalt programozas (OOP): A szoftverterv objek-

tumorientalt programnyelven torténé megvalositéisa.

Az egyes fazisok kozott nincs explicit hatarvonal, egy kovetkezs 1épés az
el6z6 finomitasaval jar.

13.1.1. Az objektumorientalt tervezés lényege

e Az objektumok a valodi vilag vagy egy rendszer elemeinek absztrakcioi,
amelyek karbantartjik sajat allapotukat.

e Az objektumok fiiggetlenek, de egyiittmiikodnek egymassal, ,elrejhe-
tik” allapotukat és jellemzdiket.

e A rendszer funkcionalitasa az objektumok szolgaltatasaiban fejezheté

ki.

e Nem hasznalnak megosztott adatteriileteket, lizenetek Gtjan kommu-
nikalnak egymassal.

e Az objektumok szétoszthatok, szekvencialisan, vagy parhuzamosan vég-
rehajthatok.

13.1.2. Az objektumorientalt tervezés elényei

e Konnyebb a szoftvert karbantartani: Az objektumok 6nallo egységek-
ként értelmezhetdk.

e Az egyes rendszerekben egyértelmi leképezés van a valo vilag elemei
és a rendszer objektumai kozott.

45

e Az objektumok megfelels tjrafelhasznalhaté komponensek.
e A gyakran hasznélt elemekre léteznek objektum-konyvtarak,

e A tervezési mintdk a gyakran el6fordulod strukturdkra altalanos, és
nyelv fliiggetlen mintékat adnak.

13.1.3. Objektumok és objektumosztalyok

Az objektumok: egy szoftver rendszer vagy a valodi vilag elemeinek rep-
rezentacioi.

Az osztaly: a hasonlo tulajdonsagu objektumok egy halmaza. Az oszta-
lyok kozotti kapcesolatokat relaciéknak nevezziik.

13.2 Az UML MODELLEZESI NYELV

Az objektumorientalt tervezés soran, az utobbi 20 év soran kidolgozott je-
16lések egységesitésével 1étrejott modellezési nyelv. Jelolésrendszerével az
objektumorientélt analizis és tervezés soran készitheté modellek dbrazolaséat
tamogatja. Az objektumorientalt tervezésben de-facto szabvannya valt.

Asszociacié az UML jeldléseivel

Az objektumok és objektumosztalyok kapcsolatban vannak méas objek-
tumokkal és objektumosztéalyokkal. Az UML-ben az asszocidciokat az objek-
tumosztalyok koézotti vonallal és a kapcsolatot leiré megjegyzésekkel model-
lezik.

Az asszociaciok altalanosak, de jelezhetik, hogy:

e cgy objektum egy attribituma egy vele kapcsolatban all6 objektumtol,
vagy

e cgy objektum egy mitveletének implementécidja egy vele kapcsolatban
1évE objektumtol fligg.

46

13.3 Az OBJEKTUMINTERFESZ SPECIFIKACIOJA

Az objektumok interfészen keresztiil kommunikalnak egyméssal, iizeneteket
kiildve és fogadva. Ez a gyakran eljarashivassal és paraméterek atadaséaval
valosul meg, amikor a szolgaltatast kér6 az aldbbiakat adja meg:

e Név = eljards név

e InforméAcié6 = paraméterlista
Az lizenet tartalma:

1. A kért szolgéltatas neve,

2. A szolgaltatés végrehajtasdhoz sziikséges informacié és a szolgéltatas
eredményt kérs neve.

13.3.1. A kommunikacié tipusai

e Szinkron végrehajtas: A hivo objektum megvérja a szolgaltatas befe-
jezddését. Az fentebb ismertetett eljarashivas szinkron végrehajtast jelent.

Parhuzamos végrehajtas: Ha az objektumok konkurens szalakként van-
nak implementéalva, a hivé tovabb folytatja miikodését. Ilyen esetekben — és
az osztott rendszerekben — az objektumok kommunikacioja (sokszor szove-
ges, pl. XML) tizenetek formajaban valosul meg.

13.3.2. Objektumosztalyok k6zo6tti kapcsolatok
Relaciok:
Asszociacio : Kétiranyu tarsitas két osztaly kozott. (Konkrét esetben:
osszekapcesolas, absztrakt esetben tarsitas)
Aggregacid : Az osztaly objektumainak egymaéashoz rendelése.

Kompozicié : Egy osztily objektumai a mésik osztaly objektumait fizika-
ilag tartalmazzak.

Oroklsdés : Egy altalanos osztalybdl szarmaztatassal 1étrehozott specia-
lis(abb) osztaly jon létre.

47

Generalizacié és 6roklédés Az 6roklédés (generalizacio) olyan abszt-
rakcidés mechanizmus, amely az entitasok osztélyozasara hasznélhatd. Az
osztalyok hierarchidba szervezhetsk, ahol egy osztalytol (sziilosztaly) egy-
vagy tobb osztaly (leszarmazott osztaly) orokli a sziilosztéaly attributumait
és miiveleteit. A hierarchidban alacsonyabb szinten 1év6 osztalyok oroklik a
sziilosztaly attribttumait és miiveleteit és Gjakkal egészithetik ki
azokat, s6t meg is valtoztathatjak sziil§osztalyaik némelyik attributumat,
vagy miiveletét.

Az o6roklédés el6nyei: o Lehet6vé teszi az ujrafelhasznalhatésagot a
tervezés és a programozas szintjén egyarant.

o Az 6roklsdési diagramban dbrazolhatok a szakteriilettel és a rend-
szerrel kapcsolatos szervezeti ismeretek.

Az o6roklédéssel kapcsolatos problémak: e Az objektumosztalyok nem
onalléak. Nem érthetSk és értelmezhetSk a sziilGosztalyok isme-
rete nélkiil.

e A tervezdk a tervezés soran ujra felhasznalhatjak az elemzés soran
késziilt oroklgdési diagramokat, amivel munkét takaritanak meg,
azonban nagy mértékben csokkenhet a modell hatasfoka.

o Az elemzés, tervezés és az implementécié soran készitett 6rokls-
dési diagramoknak maés a feladata, ezért kiilon kell elkésziteni és
karbantartani azokat.

Mivel az 6roklgdés az OOD (objektumorientalt tervezés) alapvetd eszko-
ze, ezzel kapcsolatban tébbféle megkozelités alakult ki:

1. Az 6roklédési hierarchia azonositédsa az OOD alapvets feladata. Az
implementacié pedig nyilvanvaléan egy objektumorientalt programo-
zasi nyelv feladata.

2. Az 6roklédés az implementacioé hasznos eszkoze, amely segiti az attri-
butumok és a miiveletek ujrafelhasznalasat. Az 6roklédési hierarchiat
azonban nem célszeri a tervezési fazisban meghatérozni, mert ezzel til
sok megkotést visziink be az implementacioba.

Az 6roklsdés olyan foka bonyolultsagot eredményezhet, amelyet
kritikus rendszerekben célszeri elkeriilni.

48

13.3.3. Objektumorientalt tervezési folyamat

Lépései:

1. Definialjuk a rendszer Osszefiiggéseit és hasznalatanak modjait.
2. Tervezziik meg a rendszerarchitektirat.

3. Azonositsuk a rendszer legfontosabb objektumait

4. Dolgozzuk ki a tervezési modelleket

5. Hatarozzuk meg az objektumok interfészeit

14 FELHASZNALOI FELULETEK TERVEZESE, ALAPELVEK, MEGJE-
LENITES, FELHASZNALOI TAMOGATAS

A felhasznalo a kezel6feliileten keresztiil keriil kapcsolatba a rendszerrel, en-
nek alapjan alkot véleményt, csak ezutan ismeri meg a rendszer funkcio-
nalitasat. A rosszul tervezett kezel6feliilet gyakran katasztrofélis hibdkhoz
vezet. A szegényes, vagy kovetkezetlen felhasznéloi kezeldfeliilet sok rendszer
bukasahoz vezetett.

Nagy fejleszts szervezetekben szakértéket alkalmaznak (grafikus, pszi-
chologus, szakteriileti szakérts), de kis/kozepes cégeknél a kezeldfeliilet meg-
tervezése is a szoftver tervezé feladata.

14.1 GRAFIKUS FELULETEK

A korai rendszerek csak alfanumerikus terminélokat alkalmazhattak, a keze-
16feliilet karakteres, vagy trlap jellegti volt. Mar ekkor kialakultak a kezels-
feliiletekkel szembeni alapkovetelmények:

1. Legyen strukturalt, kivetkezetes, attekinthetd,

2. Biztositson segit§ szolgéltatasokat,

3. A hibakat egyértelmtien jelezze.

Ma csaknem minden rendszer nagyfelbontési, szines, grafikus feliiletet

tamogat. Az interakcidra nemcsak a klaviatira, hanem egér, vagy mas kije-
1616 eszkoz is rendelkezésre 4ll.

49

14.1.1. A grafikus kezel6feliilet elényei

e Konnyebben megtanulhaté és hasznalhato, akar szamitogépes ismere-
tek nélkiil is.

e A felhasznal6 tobb képerny6t hasznélhat az interakciéra, gyorsan valt-
hat kiilonbo6z6 alkalmazasok kozott, az informécié lathaté maradhat az
éppen nem aktiv ablakban is.

e A felhasznald a teljes képerny6 barmely részét elérheti, ez gyors inter-
akciot tesz lehetévé.

14.1.2. A felhasznalocentrikus centrikus tervezés

A sok egyéb mellett a szoftvertervezs feladata a felhasznéloi kezeldfeliilet
tervezése is. A felhasznalo kozpontu kezeldfeliilet-tervezés megkoveteli, hogy
a tervezd

1. Alaposan megismerje a felhasznalo tevékenységét (a munkafolyamatot,
amelyet a rendszernek tdmogatnia kell) és felkésziiltségét,

2. A felhasznélot kezdettsl bevonjuk a tervezés folyamataba,

3. El@szor papiron, a struktira felvazolasaval, majd prototipusok készité-
sével tegyiik szaméara megfoghatova és érthetévé a tervet.

14.2 A FELHASZNALOI KEZELOFELULETEK TERVEZESENEK ALAPELVEI

A kezel6feliilet tervezésekor figyelembe kell venni a felhasznélok igényeit, gya-
korlatat és képességeit. Az emberek fizikai és mentalis képességei korlatozot-
tak (rovid tava memoria), a felhasznaloi feliilet tervezésekor ezt figyelembe
kell venni. A grafikus felhasznaldi feliiletek tervezésének alapelvei minden
felhasznalodi interakcio tervezésének alapjaul szolgélhatnak.

14.2.1. Tervezési alapelvek

1. A felhasznaloi jartassag figyelembevétele

2. A feliiletnek olyan kifejezéseket és fogalmakat kell hasznalnia, amelye-
ket az atlagos felhasznalo ismer.

3. A feliilet konzisztenciaja

50

4. A meniiknek és parancsoknak ugyanazzal a formatummal kell rendel-
kezniiik, hasonlé mtveleteket hasonlé6 moédon kell megvaldsitani.

5. Minimalis meglepetés

A felhasznaloban kialakul egy modell a rendszer mitikddésérsl. A ha-
sonl6 tevékenységeknek hasonlé hatast kell kivaltaniuk, kiilonben a rendszer
kellemetlen meglepetéseket okoz felhasznalod szamaéra.

Visszaallithatosag Minden helyzetben szamitani kel arra, hogy a felhasz-
nalé hibazhat, ezért gondoskodni kell arrél, hogy a hibat kijavithassa:

e Visszavonasi lehet&ség (undo), esetleg tobbszint,
e Veszélyes tevékenységek megerdsitése (pl. torlés),

e Puha torlés”

14.2.2. A felhasznalo és a rendszer kapcsolata

Az interaktiv rendszer tervezésekor két kulcskérdést kell megoldani:

1. Hogyan jusson el az informécié a felhasznal6tol a rendszerhez, és

2. Hogyan jusson el az informacié a rendszertdl a felhasznalohoz.

A felhasznaldi beavatkozas és az informécié megjelenitése egy sszefiig-
g6 keretrendszerbe integralhatd, amely biztosithatja a konzisztenciat és a
felhasznal6i tamogatast.

14.3 Az INTERAKCIOK FAJTAI

14.3.1. Ko6zvetlen manipulacio:

A felhasznalo kozvetleniil a képernydn lathato objektumot kezeli (pl. tor-
léshez kukaba viszi).

Elényei:
1. Koénnyen tanulhaté és gyors,

o1

2. A felhasznalo azonnal visszajelzést kap, igy a tévedés gyorsan vissza-
vonhaté.

Hatranyai:
1. Bonyolult lehet a felhasznélo tevékenységérdl (szandékarol) a megfelels
informéciot begytijteni a program szamara,

2. Csak akkor hasznalhato, ha a feladatok és objektumok egyértelmiien
megkiilonboztethets ikonokkal reprezentalhatok.

14.3.2. Meniikivalasztas:

A felhasznalo a rendszer altal felkinalt (sokszor helyzet-fiiggs) listabol
valaszthat, a kijelOlést egér, vagy kurzormozgatassal, roviditett név beirassal
is végezheti. Alkalmazhato az egyszeri (pl. érintSképernyés) terminalokon
is.

El6nyei:

1. A felhasznalénak nem kell parancsokat megjegyeznie,
2. Kevés gépelést igényel és a hibak konnyen kivédhetdk,

3. Allapotfiiggs sugo alkalmazhato.

Hatranyai:

1. Az akciok kozotti logikai osszefiiggések (and, or) nem jelenithet&k meg,

2. Kevés valasztési lehetGséget enged meg, a sok lehet&séghez strukturalni
kell a meniiket.

3. A gyakorlott felhasznalo szaméra lassu.

Urlapkitdltés: Az trlap az aktualis allapothoz alkalmazhat6. Olyan rend-
szerekben alkalmazzak, ahol sok adatot kell bevinni (pl. adatrogzités).

52

Elényei:

1. A felhasznaloi hibéak felfedhetdk és jelezhetdk, illetve kivédhetdk,

2. Konnyen megtanulhato.

Hatranya:

1. Nagy képernydéfeliiletet foglal

14.3.3. Parancsnyelv:

A felhasznalo parancsokat gépelve utasitja a rendszert (pl. Unix)

Elényei:

1. Egyszert, olcs6 terminalon is alkalmazhato,
2. Egyszertien feldolgozhato (pl. forditoé technikaval)
3. Bonyolult, egymésba agyazott parancsok is kezelhetdk,

4. Rugalmas.

Hatranyai:

1. Nehezen tanulhatd, az atlagos felhasznal6 szamara bonyolult,
2. Gépelési gyakorlatot kivan
3. A hibakezelést (hibajelzés, visszavonas) nehéz megoldani

4. A parancsnyelveket a gyakorlott felhasznal6 szamara lehet alkalmazni.
A meniirendszer alternativajaként célszert alkalmazni.

Az alkalmi felhasznaldk tobb tamogatast, a gyakorlott
felhasznaldk egyszeriibb, gyorsabb miikodést varnak.

93

14.3.4. Természetes nyelv:

A felhasznalo6 a parancsokat természetes nyelven gépeli be, amelynek szo-
tara korlatozott. Az ilyen rendszerek altalaban specialis alkalmazéasi teriiletet
szolgalnak ki. A természetes nyelv megfelels az alkalmi felhasznalo szamara
de a gyakorlott felhasznéldé nem kedveli a tul sok gépelés miatt.

14.3.5. Tobbszoros felhasznaloi interfészek

Az eseti és a gyakorlott felhasznalok szémara kiilon feliiletet célszerd
megvalositani (pl. Model-View-Controller, MVC)

14.4 Az INFORMACIO MEGJELENITESE

A rendszer megjeleniti a felhasznal6 szamara kozlendd informaciokat. Ez az
informécié megjelenhet kozvetleniil széveges formaban, vagy mas modon (pl.
grafikusan, akar hang kiséretében). A jol tervezett rendszereckben maga az
informéci6 és az azt megjelenits szoftver kiilonvalik.

A Model-View-Controller (MVC) altalanosan alkalmazott architektira
az adatok tobbféle megjelenitésére. Az MVC paradigmét a Smalltalkban
dolgoztak ki, de azota altalanosan elterjedt az interaktiv rendszerek grafikus
felhasznal6i kezel6feliiletének tervezésében. Lényege, hogy kiilonvalasztja a
az informéaciot (az tizleti logikat), a megjelenités vezérlését és a megjelenitést.

Az informéci6 lehet:

Statikus informacié: Ertéket kap a munkafazis (session) kezdetén és ez a
session ideje alatt nem valtozik meg, lehet numerikus, vagy széveges

Dinamikus informacié: Megvaltozik a munkafézis alatt és a megvalto-
zott értéket a felhasznald szaméra meg kell jeleniteni, lehet numerikus,
vagy szoveges

A megjelenités stilusidban meg kell kiilonboztetni Gket.

14.4.1. A megjelenités moédjanak kivalasztasa

Szempontok:

e A felhasznéalonak pontos informéciora van-e sziiksége (numerikus), vagy

54

kiilonb6z6 adatok kozti kapcsolatok, aranyok érdeklik (grafikus)?

e Milyen gyorsan valtozik az informécio? (A gyorsan valtozo informéaciot
grafikusan, vagy tobbféle modon kell megjeleniteni.)

e Azonnal sziikség van-e ra?

e Egy valtozast kovetSen be kell-e avatkoznia a felhasznalénak valami-
lyen akcioval? (Ha igen, a megvaltozott informaciot ki kel emelni.)

e Sziikség van-e kozvetlen beavatkozasi feliiletre?(Ha igen, az informacio
kozelében kell erre lehetdséget adni.)

e SzGveges vagy numerikus a megjelenitendd informéacié? Fontosak-e a
relativ értékek? (Ha igen, grafikus.)

14.4.2. Analdg és digitalis megjelenités

Digitalis megjelenités:

e pontos értékeket kozol,

e Kevés helyet foglal a képernyén.

Anal6g megjelenités:

e Egy pillantassal attekinthetd,
e Relativ értékeket is képes kozolni:

— Egy allando értékhez képest (egy hatéarhoz kozeli értéket szinnel
még kiilon ki lehet emelni), vagy

— Korabbi minimalis-maximalis értékhez képest
14.4.3. Figyelmeztets szoveg megjelenitése
A figyelmeztetés megjelenitésekor a grafika kiemeli a fontos széveget, az
informécio jellegére ikonnal is utalhatunk. A széveg és grafika mellett hang

is hasznalhato a figyelem felkeltésére, amennyiben feltételezhets, hogy a fel-
hasznéalok nagy része rendelkezik hangkartyaval.

55

14.4.4. Hibalizenetek

A hibaiizenetek tervezése kiilondsen fontos: a kezdd felhasznalo ezekkel
talalkozik a leggyakrabban. A rossz, vagy szamara érthetetlen hibaiizenetek
miatt elutasithatja a rendszert. Az lizeneteknek udvariasnak, elérevivének és
kovetkezetesnek kell lennie. A felhasznal6 hattere, gyakorlata a hibaiizenetek
tervezésének meghatarozo tényezdje.

14.5 A FELHASZNALO TAMOGATASA

A feliiletnek konnyen elérhetd segits, vagy stigd rendszerrel kell rendelkeznie.
A sugot strukturalni kell, nem szabad tul sok informéciét koézdlni. Elényos
a helyzetfiiggs sugo alkalmazasa.

A felhasznélé tamogatasa kiterjed a rendszer minden megjelenési forma-
jara: sagd, hibaiizenetek, kézikonyvek, stb. A felhasznald tajékoztatasét
be kell épiteni a felhasznaloi feliiletekbe, hogy minden helyzetben kérhessen
tamogatést, vagy kapjon informéciot, ha hibat vétett.

Célszert a sug6 és az lizend rendszert Gsszeépiteni, hogy minden
tizenetrsl magyarazatot kérhessen a felhasznalo.

14.5.1. A sugb tervezése

A felhasznalo segitségért, informacioért fordul a stugoéhoz. A sagd ter-
vezésekor mindkét igényt figyelembe kell venni. ToObbféle lehetdséget kell
biztositani, ehhez tobb belépési pontra van sziikség.

A jo stgdrendszer hierarchikus szerkezetii, de bonyolult hélés struktara-
ja, ahol az informaciés egységek kozott sokféle kapcsolat van. Tobb ablak
alkalmazésaval érthet&vé tehetd a bonyolult hierarchia.

Szempontok:

e T6bb belépési pontra van sziikség, hogy a felhasznald a rendszer kii-
16nb6z6 allapotaibdl 1éphessen be.

e Ugyanakkor hasznos azt jelezni, hogy éppen hol jar a stigd hierarchia-
jaban.

o6

o (Célszert a korabban bejart utvonalat is megjeleniteni, mert a bonyolult
haloban kénnyen elvész a felhasznéld. Ez a visszalépéseket is tdmogat-
hatja.

14.5.2. A stig6 informaéacidtartalma

A stgd nem lehet egy online kézikonyv! A képernys nem felel meg a
papirlapoknak. Az emberek masként olvassédk a képernyGt, mint a papirt. A
megjelenités dinamikus természete segiti az informacié megjelenitését.

A sugorendszer szovegeit az alkalmazast és a szakteriiletet jol ismerd
embereknek kell megfogalmaznia.

14.5.3. Felhasznaloi dokumentacio

Az on-line stugo6 mellett papiralapi dokumentaciot is kell késziteni a rend-
szerhez. A dokumentacidonak a kezd6tél a gyakorlott felhasznéléig mindenkit
figyelembe kell vennie. A kiilonb6z6 csoportba tartozoé felhasznalok szémara
legalabb 6tféle dokumentumot kell késziteni.

Dokumentumtipusok:

Funkcionalis leiras : A rendszer funkcidinak rovid leirasa.

Bevezets kézikonyv : A rendszer helyes hasznalatanak leirasa, sok példa-
val.

Referencia kézikonyv : A rendszer lehetGségei, hibatizenetek és teenddk
hiba esetén, minden esetre kiterjedGen.

Telepitési dokumentum : A telepités menete, a teenddk listdja, a bealli-
tasok ismertetése.

Uzemeltetési-, adminisztratori kézikonyv : A rendszer mikodtetésé-
nek, a hibak kijavitdsdnak leirésa.

15 OSZTOTT RENDSZEREK ARCHITEKTURAI, TOBBPROCESSZO-
ROS ARCHITEKTURAK, KLIENS-SZERVER ARCHITEKTURAK

A halozatok terjedésével lassan minden rendszer (még a beagyazott rendsze-
rek is) méas rendszerekkel kapcsolatban miikodik.

o7

15.1

A7Z OSZTOTT RENDSZEREK JELLEMZOLI:
Eréforrasmegosztas (oda kell fordulni, ahol létezik a kivant szolgél-
tatas : WebServices!)
Konkurencia (tobbféle hw/sw szallito termeékeit tartalmazzak)

Konkurencia (az egyes gépekben parhuzamos folyamatok mennek
végbe, amelyek idénként kommunikalnak és szinkronizaljak egymaést)

Skalazhatosag
Hibattirés

Atlatszosag (a felhasznalo nem latja, hogy osztott rendszerrel van
kapcsolatban) de esetenként sziikség van arra, hogy a felhasznélo tisz-
taban legyen vele, honnan vesz igénybe er6forrasokat, szolgaltatasokat
(pl. web-es alkalmazasok nagy része)

15.1.1. Hatranyai

Bonyolultsag
— nehezebb a rendszer és tulajdonsaginak (pl. teljesitmény) terve-
zése,
— karbantartasi nehézségek, stb.
Kezelhet6ség: a kiilonboz6 hardver és operacids rendszer operélasa

nagy nehézségeket okozhat.

Biztonsag: az osztott rendszer biztonsagat sokszor szintén elosztva
kell megoldani. (segitenek a modern rendszerek, pl. SSO (single-sign-
on) megoldasai)

15.1.2. Tervezési kérdések

Erdforrasok azonositasa : Névkonvenciokra van sziikség, hogy megtalal-

hatok és hivatkozhatok legyenek az eréforrasok (pl. interneten URL)

Kommunikacio: Az internet, TCP/IP sok mindenre megfelels, de néha

specialis kommunikéciés protokollokra van sziikség (valosideji kozvet-
len kapcsolatok)

A szolgaltatas mindsége: Sok tényez6tdl fligg (hw, op.rendszer/ek, archi-

tektura: erdforrasok elosztéasa, halozat, a rendszer rugalmassaga)

o8

Szoftverarchitektara: A funkciok elosztasa a rendszer logikai komponen-
sei kozott, ezek eloszlasa a hardver erdforrasok kozott (pl. adatba-
zis szerver 6nmagaban tobbprocesszoros rendszeren futhat.) A logikai
komponensek kozott koztes szolgéltatasra (middleware) van sziikség.

15.1.3. Tobbprocesszoros architekrtirak

A legegyszeriibb osztott rendszermodell: a kiilonb6z8 folyamatok kiilon
processzorokon futnak. Példa: ipari folyamatiranyitas

15.2 TAROLASI MODELL

Az alrendszerek két mdédon cserélhetnek informaciot egymaéssal:

1. A megosztott adatok egy kézponti adatbézisban vannak, amelyet min-
den alrendszer elérhet. Ez a tarolasi modell (repository).

2. Minden alrendszernek van sajat adatbézisa, és az alrendszerek iizene-
tek forméajaban cserélnek adatokat. A nagy adatmennyiséggel dolgozo
rendszerek legtobbszor osztott adatbazis koré szervezett alrendszerek-

kel dolgoznak. Ilyenek példaul a nagy, vallalatiranyitasi rendszerek,
CASE és CAD rendszerek, stb.

15.2.1. Megosztott taroldk alkalmazasa

Elényok
e Nagy tomegi adat esetén hatékonyabb, mert nem kell explicit médon
atvinni az adatokat egyik alrendszerbdl a masikba.

e Az alrendszereknek nem kell foglalkozniuk azzal, hogyan keletkeztek
az adatok.

e A védelem, biztonsagi mentések, hozzaférés szabélyozéasa, a visszaalli-
tas, stb. kézponti funkcioként oldhatoé meg.

e Téarolasi séméan keresztiil publikilhatoé a megosztottsag modellje (uj
alrendszerek integralhatok, ha a modell megfelels)

Hatranyok

99

e Az alrendszereknek kozos — kompromisszumos - adatmodellt kell hasz-
néalniuk (teljesitmeény)

e Az alrendszereknek torddniilik kell azzal, hogy a tobbi alrendszer ho-
gyan fogja hasznélni az adatokat.

e Az egyes alrendszerek eltérd kévetelményeket tamasztanak a védelem,
helyreallitas, stb. kozos funkciokkal szemben (pl. tranzakciok vissza-
gorgetése)

e Nagyon bonyolult lehet az adatbazis elosztédsa tobb gép kozott. A
nagy adatbéziskezel§ rendszerek tartalmaznak eszkozoket a megosz-
tasra, ezek azonban nagy eréforrasokat igényelnek.

15.3 OSZTOTT RENDSZEREK ARCHITEKTURAI

15.3.1. Absztrakt gép modell (réteges modell)

Az alrendszerek kozti interfészek modellezésére hasznaljak. Rétegekbe
(absztrakt gépekbe) szervezi a rendszert, amelyek mindegyike adott szolgél-
tatasokat végez. Tamogatja az egyes alrendszerek inkrementélis fejlesztését.
Az egyes rétegek egyszertien kicserélhetsk, csak az interfészek szabalyait kell
betartani, de annak valtoztatdsdhoz is csak a két szomszédos réteget kell
modositani.

Elénye, hogy mivel a hardvert, operaciés rendszert a bels6 rétegekbe zér-
ja, konnyen adaptalhato kiilonbozs platformokra (protokoll modellek:ISO-
OSI).

Hatranya: strukturalédsa bonyolult, egy kiils6 réteg csak a kdzbensGkon
keresztiil férhet hozza a legbels6khoz.

15.4 KLIENS-SZERVER ARCHITEKTURA

Olyan osztott rendszermodell, amely bemutatja hogyan oszlanak meg az ada-
tok és a feldolgozasok a komponensek kozott. JellemzGje, hogy a szerverek
altalaban maguk kezelik az adataikat.

Szerverek: Pl. Adatkezel$ szerverek, nyomtatoszerverek kommunikacios
szerverek, stb.

60

Kliensek: Tobbnyire 6nallo alrendszerek, amelyek hozzaférnek a szerverek
szolgaltatasaihoz. Egyszerre sok példanyban futnak. Fajtai:

e Vékony kliens (bongészd, szkriptekkel)

e Vastag kliens (komplett kis alrendszer, helyi adatokkal)

Halbézat: A klienseknek biztosit hozzéaférést a szerverek szolgaltatasaihoz.

Elényok:

e Jol strukturélt osztott architektira.
e Konnyen kiegészithetd 0j szerverrel (1j funkcioval).

e Alacsonyabb hardver kévetelményei vannak.

Hatranyok:

e Nincs megosztott, kozos adatmodell, mindegyik alrendszer a sajat szem-
pontjai miatt kialakitott adatmodellt hasznalja (ez elény a teljesitmény
szempontjabol).

e Redundans adatkezelés folyik minden szerverben.

e Nincs kozponti név- és szolgaltatds nyilvantartas, nehéz megtalélni,
hogy milyen szerverek és szolgaltatasok léteznek.

16 VERIFIKACIO ES VALIDACIO, A VERIFIKACIO TERVEZESE, VE-
RIFIKACIOS ES VALIDACIOS MODSZEREK

A V&V célja: megbizonyosodni arrél, hogy a szoftver rendszer megfelel a
céljanak. (Vagyis nem az, hogy hibamentes!)

Verifikacié: Annak ellendrzése, hogy valéban a megfelels terméket készit-
jiik el, vagyis, hogy a szoftver megfelel a specifikdcidonak.

61

Validaci6é: Annak bizonyitasa, hogy a terméket jol készitjik el, vagyis
hogy a szoftver valoban a megrendels elvarasainak megfelel6en miikodik
(esetleg a specifikacioval ellentétesen). A szoftvernek azt kell megvalositania,
amit a felhasznalé valéban elvar téle.

A verifikacio és validacio (V& V) folyamata a szoftver teljes életciklusara
kiterjed, a szoftver folyamat minden fazisdban szerepet kap. AlapvetGen két
célja van:

1. Felfedni a rendszerben rejl§ hibakat

2. Meggy6z6dni arrdl, hogy a rendszer egy-egy konkrét miikodési szitua-
cibban hasznéalhatéan miikodik.

A V& V folyamatban kétféle technika alkalmazhato:

Szoftver-atvizsgalas (inspekcid): A rendszer reprezentaciojanak elemzé-
se (Kov. Spec., Tervek, grafikus dbréazolasok, forraskod). A forraskod
elemzése automatizalhato.

tatésa és a viselkedés megfigyelése (dinamikus verifikacio)

16.1 PROGRAMTESZTELES

Még ma is a legelterjedtebb validacios technika (bar a szoftverfolyamat végén
helyezkedik el). A hiba meglétét kell felfedeznie nem a hiba hianyat. Az a
sikeres teszt, amely legalabb egy hibat felfedez. Az egyetlen modszer a nem-
funkcionéalis kovetelmények validalasara. A statikus verifikacioval egyiitt kell
alkalmazni.

Az elfogadas szintje kiilonb6zd céli rendszereknél kiillonbo6zs. Ezt befo-
lyasolja:

A szoftver funkci6ja: (biztonsagi rendszer, prototipus)

A felhasznald elvarasai (olcso szoftver — t6bb hiba)

e Piaci kdrnyezet (arak, versenytarsak)

Kritikus rendszerek (ne okozzon tragikus eseményeket)

62

16.2 V& V TERVEZESE

Alapos tervezésre van sziikség, hogy a legtébb eredményt kapjuk az egyéb-
ként igen koltséges tesztelésbdl és feliilvizsgdlatbol. A V& V tervezését a
fejlesztési folyamat elején meg kell kezdeni. A tervnek meg kell hataroznia
az aranyokat a statikus verifikicid és a tesztelés kozott.

A teszt-tervezésre a nagyobb cégeknél altalanos szabvanyokat, szabalyo-
kat dolgoznak ki. Ennek alapjan kell megtervezni és végrehajtani a termék
konkrét tesztelését, és a tesztek dokumentalésat.

16.2.1. A szoftver tesztterv struktiraja

A tesztelési folyamat A 6 tesztfazisok leirasa.

A koévetelmények nyomon kévethetGsége Minden kévetelményt kiilon
kell tesztelni.

A tesztelt elemek A tesztelendd szoftver termékek listaja.
A tesztelés litemezése A szoftverfejlesztési projekt részeként.

tesztek dokumentalasa A tesztelés utolagos ellendrzésére (mingségbizto-
sitas).

A tesztek hardver és szoftver kdvetelményei A teszteléshez sziikséges
eréforrasok.

Megszoritasok A tesztelést gatlo tényezdk.

16.2.2. Inspekcio (atvizsgalas)

A szoftver atvizsgalas célja a hianyossagok felderitése, a koltséges tesz-
telés helyett a hibak kb. 60%-a felfedhets az atvizsgalas soran. A fejlesztési
folyamat kezdetétdl alkalmazhato, a dokumentumok (kévetelmények, tervek)
atvizsgalédsaval. Egy atvizsgéilas soran toébb hidnyossag felfedezhetd, amig
egy teszt tobbnyire egy hibat fed fel. A tapasztalt vizsgalok (inspektorok)
mar ismerik és konnyen megtalaljak a tipushibédkat.

Az inspekcio és a tesztelés nem helyettesitik egymast, de a korai fazistol
rendszeresen végzett atvizsgalas sok koltséges tesztet el6zhet meg. Mind-
kettSt alkalmazni kell a V& V folyamatban.

Az inspekci6 alkalmas eszkoz arra, hogy ellenérizze, megfelel-e a program
a specifikdcionak. A nem-funkcionalis rendszerkovetelmények vizsgalatara

63

azonban a feliilvizsgalat nem hasznélhato.

16.2.3. Cleanroom folyamat

A szoftverhibak elkeriilését, nem pedig megtalalasat és kijavitasat cél-
70 szigoru atvizsgalasi folyamat. (A név a félvezetd-gyartasbol szérma-
zik). A rendszer komponenseinek tesztelését helyettesiti atvizsgalasokkal,
megfelelnek-e a specifikicionak. Inkrementalis fejlesztési modszer, elGszor a
kritikus inkrementumokat szallitja le.

A Cleanroom jellemzdi:

e Formalis specifikacio (allapotatmenet modell, strukturalt programozas,
csak néhany vezérlési és adatabsztrakeios konstrukei6é hasznéalhato)

e Inkrementélis fejlesztés
e Statikus verifikacio (szigoru atvizsgalasok)

e A rendszer statisztikai tesztelése

A Cleanroom folyamat szervezete

Specifikacios csapat: A rendszerspecifikicio kidolgozasat és karbantarté-
sat végzi.

Fejleszt6 csapat: A fejlesztést és verifikalast végzi. A szoftvert nem fut-
tatja.

Hitelesits csapat: A formaélis specifikdcion alapuld statisztikai teszteket
dolgozza ki (a fejlesztéssel parhuzamosan) és futtatja le.

17 SZOFTVERTESZTELES, A HIANYOSSAGOK TESZTELESE, TESZ-
TELES ES BELOVES, INTEGRACIOS TESZTELES

17.1 MI A PROGRAMTESZTELES FELADATA? MILYEN ALAPTIPUSAI VAN-
NAK?

megfigyelése (dinamikus verifikacio)

64

Hianyossagok tesztelése: Feladata a rendszer hibainak és hianyossagai-
nak felfedése. Fajtai:

Komponens tesztek: Fekete doboz, ekvivalencia-osztalyok, struktarateszt,
dtvonal-teszt

Integracios tesztek: ,fentrdl lefelé/lentrdl felfelé”, interfészteszt, stressz-
tesztek

Objektumorientalt tesztelés:
Interaktiv rendszer esetén tesztelni kell:

e A meniikon elérhetd 6sszes funkciot,
e Egyazon meniiponton elérhet$ valamennyi rendszerfunkciot,

e A felhasznéloi inputok altal hasznalt Osszes fiiggvényt, helyes és hely-
telen input adatokkal egyarant.

Statisztikai tesztelés: a rendszer teljesitményének és meghizhatosaganak
tesztelése, valos helyzetekben (valos felhasznéloi inputtal és gyakorisaggal).

17.2 MI A KULONBSEG A TESZTELES ES A BELOVES KOzZOTT? MELYIK-
NEK MI A CELJA?

A hidnyossagok tesztelése és a belovés kiilonbo6z6 folyamatok:
o A verifikicié és validacié feladata a hibak, hidnyossagok létezésének
felfedezése.
e A belovés ezen hibak helyének lokalizalasa és kijavitasa.

e A beldvés a program viselkedésére vonatkozo feltételezések felallitasa-
val kezd&dik, majd ezen feltételezések vizsgalataval probalja megtaldlni
a hibakat

17.3 MI A TESZTESET ES A TESZTADAT? HOGYAN LEHET A TESZTADA-
TOK SZAMAT CSOKKENTENI?

A tesztesetek a teszthez sziikséges inputok és a vélt outputok specifikacioi,

A tesztadatok a rendszer tesztelésére kidolgozott input adatok

65

17.4 MIT JELENT A TESZTADATOK EKVIVALENCIA-OSZTALYOZASA? [R-
JON PELDAT AZ EKVIVALENCIA-OSZTALYOK ALKALMAZASARA.

Ekvivalencia-osztaly: a rendszer input és output adatait valamilyen ko-
z0s jellegzetesség szerint csoportositjak, amelyekre a rendszer hasonlé médon
reagal: Példdul: ha az input 5 jegyd valés szam 10.000 és 99.000 kozott, ak-
kor az ekvivalencia-osztélyok: < 10.000,10.000799.000, > 99.999 A fejlesz-
t6k legtobbszor az inputok tipikus értékeit veszik figyelembe. A tesztesete-
ket a hatarértékek kozelében és az osztilyok kozepébdl célszerii kivalasztani:
“00000, 09999, 10000, 99999, 10001

Csak teljes korii tesztelés bizonyithatna, hogy a rendszer hibamentes,
de a teljes tesztelés lehetetlen. A teszteknek a rendszer a képességeit kell
vizsgalniuk, nem a komponenseket. A fejlesztés soran a rendszer régi képes-
ségeinek tesztelése fontosabb, mint az Gjonnan hozzdadott képességeké. A
tipikus helyzetek tesztelése fontosabb, mint a hataresetek tesztelése.

17.5 MI A ,FEKETE DOBOZ” ES A ,FEHER DOBOZ’ TESZTELESI STRATE-
GIA LENYEGE? MELYIKET MILYEN ESETBEN LEHET ALKALMAZNI?

A fekete doboz tesztelés

e Funkcionalis tesztelésnek is nevezik.

e A programot fekete doboznak tekintjiik, a tesztesetek a programspeci-
fikacio alapjan késziilnek.

Nem foglalkozik a program implementaci6javal.

A tesztek tervezése a szoftverfolyamat korai szakaszaban megkezdsd-
het.

Az elorelathatdoan hibat okozo tesztesetek tervezéséhez szaktertileti is-
meretekre van sziikség.

Struktiarateszt

e Fehér doboz vagy iivegdoboz tesztelésnek is nevezik, mert a tesztek a
program strukturajanak, implementécidéjénak ismeretében késziilnek.

e A struktira és a kod ismeretében tjabb ekvivalencia-osztalyok defini-
alhatok.

66

e A tesztels a tesztesetek készitésekor elemzi a kodot, hogy biztositsa
minden utasitas legalabb egyszeri végrehajtasat (az Osszes lehetséges
ut-kombinacio tesztelésére nincs realis lehetdség).

17.5.1. Utvonal tesztelés

Az utvonal tesztelés strukturalis tesztelési stratégia. Célja, hogy minden
fliggetlen dtvonalon végighaladjon a teszt. Ekkor legaldbb egyszer biztosan
sor keriilt minden utasitas végrehajtasara, és minden feltételes utasitas igaz
és hamis eseteire.

e A kiindulés a program folyamatgrafja, amely a dontéseket reprezentaléd
csomopontokbdl és a vezérlés iranyat képvisel élekbdl all. Elsallitasa
viszonylag egyszert, ha programban nincs goto.

e (Csak kisebb programok tesztelhetdk ilyen médon.

17.5.2. Ciklomatikus komplexitas

A fiiggetlen utak szama a programban. A CC megmutatja, hogy hany
tesztet kell végrehajtani az Gsszes fliggetlen ut végrehajtasahoz, vagyis min-
den vezérls utasitas legalabb egyszeri végrehajtasahoz. Nem lehet a fliggetlen
utak Gsszes kombinéciéjat végrehajtani.

Egy program ciklomatikus komplexitasa:

CC = lekszma” Csompontokszma + 2

17.6 ISMERTESSE AZ INTEGRACIOS TESZTELESI STRATEGIAKAT! MI AZ
OSSZEFUGGES E STRATEGIAK ES A SZOFTVERFOLYAMAT MODELLJE
KOZOTT?

o Teljes rendszerek vagy alrendszerek tesztelése, amelyek el6z6leg mar tesz-
telt komponensekbdl allnak. e A komponensek egyiittmiikdodésébdl szarma-
z6 hibak feltardsara szolgdl. e Az integracids teszt fekete doboz tesztelés,
a tesztek a specifikiciébdl szarmaznak. e Komplex rendszerben az észlelt
hibéas eredménybdl nehéz a hiba helyére kovetkeztetni. e Az inkrementélis
integracids tesztelés némileg segit

67

17.6.1. Az integracids tesztelés stratégiai

Fentrdl lefelé tesztelés: A rendszer magas szinti komponenseit még a
tervezés és az implementacio alatt integraljak. A még el nem késziilt kom-
ponenseket azonos interfésszel késziilt ,,csonkok” helyettesitik ahol sziikséges.
Ezeket fokozatosan kicserélik a kész elemekkel. (Evolicids fejlesztésnél al-
kalmazhatd)

Lentrél felfelé tesztelés: A hierarchia alsé szintjein 1év6 modulok integ-
ralasaval és tesztelésével kezdik, ahol a magasabb szinteket tesztgeneratorok
helyettesitik. (Inkrementdlis és ijrafelhaszndlds alapi fejlesztésnél)

t stz

17.6.2. A tesztelési stratégiak

Szerkezeti validaci6: A fentrsl lefelé teszteléssel felfedhetSk a hibak a
rendszerarchitekturaban és a magas szint tervekben, még a folyamat
korai szakaszadban. Ez a lentrol felfelé tesztelésnél csak késébb lehetsé-
ges.

Rendszerdemonstracio: A fentrdl lefelé integracié koran lehetévé teszi a
korlatozott demonstraciot. Ujrafelhasznalhaté komponensek alkalma-
zasaval a lentrdl felfelé megkozelitéssel is lehetséges.

Tesztimplementacié: A programcsonkokat nehéz implementalni, a lentrdl
felfelé tesztelés tesztmeghajtoit valamivel egyszertibb, de mindenkép-
pen jelentGs addicionalis fejlesztést igényel.

Tesztmegfigyelés: A tesztek eredményét mindkét modszernél nehéz meg-
figyelni. Mesterséges kornyezetre, extra kodra van sziikség. Kiilonosen
a fentrol lefelé megkozelitésnél, ahol a magasabb szintek nem szolgal-
tatnak outputokat.

18 A SZOFTVER MINOSEG FOGALMA, MINOSEGBIZTOSITASI SZAB-
VANYOK, A MINOSEG TERVEZESE, SZOFTVERKARBANTARTAS

18.1 A SZOFTVER MINOSEGE

A mindség altalaban azt jelenti, hogy a termék megfelel specifikaciojanak. A
szoftver esetében ezt nehéz értelmezni, mert eltérd a megrendeld és a fejlesztd
mindségi elvdrdsa:

68

e A megrendeld azt varja, hogy a szoftver legyen gazdasagos, megbizhato,
stb.

e A fejleszt6 minGségi kovetelményei: karbantarthatosag, ajrafelhasznal-
hatosag.

e Egyes mingségi kritériumokat nem lehet egyértelmien definialni (pl.
karbantarthatosag, hordozhatosag)

valo megfelelés nem garantalja, hogy a felhasznalo elégedett lesz a ter-
mékkel.

18.2 MINOSEGKEZELES A SZOFTVERPROJEKTBEN

Mingségbiztositas: Szabvanyok és szervezeti eljardsok alkalmazasa.

Mindségtervezés: Egy konkrét projekthez alkalmas eljarasok és szabva-
nyok kivalasztasa és adaptélasa.

Mingségellendrzés: Annak biztositasa és ellendrzése, hogy a fejlesztd csa-
pat alkalmazza a mindségi szabvanyokat és eljarasokat.

A minéségkezelés lehetSleg legyen filiggetlen a projektvezetéstol

18.2.1. Mindségtervezés
A minGségi tervet a folyamat korai szakaszaban kell elkésziteni. A mind-
ségi terv meghatarozza a termék mindségi jellemzdit, kijeloli a mérés modjat

és az alkalmazando6 folyamatokat. Meg kell hatarozni, hogy milyen szervezeti
szabvanyokat kell alkalmazni. Ha sziikséges, 1j szabvanyokat dolgoznak ki.

A minéségi terv tartalma:

A termék bemutatasa

Terméktervek

A folyamatok leirésa

Minéségi célok

Kockazatok és kockazatkezelés

69

A mingségi tervnek rovidnek, tomornek kell lennie (kiilonben nem olvassak
ell).

18.2.2. Mingség feliilvizsgalat

A mindségi feliilvizsgalat elterjedt modszer a folyamatok és a termékek
mindségének ellendrzésére. Egy mindségellendrzési csoport atnézi a folyama-
tot, a dokumentaciokat és a szoftvert, hogy felfedje a lehetséges hibédkat.

A feliilvizsgalat tipusai:
e A terv vagy a program vizsgalata, mint a Verifikdcié Validacio
esetén (a termék mindségét vizsgélja)

e Az eldrehaladas vizsgalata (a folyamat és a termék mindségét vizs-
gélja)

e A mindség vizsgalata (a folyamat és a termék mindségét vizsgalja)

A feliilvizsgalat folyamata:

e SzakértSk egy csoportja figyelmesen atvizsgalja a szoftver komponen-
seit, a teljes szoftvert és a dokumentacidkat.

o Atnézik a specifikiciokat, terveket, kodot, tesztterveket.

e Az eredményes feliilvizsgalat a szoftver vagy a dokumentacio elfoga-
déasat jelenti. Az észrevételek kijavitasa utéan djabb felillvizsgalatra
kertilhet sor.

o A vezetés a feliilvizsgilatok eredményei alapjan kovetheti a projekt
elérehaladéaséat.

A feliilvizsgalat eredményei A feliilvizsgéilat megallapitasait osztalyozni
kell:

e Nincs tennival0, a szoftver és a dokumentécié rendben van.

e Javitasra visszaadva, a tervezdének vagy a programozoénak ki kell javi-
tania a felfedett hibdkat.

70

e Teljes njragondolas (ajratervezés) sziikséges. A felfedett hianyossagok
a tervek mas részeit is érintik.

o A kdvetelmény- és specifikacios hibakrol a megrendelst is értesiteni kell.

18.3 MINOSEGBIZTOSITASI SZABVANYOK

A szabvanyok adjak a keretet a hatékony mindGségkezeléshez. Lehetnek:
nemzetkozi-, nemzeti-, szervezeti- és projektszabvanyok.

A termékszabvanyok olyan tulajdonsagokat irnak el§, amelyek a ter-
mék minden elemére nézve kotelezek:

e Dokumentécios szabvanyok (pl. dokumentumok szerkezete): A do-
kumentaciok a szoftver megfoghaté meg-nyilvanulasai, altaluk valik
kovethet6vé a szoftverfolyamat, ezért a dokumentacios szabvanyok kii-
16n6sen fontosak. Tipusai:

— A dokumentaléas folyamatéanak szabvanyai: Hogyan kell a doku-
mentumokat elkésziteni, validilni, karbantartani.

— Dokumentumszabvanyok: A dokumentumok tartalma, szerkeze-
te, megjelenése.

— A dokumentumcsere szabvanyai: A dokumentumok tarolésa, kii-
16nb6z6 dokumentaciés rendszerek kozti cseréje.

e Kodolasi szabvanyok (programozasi stilus, programnyelv hasznalat)

A folyamatszabvanyok a szoftverfejlesztés alatt kdvetendd folyamato-
kat hatarozzak meg (pl. a specifikicio, tervezés, stb. folyamata, modszerei,
dokumentumai).

A szabvanyok a legjobb gyakorlat és a kordbbi projektek hibainak Gssze-
gyljtott adatai alapjan késziilnek. Nemzeti és nemzetkozi szervezetek (IE-
EE, ANSI, BSI, NATO, stb.) dolgozzak ki kiilonb6z8 projektekre.

Kiterjednek a szoftvertervezés terminolégidira, programozési nyelvekre,
jelolésrendszerre, programozasi modszerekre, ellendrzésre, validalasra. Foly-
tonossagot biztositanak egy valtozo szervezetben, az 1j résztvevék a helyi
szabvanyok megismerésével hamarabb be tudnak kapcsolédni a munkéba.

71

18.4 MI AZ OSSZEFUGGES A SZOFTVERFOLYAMATOK ES AZ ELOALLITOTT
SZOFTVER MINOSEGE KOzZOTT?

Egy hagyoméanyos termék mingsége alapvetSen fiigg az elGallitasa soran al-
kalmazott folyamatok minGségétsl (pl. iparszeri gyartasnal). Az ipari gyar-
tasban egyértelmi az Osszefiiggés a termék minGsége és az elGallitéasi folyamat
minGsége kozott. Ez a szoftverfejlesztésnél is igy van, de sok minGségi jellem-
z6 nehezen mérhetd, szamszerisithetd, illetve szoftverfejlesztésben az egyéni
képzettség és gyakorlat kiillonosen fontos. Emellett a szoftvert egyedileg ter-
vezik, a szoftverfejlesztés nem mechanikus folyamat.

A szoftverfejlesztés folyamata és a termék minGsége kozott erds dsszeflig-
gés van, de ez nagyon Osszetett és alig megfoghatd. Kiils6 tényezdk, mint
az alkalmazas Ujszeriisége, vagy a piacra vitel siettetése is befolyasoljék a
mindséget. Figyelembe kel venni, hogy alkalmazhaté-e az adott projektre
egy szabvanyos folyamat.

18.5 Az ISO 9000 SZABVANY

A mindségkezelés nemzetkozi szabvany-rendszere (ISO — International Stan-
dardization Organisation). Sokféle szervezetre alkalmazhato, a termeléstél
a szolgaltatasokig. A megujitott ISO 9000:2000 szabvany méar foglalkozik a
felhasznaldi elégedettség mérésével is.

Az ISO 9001 alkalmazhato a tervezéssel, fejlesztéssel, karbantartéassal fog-
lalkoz6 szervezetekre. Az ISO 9001 egy altalanos mindségkezelési folyamat,
amelyet adaptalni kell a konkrét szervezetre.

A vonatkozé mingségi szabvanyokat és eljardsokat a szervezet mindségi
kézikonyvében kell lefektetni. Egy fliggetlen, kiilsé bizottsag tanusitja, hogy
a szervezet minGségi kézikdnyve és gyakorlata megfelel az ISO 9000 szab-
vanynak. A tanusitast évente feliilvizsgaljak és megujitjak, vagy megvonjak
a szervezettSl. A megrendelsk (pl. kozbeszerzésben) mind gyakrabban irjak
elg feltételként az ISO 9000 tanusitvanyt.

72

