
A SZOFTVERTECHOLÓGIA ALAPJAI

PPKE ITK, 2017. június 17.

Written by

Komporday András

2016

Tartalomjegyzék

1. A szoftvertervezés és más tervezési folyamatok összehason-
lítása 8

1.1. Miért célszerű projektszervezetben végezni a szoftverfejlesztést? 8

1.2. Miért és milyen gondot okoz a szoftverprojekt vezetője számá-
ra, hogy a szoftver nem látható, megfogható? Milyen módon
lehet ezt a gondot csökkenteni? 9

1.3. Milyen típusú terveket kell készíteni egy projekt tervezésekor? 9

2. A szoftverfolyamat fázisai és modelljei, szoftverfejlesztési stra-
tégiák 9

2.1. A szoftverfolyamat fázisai . 9

2.2. A szoftverfolyamat modelljei, szoftverfejlesztési stratégiák . . 10

3. A CASE eszközök, rendszerek és osztályozásuk 11

3.1. Az eszközkészlet komponensei 11

3.2. Osztályozásuk . 12

4. A szoftverfejlesztési projekt jellemzői, ütemezése, a projekt
kockázatai, a kockázatok kezelése 12

5. A szoftverkövetelmények típusai, a követelmények elemzése 13

5.1. Funkcionális követelmények 13

5.2. Nem-funkcionális követelmények 14

6. Tervezés újrafelhasználással, komponensek felhasználása 14

6.1. Mi a komponens, milyen interfészei vannak? 15

6.2. Milyen hátrányai vannak az újrafelhasználható komponensek-
kel történő szoftverfejlesztésnek? 15

1

6.3. Mire szolgának az alkalmazási keretrendszerek, hogyan cso-
portosíthatók? . 16

7. A szoftverkövetelmények specifikálása, dokumentálása, for-
mális specifikáció, interfészspecifikáció, viselkedésspecifiká-
ció 17

7.1. Követelménytervezés . 17

7.2. A szoftverkövetelmények típusai 17

7.3. A követelmények specifikálása 18

7.3.1. Felhasználói követelmények 18

7.3.2. Rendszerkövetelmények 19

7.4. Formális követelményspecifikáció PDL használatával 19

7.5. Interfész specifikáció . 19

7.6. A követelmények teljessége, konzisztenciája 20

7.7. A formális módszerek . 20

7.7.1. Formális specifikáció 21

7.8. Interfészspecifikásió . 22

7.9. Viselkedésspecifikáció . 22

8. A szoftverkövetelmények, a követelmények feltárásának, va-
lidálásának és kezelésének módszerei 23

8.1. Követelmények feltárása és elemzése 23

8.1.1. Nézőpont-orientált feltárás 24

8.2. A követelmények validálása 25

8.3. A követelmények kezelése . 25

9. A rendszermodellek típusai, környezeti és viselkedési model-
lek, adatmodell típusok 26

2

9.1. Rendszermodellek . 26

9.2. Adatmodellek . 27

9.2.1. Adatszótárak . 28

9.2.2. A modell . 28

9.2.3. A rendszermodellek típusai 28

10.Objektumorientált rendszermodellek, öröklődési modellek,
az objektumok viselkedésének modellezése 29

10.0.1. Objektumosztály . 29

10.0.2. Objektum . 30

10.1. Öröklődési modell . 31

10.2. Viselkedési modell . 31

11.Szoftverprototípus készítése, a prototípusok fajtái, prototí-
puskészítés és adatbázis programozás 31

11.1. Rendszerprototípus készítése 31

11.1.1. A prototípusok alkalmazása 32

11.1.2. A prototípuskészítés előnyei 32

11.1.3. A prototípuskészítés folyamata 32

11.1.4. Előnyei és hátrányai 32

11.1.5. A prototípuskészítés helye a szoftverfolyamatban . . . 33

11.2. Evolúciós prototípuskészítés 33

11.2.1. Az evolúciós prototípuskészítés folyamata 34

11.2.2. Az evolúciós prototípuskészítés jellemzői 34

11.2.3. Előnyei . 34

11.2.4. Hátrányai . 34

3

11.2.5. A prototípus, mint specifikáció 35

11.3. Eldobható prototípus készítése 35

11.3.1. A prototípuskészítés folyamata 35

11.3.2. A prototípus átadása 36

11.4. Gyors prototípuskészítési technikák 36

11.4.1. Fejlesztés magas szintű nyelven 36

11.4.2. Prototípuskészítő nyelvek 37

11.5. Adatbázis-programozás . 37

11.6. Prototípuskészítés újrafelhasználással 38

11.7. Felhasználói felületek prototípusai 39

12.Architekturális tervezés, a rendszer strukturálása, rendszer-
modellek, vezérlési modellek 39

12.1. Architekturális tervezés . 39

12.1.1. Feladata . 39

12.1.2. A rendszerstruktúra meghatározása 40

12.1.3. A jól megtervezett architektúra előnyei 40

12.1.4. Az architekturális tervezés tevékenységei 40

12.2. Alrendszerek és modulok . 41

12.3. Architektúra modellek . 41

12.4. Az architektúra és a követelmények 42

12.5. A rendszer strukturálása . 42

12.6. Vezérlési modellek . 42

12.6.1. Központosított vezérlés: 43

12.6.2. Eseményalapú vezérlés: 43

4

13.Objektumorientált tervezés, UML diagramok, az objektum-
interfész specifikáció 44

13.1. Az objektumorientált tervezés 44

13.1.1. Az objektumorientált tervezés lényege 44

13.1.2. Az objektumorientált tervezés előnyei 44

13.1.3. Objektumok és objektumosztályok 45

13.2. Az UML modellezési nyelv . 45

13.3. Az objektuminterfész specifikációja 46

13.3.1. A kommunikáció típusai 46

13.3.2. Objektumosztályok közötti kapcsolatok 46

13.3.3. Objektumorientált tervezési folyamat 48

14.Felhasználói felületek tervezése, alapelvek, megjelenítés, fel-
használói támogatás 48

14.1. Grafikus felületek . 48

14.1.1. A grafikus kezelőfelület előnyei 49

14.1.2. A felhasználócentrikus centrikus tervezés 49

14.2. A felhasználói kezelőfelületek tervezésének alapelvei 49

14.2.1. Tervezési alapelvek . 49

14.2.2. A felhasználó és a rendszer kapcsolata 50

14.3. Az interakciók fajtái . 50

14.3.1. Közvetlen manipuláció: 50

14.3.2. Menükiválasztás: . 51

14.3.3. Parancsnyelv: . 52

14.3.4. Természetes nyelv: . 53

14.3.5. Többszörös felhasználói interfészek 53

5

14.4. Az információ megjelenítése 53

14.4.1. A megjelenítés módjának kiválasztása 53

14.4.2. Analóg és digitális megjelenítés 54

14.4.3. Figyelmeztető szöveg megjelenítése 54

14.4.4. Hibaüzenetek . 55

14.5. A felhasználó támogatása . 55

14.5.1. A súgó tervezése . 55

14.5.2. A súgó információtartalma 56

14.5.3. Felhasználói dokumentáció 56

15.Osztott rendszerek architektúrái, többprocesszoros architek-
túrák, kliens-szerver architektúrák 56

15.1. Az osztott rendszerek jellemzői: 57

15.1.1. Hátrányai . 57

15.1.2. Tervezési kérdések . 57

15.1.3. Többprocesszoros architekrtúrák 58

15.2. Tárolási modell . 58

15.2.1. Megosztott tárolók alkalmazása 58

15.3. Osztott rendszerek architektúrái 59

15.3.1. Absztrakt gép modell (réteges modell) 59

15.4. Kliens-szerver architektúra . 59

16.Verifikáció és validáció, a verifikáció tervezése, verifikációs és
validációs módszerek 60

16.1. Programtesztelés . 61

16.2. V& V tervezése . 62

6

16.2.1. A szoftver tesztterv struktúrája 62

16.2.2. Inspekció (átvizsgálás) 62

16.2.3. Cleanroom folyamat 63

17.Szoftvertesztelés, a hiányosságok tesztelése, tesztelés és be-
lövés, integrációs tesztelés 63

17.1. Mi a programtesztelés feladata? Milyen alaptípusai vannak? . 63

17.2. Mi a különbség a tesztelés és a belövés között? Melyiknek mi
a célja? . 64

17.3. Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok
számát csökkenteni? . 64

17.4. Mit jelent a tesztadatok ekvivalencia-osztályozása? Írjon pél-
dát az ekvivalencia-osztályok alkalmazására. 65

17.5. Mi a „fekete doboz” és a „fehér doboz” tesztelési stratégia lé-
nyege? Melyiket milyen esetben lehet alkalmazni? 65

17.5.1. Útvonal tesztelés . 66

17.5.2. Ciklomatikus komplexitás 66

17.6. Ismertesse az integrációs tesztelési stratégiákat! Mi az össze-
függés e stratégiák és a szoftverfolyamat modellje között? . . 66

17.6.1. Az integrációs tesztelés stratégiái 67

17.6.2. A tesztelési stratégiák 67

18.A szoftver minőség fogalma, minőségbiztosítási szabványok,
a minőség tervezése, szoftverkarbantartás 67

18.1. A szoftver minősége . 67

18.2. Minőségkezelés a szoftverprojektben 68

18.2.1. Minőségtervezés . 68

18.2.2. Minőség felülvizsgálat 69

18.3. Minőségbiztosítási szabványok 70

7

18.4. Mi az összefüggés a szoftverfolyamatok és az előállított szoft-
ver minősége között? . 71

18.5. Az ISO 9000 szabvány . 71

8

1 A szoftvertervezés és más tervezési folyamatok össze-
hasonlítása

A szoftverfejlesztési projekt különbözik más, hagyományos projektektől:

• A szoftver nem kézzelfogható.

• A termék egyedi, nem általánosítható.

• A szoftverfejlesztési projekt gyakran egyedi, nem általánosítható, mint
a gépészeti, építési projektek.

• A szoftverfejlesztés folyamata nincs szabványosítva.

• Sok szoftver projekt egyedi.

1.1 Miért célszerű projektszervezetben végezni a szoftverfej-
lesztést?

• A projektvezetés feladata, hogy a szoftver a tervezett ütemezés sze-
rint, határidőre, a követelményeknek megfelelően készüljön el.

• A projektmenedzsmentre azért van szükség, mert a szoftverfejlesz-
tés mindig kötött pénzügyi és megszabott időkeretek között folyik,
amelyeket a megrendelő, vagy a fejlesztő szervezet jelöl ki.

A szoftverfejlesztési projekt különbözik más, hagyományos projektektől.
A szoftverfejlesztési projekt gyakran egyedi, nem általánosítható, mint a
gépészeti, építési projektek. Ennek okai:

• A szoftver nem kézzelfogható.

• A termék egyedi, nem általánosítható.

• A szoftverfejlesztés folyamata nincs szabványosítva.

1.2 Miért és milyen gondot okoz a szoftverprojekt vezetője
számára, hogy a szoftver nem látható, megfogható? Mi-
lyen módon lehet ezt a gondot csökkenteni?

Rizsa

9

1.3 Milyen típusú terveket kell készíteni egy projekt terve-
zésekor?

• A szoftverfolyamat dokumentumai – Cél: a szoftverfejlesztés támogatása,
dokumentálása a választott folyamatmodell és technológia igényei szerint. •
A szoftverprojekt dokumentumai – Cél: támogatni a szoftverfejlesztés, mint
projekttevékenység tervezését, vezetését, követését, határidőre és a kívánt
eredménnyel való befejezését. • A minőségbiztosítás dokumentumai – Cél:
biztosítani és bizonyítani a projekt termékeinek (szoftver és dokumentáció)
minőségét. • Projekt előkészítő dokumentumok – Javaslatok, előtanulmá-
nyok, stb. • A projekt végrehajtását támogató dokumentumok – Projektin-
dító dokumentum – Jegyzőkönyvek (projektértekezletekről, megbeszélések-
ről, stb.) – Jelentések (a vezetésnek, a megrendelőnek) – Beszámolók (a
vezetőknek, a projekt résztvevőinek) • A projekt lezárásának dokumentu-
mai – Értékelések – Beszámolók

2 A szoftverfolyamat fázisai és modelljei, szoftverfej-
lesztési stratégiák

2.1 A szoftverfolyamat fázisai

A szoftverfolyamat a szoftver termék előállítására irányuló tevékenységek so-
ra. Nincs egységes, minden szoftver kidolgozására alkalmas folyamat. Em-
beri és szervezeti tényezők is variálhatják. Az általános tevékenységek:

• Szoftverspecifikáció: a szoftver feladatainak és a megszorításoknak spe-
cifikációja

• Szoftverfejlesztés: a szoftver rendszer elkészítése

• Szoftvervalidáció: annak bizonyítása, hogy az elkészített rendszer a
követelményeknek megfelelően működik

• Szoftverevolúció: a szoftver továbbfejlesztése a változó igényeknek meg-
felelően

2.2 A szoftverfolyamat modelljei, szoftverfejlesztési straté-
giák

A szoftverfolyamat modellje a folyamat absztrakt reprezentációja. Általános
folyamatmodellek:

10

Vízesés modell: az alapvető tevékenységek önálló fázisok. Jól áttekinthe-
tő, követhető fejlesztési folyamatot eredményez. A folyamat termékei
szerződésekkel könnyen lefedhetők (specifikációs és tervezési dokumen-
tumok, program(ok), stb.). Egymástól elkülönült fázisokra osztja a
projektet (költséges egy korábbi fázisra visszatérni, pl. specifikációs
vagy tervezési hiba esetén). Csak a projekt végén, átadáskor derül-
nek ki a specifikációs hibák. Nem képes rugalmasan alkalmazkodni a
megrendelői igények változásaihoz. Csak a követelmények pontos is-
meretében alkalmazható.

Fázisai:

1. Követelmények elemzése és meghatározása

2. Rendszer- és szoftvertervezés

3. Implementáció és egységteszt

4. Integráció és rendszerteszt

5. Működtetés és karbantartás

Evolúciós fejlesztés: Alapgondolata, hogy ki kell dolgozni egy kezdeti imp-
lementációt, amelyet a felhasználó véleményezhet és azt finomítani kell
az elfogadásig. A specifikáció, fejlesztés és validáció összefonódik.

Feltáró fejlesztés : a követelmények feltárása lépésenként, a megren-
delővel együttműködve történik, folyamatosan kiegészítve a rend-
szert új funkciókkal, részekkel.

Eldobható prototípus: „Deszkamodellek” készítése és átadása az ügy-
félnek, a követelmények pontosabb feltárása érdekében.

Előnyök: • kis vagy közepes interaktív rendszerek, esetleg nagy
rendszerek felhasználói interfészének tervezésére alkalmas

• rövid életciklusú rendszerek esetén előnyös.

Hátrányok: • A projekt előrehaladása nem követhető
• A rendszerek struktúrájával nem foglalkozik
• Speciális eszközöket és ismereteket igényel (pl. gyors model-

lező eszközök alkalmazása)

Formális rendszerfejlesztés: A vízesés modellhez hasonló, de a fejlesztés
a követelmények matematikai modelljéből, formális transzformációval
állítja elő a szoftvert, több transzformációs lépésen keresztül. Minden
transzformáció során, lépésenként kell végrehajtani a tesztelést.

Előnyök:

1. Kritikus rendszerek esetén, ahol kulcskérdés a biztonság és
megbízhatóság

11

2. A transzformáció és bizonyítás részben automatizálható.

Hátrányok:

1. Speciális szakértelmet igényel
2. Egy rendszer kölcsönhatásait (pl. felhasználói interfész) ne-

héz formálisan specifikálni.
3. Komplex, nagy rendszereknél ez a módszer sem eredményez

jobb minőséget vagy költségmegtakarítást

Újrafelhasználás alapú fejlesztés: a rendszert már létező, újrafelhasz-
nálható komponensek integrálásával állítja elő. Jellemző rá a COTS
(Commercial off the Shelf) termékek felhasználása.s gyakran beépül a
korábban ismertetett folyamatokba.

Lépései:

1. A követelmények meghatározása

2. Komponens elemzés

3. Rendszertervezés újrafelhasználással

4. Fejlesztés és integráció

5. Rendszer validáció

3 A CASE eszközök, rendszerek és osztályozásuk

A CASE (Computer Aided Software Engineering - számítógéppel támoga-
tott szoftver-fejlesztés) eszközök a szoftverfolyamat egyes lépéseit, pl. a
terv konzisztenciájának ellenőrzését, program fordítást, a teszteredmények
összehasonlítását támogató programok. Ezekből az eszközökből épülnek fel a
teljes fázisokat (pl. specifikációs vagy tervezési fázist) támogató eszközkész-
letek. Egy szoftverfolyamatot nagyrészt, vagy teljesen lefedő eszközkészlet-
gyűjteményt CASE rendszernek vagy környezetnek nevezünk. Ezek legtöbb-
ször több, integrált eszközkészletből állnak.

3.1 Az eszközkészlet komponensei

• Diagramszerkesztő(k)

• Modell elemző és ellenőrző eszközök

• Adatbázis tároló és lekérdező eszközök

• Adatszótárak

12

• Jelentésgeneráló eszközök

• Űrlap definiáló eszközök

• Import/export eszközök

• Kódgenerátorok

3.2 Osztályozásuk

A fejlesztési életciklusban való elhelyezkedésük szerint:

Upper CASE , mely stratégiai tervezésre projektvezetésre szolgál

Middle CASE , mely a rendszerelemzési és tervezési fázisok munkáját tá-
mogatja

Lower CASE , mely egyszerűbb rendszerspecifikációk készítésére szolgál

Eszköztípus Példák

Tervezői eszközök PERT eszközök, becslési eszközök, táblá-
zatkezelők

Szerkesztő eszközök Text editor, diagramszerkesztők, szöveg-
szerkesztők

Változtatáskezelő eszközök Követelmény követhetőségi eszközök, vál-
tozásvezérlő rendszerek

Konfigurációkezelő eszközök Verziókezelő rendszerek, rendszerépítő esz-
közök

Prototípuskészítő eszközök Nagyon magas szintű programnyel-
vek,felhasználói interfész generátorok

Módszertámogató eszközök Tervszerkesztők, adatszótárak, kódgenerá-
torok

Nyelvi feldolgozó eszközök Fordítók, értelmezők
Programelemző eszközök Keresztreferencia generátorok, statikus

elemzők, dinamikus elemzők
Tesztelő eszközök Tesztadat generátorok, állomány összeállí-

tók
Nyomkövető eszközök Interaktív nyomkövető, belövő rendszerek
Dokumentációs eszközök Arculattervező programok, képszerkesztők
Újratervezési eszközök Kereszthivatkozási rendszerek, program

újrastrukturáló rendszerek

1. táblázat. CASE-eszközök funkcionális osztályozása

13

4 A szoftverfejlesztési projekt jellemzői, ütemezése, a
projekt kockázatai, a kockázatok kezelése

A kockázatkezelés a lehetséges kockázati tényezők azonosítását és a projektre
gyakorolt hatásuk minimalizálására vonatkozó tervek készítését jelenti.

A kockázat típusai:

Projektkockázat: A projekt ütemtervét, vagy az erőforrásokat veszélyez-
teti,

Termékkockázat: A szoftver minőségét, vagy teljesítményét veszélyezteti

Üzleti kockázat: A szoftver beszerzését, vagy fejlesztését végző szervezetet
veszélyezteti

5 A szoftverkövetelmények típusai, a követelmények
elemzése

5.1 Funkcionális követelmények

• A rendszer által nyújtandó szolgáltatások leírása: hogyan reagáljon a
rendszer az egyes bemenetekre, illetve mit tegyen egyes helyzetekben.

• A rendszer funkcióit, illetve szolgáltatásait tartalmazzák.

• A szoftver típusától, a várható felhasználástól és a felhasználóktól füg-
genek.

• A felhasználói funkcionális követelmények általánosan írják le, hogy
mit kell elvégeznie a rendszernek.

• A funkcionális rendszerkövetelmények részletesen írják le az egyes funk-
ciók bemeneteit, kimeneteit, a kivételeket, stb.

5.2 Nem-funkcionális követelmények

• A rendszer funkcióira és szolgáltatásaira vonatkozó megszorítások, idő-
beli korlátok, a fejlesztési folyamatra vonatkozó korlátozások, szabvá-
nyok.

14

• A rendszerfunkciókon kívüli követelmények, mint a megbízhatóság, vá-
laszidő, tárigények, vagy az I/O eszközök tulajdonságaira, az interfé-
szek adatformátumaira, stb. vonatkozó megszorítások.

• Ide tartoznak a fejlesztés módszereire, a minőségellenőrzésre, a fej-
lesztőeszközökre (CASE) vonatkozó követelmények, vagy a rendszeren
kívüli (pl. jogi) megkötések is.

• Még a funkcionális követelményeknél is kritikusabbak lehetnek (pl. re-
pülőgép irányítás – megbízhatóság)

A nem-funkcionális követelmények osztályozása

A termékre vonatkozó követelmények: A termék viselkedését határoz-
zák meg (pl. sebesség, megbízhatóság, hordozhatóság, stb.)

Szervezeti követelmények: A megrendelő és a fejlesztő szervezete által
támasztott szabályzatok és ügyrendek követelményei (módszertan, prog-
ramozási nyelv, stb.)

Külső követelmények: A rendszeren és a fejlesztésen kívüli követelmé-
nyek. (együttműködés más rendszerekkel, jogszabályi, etikai, stb.)

A követelmények elemzése és specifikálása költséges folyamat, és megtör-
ténhet, hogy a vezetőknek ilyen hiányos információk mellett kell elkészíteniük
a rendszer kifejlesztésére vonatkozó kiindulási költségbecslést. Ilyen esetek-
ben gyakran alkalmazott stratégia, hogy a fejlesztő szervezet és a megrendelő
a projekt költségében állapodik meg először, majd a megállapított fejlesztési
költség által megszabott korlátok betartásával hoznak döntéseket a rendszer
elvárt minimális funkcionalitásáról.

6 Tervezés újrafelhasználással, komponensek felhasz-
nálása

Kialakulásának oka az, hogy az objektumorientált fejlesztés nem támogat-
ja az újrafelhasználást. A komponensek az objektumosztályoknál sokkal
absztraktabbak és különálló szolgáltatásoknak tekinthetők. A komponen-
sek szolgáltatásokat nyújtanak a rendszer számára, a végrehajtás helyétől
és a megvalósítás nyelvétől függetlenül. A komponens forráskódja általában
nem hozzáférhető, belső állapotai nem láthatóak.

15

6.1 Mi a komponens, milyen interfészei vannak?

A komponensek szolgáltatásokat nyújtanak a rendszer számára, a végrehaj-
tás helyétől és a megvalósítás nyelvétől függetlenül. A komponensek mérete
az egyszerű függvénytől a teljes alkalmazási rendszerig terjed.

• Egy komponens egy függetlenül végrehajtható program, amely egy
vagy több végrehajtható objektumból áll.

• A komponensek interfészeit publikálják és minden interakció ezeken az
interfészeken keresztül folyik. A komponens forráskódja általában nem
hozzáférhető, belső állapotai nem láthatóak.

Szolgáltatott interfészek A komponens által szolgáltatott interfészek.

Szükséges interfészek Azok az interfészek, amelyeket a komponenst hasz-
náló rendszernek, vagy környezetének kell biztosítania.

A komponens alapú fejlesztés beilleszthető a szabályos szoftverfolyamat-
ba, ha beépítjük abba az újrafelhasználással kapcsolatos tevékenységeket:

• Komponensek specifikálása,

• Komponensek megtalálása,

• A tervek (esetleg a követelmények) módosítása a meglelt komponensek
tulajdonságainak megfelelően. Ez az alkalmazkodó újrafelhaszná-
lás

6.2 Milyen hátrányai vannak az újrafelhasználható komponen-
sekkel történő szoftverfejlesztésnek?

• Az újrafelhasználhatóság és a használhatóság ellentmondása:
Minél általánosabb interfésszel rendelkezik, annál inkább újrafelhasz-
nálható, de annál bonyolultabb, vagyis kevésbé használható.

• Az újrafelhasználható komponensek fejlesztési költségei többszörösen
meghaladják az egyszerű, specifikus komponensek költségeit. Ezt egyet-
len projekt költségeiből nem lehet fedezni, ezért kialakultak olyan szoft-
verfejlesztő vállalatok, amelyek specializálódtak az újrafelhasználható
komponensek fejlesztésére.

• Az általános komponensek kevésbé effektívek, több erőforrást használ-
nak és végrehajtási idejük hosszabb, mint a specifikus komponenseké.

16

6.3 Mire szolgának az alkalmazási keretrendszerek, hogyan
csoportosíthatók?

Definíció: A keretrendszer absztrakt és konkrét osztályok gyűjteményéből
és a köztük lévő interfészekből álló alrendszer-terv. A keretrendszerek úgy
implementálhatók, hogy a terv részeit komponensek hozzáadásával egészítjük
ki. Általában viszonylag nagy, újrafelhasználható egységek, de nem önálló
alkalmazások.

Az alkalmazások több keretrendszer integrálásával hozhatók létre. A
keretrendszer általános struktúra, amely a konkrét alkalmazás létrehozásakor
konkrét osztályokkal kibővíthető.

A keretrendszer kibővítése az alábbiakat jelenti:

• A kertrendszer absztrakt osztályainak kiegészítése konkrét osztályok-
kal.

• Műveletek hozzáadása, amelyek meghívhatók a keretrendszer által ke-
zelt események bekövetkezésekor.

A keretrendszerek hátránya a bonyolultság. Sok időt igényel az effektív
használatukhoz szükséges megismerésük.

A keretrendszerek fajtái:

• A rendszer infrastruktúrájának keretrendszerei a rendszer inf-
rastrukturális alapjainak (kommunikáció, felhasználói felületek, stb.)
fejlesztését támogatják.

• Köztes integrációs keretrendszerek a komponensek közti kommu-
nikációt és információcserét támogató szabványok és osztályok. (Ilyen
például a CORBA, JavaBean, COM, DCOM, stb.)

• Vállalati alkalmazások keretrendszerei az egyes speciális szak-
területi alkalmazások fejlesztését támogatják. A szakterületi tudást
tartalmazzák (pl. pénzügy, telekommunikáció).

17

7 A szoftverkövetelmények specifikálása, dokumentá-
lása, formális specifikáció, interfészspecifikáció, vi-
selkedésspecifikáció

7.1 Követelménytervezés

A követelmények a rendszer szolgáltatásainak és a megkötéseknek leírásai. A
követelménytervezés feladata annak felmérése, hogy a rendszer majdani fel-
használója (megrendelője) mit vár a szoftvertől, azoknak a körülményeknek
meghatározása, amelyek a rendszer fejlesztését és működtetését befolyásol-
ják.

A követelmények dokumentuma: A követelmények dokumentuma (Sys-
tem Requirements Specification – SRS) írja le, hogy mit várnak a tervezett
rendszertől, vagyis mit kell megvalósítania a tervezőknek. A dokumentum-
nak nem a rendszer tervét kell tartalmaznia, hanem a követelmények definí-
cióit és specifikációját vagyis azt, hogy mit kell tennie a rendszernek és nem
azt, hogy hogyan.

Folyamata:

1. Megvalósíthatósági tanulmány

2. A követelmények feltárása és elemzése

3. A követelmények validálása

4. A követelmények kezelése, változáskezelés

7.2 A szoftverkövetelmények típusai

Felhasználói követelmények A rendszer szolgáltatásainak közérthető le-
írása, diagrammokkal, táblázatokkal, ábrákkal, a felhasználó számára.

Rendszerkövetelmények Strukturált dokumentum a rendszer szolgálta-
tásainak részletes leírásával (funkcionális specifikáció). Ez a szerző-
dés alapja.

Szoftver specifikáció A szoftver követelmények részletes leírása a fejlesz-
tők számára.

18

7.3 A követelmények specifikálása

A követelményeket az olvasó számára egyértelműen, pontosan kell leírni. A
pontatlan követelmény specifikáció félreértéseket eredményez. Például:

• A felhasználó követelménye: „Minden dokumentum típushoz megfelelő
megjelenítőt kell biztosítani”

• A fejlesztő értelmezheti úgy, hogy csak egy szöveges megjelenítőre van
szükség, így az összetett dokumentumokat nem lehet olvasni.

7.3.1. Felhasználói követelmények

A felhasználói követelményeket úgy kell megfogalmazni, hogy az informa-
tikában járatlan felhasználó is megértse, ezért itt nem célszerű modelleket
alkalmazni, hanem természetes nyelven, táblázatokkal és diagrammokkal kell
a felhasználói követelményeket érthetővé tenni.

A természetes nyelv alkalmazásának nehézségei:

1. Az egyértelműség és pontosság hiánya

2. A követelmények keveredése

3. A követelmények ötvöződése

Javaslatok a felhasználói követelmények leírására:

1. Dolgozzunk ki egységes formátumot az összes követelmény leírására.
Használjuk a nyelvet következetesen, a szükséges követelményeket a
„kell”, a kívánatos követelményeket pedig a „ javallott” szóval jelölhet-
jük.

2. Készítsünk glosszáriumot a szövegben használt fogalmak és rövidítések
magyarázatára.

3. A fontos részeket vizuálisan is emeljük ki a szövegből.

4. Kerüljük a számítógépes zsargon használatát.

19

7.3.2. Rendszerkövetelmények

A rendszerkövetelmények a felhasználói követelmények részletesebb és
rendezett leírását adják. A rendszertervezés alapjául szolgálnak, tartalmaz-
hatják a rendszer modelljeit. Sokszor a szerződéshez csatolják, ezért a rend-
szer teljes és konzisztens meghatározását kell tartalmazniuk. A rendszerkö-
vetelmények leírják, hogy a rendszernek mit kell elvégeznie, majd a tervek
határozzák meg, hogy hogyan tegye.

7.4 Formális követelményspecifikáció PDL használatával

A programleíró nyelvek (PDL – Program Description Language) olyan, prog-
ramozási nyelvből származó, de rugalmasabb nyelvek, amelyekkel egyértel-
műbben leírhatók egyes követelmény típusok. Például:

• Amikor egy művelet tevékenységek sorozatából áll és fontos azok sor-
rendje, vagy

• Hardver és szoftver interfészeket kell specifikálni.

Hátrányai:

• A PDL nem alkalmas a szakterületi követelmények definiálására,

• A jelölések csak programozói ismeretekkel értelmezhetők,

• A követelmények leírása inkább egy tervezési specifikációhoz hasonlít
és nem a rendszer megértését segítő modell.

7.5 Interfész specifikáció

Egy új rendszernek legtöbbször más, már meglévő rendszerekkel kell együtt-
működnie. Az interfészeket a követelmények között kell specifikálni.

Az interfészek típusai:

1. Procedurális interfészek – eljárások hívása egy másik (al)rendszerből

2. Adatszerkezetek, amelyek az egyik (al)rendszertől egy másikhoz kerül-
nek

20

3. Adatreprezentációk

A formális jelölések egyértelművé teszik az interfészek definícióját.

7.6 A követelmények teljessége, konzisztenciája

1. A követelményeket elvileg mindenre kiterjedően, és ellentmondásmen-
tesen kell leírni.

2. A teljesség azt jelenti, hogy a felhasználó által igényelt összes szolgál-
tatásnak szerepelnie kell.

3. A leírás konzisztens, ha nincs konfliktus, vagy ellentmondás a rendszer
szolgáltatásai között.

4. A nagyméretű, komplex rendszereknél ez a gyakorlatban megoldhatat-
lan.

5. Bonyolult rendszerekben ellentmondások lehetnek a nem-funkcionális
követelmények között. Ezért a követelményeket fontosság szerint sú-
lyozni kell.

7.7 A formális módszerek

A mérnöki tudományokban általánosan elfogadott a matematikai modellezés
és elemzés alkalmazása a tervezési folyamatokban. A szoftvertervezés azon-
ban még nem tudott kialakítani mindenki által használható módszereket,
bár széles körben folynak a kutatások a szoftverminőség javítása érdekében.

A szoftvertechnológia területén a formális módszerek a szoftver matema-
tikai reprezentációján és analízisén alapulnak. Ezen formális módszerek közé
tartozik:

• A formális specifikáció,

• A specifikáció elemezése és bizonyítása,

• A transzformációs fejlesztés

• A program verifikálás

A formális módszerek - az előzetes várakozások ellenére – nem tudtak
teret hódítani, mert:

21

1. Kialakultak többé-kevésbé sikeres módszerek, mint az OO tervezés,
konfigurációkezelés, a strukturált progra-mozás, stb., amelyek javítot-
ták a szoftver minőségét.

2. Újabban a szoftver gyors piacra kerülése fontosabb, mint a minőség. A
gyors fejlesztési technikák nem illeszkednek a formális módszerekhez.

3. A formális módszerek csak korlátozottan alkalmaz-hatók például a fel-
használói interfészek, felületek és munkafolyamatok specifikálására.

4. A formális módszerek nehezen, vagy egyáltalán nem alkalmazhatók
nagy rendszerek esetén.

A formális módszereknek csak korlátozott felhasználási lehetőségei van-
nak. Alkalmazásuk kockázata és költsége sok esetben nagyobb, mint a vár-
ható előnyök.

Ugyanakkor azoknál a rendszereknél, amelyeket formális módszerekkel
fejlesztettek, a hibaarány alacsonyabb volt.

Ezért elsősorban kritikus rendszerek fejlesztésénél alkalmazzák, ahol a
rendszer igen magas validálási költségeihez és az esetleges hibákból eredő
katasztrófa költségeihez képest még kifizetődő a használata.

7.7.1. Formális specifikáció

• A formális specifikáció egy matematikai jelölésrendszert alkalmaz, pon-
tosan specifikált szótárral, szintaxissal és szemantikával.

• A specifikálás és a tervezés nagymértékben összefonódik egymással.

• Az architektúra-tervezés adhatja az alapot egy specifikáció struktúrá-
jához.

• A szoftverspecifikáció folyamatának előrehaladásával az ügyfél befolyá-
sa csökken, a vállalkozó befolyása növekszik.

Formális specifikációs technikák:

Algebrai megközelítés: A rendszert műveletek és azok kapcsolatai alap-
ján írja le.

22

Modell alapú megközelítés: A rendszert állapotmodellel specifikálja, amely
halmazokból és sorozatokból álló matematikai konstrukciókat tartal-
maz, a műveleteket pedig aszerint definiálja, ahogy azok a rendszer
állapotát módosítják.

Még kevés eszköz készült a formális módszerek támogatására

A formális specifikáció alkalmazása A formális specifikáció a szoftver-
fejlesztés kezdeti szakaszában kíván nagyobb erőfeszítéseket. A követelmé-
nyek alaposabb és részletesebb elemzése azzal jár, hogy kevesebb lesz a hiba a
követelményspecifikációban. A következetlenségek és a hiányosságok felfed-
hetők és kijavíthatók a formális modellekkel. Ezért a követelmények későn
felfedezett hibáiból eredő többletmunka lesz kevesebb.

A formális specifikációt nyílt interfészek, kommunikációs protokollok de-
finiálására is alkalmazzák.

7.8 Interfészspecifikásió

A nagy rendszereket alrendszerekre bontják, amelyek között jól definiált in-
terfészeket kell specifikálni. Az alrendszerek közti interfészek specifikálása
teszi lehetővé, hogy az alrendszerek fejlesztése egymástól függetlenül történ-
jen. Az interfészek absztrakt adattípusokkal, vagy objektum osztályokkal
definiálhatók. A formális specifikáció algebrai megközelítése különösen al-
kalmas az interfészek pontos specifikálására.

7.9 Viselkedésspecifikáció

Az algebrai specifikációs technikák nehézséget okozhatnak, amikor az objek-
tumok műveletei nem függetlenek annak állapotától. A formális specifikáci-
ók gyakorlati alkalmazásában jobban elterjedtek a modell alapú specifikációs
módszerek.

A modell alapú specifikáció a rendszerspecifikációt a rendszer állapot-
modelljeként fejezi ki. (Ilyen nyelvek többek között a VDM, a B és a Z).
A Z a rendszereket halmazokkal és a halmazok közötti relációkkal modelle-
zi. Kombinálja a formális és az informális leírásokat és grafikus ábrázolást
alkalmaz. Különösen alkalmas interfészek és szoftver specifikálására (ISO
szabvány lesz).

23

A Z sémák konzisztenciája

Az összes sémában konzisztensnek kell lenniük a predikátumoknak. Egy
sémában nem lehet olyan állítás, ami ellentmond egy másik séma prediká-
tumának. Az inkonzisztencia a követelmények ellentmondására hívja fel a
figyelmet.

Az ellentmondásokat a rendszer implementálása előtt fel kell oldani.

8 A szoftverkövetelmények, a követelmények feltárá-
sának, validálásának és kezelésének módszerei

A követelmények a rendszer szolgáltatásainak és a megkötéseknek leírásai. A
követelménytervezés feladata annak felmérése, hogy a rendszer majdani fel-
használója (megrendelője) mit vár a szoftvertől, azoknak a körülményeknek
meghatározása, amelyek a rendszer fejlesztését és működtetését befolyásol-
ják.

8.1 Követelmények feltárása és elemzése

Az informatikusok interjúkat készítenek és workshopokat tartanak a megren-
delő kulcsembereivel (szakterületi képviselők, vezetők, és majdani felhaszná-
lók), hogy felderítsék, milyen szolgáltatásokat kell biztosítania a rendszernek.

A követelmények feltárása bonyolult, mert:

• A kulcsemberek gyakran nem tudják, hogy mit várhatnak és várnak
egy számítógépes rendszertől.

• A kulcsemberek a saját szakterületük fogalmait használják, a követel-
ménytervezőknek ezeket kell megérteniük.

• Az egyes szakterületeknek különböző elvárásai vannak.

• Egyes kulcsfigurák a saját pozíciójuk erősítésére akarják felhasználni
az új rendszert.

• A környezet változása folyamatosan módosítja a követelményeket, a
változásokat követni kell.

24

8.1.1. Nézőpont-orientált feltárás

Nagy rendszerek különböző felhasználói különböző nézőpontból látják
a rendszer szolgáltatásait, eltérő követelményeik vannak, amelyek gyakran
átfedik egymást, sokszor ellentmondanak egymásnak. A rendszerkövetelmé-
nyek feltárását és elemzését tehát több perspektívából kell végezni, nincs
egyetlen helyes út a probléma megközelítésére.

A nézőpont-orientált szemlélet felismeri a különböző perspektívákat és
segít a különböző kulcsszereplők egymásnak ellentmondó követelményeinek
felfedésében. A nézőpontok kívülről tekintik a rendszert, így strukturálják a
követelmények feltárását. Főleg interaktív rendszerekhez alkalmas.

A nézőpontok típusai

Adatforrás vagy adatnyelő: Az adatok előállításának és feldolgozásának
nézőpontjai. Az elemzés kiterjed az összes adatforrásra és adatnyelőre,
továbbá a feldolgozások azonosítására és vizsgálatára.

Reprezentációs eszközkészlet: A különböző típusú rendszermodellek né-
zőpontjai. Ezek összehasonlításából kitűnik, melyek azok a követelmé-
nyek, amelyeket az egyes rendszermodellek hibásan értelmeznek.

A szolgáltatások fogadója: A rendszer szolgáltatásait felhasználó (em-
ber, másik rendszer, stb.) nézőpontjai.

Módszerek a követelményelemzéshez Céljuk a rendszerkövetelmények
strukturált feltárá-sának, elemzésének, tervezésének támogatása.

Típusok:

Nézőpont orientált módszerek: (pl. VORD – Viewpoint-Oriented Re-
quirements Definition)

Forgatókönyvek: • Esemény forgatókönyvek

• Leírják, hogyan használják a rendszert a gyakorlatban.

• Használati esetek (Az UML-nél foglalkozunk vele).

Etnográfia: A rendszerek társadalmi, szervezeti környezete, az emberek
munkavégzési módja felől közelíti a rendszerkövetelményeket. Gyak-
ran kiegészül a prototípus-készítéssel.

25

8.2 A követelmények validálása

Feladata annak igazolása, hogy a követelmények a megrendelő kívánságainak
megfelelő rendszert definiálják. A hibás, vagy hiányos követelmények nagy
veszteségeket okoznak, ezért a validáció igen fontos:

A hibás követelmények javítása a rendszer átadása után gyakran száz-
szor annyiba kerül, mint egy implementációs (pl. programozási) hiba
kijavítása.

Az érvényesség ellenőrzése: A felhasználó által előre nem látott funkciók
feltárása.

Az ellentmondás-mentesség ellenőrzése: Ellentmondó megszorítások, vagy
rendszerfunkciók kiszűrése.

A teljesség ellenőrzése: Annak ellenőrzése, hogy a dokumentum a fel-
használó által kért összes funkciót tartalmazza-e.

A megvalósíthatóság ellenőrzése Az elképzelt rendszer megvalósítható-
e a rendelkezésre álló technológiával, a tervezett idő alatt, az adott
költséggel.

Az igazolhatóság ellenőrzése: A rendszerkövetelmények dokumentumai
alkalmasak-e arra, hogy utólag igazolják, az átadott rendszer teljesíti
a követelményeket.

8.3 A követelmények kezelése

A követelmények kezelése a követelmények változásának követésére, kézben-
tartására szolgáló folyamat.

A követelmények soha nem lehetnek teljesek és konzisztensek.

• A szoftverfolyamat során új követelmények merülnek fel, ahogy az üz-
leti környezet változik, és a feladat megértésében előbbre jutunk.

• A különböző nézőpontok különböző követelményeket támasztanak a
rendszerrel szemben, amelyek gyakran ellentmondanak egymásnak.

A követelménykezelés során fel kell készülni a követelmények változására.
Ehhez szükség van:

26

1. A követelmények egyedi azonosítására (ld. Specifikáció).

2. A változáskezelés folyamatának kidolgozására.

3. A követelmények és az összefüggések változásának követésére.

4. A változások és hatásuk elemzésére.

CASE eszközök támogathatják a változáskezelést.

9 A rendszermodellek típusai, környezeti és viselkedési
modellek, adatmodell típusok

9.1 Rendszermodellek

A rendszermodellezés segíti az elemzőket a rendszer funkcionalitásának meg-
értésében. Egyes modellek alkalmazhatók a felhasználóval folytatott kom-
munikációban is. A különböző modellek eltérő nézőpontból ábrázolják a
rendszert:

• A környezeti modellek a rendszer környezetét és kapcsolatait mu-
tatják be.

– A rendszer határainak ábrázolására szolgálnak (mi tartozik a rend-
szerhez és mi nem)

– A határok kijelölése gyakran nem technikai, hanem társadalmi,
vagy szociális szempontoktól is függ.

– A rendszer és külső rendszerekkel való kapcsolatainak ábrázolása
az architekturális modell feladata.

– A környezeti modell ábrázolási módja általában egyszerű blokk-
diagram.

• A folyamatmodell a teljes munkafolyamatot bemutatja.

– A folyamatmodell alapján lehet kijelölni, hogy a folyamat mely
részeit kell támogatnia, vagy elvégeznie a számítógépes rendszer-
nek.

– A folyamatok és a folyamatok közti információ áramlás bemuta-
tására adatfolyam modellek használhatók.

• A viselkedési modellek a rendszer átfogó viselkedésének leírására
szolgálnak. Típusai:

27

– Adatfolyammodellek: Bemutatják, hogyan dolgozza fel a rend-
szer az adatokat. Modellezik az adatfeldolgozást a rendszerben.

∗ Azt mutatják be, hogyan áramlanak végig az adatok a fel-
dolgozási lépések sorozatán és milyen átalakuláson mennek
keresztül.

∗ Segítik az elemzőket abban, hogy megértsék, mi történik a
rendszerben.

∗ Egyszerű jelölésrendszert alkalmaznak, ezért a megrendelő is
könnyen megérti.

∗ Funkcionális szempontból modellezik a rendszert, és alkalma-
sak a rendszer külső adatkapcsolatainak ábrázolására is.

– Állapotátmenet modellek: Bemutatja, hogyan reagál a rend-
szer a különböző eseményekre. A rendszer viselkedését modelle-
zik, a belső és külső eseményekre adott válaszokat írják le.

∗ Gyakran használják valósidejű rendszerek modellezésére.
∗ A rendszer állapotait csomópontként, az eseményeket nyilak-

kal jelöli. Egy esemény hatására a rendszer egyik állapotából
egy másik állapotba kerül.

∗ Az állapotdiagramok az UML jelölésrendszer részét képezik.
∗ Feltételezi, hogy a rendszer egy adott időpontban a lehetséges

állapotok egyikében van.

– A rendszer viselkedésének leírásához mindkét típusra szükség van.

• A szerkezeti modellek a rendszer felépítését, illetve az adatok szer-
kezetét ábrázolják.

9.2 Adatmodellek

A nagy rendszerek sokféle adatot tárolnak és dolgoznak fel, nagyméretű adat-
bázisokat alkalmaznak. Az adatbázisok sok esetben a rendszertől függetlenül
léteznek, máskor a rendszerrel együtt kell létrehozni azokat.

Az adatmodellek a rendszer által feldolgozott adatok logikai szerkeze-
tének meghatározására szolgálnak. Az adatbázis tervezésben széles körben
alkalmazzák őket. Leginkább elterjedt az egyed-tulajdonság-kapcsolat
modellezése.

Az egyedeket műveletekkel nem rendelkező, egyszerűsített objektumosz-
tályoknak tekinthetjük, így az UML osztálymodellje használható az adatok
modellezésére is.

28

Az UML nem tartalmaz külön jelölésmódot az adatmodellezésre, az ada-
tokat az objektumok és a köztük lévő kapcsolatok segítségével modellezi.

Az adatmodelleket gyakran adatfolyam-modellekkel együtt használják

9.2.1. Adatszótárak

Az egyed-típus-kapcsolat modelleket célszerű kiegészíteni adatszótárral.
Az adatszótár tartalmazza az összes nevet, ami a modellben szerepel, az
egyedleírásokat, kapcsolatokat és tulajdonságokat.

Előnyei:

1. Névkezelés, a névütközések kizárása,

2. Szervezeti információk tárolása, támogatja az elemzést, tervezést, imp-
lementációt és evolúciót.

3. Sok CASE eszköz tartalmazza az adatszótár támogatást.

9.2.2. A modell

A modell absztrakt leírása egy olyan rendszernek, amelynek követelmé-
nyeit előzőleg már összegyűjtötték, rendszerbe foglalták és elemezték. Az
absztrakt modell jellemzője, hogy részleteket hagy el, egyszerűsít. Kiemeli a
lényeget. Vagyis rendszermodell nem egy másik reprezentációja a rendszer-
nek.

9.2.3. A rendszermodellek típusai

Adatfeldolgozási modell: Adatfolyam diagramok, az adatok feldolgozá-
sát mutatják a rendszeren belül.

Kompozíciós modell: Egyed-kapcsolat diagramok. Bemutatják, hogyan
épülnek fel az egyedek más egyedekből.

Architekturális modell: Az alrendszereket mutatják be, amelyekből a rend-
szer felépül.

Osztálymodell: Objektum osztály/öröklődési diagramok, az egyedek közös
tulajdonságait ábrázolják.

29

Inger-válasz modell: Állapotátmenet diagramok, a rendszer belső és külső
eseményekre adott reakcióit írják le.

10 Objektumorientált rendszermodellek, öröklődési mo-
dellek, az objektumok viselkedésének modellezése

A rendszerkövetelményeket (főleg interaktív rendszerek esetében) gyakran
objektum-modellel írják le. Az objektummodell objektumosztályokkal mo-
dellezi a rendszert. Az objektummodellek természetes módon tükrözik az
általuk manipulált valós világbeli egyedeket. Az elvont, magasabb szintű
egyedeket ezzel a megközelítéssel nehezebb modellezni.

10.0.1. Objektumosztály

Közös tulajdonsággal rendelkező objektumok halmazának és az objektu-
mok által nyújtott szolgáltatásoknak (műveleteknek) absztrakciója.

Jellemzői:

1. Hasonló tulajdonságú objektumok halmaza: Szerkezeti és viselke-
désbeli jellemzők hasonlósága.

2. Az osztálynak van neve: A nevet az osztályba tartozó összes objektum
örökli.

3. Lehetnek attribútumai, paraméterei: Hozzáférési módok: public,
private, protected.

4. Tartoznak hozzá szolgáltatások, műveletek: Az osztály minden ob-
jektumára, vagy az osztály egészére vonatkozó műveletek.

5. Tartozhat hozzá import felület: Az általa igényelt szolgáltatások
definíciói.

6. Rendelkezhet megvalósítási résszel: A megvalósítás leírása.

7. Van látható és láthatatlan része

8. Lehet absztrakt vagy konkrét osztály

9. Lehet paraméteres (sablon) osztály

30

10.0.2. Objektum

Az objektumok az objektumosztály példányai, végrehajtható egyedek, az
objektumosztály tulajdonságaival és szolgáltatásaival.

Az objektumok jellemzői:

1. Azonosítható: Az objektumok egymástól megkülönböztethetők, füg-
getlenül az állapotuktól.

2. Tulajdonságok, attribútumok tartoznak hozzá: Ezek lehetnek kö-
tött, formális paraméterek is.

3. Állapot tartozik hozzá: Az attribútumok konkrét értékei az objektum
mindenkori állapotát határozzák meg.

4. Műveletek tartoznak hozzá: Ezek lehetnek leképezések, tevékenysé-
gek, események.

5. Korlátozott láthatósággal rendelkezik: van látható része (export és
import műveletek) és van láthatatlan része (az ábrázolás és a szolgál-
tatások megvalósításának részletei).

Egy adott szakterület egyedeinek objektumosztályba sorolása több
rendszerben is felhasználható.

Néhány objektummodell fajta:

• Öröklődési modell

• Aggregációs modell

• Viselkedési modell

A rendszerek felhasználói számára a funkcionális modellek (pl. adatfo-
lyam diagram) könnyebben érthetőek, mint az objektummodellek.

10.1 Öröklődési modell

Az objektumosztályokat taxonómiába szervezi. A taxonómia olyan osztá-
lyozási séma, amely megmutatja, egy osztály hogyan kapcsolódik más osz-

31

tályokhoz, közös tulajdonságokon és szolgáltatásokon keresztül. Az osztály-
hierarchia tervezése az egyik legnehezebb feladat, mivel az egyes ágakon ke-
rülni kell a duplikálást.

Az alacsonyabb szinten lévő osztályok: öröklik a magasabb szintű osztá-
lyoktól tulajdonságaikat és szolgáltatásaikat rendelkezhetnek speciális tulaj-
donságokkal és szolgáltatásokkal is.

Objektumaggregáció

Egyes objektumok más objektumokból épülnek fel, azok aggregátuma-
ként. Az aggregációs modell azt mutatja meg, hogy hogyan keletkezik több
osztályból egy aggregált osztály.

10.2 Viselkedési modell

Az objektumok viselkedése az általuk biztosított műveletek sorrendjének áb-
rázolásával történhet (szekvencia diagram). A szekvencia diagram voltakép-
pen egy forgatókönyv, amely a használati eseten alapul.

A szekvencia diagramok mellett az UML-ben együttműködési diagramo-
kat is használunk, ahol az objektumok által váltott üzenetek sorozatát áb-
rázoljuk.

11 Szoftverprototípus készítése, a prototípusok fajtái,
prototípuskészítés és adatbázis programozás

11.1 Rendszerprototípus készítése

A prototípuskészítés a követelménytervezés része, a követelmények feltá-
rásának és validációjának eszköze.

A prototípus a szoftverrendszer kezdeti verziója, amely alkalmas a rend-
szer koncepciójának bemutatására és kipróbálására. Korábban úgy tekin-
tették, hogy a prototípus alacsonyabb rendű a kívánt rendszernél. Ma a
prototípus- és a normál rendszer közti határ fokozatosan elmosódik és sok
rendszert az evolúciós modell alapján készítenek.

32

11.1.1. A prototípusok alkalmazása

A felhasználó nem látja előre, hogyan fogja használni az új rendszert. A
prototípus elsődleges célja az, hogy segítse a felhasználókat a rendszerköve-
telmények megértésében:

A követelmények feltárása: a prototípussal a felhasználók megtapasz-
talhatják, hogyan fogja a rendszer a munkájukat támogatni.

A követelmények validálása: a prototípus felfedheti a hibákat és hiá-
nyosságokat a követelményekben.

11.1.2. A prototípuskészítés előnyei

• Felfedi a szoftver felhasználója és készítője közti félreértéseket. Csök-
kenti a követelményekkel kapcsolatos kockázatokat.

• Kiderülhet, hogy hiányzik valamely szolgáltatás, vagy ellentmondások
vannak a szolgáltatások között.

• A szoftverfolyamat elején már egy – legalábbis részben - működő rend-
szer áll rendelkezésre.

• A prototípus felhasználható a rendszer-specifikáció alapjaként.

• Támogathatja a felhasználók képzését és a rendszertesztet.

11.1.3. A prototípuskészítés folyamata

1. Prototípusfeladatok megállapítása - Prototípuskészítési terv

2. Prototípus funkcióinak meghatározása - Vázlat kidolgozása

3. Prototípus fejlesztése - Futtatható prototípus

4. Prototípus kiértékelése - Kiértékelési jelentés

11.1.4. Előnyei és hátrányai

Előnyök:

• A rendszer használhatóbb lesz.

33

• A rendszer jobban illeszkedik a felhasználó igényeihez.

• Javul a tervezés minősége.

• Gyorsabban elkészül a rendszer.

• A fejlesztéshez kevesebb erőforrásra van szükség (költségcsökkentés).

Veszélyek:

• Eldobható prototípust végleges rendszerként használnak (teljesítmény,
funkcionalitás, megbízhatóság)

• A gyors fejlesztésből és az iterációból fakadó hibák: válaszidő, rendszer-
struktúra

11.1.5. A prototípuskészítés helye a szoftverfolyamatban

Evolúciós prototípus készítése: Célja egy működő rendszer átadása a
megrendelőnek. A legfontosabb követelmények implementálásával egyszerű
rendszer készül, amelyet újabb követelmények feltárásával fokozatosan egé-
szítenek ki új funkciókkal. Weblap fejlesztésben és e-business alkalmazások-
ban használják.

Eldobható prototípus készítése: Célja a rendszerkövetelmények feltá-
rása és validálása. A nem teljesen megértett követelmények megvalósítása
és bemutatása segíti a feltárást. A követelményspecifikáció elkészülte után
nem használható fel.

11.2 Evolúciós prototípuskészítés

Olyan rendszereknél célszerű alkalmazni, ahol nem készíthető el előre a speci-
fikáció. Ilyenek általában az intenzív felhasználói interfész-használatot igény-
lő rendszerek.

Nincs részletes rendszerspecifikáció, sokszor a részletes követelménydoku-
mentum is hiányzik. s A fejlesztéshez gyors, iterálható fejlesztő eszközökre
és módszerekre van szükség. Mivel nem készül követelményspecifikáció, a
validáció is csak a rendszer bemutatásával történhet.

34

11.2.1. Az evolúciós prototípuskészítés folyamata

1. Absztrekt specifikáció készítése

2. Prototítpus építése

3. Prototípus használata

4. Ha megfelelő a rendszer: a rendszer átadása

5. Egyébként: Új Prototípus építése

11.2.2. Az evolúciós prototípuskészítés jellemzői

• A specifikáció, a tervezés és az implementáció átlapolható.

• A rendszer inkrementumok sorozataként fejlődik, és kerül a felhaszná-
lóhoz, vagyis a felhasználó kulcsfigurái minden inkrementum tervezé-
sében és értékelésében részt vesznek.

• Gyors fejlesztő eszközök és technikák alkalmazhatók (CASE eszközök,
4GL, modellező nyelvek: BPML-Business Process Modeling Langu-
age).

• A felhasználói felületek GUI fejlesztő eszközökkel készíthetők.

11.2.3. Előnyei

Felgyorsul a rendszerfejlesztés. A gyors fejlesztés, az új rendszer sür-
gős használatba vétele gyakran fontosabb mint a követelmények részletes
feltárása, vagy a hosszú távú karbantarthatóság.

Növelhető a felhasználó elkötelezettsége: A felhasználók bevonása a
rendszerfolyamatba azt eredményezi, hogy a rendszer nagyobb valószínűség-
gel felel meg az elvárásoknak, és a használatba vételkor a felhasználók már
ismerik azt és tudják alkalmazni.

11.2.4. Hátrányai

Vezetési problémák A jelenlegi vezetési módszerek a vízesés modellre al-
kalmazhatók. Az új technológiák alkalmazásához speciális ismeretekre, eset-
leg más munkatársakra van szükség.

35

Karbantartási problémák A folytonos változások a prototípus szerke-
zetének sérülését okozhatják, a dokumentáció hiánya és a speciális fejlesztő
eszközök a karbantartást veszélyeztetik.

Szerződéskötési problémák A fix áras szerződéshez előre ismerni kell
a rendszer vázlatos követelményeit és tervét. A ráfordítás alapú szerződést
pedig a megrendelő nem fogadja el.

11.2.5. A prototípus, mint specifikáció

Egyes követelményeket (mint pl. a biztonság-kritikus funkciókat) nem
lehet a prototípusba beépíteni, így nem fognak szerepelni a specifikáció-
ban. Egy implementáció nem lehet egy szerződés jogi melléklete. A nem-
funkcionális követelmények nem tesztelhetők teljes mértékben.

11.3 Eldobható prototípus készítése

Célja a követelményspecifikációból fakadó kockázat csökkentése. A prototí-
pust egy kezdeti specifikáció alapján készítik, svalidálásra átadják a felhasz-
nálónak, majd eldobják. Az eldobható prototípus nem tekinthető végleges
rendszernek, mert:

1. Több rendszertulajdonság kimaradhat a prototípusból,

2. Nem készül specifikáció a hosszú távú karbantartásra.

3. A prototípus még nem a megfelelő struktúra szerint épül.

11.3.1. A prototípuskészítés folyamata

1. A követelmények körvonalazása

2. Prototípusfejlesztés

3. Prototípus kiértékelése

4. Prototípus elfogadása vagy új prototípus fejlesztése

5. Rendszerspecifikáció készítése

6. Szoftverfejlesztés (újrafelhasználható komponensekkel)

7. A rendszer validálása: elfogadás vagy további fejlesztés

36

8. A szoftver átadása

11.3.2. A prototípus átadása

A vezetők gyakran nyomást gyakorolnak a fejlesztőkre, hogy egy működő
eldobható prototípust végleges rendszerként adjanak át. Ez nagyon veszé-
lyes, mert:

• A prototípus nem alakítható úgy, hogy a nem-funkcionális követelmé-
nyeknek (teljesítmény, megbízhatóság, stb.) eleget tegyen.

• A prototípus rendszerint dokumentálatlan marad, mert a cél a gyors
elkészítés és bemutatás.

• A változtatások miatt a rendszer struktúrája általában romlik a fej-
lesztés során.

• A prototípus készítésekor az általános szervezeti szabványokat nem
tartják be (minőségbiztosítás, technológiai fegyelem, projekt dokumen-
tálás).

11.4 Gyors prototípuskészítési technikák

A gyors prototípuskészítéshez az alábbi technikák alkalmazhatók:

1. Fejlesztés dinamikus, magas szintű nyelven,

2. Adatbázis-programozás,

3. Komponensek és alkalmazások összeépítése.

A gyakorlatban ezeket együttesen alkalmazzák.

A legtöbb prototípuskészítő eszköz tartalmazza a vizuális programozás
támogatását, ahol grafikus szimbólumok reprezentálják a függvényeket, ada-
tokat, feldolgozó szkrtipteket. Az eszköz a rendszer vizuális reprezentációjá-
ból generálja a végrehajtható programot.

11.4.1. Fejlesztés magas szintű nyelven

Olyan nyelvek, amelyek hatékony futási idejű adatkezelő eszközöket tar-
talmaznak. Korábban a nagy rendszerek fejlesztéséhez nem használtak ilye-

37

neket, mert nagy teljesítményű futtató rendszereket igényelnek, ami növeli a
tárigényt, csökkenti a futási teljesítményt.

Némely nyelv olyan integrált támogató környezetet tartalmaz, amely fel-
használható a gyors prototípuskészítéshez. A magas szintű nyelvek többsége
fejlett felhasználói interfész fejlesztő képességekkel rendelkezik.

11.4.2. Prototípuskészítő nyelvek

Szempontok az alkalmas nyelv kiválasztásához:

Az alkalmazási terület jellege: Természetes nyelvű feldolgozáshoz a Lisp,
vagy a Prolog alkalmasabb.

A felhasználói interakció jellege: Az intenzív web alapú felhasználói in-
terakció kidolgozására a Java, vagy Smalltalk több eszközt kínál.

A támogatási környezet: A nyelvvel együtt sokféle eszköz és komponens
segíti a prototípuskészítést.

A rendszerprototípus különböző részei különböző nyelven programozha-
tók. A különböző nyelven írt részek közötti kapcsolatot kommunikációs ke-
retrendszer teremtheti meg.

Nagy rendszerek prototípusának készítésekor nincs egyetlen ideális nyelv.
A rendszer egyes részei az igényeknek megfelelő leginkább alkalmas nyelven
készülhetnek. Mivel a nyelvek eltérő egyedfogalmakat használhatnak, a ré-
szek közti adat- és vezérlési kapcsolatok sok addicionális kódot igényelhetnek.

11.5 Adatbázis-programozás

Az evolúciós fejlesztés az adatbázison alapuló kis-, közepes üzleti alkalma-
zások területén általánosan alkalmazott technika. A kereskedelmi adatbázis-
kezelő rendszerek olyan 4GL fejlesztő eszközöket tartalmaznak, amelyek tá-
mogatják a lekérdezést/ datkezelést (SQL), táblázatkezelést, jelentés gene-
rálást, felhasználói felületek tervezését, stb.

Az adatfeldolgozási alkalmazásokban sok közös jegy van: adatbázis mani-
pulációk (keresés, frissítés, rendezés, stb.), egyszerű műveletek, űrlapkezelés,
stb. Egy 4GL-ben ezeket általánosítják. Gyakran integrálhatók CASE esz-
közökkel is. Ezek generálhatnak SQL-t, vagy alacsonyabb szintű kódot.

38

Negyedik generációs nyelvek (4GL)

Tulajdonságok:

• Interaktív, gyakran grafikus űrlapgenerálás,

• Űrlapkezelés (strukturált űrlapok összekapcsolása, mezőellenőrzés)

• Web-es kapcsolatok (böngésző)

• Nagy tár- és erőforrás igény

Elemei:

• Adatbázis-kezelő rendszer, ez köti össze az összes többi elemet

• Adatbázis-programozási nyelv

• Interfész-generátor

• Táblázatkezelő

• Jelentésgenerátor

Hátrány: Szabványok hiánya (gyártó-specifikus)

11.6 Prototípuskészítés újrafelhasználással

Az alkalmazás szintjén: Teljes alkalmazási rendszerek integrálása a pro-
totípusba úgy, hogy egymás funkcióit megosztva használják. (Például szab-
ványos szövegszerkesztő alkalmazása a szövegszerkesztésre.)

A komponensek szintjén: Az egyedi komponensek integrálása egy szab-
ványos keretrendszerbe. (Például egy szkriptnyelv, mint a Visual Basic, vagy
olyan integrációs keretrendszer, amely CORBA, szabványon alapul, vagy
.net, JavaBean futtatásra alkalmas.)

39

11.7 Felhasználói felületek prototípusai

A felhasználót be kell vonni a felhasználói felületek tervezésébe, a fejlesz-
tő nem erőltetheti rá saját elképzeléseit. A prototípusok készítése segít a
felhasználók bevonásában. A felhasználói interfész fejlesztése a rendszer-
fejlesztési költségek növekvő hányadát adja.

Az interfész-generátorok segítenek abban, hogy a felhasználók gyorsan
véleményt alkossanak a felületekről. A felületek specifikációjából jól struk-
turált programot generálnak. A web alapú felhasználói interfészek készítésére
jól ismert weblap tervező eszközök léteznek.

12 Architekturális tervezés, a rendszer strukturálá-
sa, rendszermodellek, vezérlési modellek

12.1 Architekturális tervezés

A rendszertervezés folyamatának kezdeti lépcsőfoka. Az architekturális ter-
vezés az a tervezési folyamat, amelynek során kijelölik a rendszert alkotó
alrendszereket és azt a keretrendszert, amely vezérli az alrendszereket és
biztosítja közöttük a kommunikációt. A folyamat végeredménye a szoftver
architektúra, amely a tervezés alapjául szolgál.

Az architekturális tervezés célja a rendszer együttműködő alrendszerekké
való felbontása.Az architektúra terv általában egyszerű blokkdiagram formá-
jában ábrázolja a rendszer (mindenki által megérthető) struktúráját. Rész-
letesebb modellek is alkalmazhatók, amelyek megmutatják:

1. Hogyan osztják meg egymás közt az alrendszerek az adatokat,

2. Hogyan kommunikálnak egymással.

12.1.1. Feladata

Összekötni a specifikáció és a tervezés folyamatát. Kialakítani a rendszer
alapvető struktúráját és azt a keretrendszert, amely a rendszert egységbe
foglalja és működését irányítja.

Gyakran egyes specifikációs tevékenységgekkel párhuzamosan végezhető.
Magába foglalja a fő rendszerkomponensek és azok vezérlésének, valamint
kommunikációjának meghatározását.

40

12.1.2. A rendszerstruktúra meghatározása

A bonyolult rendszerek egymással lazán összefüggő részfeladatokból áll-
nak, amelyek önállóan végrehajthatók, de egymással vezérlési és adatcsere
kapcsolatban állnak. Példa: banki szolgáltató rendszer alrendszerei:

Központi feladatok: Ügyfélnyilvántartás, könyvelés, számlavezetés, be-
tétkezelés, hitelkezelés, kártyakezelés, vezetői információs rendszer, stb.

Ügyfélkiszolgálással kapcsolatos feladatok:

• Ügyfél tranzakciók: Személyes kiszolgálás a bankfiókban, telefonos-,
Internetes tranzakciók, kártyás vásárlások, ATM, pénzforgalom, hite-
lezés, értékpapír forgalom, stb. (egyéni- és vállalati ügyfelek számára)

• Bankközi tranzakciók: Átutalások, hitelek, fedezet-igazolás, értékpapír-
műveletek, stb.

12.1.3. A jól megtervezett architektúra előnyei

A tervezői megbeszélések alapját képezi. A tervezés kulcsszereplői
számára érthetővé teszi a rendszer vázát.

Támogatja a kritikus kérdések korai elemzését. Az architektúra terv
alapján megítélhető, hogy a rendszer eleget fog-e tenni olyan kritikus köve-
telményeknek, mint a teljesítmény, megbízhatóság, karbantarthatóság, ská-
lázhatóság.

Megalapozza az újrafelhasználhatóságot. Az alrendszerekre bontás és
azok fő tulajdonságainak meghatározása lehetőséget ad újrafelhasználható
komponensek kifejlesztésére (vagy felhasználására), termékcsaládok kidol-
gozására, amelyben az azonos feladatokat újrafelhasználható komponensek
oldják meg.

12.1.4. Az architekturális tervezés tevékenységei

1. A rendszer strukturálása: A rendszert több alrendszerre bontjuk
és azonosítjuk a kommunikációs igényeket az alrendszerek között.

41

2. A vezérlés modellezése: Általános modell készül a rendszer részei
közötti vezérlési kapcsolatokról.

3. Moduláris felbontás: Az azonosított alrendszerek modulokra bon-
tása és a modulok közti kapcsolatok azonosítása.

Az architekturális tervezés tevékenységei többnyire nem
szekvenciálisan, hanem páthozamosan folynak.

12.2 Alrendszerek és modulok

Alrendszer: Az alrendszer olyan – szolgáltatásaik alapján – egységként
kezelhető komponensek rendszere, amely önállóan oldja meg feladatát. Mo-
dulokból, vagy más alrendszerekből áll, szabványos interfészen keresztül ve-
heti igénybe más alrendszerek szolgáltatásait.

Modul Olyan rendszer-komponens, amely szolgáltatás(oka)t nyújt más
moduloknak és igénybe veszi mások szolgáltatásait, de nem tekinthető füg-
getlen alrendszernek. Más, egyszerűbb modulokból (komponensekből) áll.

12.3 Architektúra modellek

Az architekturális tervezés során architektúra modellek készülnek, amelyek
különböző nézőpontokból ábrázolják a rendszer architektúráját:

Statikus szerkezeti modell: A különálló alrendszereket és rendszerkom-
ponenseket ábrázolja.

Dinamikus folyamatmodell: Megmutatja, hogy a rendszer hogyan szer-
veződik folyamatokba működése alatt.

Interfészmodell: Az alrendszerek közötti interfészeket ábrázolja.

Kapcsolatmodell: Az alrendszerek közti adatfolyammal mutatja be a kap-
csolatokat.

Architekturális stílusok

Egy rendszer architekturális modellje legtöbbször valamilyen általános
modellezési stílus szerint készül. Ilyen stílusok alkalmazása egyszerűbbé és

42

egységesebbé teszi a rendszer architektúra definiálását. A heterogén, nagy
rendszerek architektúrája azonban nem ábrázolható egységes stílusban. Az
eltérő funkciójú részek eltérő modellezést kívánnak. A tervezőknek kell meg-
találniuk a feladatra leginkább alkalmas modellezési stílust.

12.4 Az architektúra és a követelmények

A rendszer architektúrája kihat a nem-funkcionális rendszerkövetelmények
kielégítésére, így meghatározza a:

Teljesítményt: Egy rendszer teljesítménye jobb lesz, ha nagyméretű mo-
dulokból áll, mert kevesebb kommunikáció zajlik a modulok között.

A védelmet: A jobb védelem érdekében rétegezett szerkezetet célszerű al-
kalmazni, a kritikus rendszerelemeket a legbelső rétegben elhelyezve.

A biztonságot: A biztonsággal kapcsolatos műveletek egy, vagy néhány
alrendszerben legyenek.

A rendelkezésre állást: Redundáns komponensek alkalmazásával növel-
hető.

A karbantarthatóságot: Sok önálló, könnyen változtatható komponens-
ből kell felépülnie.

12.5 A rendszer strukturálása

A rendszer együttműködő alrendszerekké való felbontása. Az architektú-
ra terv általában egyszerű blokkdiagram formájában ábrázolja a rendszer
(mindenki által megérthető) struktúráját. Részletesebb modellek is alkal-
mazhatók, amelyek megmutatják, hogy

• hogyan osztják meg egymás közt az alrendszerek az adatokat, illetve

• hogyan kommunikálnak egymással.

12.6 Vezérlési modellek

A strukturális rendszermodellek az alrendszerekre való felbontást ábrázolják,
nem tartalmaznak vezérlési információkat. A vezérlési modellek az alrend-
szerek közötti vezérlési folyamatokat modellezik.

43

12.6.1. Központosított vezérlés:

Egy alrendszer végzi a teljes rendszer vezérlését, indítja, leállítja, stb. a
többi alrendszert.

Hívás-visszatérés modell: Fa-struktúrájú modell, ahol a csúcson van a
vezérlő alrendszer. A vezérlés hívások sorozatán keresztül jut el a modulok-
hoz. Szekvenciális rendszerekhez alkalmazható (pl. listafeldolgozás, listázás,
jelentésgenerálás).

Kezelő modell: Konkurens rendszerek modellezésére alkalmas. Egy köz-
ponti rendszerkomponens koordinálja, indítja, állítja le a rendszerfolyama-
tokat (komponenseket, vagy alrend-szereket), amelyek párhuzamosan is vég-
rehajthatók. Alkalmazható szekvenciális rendszerekben is, ahol a vezérlő
modul állapotváltozók értéke alapján hívja meg az egyes alrendszereket.

12.6.2. Eseményalapú vezérlés:

Minden alrendszer reagálhat az őt érintő külső vagy más alrendszer által
generált eseményekre. A környezet által generált események irányítják a
rendszert. Az esemény nemcsak bináris jel, hanem érték változása is lehet.
Az esemény időzítése az eseményt feldolgozó alrendszer hatályán kívül esik.

Eseményvezérelt rendszer lehet pl. egy táblázatkezelő is, ahol egy cella
értékének megváltozása más cellákat is megváltoztat, vagy más alrendszert
aktivizál.

Broadcast modell: Az eseményről mindegyik alrendszer értesül, és az
reagál rá, amelyiknek ez a feladata.

Megszakításvezérelt modell: Valós idejű rendszerek modellje, ahol egy
megszakítás-kezelő észleli az eseményt és elindítja az esemény feldolgozásáért
felelős alrendszert.

44

13 Objektumorientált tervezés, UML diagramok, az ob-
jektuminterfész specifikáció

13.1 Az objektumorientált tervezés

Az objektumorientált fejlesztés az alábbi – összefüggő, de különálló - fázi-
sokból áll:

1. Objektumorientált elemzés (OOA): Az alkalmazás objektumori-
entált modelljének kidolgozása.

2. Objektumorientált tervezés (OOD): A követelményeknek megfe-
lelő szoftverrendszer objektumorientált modelljének kidolgozása.

3. Objektumorientált programozás (OOP): A szoftverterv objek-
tumorientált programnyelven történő megvalósítása.

Az egyes fázisok között nincs explicit határvonal, egy következő lépés az
előző finomításával jár.

13.1.1. Az objektumorientált tervezés lényege

• Az objektumok a valódi világ vagy egy rendszer elemeinek absztrakciói,
amelyek karbantartják saját állapotukat.

• Az objektumok függetlenek, de együttműködnek egymással, „elrejhe-
tik” állapotukat és jellemzőiket.

• A rendszer funkcionalitása az objektumok szolgáltatásaiban fejezhető
ki.

• Nem használnak megosztott adatterületeket, üzenetek útján kommu-
nikálnak egymással.

• Az objektumok szétoszthatók, szekvenciálisan, vagy párhuzamosan vég-
rehajthatók.

13.1.2. Az objektumorientált tervezés előnyei

• Könnyebb a szoftvert karbantartani: Az objektumok önálló egységek-
ként értelmezhetők.

• Az egyes rendszerekben egyértelmű leképezés van a való világ elemei
és a rendszer objektumai között.

45

• Az objektumok megfelelő újrafelhasználható komponensek.

• A gyakran használt elemekre léteznek objektum-könyvtárak,

• A tervezési minták a gyakran előforduló struktúrákra általános, és
nyelv független mintákat adnak.

13.1.3. Objektumok és objektumosztályok

Az objektumok: egy szoftver rendszer vagy a valódi világ elemeinek rep-
rezentációi.

Az osztály: a hasonló tulajdonságú objektumok egy halmaza. Az osztá-
lyok közötti kapcsolatokat relációknak nevezzük.

13.2 Az UML modellezési nyelv

Az objektumorientált tervezés során, az utóbbi 20 év során kidolgozott je-
lölések egységesítésével létrejött modellezési nyelv. Jelölésrendszerével az
objektumorientált analízis és tervezés során készíthető modellek ábrázolását
támogatja. Az objektumorientált tervezésben de-facto szabvánnyá vált.

Asszociáció az UML jelöléseivel

Az objektumok és objektumosztályok kapcsolatban vannak más objek-
tumokkal és objektumosztályokkal. Az UML-ben az asszociációkat az objek-
tumosztályok közötti vonallal és a kapcsolatot leíró megjegyzésekkel model-
lezik.

Az asszociációk általánosak, de jelezhetik, hogy:

• egy objektum egy attribútuma egy vele kapcsolatban álló objektumtól,
vagy

• egy objektum egy műveletének implementációja egy vele kapcsolatban
lévő objektumtól függ.

46

13.3 Az objektuminterfész specifikációja

Az objektumok interfészen keresztül kommunikálnak egymással, üzeneteket
küldve és fogadva. Ez a gyakran eljáráshívással és paraméterek átadásával
valósul meg, amikor a szolgáltatást kérő az alábbiakat adja meg:

• Név = eljárás név

• Információ = paraméterlista

Az üzenet tartalma:

1. A kért szolgáltatás neve,

2. A szolgáltatás végrehajtásához szükséges információ és a szolgáltatás
eredményt kérő neve.

13.3.1. A kommunikáció típusai

• Szinkron végrehajtás: A hívó objektum megvárja a szolgáltatás befe-
jeződését. Az fentebb ismertetett eljáráshívás szinkron végrehajtást jelent.

Párhuzamos végrehajtás: Ha az objektumok konkurens szálakként van-
nak implementálva, a hívó tovább folytatja működését. Ilyen esetekben – és
az osztott rendszerekben – az objektumok kommunikációja (sokszor szöve-
ges, pl. XML) üzenetek formájában valósul meg.

13.3.2. Objektumosztályok közötti kapcsolatok

Relációk:

Asszociáció : Kétirányú társítás két osztály között. (Konkrét esetben:
összekapcsolás, absztrakt esetben társítás)

Aggregáció : Az osztály objektumainak egymáshoz rendelése.

Kompozíció : Egy osztály objektumai a másik osztály objektumait fizika-
ilag tartalmazzák.

Öröklődés : Egy általános osztályból származtatással létrehozott speciá-
lis(abb) osztály jön létre.

47

Generalizáció és öröklődés Az öröklődés (generalizáció) olyan abszt-
rakciós mechanizmus, amely az entitások osztályozására használható. Az
osztályok hierarchiába szervezhetők, ahol egy osztálytól (szülőosztály) egy-
vagy több osztály (leszármazott osztály) örökli a szülőosztály attribútumait
és műveleteit. A hierarchiában alacsonyabb szinten lévő osztályok öröklik a
szülőosztály attribútumait és műveleteit és újakkal egészíthetik ki
azokat, sőt meg is változtathatják szülőosztályaik némelyik attribútumát,
vagy műveletét.

Az öröklődés előnyei: • Lehetővé teszi az újrafelhasználhatóságot a
tervezés és a programozás szintjén egyaránt.

• Az öröklődési diagramban ábrázolhatók a szakterülettel és a rend-
szerrel kapcsolatos szervezeti ismeretek.

Az öröklődéssel kapcsolatos problémák: • Az objektumosztályok nem
önállóak. Nem érthetők és értelmezhetők a szülőosztályok isme-
rete nélkül.

• A tervezők a tervezés során újra felhasználhatják az elemzés során
készült öröklődési diagramokat, amivel munkát takarítanak meg,
azonban nagy mértékben csökkenhet a modell hatásfoka.

• Az elemzés, tervezés és az implementáció során készített öröklő-
dési diagramoknak más a feladata, ezért külön kell elkészíteni és
karbantartani azokat.

Mivel az öröklődés az OOD (objektumorientált tervezés) alapvető eszkö-
ze, ezzel kapcsolatban többféle megközelítés alakult ki:

1. Az öröklődési hierarchia azonosítása az OOD alapvető feladata. Az
implementáció pedig nyilvánvalóan egy objektumorientált programo-
zási nyelv feladata.

2. Az öröklődés az implementáció hasznos eszköze, amely segíti az attri-
bútumok és a műveletek újrafelhasználását. Az öröklődési hierarchiát
azonban nem célszerű a tervezési fázisban meghatározni, mert ezzel túl
sok megkötést viszünk be az implementációba.

Az öröklődés olyan fokú bonyolultságot eredményezhet, amelyet
kritikus rendszerekben célszerű elkerülni.

48

13.3.3. Objektumorientált tervezési folyamat

Lépései:

1. Definiáljuk a rendszer összefüggéseit és használatának módjait.

2. Tervezzük meg a rendszerarchitektúrát.

3. Azonosítsuk a rendszer legfontosabb objektumait

4. Dolgozzuk ki a tervezési modelleket

5. Határozzuk meg az objektumok interfészeit

14 Felhasználói felületek tervezése, alapelvek, megje-
lenítés, felhasználói támogatás

A felhasználó a kezelőfelületen keresztül kerül kapcsolatba a rendszerrel, en-
nek alapján alkot véleményt, csak ezután ismeri meg a rendszer funkcio-
nalitását. A rosszul tervezett kezelőfelület gyakran katasztrofális hibákhoz
vezet. A szegényes, vagy következetlen felhasználói kezelőfelület sok rendszer
bukásához vezetett.

Nagy fejlesztő szervezetekben szakértőket alkalmaznak (grafikus, pszi-
chológus, szakterületi szakértő), de kis/közepes cégeknél a kezelőfelület meg-
tervezése is a szoftver tervező feladata.

14.1 Grafikus felületek

A korai rendszerek csak alfanumerikus terminálokat alkalmazhattak, a keze-
lőfelület karakteres, vagy űrlap jellegű volt. Már ekkor kialakultak a kezelő-
felületekkel szembeni alapkövetelmények:

1. Legyen strukturált, következetes, áttekinthető,

2. Biztosítson segítő szolgáltatásokat,

3. A hibákat egyértelműen jelezze.

Ma csaknem minden rendszer nagyfelbontású, színes, grafikus felületet
támogat. Az interakcióra nemcsak a klaviatúra, hanem egér, vagy más kije-
lölő eszköz is rendelkezésre áll.

49

14.1.1. A grafikus kezelőfelület előnyei

• Könnyebben megtanulható és használható, akár számítógépes ismere-
tek nélkül is.

• A felhasználó több képernyőt használhat az interakcióra, gyorsan vált-
hat különböző alkalmazások között, az információ látható maradhat az
éppen nem aktív ablakban is.

• A felhasználó a teljes képernyő bármely részét elérheti, ez gyors inter-
akciót tesz lehetővé.

14.1.2. A felhasználócentrikus centrikus tervezés

A sok egyéb mellett a szoftvertervező feladata a felhasználói kezelőfelület
tervezése is. A felhasználó központú kezelőfelület-tervezés megköveteli, hogy
a tervező

1. Alaposan megismerje a felhasználó tevékenységét (a munkafolyamatot,
amelyet a rendszernek támogatnia kell) és felkészültségét,

2. A felhasználót kezdettől bevonjuk a tervezés folyamatába,

3. Először papíron, a struktúra felvázolásával, majd prototípusok készíté-
sével tegyük számára megfoghatóvá és érthetővé a tervet.

14.2 A felhasználói kezelőfelületek tervezésének alapelvei

A kezelőfelület tervezésekor figyelembe kell venni a felhasználók igényeit, gya-
korlatát és képességeit. Az emberek fizikai és mentális képességei korlátozot-
tak (rövid távú memória), a felhasználói felület tervezésekor ezt figyelembe
kell venni. A grafikus felhasználói felületek tervezésének alapelvei minden
felhasználói interakció tervezésének alapjául szolgálhatnak.

14.2.1. Tervezési alapelvek

1. A felhasználói jártasság figyelembevétele

2. A felületnek olyan kifejezéseket és fogalmakat kell használnia, amelye-
ket az átlagos felhasználó ismer.

3. A felület konzisztenciája

50

4. A menüknek és parancsoknak ugyanazzal a formátummal kell rendel-
kezniük, hasonló műveleteket hasonló módon kell megvalósítani.

5. Minimális meglepetés

A felhasználóban kialakul egy modell a rendszer működéséről. A ha-
sonló tevékenységeknek hasonló hatást kell kiváltaniuk, különben a rendszer
kellemetlen meglepetéseket okoz felhasználó számára.

Visszaállíthatóság Minden helyzetben számítani kel arra, hogy a felhasz-
náló hibázhat, ezért gondoskodni kell arról, hogy a hibát kijavíthassa:

• Visszavonási lehetőség (undo), esetleg többszintű,

• Veszélyes tevékenységek megerősítése (pl. törlés),

• „Puha törlés”

14.2.2. A felhasználó és a rendszer kapcsolata

Az interaktív rendszer tervezésekor két kulcskérdést kell megoldani:

1. Hogyan jusson el az információ a felhasználótól a rendszerhez, és

2. Hogyan jusson el az információ a rendszertől a felhasználóhoz.

A felhasználói beavatkozás és az információ megjelenítése egy összefüg-
gő keretrendszerbe integrálható, amely biztosíthatja a konzisztenciát és a
felhasználói támogatást.

14.3 Az interakciók fajtái

14.3.1. Közvetlen manipuláció:

A felhasználó közvetlenül a képernyőn látható objektumot kezeli (pl. tör-
léshez kukába viszi).

Előnyei:

1. Könnyen tanulható és gyors,

51

2. A felhasználó azonnal visszajelzést kap, így a tévedés gyorsan vissza-
vonható.

Hátrányai:

1. Bonyolult lehet a felhasználó tevékenységéről (szándékáról) a megfelelő
információt begyűjteni a program számára,

2. Csak akkor használható, ha a feladatok és objektumok egyértelműen
megkülönböztethető ikonokkal reprezentálhatók.

14.3.2. Menükiválasztás:

A felhasználó a rendszer által felkínált (sokszor helyzet-függő) listából
választhat, a kijelölést egér, vagy kurzormozgatással, rövidített név beírással
is végezheti. Alkalmazható az egyszerű (pl. érintőképernyős) terminálokon
is.

Előnyei:

1. A felhasználónak nem kell parancsokat megjegyeznie,

2. Kevés gépelést igényel és a hibák könnyen kivédhetők,

3. Állapotfüggő súgó alkalmazható.

Hátrányai:

1. Az akciók közötti logikai összefüggések (and, or) nem jeleníthetők meg,

2. Kevés választási lehetőséget enged meg, a sok lehetőséghez strukturálni
kell a menüket.

3. A gyakorlott felhasználó számára lassú.

Űrlapkitöltés: Az űrlap az aktuális állapothoz alkalmazható. Olyan rend-
szerekben alkalmazzák, ahol sok adatot kell bevinni (pl. adatrögzítés).

52

Előnyei:

1. A felhasználói hibák felfedhetők és jelezhetők, illetve kivédhetők,

2. Könnyen megtanulható.

Hátránya:

1. Nagy képernyőfelületet foglal

14.3.3. Parancsnyelv:

A felhasználó parancsokat gépelve utasítja a rendszert (pl. Unix)

Előnyei:

1. Egyszerű, olcsó terminálon is alkalmazható,

2. Egyszerűen feldolgozható (pl. fordító technikával)

3. Bonyolult, egymásba ágyazott parancsok is kezelhetők,

4. Rugalmas.

Hátrányai:

1. Nehezen tanulható, az átlagos felhasználó számára bonyolult,

2. Gépelési gyakorlatot kíván

3. A hibakezelést (hibajelzés, visszavonás) nehéz megoldani

4. A parancsnyelveket a gyakorlott felhasználó számára lehet alkalmazni.
A menürendszer alternatívájaként célszerű alkalmazni.

Az alkalmi felhasználók több támogatást, a gyakorlott
felhasználók egyszerűbb, gyorsabb működést várnak.

53

14.3.4. Természetes nyelv:

A felhasználó a parancsokat természetes nyelven gépeli be, amelynek szó-
tára korlátozott. Az ilyen rendszerek általában speciális alkalmazási területet
szolgálnak ki. A természetes nyelv megfelelő az alkalmi felhasználó számára
de a gyakorlott felhasználó nem kedveli a túl sok gépelés miatt.

14.3.5. Többszörös felhasználói interfészek

Az eseti és a gyakorlott felhasználók számára külön felületet célszerű
megvalósítani (pl. Model-View-Controller, MVC)

14.4 Az információ megjelenítése

A rendszer megjeleníti a felhasználó számára közlendő információkat. Ez az
információ megjelenhet közvetlenül szöveges formában, vagy más módon (pl.
grafikusan, akár hang kíséretében). A jól tervezett rendszerekben maga az
információ és az azt megjelenítő szoftver különválik.

A Model-View-Controller (MVC) általánosan alkalmazott architektúra
az adatok többféle megjelenítésére. Az MVC paradigmát a Smalltalkban
dolgozták ki, de azóta általánosan elterjedt az interaktív rendszerek grafikus
felhasználói kezelőfelületének tervezésében. Lényege, hogy különválasztja a
az információt (az üzleti logikát), a megjelenítés vezérlését és a megjelenítést.

Az információ lehet:

Statikus információ: Értéket kap a munkafázis (session) kezdetén és ez a
session ideje alatt nem változik meg, lehet numerikus, vagy szöveges

Dinamikus információ: Megváltozik a munkafázis alatt és a megválto-
zott értéket a felhasználó számára meg kell jeleníteni, lehet numerikus,
vagy szöveges

A megjelenítés stílusában meg kell különböztetni őket.

14.4.1. A megjelenítés módjának kiválasztása

Szempontok:

• A felhasználónak pontos információra van-e szüksége (numerikus), vagy

54

különböző adatok közti kapcsolatok, arányok érdeklik (grafikus)?

• Milyen gyorsan változik az információ? (A gyorsan változó információt
grafikusan, vagy többféle módon kell megjeleníteni.)

• Azonnal szükség van-e rá?

• Egy változást követően be kell-e avatkoznia a felhasználónak valami-
lyen akcióval? (Ha igen, a megváltozott információt ki kel emelni.)

• Szükség van-e közvetlen beavatkozási felületre?(Ha igen, az információ
közelében kell erre lehetőséget adni.)

• Szöveges vagy numerikus a megjelenítendő információ? Fontosak-e a
relatív értékek? (Ha igen, grafikus.)

14.4.2. Analóg és digitális megjelenítés

Digitális megjelenítés:

• pontos értékeket közöl,

• Kevés helyet foglal a képernyőn.

Analóg megjelenítés:

• Egy pillantással áttekinthető,

• Relatív értékeket is képes közölni:

– Egy állandó értékhez képest (egy határhoz közeli értéket színnel
még külön ki lehet emelni), vagy

– Korábbi minimális-maximális értékhez képest

14.4.3. Figyelmeztető szöveg megjelenítése

A figyelmeztetés megjelenítésekor a grafika kiemeli a fontos szöveget, az
információ jellegére ikonnal is utalhatunk. A szöveg és grafika mellett hang
is használható a figyelem felkeltésére, amennyiben feltételezhető, hogy a fel-
használók nagy része rendelkezik hangkártyával.

55

14.4.4. Hibaüzenetek

A hibaüzenetek tervezése különösen fontos: a kezdő felhasználó ezekkel
találkozik a leggyakrabban. A rossz, vagy számára érthetetlen hibaüzenetek
miatt elutasíthatja a rendszert. Az üzeneteknek udvariasnak, előrevivőnek és
következetesnek kell lennie. A felhasználó háttere, gyakorlata a hibaüzenetek
tervezésének meghatározó tényezője.

14.5 A felhasználó támogatása

A felületnek könnyen elérhető segítő, vagy súgó rendszerrel kell rendelkeznie.
A súgót strukturálni kell, nem szabad túl sok információt közölni. Előnyös
a helyzetfüggő súgó alkalmazása.

A felhasználó támogatása kiterjed a rendszer minden megjelenési formá-
jára: súgó, hibaüzenetek, kézikönyvek, stb. A felhasználó tájékoztatását
be kell építeni a felhasználói felületekbe, hogy minden helyzetben kérhessen
támogatást, vagy kapjon információt, ha hibát vétett.

Célszerű a súgó és az üzenő rendszert összeépíteni, hogy minden
üzenetről magyarázatot kérhessen a felhasználó.

14.5.1. A súgó tervezése

A felhasználó segítségért, információért fordul a súgóhoz. A súgó ter-
vezésekor mindkét igényt figyelembe kell venni. Többféle lehetőséget kell
biztosítani, ehhez több belépési pontra van szükség.

A jó súgórendszer hierarchikus szerkezetű, de bonyolult hálós struktúrá-
jú, ahol az információs egységek között sokféle kapcsolat van. Több ablak
alkalmazásával érthetővé tehető a bonyolult hierarchia.

Szempontok:

• Több belépési pontra van szükség, hogy a felhasználó a rendszer kü-
lönböző állapotaiból léphessen be.

• Ugyanakkor hasznos azt jelezni, hogy éppen hol jár a súgó hierarchiá-
jában.

56

• Célszerű a korábban bejárt útvonalat is megjeleníteni, mert a bonyolult
hálóban könnyen elvész a felhasználó. Ez a visszalépéseket is támogat-
hatja.

14.5.2. A súgó információtartalma

A súgó nem lehet egy online kézikönyv! A képernyő nem felel meg a
papírlapoknak. Az emberek másként olvassák a képernyőt, mint a papírt. A
megjelenítés dinamikus természete segíti az információ megjelenítését.

A súgórendszer szövegeit az alkalmazást és a szakterületet jól ismerő
embereknek kell megfogalmaznia.

14.5.3. Felhasználói dokumentáció

Az on-line súgó mellett papíralapú dokumentációt is kell készíteni a rend-
szerhez. A dokumentációnak a kezdőtől a gyakorlott felhasználóig mindenkit
figyelembe kell vennie. A különböző csoportba tartozó felhasználók számára
legalább ötféle dokumentumot kell készíteni.

Dokumentumtípusok:

Funkcionális leírás : A rendszer funkcióinak rövid leírása.

Bevezető kézikönyv : A rendszer helyes használatának leírása, sok példá-
val.

Referencia kézikönyv : A rendszer lehetőségei, hibaüzenetek és teendők
hiba esetén, minden esetre kiterjedően.

Telepítési dokumentum : A telepítés menete, a teendők listája, a beállí-
tások ismertetése.

Üzemeltetési-, adminisztrátori kézikönyv : A rendszer működtetésé-
nek, a hibák kijavításának leírása.

15 Osztott rendszerek architektúrái, többprocesszo-
ros architektúrák, kliens-szerver architektúrák

A hálózatok terjedésével lassan minden rendszer (még a beágyazott rendsze-
rek is) más rendszerekkel kapcsolatban működik.

57

15.1 Az osztott rendszerek jellemzői:

• Erőforrásmegosztás (oda kell fordulni, ahol létezik a kívánt szolgál-
tatás : WebServices!)

• Konkurencia (többféle hw/sw szállító termékeit tartalmazzák)

• Konkurencia (az egyes gépekben párhuzamos folyamatok mennek
végbe, amelyek időnként kommunikálnak és szinkronizálják egymást)

• Skálázhatóság

• Hibatűrés

• Átlátszóság (a felhasználó nem látja, hogy osztott rendszerrel van
kapcsolatban) de esetenként szükség van arra, hogy a felhasználó tisz-
tában legyen vele, honnan vesz igénybe erőforrásokat, szolgáltatásokat
(pl. web-es alkalmazások nagy része)

15.1.1. Hátrányai

• Bonyolultság

– nehezebb a rendszer és tulajdonságinak (pl. teljesítmény) terve-
zése,

– karbantartási nehézségek, stb.

• Kezelhetőség: a különböző hardver és operációs rendszer operálása
nagy nehézségeket okozhat.

• Biztonság: az osztott rendszer biztonságát sokszor szintén elosztva
kell megoldani. (segítenek a modern rendszerek, pl. SSO (single-sign-
on) megoldásai)

15.1.2. Tervezési kérdések

Erőforrások azonosítása : Névkonvenciókra van szükség, hogy megtalál-
hatók és hivatkozhatók legyenek az erőforrások (pl. interneten URL)

Kommunikáció: Az internet, TCP/IP sok mindenre megfelelő, de néha
speciális kommunikációs protokollokra van szükség (valósidejű közvet-
len kapcsolatok)

A szolgáltatás minősége: Sok tényezőtől függ (hw, op.rendszer/ek, archi-
tektúra: erőforrások elosztása, hálózat, a rendszer rugalmassága)

58

Szoftverarchitektúra: A funkciók elosztása a rendszer logikai komponen-
sei között, ezek eloszlása a hardver erőforrások között (pl. adatbá-
zis szerver önmagában többprocesszoros rendszeren futhat.) A logikai
komponensek között köztes szolgáltatásra (middleware) van szükség.

15.1.3. Többprocesszoros architekrtúrák

A legegyszerűbb osztott rendszermodell: a különböző folyamatok külön
processzorokon futnak. Példa: ipari folyamatirányítás

15.2 Tárolási modell

Az alrendszerek két módon cserélhetnek információt egymással:

1. A megosztott adatok egy központi adatbázisban vannak, amelyet min-
den alrendszer elérhet. Ez a tárolási modell (repository).

2. Minden alrendszernek van saját adatbázisa, és az alrendszerek üzene-
tek formájában cserélnek adatokat. A nagy adatmennyiséggel dolgozó
rendszerek legtöbbször osztott adatbázis köré szervezett alrendszerek-
kel dolgoznak. Ilyenek például a nagy, vállalatirányítási rendszerek,
CASE és CAD rendszerek, stb.

15.2.1. Megosztott tárolók alkalmazása

Előnyök

• Nagy tömegű adat esetén hatékonyabb, mert nem kell explicit módon
átvinni az adatokat egyik alrendszerből a másikba.

• Az alrendszereknek nem kell foglalkozniuk azzal, hogyan keletkeztek
az adatok.

• A védelem, biztonsági mentések, hozzáférés szabályozása, a visszaállí-
tás, stb. központi funkcióként oldható meg.

• Tárolási sémán keresztül publikálható a megosztottság modellje (új
alrendszerek integrálhatók, ha a modell megfelelő)

Hátrányok

59

• Az alrendszereknek közös – kompromisszumos - adatmodellt kell hasz-
nálniuk (teljesítmény)

• Az alrendszereknek törődniük kell azzal, hogy a többi alrendszer ho-
gyan fogja használni az adatokat.

• Az egyes alrendszerek eltérő követelményeket támasztanak a védelem,
helyreállítás, stb. közös funkciókkal szemben (pl. tranzakciók vissza-
görgetése)

• Nagyon bonyolult lehet az adatbázis elosztása több gép között. A
nagy adatbáziskezelő rendszerek tartalmaznak eszközöket a megosz-
tásra, ezek azonban nagy erőforrásokat igényelnek.

15.3 Osztott rendszerek architektúrái

15.3.1. Absztrakt gép modell (réteges modell)

Az alrendszerek közti interfészek modellezésére használják. Rétegekbe
(absztrakt gépekbe) szervezi a rendszert, amelyek mindegyike adott szolgál-
tatásokat végez. Támogatja az egyes alrendszerek inkrementális fejlesztését.
Az egyes rétegek egyszerűen kicserélhetők, csak az interfészek szabályait kell
betartani, de annak változtatásához is csak a két szomszédos réteget kell
módosítani.

Előnye, hogy mivel a hardvert, operációs rendszert a belső rétegekbe zár-
ja, könnyen adaptálható különböző platformokra (protokoll modellek:ISO-
OSI).

Hátránya: strukturálása bonyolult, egy külső réteg csak a közbensőkön
keresztül férhet hozzá a legbelsőkhöz.

15.4 Kliens-szerver architektúra

Olyan osztott rendszermodell, amely bemutatja hogyan oszlanak meg az ada-
tok és a feldolgozások a komponensek között. Jellemzője, hogy a szerverek
általában maguk kezelik az adataikat.

Szerverek: Pl. Adatkezelő szerverek, nyomtatószerverek kommunikációs
szerverek, stb.

60

Kliensek: Többnyire önálló alrendszerek, amelyek hozzáférnek a szerverek
szolgáltatásaihoz. Egyszerre sok példányban futnak. Fajtái:

• Vékony kliens (böngésző, szkriptekkel)

• Vastag kliens (komplett kis alrendszer, helyi adatokkal)

Hálózat: A klienseknek biztosít hozzáférést a szerverek szolgáltatásaihoz.

Előnyök:

• Jól strukturált osztott architektúra.

• Könnyen kiegészíthető új szerverrel (új funkcióval).

• Alacsonyabb hardver követelményei vannak.

Hátrányok:

• Nincs megosztott, közös adatmodell, mindegyik alrendszer a saját szem-
pontjai miatt kialakított adatmodellt használja (ez előny a teljesítmény
szempontjából).

• Redundáns adatkezelés folyik minden szerverben.

• Nincs központi név- és szolgáltatás nyilvántartás, nehéz megtalálni,
hogy milyen szerverek és szolgáltatások léteznek.

16 Verifikáció és validáció, a verifikáció tervezése, ve-
rifikációs és validációs módszerek

A V&V célja: megbizonyosodni arról, hogy a szoftver rendszer megfelel a
céljának. (Vagyis nem az, hogy hibamentes!)

Verifikáció: Annak ellenőrzése, hogy valóban a megfelelő terméket készít-
jük el, vagyis, hogy a szoftver megfelel a specifikációnak.

61

Validáció: Annak bizonyítása, hogy a terméket jól készítjük el, vagyis
hogy a szoftver valóban a megrendelő elvárásainak megfelelően működik
(esetleg a specifikációval ellentétesen). A szoftvernek azt kell megvalósítania,
amit a felhasználó valóban elvár tőle.

A verifikáció és validáció (V& V) folyamata a szoftver teljes életciklusára
kiterjed, a szoftver folyamat minden fázisában szerepet kap. Alapvetően két
célja van:

1. Felfedni a rendszerben rejlő hibákat

2. Meggyőződni arról, hogy a rendszer egy-egy konkrét működési szituá-
cióban használhatóan működik.

A V& V folyamatban kétféle technika alkalmazható:

Szoftver-átvizsgálás (inspekció): A rendszer reprezentációjának elemzé-
se (Köv. Spec., Tervek, grafikus ábrázolások, forráskód). A forráskód
elemzése automatizálható.

Szoftvertesztelés: A szoftver implementációjának tesztadatokkal való fut-
tatása és a viselkedés megfigyelése (dinamikus verifikáció)

16.1 Programtesztelés

Még ma is a legelterjedtebb validációs technika (bár a szoftverfolyamat végén
helyezkedik el). A hiba meglétét kell felfedeznie nem a hiba hiányát. Az a
sikeres teszt, amely legalább egy hibát felfedez. Az egyetlen módszer a nem-
funkcionális követelmények validálására. A statikus verifikációval együtt kell
alkalmazni.

Az elfogadás szintje különböző célú rendszereknél különböző. Ezt befo-
lyásolja:

• A szoftver funkciója: (biztonsági rendszer, prototípus)

• A felhasználó elvárásai (olcsó szoftver – több hiba)

• Piaci környezet (árak, versenytársak)

• Kritikus rendszerek (ne okozzon tragikus eseményeket)

62

16.2 V& V tervezése

Alapos tervezésre van szükség, hogy a legtöbb eredményt kapjuk az egyéb-
ként igen költséges tesztelésből és felülvizsgálatból. A V& V tervezését a
fejlesztési folyamat elején meg kell kezdeni. A tervnek meg kell határoznia
az arányokat a statikus verifikáció és a tesztelés között.

A teszt-tervezésre a nagyobb cégeknél általános szabványokat, szabályo-
kat dolgoznak ki. Ennek alapján kell megtervezni és végrehajtani a termék
konkrét tesztelését, és a tesztek dokumentálását.

16.2.1. A szoftver tesztterv struktúrája

A tesztelési folyamat A fő tesztfázisok leírása.

A követelmények nyomon követhetősége Minden követelményt külön
kell tesztelni.

A tesztelt elemek A tesztelendő szoftver termékek listája.

A tesztelés ütemezése A szoftverfejlesztési projekt részeként.

tesztek dokumentálása A tesztelés utólagos ellenőrzésére (minőségbizto-
sítás).

A tesztek hardver és szoftver követelményei A teszteléshez szükséges
erőforrások.

Megszorítások A tesztelést gátló tényezők.

16.2.2. Inspekció (átvizsgálás)

A szoftver átvizsgálás célja a hiányosságok felderítése, a költséges tesz-
telés helyett a hibák kb. 60%-a felfedhető az átvizsgálás során. A fejlesztési
folyamat kezdetétől alkalmazható, a dokumentumok (követelmények, tervek)
átvizsgálásával. Egy átvizsgálás során több hiányosság felfedezhető, amíg
egy teszt többnyire egy hibát fed fel. A tapasztalt vizsgálók (inspektorok)
már ismerik és könnyen megtalálják a típushibákat.

Az inspekció és a tesztelés nem helyettesítik egymást, de a korai fázistól
rendszeresen végzett átvizsgálás sok költséges tesztet előzhet meg. Mind-
kettőt alkalmazni kell a V& V folyamatban.

Az inspekció alkalmas eszköz arra, hogy ellenőrizze, megfelel-e a program
a specifikációnak. A nem-funkcionális rendszerkövetelmények vizsgálatára

63

azonban a felülvizsgálat nem használható.

16.2.3. Cleanroom folyamat

A szoftverhibák elkerülését, nem pedig megtalálását és kijavítását cél-
zó szigorú átvizsgálási folyamat. (A név a félvezető-gyártásból szárma-
zik). A rendszer komponenseinek tesztelését helyettesíti átvizsgálásokkal,
megfelelnek-e a specifikációnak. Inkrementális fejlesztési módszer, először a
kritikus inkrementumokat szállítja le.

A Cleanroom jellemzői:

• Formális specifikáció (állapotátmenet modell, strukturált programozás,
csak néhány vezérlési és adatabsztrakciós konstrukció használható)

• Inkrementális fejlesztés

• Statikus verifikáció (szigorú átvizsgálások)

• A rendszer statisztikai tesztelése

A Cleanroom folyamat szervezete

Specifikációs csapat: A rendszerspecifikáció kidolgozását és karbantartá-
sát végzi.

Fejlesztő csapat: A fejlesztést és verifikálást végzi. A szoftvert nem fut-
tatja.

Hitelesítő csapat: A formális specifikáción alapuló statisztikai teszteket
dolgozza ki (a fejlesztéssel párhuzamosan) és futtatja le.

17 Szoftvertesztelés, a hiányosságok tesztelése, tesz-
telés és belövés, integrációs tesztelés

17.1 Mi a programtesztelés feladata? Milyen alaptípusai van-
nak?

A szoftver implementációjának tesztadatokkal való futtatása és a viselkedés
megfigyelése (dinamikus verifikáció)

64

Hiányosságok tesztelése: Feladata a rendszer hibáinak és hiányosságai-
nak felfedése. Fajtái:

Komponens tesztek: Fekete doboz, ekvivalencia-osztályok, struktúrateszt,
útvonal-teszt

Integrációs tesztek: „fentről lefelé/lentről felfelé”, interfészteszt, stressz-
tesztek

Objektumorientált tesztelés:

Interaktív rendszer esetén tesztelni kell:

• A menükön elérhető összes funkciót,

• Egyazon menüponton elérhető valamennyi rendszerfunkciót,

• A felhasználói inputok által használt összes függvényt, helyes és hely-
telen input adatokkal egyaránt.

Statisztikai tesztelés: a rendszer teljesítményének és megbízhatóságának
tesztelése, valós helyzetekben (valós felhasználói inputtal és gyakorisággal).

17.2 Mi a különbség a tesztelés és a belövés között? Melyik-
nek mi a célja?

A hiányosságok tesztelése és a belövés különböző folyamatok:

• A verifikáció és validáció feladata a hibák, hiányosságok létezésének
felfedezése.

• A belövés ezen hibák helyének lokalizálása és kijavítása.

• A belövés a program viselkedésére vonatkozó feltételezések felállításá-
val kezdődik, majd ezen feltételezések vizsgálatával próbálja megtalálni
a hibákat

17.3 Mi a teszteset és a tesztadat? Hogyan lehet a tesztada-
tok számát csökkenteni?

A tesztesetek a teszthez szükséges inputok és a vélt outputok specifikációi,

A tesztadatok a rendszer tesztelésére kidolgozott input adatok

65

17.4 Mit jelent a tesztadatok ekvivalencia-osztályozása? Ír-
jon példát az ekvivalencia-osztályok alkalmazására.

Ekvivalencia-osztály: a rendszer input és output adatait valamilyen kö-
zös jellegzetesség szerint csoportosítják, amelyekre a rendszer hasonló módon
reagál: Például : ha az input 5 jegyű valós szám 10.000 és 99.000 között, ak-
kor az ekvivalencia-osztályok: < 10.000, 10.000˘99.000, > 99.999 A fejlesz-
tők legtöbbször az inputok tipikus értékeit veszik figyelembe. A tesztesete-
ket a határértékek közelében és az osztályok közepéből célszerű kiválasztani:
˘00000, 09999, 10000, 99999, 10001

Csak teljes körű tesztelés bizonyíthatná, hogy a rendszer hibamentes,
de a teljes tesztelés lehetetlen. A teszteknek a rendszer a képességeit kell
vizsgálniuk, nem a komponenseket. A fejlesztés során a rendszer régi képes-
ségeinek tesztelése fontosabb, mint az újonnan hozzáadott képességeké. A
tipikus helyzetek tesztelése fontosabb, mint a határesetek tesztelése.

17.5 Mi a „fekete doboz” és a „fehér doboz” tesztelési straté-
gia lényege? Melyiket milyen esetben lehet alkalmazni?

A fekete doboz tesztelés

• Funkcionális tesztelésnek is nevezik.

• A programot fekete doboznak tekintjük, a tesztesetek a programspeci-
fikáció alapján készülnek.

• Nem foglalkozik a program implementációjával.

• A tesztek tervezése a szoftverfolyamat korai szakaszában megkezdőd-
het.

• Az előreláthatóan hibát okozó tesztesetek tervezéséhez szakterületi is-
meretekre van szükség.

Struktúrateszt

• Fehér doboz vagy üvegdoboz tesztelésnek is nevezik, mert a tesztek a
program struktúrájának, implementációjának ismeretében készülnek.

• A struktúra és a kód ismeretében újabb ekvivalencia-osztályok defini-
álhatók.

66

• A tesztelő a tesztesetek készítésekor elemzi a kódot, hogy biztosítsa
minden utasítás legalább egyszeri végrehajtását (az összes lehetséges
út-kombináció tesztelésére nincs reális lehetőség).

17.5.1. Útvonal tesztelés

Az útvonal tesztelés strukturális tesztelési stratégia. Célja, hogy minden
független útvonalon végighaladjon a teszt. Ekkor legalább egyszer biztosan
sor került minden utasítás végrehajtására, és minden feltételes utasítás igaz
és hamis eseteire.

• A kiindulás a program folyamatgráfja, amely a döntéseket reprezentáló
csomópontokból és a vezérlés irányát képviselő élekből áll. Előállítása
viszonylag egyszerű, ha programban nincs goto.

• Csak kisebb programok tesztelhetők ilyen módon.

17.5.2. Ciklomatikus komplexitás

A független utak száma a programban. A CC megmutatja, hogy hány
tesztet kell végrehajtani az összes független út végrehajtásához, vagyis min-
den vezérlő utasítás legalább egyszeri végrehajtásához. Nem lehet a független
utak összes kombinációját végrehajtani.

Egy program ciklomatikus komplexitása:

CC = lekszma˘Csompontokszma + 2

17.6 Ismertesse az integrációs tesztelési stratégiákat! Mi az
összefüggés e stratégiák és a szoftverfolyamat modellje
között?

• Teljes rendszerek vagy alrendszerek tesztelése, amelyek előzőleg már tesz-
telt komponensekből állnak. • A komponensek együttműködéséből szárma-
zó hibák feltárására szolgál. • Az integrációs teszt fekete doboz tesztelés,
a tesztek a specifikációból származnak. • Komplex rendszerben az észlelt
hibás eredményből nehéz a hiba helyére következtetni. • Az inkrementális
integrációs tesztelés némileg segít

67

17.6.1. Az integrációs tesztelés stratégiái

Fentről lefelé tesztelés: A rendszer magas szintű komponenseit még a
tervezés és az implementáció alatt integrálják. A még el nem készült kom-
ponenseket azonos interfésszel készült „csonkok” helyettesítik ahol szükséges.
Ezeket fokozatosan kicserélik a kész elemekkel. (Evolúciós fejlesztésnél al-
kalmazható)

Lentről felfelé tesztelés: A hierarchia alsó szintjein lévő modulok integ-
rálásával és tesztelésével kezdik, ahol a magasabb szinteket tesztgenerátorok
helyettesítik. (Inkrementális és újrafelhasználás alapú fejlesztésnél)

A gyakorlatban a kettő kombinációját alkalmazzák.

17.6.2. A tesztelési stratégiák

Szerkezeti validáció: A fentről lefelé teszteléssel felfedhetők a hibák a
rendszerarchitektúrában és a magas szintű tervekben, még a folyamat
korai szakaszában. Ez a lentről felfelé tesztelésnél csak később lehetsé-
ges.

Rendszerdemonstráció: A fentről lefelé integráció korán lehetővé teszi a
korlátozott demonstrációt. Újrafelhasználható komponensek alkalma-
zásával a lentről felfelé megközelítéssel is lehetséges.

Tesztimplementáció: A programcsonkokat nehéz implementálni, a lentről
felfelé tesztelés tesztmeghajtóit valamivel egyszerűbb, de mindenkép-
pen jelentős addicionális fejlesztést igényel.

Tesztmegfigyelés: A tesztek eredményét mindkét módszernél nehéz meg-
figyelni. Mesterséges környezetre, extra kódra van szükség. Különösen
a fentről lefelé megközelítésnél, ahol a magasabb szintek nem szolgál-
tatnak outputokat.

18 A szoftver minőség fogalma, minőségbiztosítási szab-
ványok, a minőség tervezése, szoftverkarbantartás

18.1 A szoftver minősége

A minőség általában azt jelenti, hogy a termék megfelel specifikációjának. A
szoftver esetében ezt nehéz értelmezni, mert eltérő a megrendelő és a fejlesztő
minőségi elvárása:

68

• Amegrendelő azt várja, hogy a szoftver legyen gazdaságos, megbízható,
stb.

• A fejlesztő minőségi követelményei: karbantarthatóság, újrafelhasznál-
hatóság.

• Egyes minőségi kritériumokat nem lehet egyértelműen definiálni (pl.
karbantarthatóság, hordozhatóság)

• A szoftver specifikációját nehéz teljessé tenni, tehát a specifikációnak
való megfelelés nem garantálja, hogy a felhasználó elégedett lesz a ter-
mékkel.

18.2 Minőségkezelés a szoftverprojektben

Minőségbiztosítás: Szabványok és szervezeti eljárások alkalmazása.

Minőségtervezés: Egy konkrét projekthez alkalmas eljárások és szabvá-
nyok kiválasztása és adaptálása.

Minőségellenőrzés: Annak biztosítása és ellenőrzése, hogy a fejlesztő csa-
pat alkalmazza a minőségi szabványokat és eljárásokat.

A minőségkezelés lehetőleg legyen független a projektvezetéstől

18.2.1. Minőségtervezés

A minőségi tervet a folyamat korai szakaszában kell elkészíteni. A minő-
ségi terv meghatározza a termék minőségi jellemzőit, kijelöli a mérés módját
és az alkalmazandó folyamatokat. Meg kell határozni, hogy milyen szervezeti
szabványokat kell alkalmazni. Ha szükséges, új szabványokat dolgoznak ki.

A minőségi terv tartalma:

• A termék bemutatása

• Terméktervek

• A folyamatok leírása

• Minőségi célok

• Kockázatok és kockázatkezelés

69

A minőségi tervnek rövidnek, tömörnek kell lennie (különben nem olvassák
el!).

18.2.2. Minőség felülvizsgálat

A minőségi felülvizsgálat elterjedt módszer a folyamatok és a termékek
minőségének ellenőrzésére. Egy minőségellenőrzési csoport átnézi a folyama-
tot, a dokumentációkat és a szoftvert, hogy felfedje a lehetséges hibákat.

A felülvizsgálat típusai:

• A terv vagy a program vizsgálata, mint a Verifikáció Validáció
esetén (a termék minőségét vizsgálja)

• Az előrehaladás vizsgálata (a folyamat és a termék minőségét vizs-
gálja)

• A minőség vizsgálata (a folyamat és a termék minőségét vizsgálja)

A felülvizsgálat folyamata:

• Szakértők egy csoportja figyelmesen átvizsgálja a szoftver komponen-
seit, a teljes szoftvert és a dokumentációkat.

• Átnézik a specifikációkat, terveket, kódot, tesztterveket.

• Az eredményes felülvizsgálat a szoftver vagy a dokumentáció elfoga-
dását jelenti. Az észrevételek kijavítása után újabb felülvizsgálatra
kerülhet sor.

• A vezetés a felülvizsgálatok eredményei alapján követheti a projekt
előrehaladását.

A felülvizsgálat eredményei A felülvizsgálat megállapításait osztályozni
kell:

• Nincs tennivaló, a szoftver és a dokumentáció rendben van.

• Javításra visszaadva, a tervezőnek vagy a programozónak ki kell javí-
tania a felfedett hibákat.

70

• Teljes újragondolás (újratervezés) szükséges. A felfedett hiányosságok
a tervek más részeit is érintik.

• A követelmény- és specifikációs hibákról a megrendelőt is értesíteni kell.

18.3 Minőségbiztosítási szabványok

A szabványok adják a keretet a hatékony minőségkezeléshez. Lehetnek:
nemzetközi-, nemzeti-, szervezeti- és projektszabványok.

A termékszabványok olyan tulajdonságokat írnak elő, amelyek a ter-
mék minden elemére nézve kötelezőek:

• Dokumentációs szabványok (pl. dokumentumok szerkezete): A do-
kumentációk a szoftver megfogható meg-nyilvánulásai, általuk válik
követhetővé a szoftverfolyamat, ezért a dokumentációs szabványok kü-
lönösen fontosak. Típusai:

– A dokumentálás folyamatának szabványai: Hogyan kell a doku-
mentumokat elkészíteni, validálni, karbantartani.

– Dokumentumszabványok: A dokumentumok tartalma, szerkeze-
te, megjelenése.

– A dokumentumcsere szabványai: A dokumentumok tárolása, kü-
lönböző dokumentációs rendszerek közti cseréje.

• Kódolási szabványok (programozási stílus, programnyelv használat)

A folyamatszabványok a szoftverfejlesztés alatt követendő folyamato-
kat határozzák meg (pl. a specifikáció, tervezés, stb. folyamata, módszerei,
dokumentumai).

A szabványok a legjobb gyakorlat és a korábbi projektek hibáinak össze-
gyűjtött adatai alapján készülnek. Nemzeti és nemzetközi szervezetek (IE-
EE, ANSI, BSI, NATO, stb.) dolgozzák ki különböző projektekre.

Kiterjednek a szoftvertervezés terminológiáira, programozási nyelvekre,
jelölésrendszerre, programozási módszerekre, ellenőrzésre, validálásra. Foly-
tonosságot biztosítanak egy változó szervezetben, az új résztvevők a helyi
szabványok megismerésével hamarabb be tudnak kapcsolódni a munkába.

71

18.4 Mi az összefüggés a szoftverfolyamatok és az előállított
szoftver minősége között?

Egy hagyományos termék minősége alapvetően függ az előállítása során al-
kalmazott folyamatok minőségétől (pl. iparszerű gyártásnál). Az ipari gyár-
tásban egyértelmű az összefüggés a termék minősége és az előállítási folyamat
minősége között. Ez a szoftverfejlesztésnél is így van, de sok minőségi jellem-
ző nehezen mérhető, számszerűsíthető, illetve szoftverfejlesztésben az egyéni
képzettség és gyakorlat különösen fontos. Emellett a szoftvert egyedileg ter-
vezik, a szoftverfejlesztés nem mechanikus folyamat.

A szoftverfejlesztés folyamata és a termék minősége között erős összefüg-
gés van, de ez nagyon összetett és alig megfogható. Külső tényezők, mint
az alkalmazás újszerűsége, vagy a piacra vitel siettetése is befolyásolják a
minőséget. Figyelembe kel venni, hogy alkalmazható-e az adott projektre
egy szabványos folyamat.

18.5 Az ISO 9000 szabvány

A minőségkezelés nemzetközi szabvány-rendszere (ISO – International Stan-
dardization Organisation). Sokféle szervezetre alkalmazható, a termeléstől
a szolgáltatásokig. A megújított ISO 9000:2000 szabvány már foglalkozik a
felhasználói elégedettség mérésével is.

Az ISO 9001 alkalmazható a tervezéssel, fejlesztéssel, karbantartással fog-
lalkozó szervezetekre. Az ISO 9001 egy általános minőségkezelési folyamat,
amelyet adaptálni kell a konkrét szervezetre.

A vonatkozó minőségi szabványokat és eljárásokat a szervezet minőségi
kézikönyvében kell lefektetni. Egy független, külső bizottság tanúsítja, hogy
a szervezet minőségi kézikönyve és gyakorlata megfelel az ISO 9000 szab-
ványnak. A tanúsítást évente felülvizsgálják és megújítják, vagy megvonják
a szervezettől. A megrendelők (pl. közbeszerzésben) mind gyakrabban írják
elő feltételként az ISO 9000 tanúsítványt.

72

