szoftvertechnológia alapjai 2008 - Elmélet

Szoftver-technológia alapjai
2008
-

Elmélet

összeállította:

Esztergár-Kiss Domokos
Megjegyzés: a nagy ZH-ig bezárólag!
Szoftvertechnológia:
· Szoftvertechnológia (=software engineering):

· professzionális sw rendszerek fejlesztésének elmélete, módszerei és eszközei;
· fejlett társ sw rendszerektől függ (pl: államig, gazd élet, közlekedés, komm, szórakozás), sw irányít sok mindent (pl: embedded systems);

· sw ipar a GDP jelentős %-t adja ki;;
· sw költségei:

· szgéprendszerben: sw > hw, karbantartás > kifejlesztés;

· kezdeti szakaszban elkövetett hibák kijavítása (pl: követelmények féreértése);

· cél: biztonságok, költségtakarékos fejlesztési módszerek kidolgozása;;

· alapkérdések:

· szoftver: szgépprogramok és hozzájuk tartozó dokumentációk összessége; készülhet egyedi megrendelésre (adott felhasználó) vagy piaci értékesítésre (sok felhasználó); általános vagy egyedi
· Szoftvertechnológia: sw kifejlesztésének valamennyi aspektusával foglalkozó mérnöki tudományág; szisztematikus és szervezett módon közelíti problémát, kiválasztja megfelelő módszereket és eszközöket, figyelembe veszi a megkötéseket és erőforrásokat;
· Szgéptudomány: elméletekkel és módszerekkel foglalkozik- diszciplínákból indul ki, jó gondolatmenetet használva következtetéseket von le- nem mindig alkalmazható bonyolult, valódi feladatok megoldására;
swtech: használható sw előállításának és használatának gyakorlati kérdéseivel;
· Rendszertervezés: valamennyi aspektussal foglalkozik (pl: folyamatok tervezése, hardver, szoftver, architektúra specifikációja és tervezése, integráció);
szoftvertervezés: rendszertervezés része;
· Költségei: fejlesztés (60%), tesztelés (40%), egyedi < kész továbbfejlesztése, függ: rendszer típusától, elvárt teljesítménytől, megbízhatóságtól;
· Módszerei: alapja a strukturált megközelítés, kiterjed rendszer modellezésre, szabályokra (megszorítások), ajánlásokra (alkalmazandó javaslatok), fejlesztési folyamatokra (tevékenységek leírása);
· Hibái: feladat megértésének hiánya, követelmények hibás fontossági sorrendbe sorolása, hiányos szakterületi ismeretek, modellkészítés hiányosságai, tervezői tapasztalatlanság, túlzott megrendelői befolyás, makacsság (saját hibás elképzelések), lustaság, időhiány;
· Swfolyamat: termék előállítására irányuló tevékenységek sora:
· Swspecifikáció: feladatok és megszorítások,
· Swfejlesztés: sw rendszer elkészítése,
· Swvalidáció: biztosítja, hogy az elkészített rendszer megfelelően működik (specifikáció és felhasználó elvárásai szerint),
· Swevolúció: továbbfejlesztés a változó igényeknek megfelelően;
· Swfolyamat modellje: swfolyamat egy adott nézőpontból való leegyszerűsítése, absztrakt reprezentáció; típusai:
· munkafolyamat (tevékenységek sora),
· adatfolyam (információáramlás),
· szerepkör/cselekvés (résztvevők szerepe és tevékenységei)
· ált modellek:

· vízesés (lépcsőzetes, egymás utáni tevékenységek, felhasználó csak a végén szembesül- rugalmatlan, befagyasztott specifikáció),

· evolúciós fejlesztés (kisebb részekre bontva- reagál változó igényekre),

· formális transzformációk (mat nyelven írjuk le a követelményeket, precíz, de csak egyszerű problémákra),

· integráció újrafelhasználható komponensekből (építőkockák, web services);

· CASE eszközök (=Computer-Aided Software Engineering): olyan swrendszerek, amelyek swfolyamat tevékenységeit támogatják, automatizálják; ált konkrét módszerhez kapcsolódnak;
· Magas szintű: swfolyamat kezdeti lépéseit támogatják (elemzés, tervezés, modellezés, dokumentálás, jelentéskészítés);

· Alacsony szintű: későbbi tevékenységek (kódszerkesztés, generálás, elemzés, nyomkövetés, tesztelés);
· jó sw tul: a kívánt funkcionalitással és teljesítménnyel a tervezett időre elkészül,
· karbantartható (alkalmazható igények folyamatos változásához),

· üzembiztos (biztonságos, védett, összeomlása ne okozzon gazdasági károkat),

· hatékony (optimálisan használja rendszer erőforrásait),

· jól használható (könnyen megtanulható, jól dokumentált);

· kihívások:

· meglévő rendszerek (karbantartás, bővítés, frissítés),

· heterogenitás (sokféle szgép, sokféle környezet),

· elkészítés időtartama (minőséghez idő kell, de piac most követel);

· szakmai felelősség:

· helyi, nemzeti és nemzetközi szabályok ismerete és betartása;
· hozzáértés (képességeknek megfelelő munkát elvállalni)
· etikus és bizalmat keltő viselkedés;
· tisztelet a munkaadónak;
· megbízó titkainak megtartása - bizalom;
· szellemi tulajdonjogok tiszteletben tartása;
· szgépes visszaélések megakadályozása, elkerülése;
· szakmai szervezetek etikai szabályai: ált emberi kapcsolatok normái, egyéni munkavégzési, szakmai közösségi, társadalmi normák;
· NJSZ (=Neumann János Számítógép-tudományi Társaság),

· IVSZ (=Informatikai Vállalkozások Szövetsége),

· IEEE (=Institute of Electrical and Electronic Engineers),

· ACM (=American Computer);
· etikai felelősség:
· elvi nézeteltérés cégvezetés és swtervező között,

· munkaadó etikátlan magatartása (pl: validálás előtt kibocsátás),

· károkozásra szolgáló rendszerek kidolgozása;;;

Rendszertechnológia:
· hw, sw és embereket egyesítő rendszerek tervezése, implementálása, telepítése, működtetése;
· rendszer: egymással kölcsönösen kapcsolatban lévő komponensek jól átgondolt, egy adott cél érdekében együttműködő együttese;

· tartalmazhat: sw, hw, embereket,

· komponensei függenek egymástól,

· összefüggések miatt a rendszer több, mint részeinek egyszerű együttese;

· rendszertervezés feladatai:
· tudományágak összehangolása,

· működés biztosítása változó körülmények között;
· rendszerekben növekszik sw aránya (inkább sw vezérelte ált célú rendszer, mint hw alapú célrendszer), sw tervezése komplex, nehéz feladat;
· alapvető rendszertul:
· több, mint komponenseinek halmaza, ezért tul nem származtatható komponensek tul-ból,

· tul a jölcsönhatások következményei (pl: kerékpár),

· tul mérése csak komponensek integrációja után;

· rendszer súlya (kiszámítható komponensekből),

· megbízhatósága (komp kapcsolatától is függ),

· használhatósága (már környezettől, felhasználóktól is függ, pl: el ellátás, komm hálózat);

· típusai:

· funkcionális: összerakva, ha minden rész együttműködik,

· nem funkcionális: környezet is befolyásolja (pl: megbízhatóság, teljesítmény, védelem);
· megbízhatóság tervezése:

· egy komp hibája másikakat is befolyásol,

· hiba oka gyakran komp közötti kapcsolatok előre nem látott viselkedése,

· sw megbízhatóságának számítása nem feltétlenül a rendszeré is;

· megbízhatóságot meghatározó tényezők:

· hardver megbízhatóság (meghibásodás valsége és javítás várható időtartama),

· sw megbízhatóság (valség, hogy hibás eredményt ad, de sw nem fárad el, nem lehet átmeneti hiba),

· operátor megbízhatóság (emberi hiba);

· emberi és szervezeti tényezők:

· folyamatok változása (megváltozott munkafolyamatok- átképzés),

· feladatok változása (alacsonyabb képzettség is elég),

· szervezeti változások (megváltozott felelősségi és hatalmi viszonyok);

· szerepek: megrendelő (tisztában van célokkal és lehetőségekkel), projektvezető (szakmai és adminisztratív, felelős projekt határidőre való befejezéséért a követelményeknek megfelelően), szakterületi szakértő, elemző=szervező (igények feltárása, munkafolyamatok megértése és rendszerzése), programozó (tervez és programoz), adminisztrátor=könyvtáros (dokumentációk, verziók elkészítése rendben tartása), tesztelő (verifikálás), minőségi felelős (minőségbiztosítási szabályok betartásáért felelős);
Swfolyamat:

· termék előállítására irányuló tevékenységek és eredményeik sorozata; modell kiválasztása függ: feladattól, technológiától, belső szabályoktól, munkatársak ismeretétől, megrendelőtől, modellek:
· vízesés: tevékenységek önálló fázisok, lépcsőzetes, egymás utáni tevékenységek, felhasználó csak a végén szembesül- rugalmatlan, befagyasztott specifikáció);

· fázisai: követelmények meghatározása, rendszer- és szoftvertervezés, implementáció és egységteszt, integráció és rendszerteszt, működtetés és karbantartás;

· előnyei: jól áttekinthető, strukturált, követhető, árbecslés;

· hátrányai: egymástól elkülönült fázisokra osztott projekt (hiba esetén költséges visszatérni), csak átadáskor derülnek ki hibák, csak követelmények pontos ismeretében alkalmazható;

· evolúciós fejlesztés: specifikáció, fejlesztés és validáció összefonódik, kisebb részekre bontva- reagál változó igényekre, felhasználó véleményezheti(agilis programozás (XP..extreme programming);

· feltáró fejlesztés: követelményeket lépésenként, folyamatosan kiegészítve új funkciókkal;

· eldobható prototípus: deszkamodellek készítése, hogy ügyfél lássa működés logikáját;

· fázisai: vázlat leírása- specifikáció+fejlesztés+validáció párhuzamosan kezdetitől végleges verzióig;

· előnyei: intenzív felhasználói tevékenység, kis,közepes interaktív vagy rövid életciklusú rendszereknél (kormányzati rendszerek);

· hátrányai: projekt előrehaladása nem követhető, nem foglalkozik rendszerek struktúrájával, speciális eszközöket és ismereteket igényel (CASE);

· formális transzformációk: vízeséshez hasonló, mat nyelven írjuk le a követelményeket, programot transzformációs lépéseken keresztül állítja elő, precíz, de csak egyszerű problémákra;

· fázisai: követelmények meghatározása, formális specifikáció, formális transzformáció, integráció és rendszerteszt;

· előnyei: precíz, pontos, kritikus rendszerek estén (fontos megbízhatóság, folyamatos működés, pl: űrkutatás), transzformáció és helyességének bizonyítása részben automatizálható;

· hátrányai: speciális szakértelmet igényel, korlátozott alkalmazási kör (pl: ABS), nem ismerjük sw-t (automatikusan készült), rendszer kölcsönhatásait nehéz formálisan specifikálni, komplex rendszereknél nem jobb minőség, drága;

· integráció újrafelhasználható komponensekből: már étező swkomponensek egységes szerkezetbe való integrálása, COTS (=Commercial Off The Shelf, polcról levehető), építőkockák;

· fázisai: követelmények meghatározása, komponensek elemzése, követelmények módosítása, rendszertervezés újrafelhasználással, fejlesztés és integráció, rendszer validáció;

· előnyei: gyakran ismétlődő feladatok, web services (internetről letölteni funkciót XML alapú szabványok);

· hibrid modellek: megváltozó rendszerkövetelmények miatt egyes lépéseket meg kell ismételni- iteráció:

· inkrementális fejlesztés: több, kisebb vízesés modellre bontja, mindegyik funkciók egy meghatározott részt valósít meg, amikor részfázis elindul, akkor arra vonatkozó követelményeket befagyasztja, RUP (=Rational Unified Process), extrém programozás (kis funkcionalitással rendelkező kis inkrementumok);
· fázisai: vázlatos követelmények meghatározása, követelmények inkrementumokba rendezése, rendszer architektúrájának megtervezése, egy inkrementum fejlesztése, az inkrementum validálása, inkrementum integrálása, rendszer validálása;
· előnyei: felhasználó minden inkrementum átadásakor újabb funkciókat kap, első inkrementum egy prototípus lehet, állandó visszajelzés- várhatóan nem hiúsul meg projekt, legfontosabb szolgáltatások hamar készek, alaposabban tesztelhetőek;
· hátrányai: sw struktúrája elromlik, nehéz módosítani már kész inkrementumokat, nagy rendszerben kevés alapvető funkció van, ami nélkül rendszerszolgáltatás nem működhet;
· spirális fejlesztés: minden kör egy fázis, nincsenek fix lépések (pl: specifikáció, tervezés), hanem minden körben egy új, teljesebb prototípus kidolgozása;
· szektorai: Boehm, célok meghatározása (1.kör: áttekintés), alternatívák kiértékelése, kockázatok azonosítása, megszüntetése (újabb prototípus, szimulációk), következő szintű termék fejlesztése (tervezés, teszt, validáció), következő fázis tervezése;
· szoftverspecifikáció – követelménytervezés: követelmények felmérése, tervezése – kritikus szakasz, minden összeszedni, fontossági sorrendet felállítani – requirements engineering;

· kövtervezés feladata: meghatározni, milyen szolgáltatásokat várnak el sw-től, milyen megkötések;

· kövtervezés folyamata: megvalósíthatósági tanulmány (megvalósíthatósági jelentés), követelmények feltárása és elemzése (rendszermodellek), kövspecifikáció (felhasználói és rendszerkövetelmények), köv validálása (köv dokumentumai);

· swtervezés és implementáció: specifikációkat működő rendszerré konvertálja, átlapolódnak;

· swtervezés: specifikációkat megvalósító sw struktúra tervezése;
· folyamata: architekturális tetvezés (rendszer architektúra), absztrakt specifikáció (swspec), interfész tervezés (interfész spec), komponens tervezés (komp spec), adatstruktúra tervezés (adatstr spec), algoritmus tervezés (alg spec);
· tervezési módszerek: swterv kidolgozásának szisztematikus megközelítése, ált grafikus modellel dokumentálják; modelljei: adatfolyam (adat-transzformációk), egyed-kapcsolat (adatbázis), strukturált (hagyományos, komponensek és kölcsönhatásaik), objektumorientált modell (absztrakt, öröklődés, obj statikus és dinamikus kapcsolatai);
· implementáció: struktúra lefordítása futtatható programmá, hibák megkeresése, kijavítása – nyomkövetés, belövés; nincsenek általános szabályok;
· belövés folyamata: hiba lokalizálása- hibajavítás megtervezése- hiba kijavítása- program újratesztelése;
· verifikáció és validáció: célja annak igazolása, hogy a rendszer megfelel specifikációnak és kielégíti megrendelő elvárásait;

· ellenőrzési folyamatok: szemle, felülvizsgálat, teszt (rendszerteszt: rendszer működtetése specifikációból származó, előre megtervezett esetekkel);
· tesztelés szakaszai: egység (komponensek egyedi tesztelése), modul, alrendszer, rendszer, átvételi tesz (megrendelő adataival);
· swevolúció: változó körülmények miatt, kevesebb új rendszer, inkább régibe épül bele;

· fázisai: rendszerkövetelmények meghatározása, meglévő rendszerek értékelése, rendszerváltoztatások előterjesztése, rendszerek módosítása;;
· CASE eszközök: olyan swrendszerek, amelyek swfolyamatot vagy egyes tevékenységeit támogatják; fejlődés, de nem elég jók, oka: swtervezés kreatív gondolkodást igényel, csoportos tevékenység;

· automatizálható tevékenységek: grafikus szerkesztők rendszermodellek készítéséhez, adatszótár a tervezési egyedekről és kapcsolataikról, felhasználói interfészek generálása, belövés,tesztelés támogatása, programok automatikus fordítása gépi programnyelvekről;

· osztályozása:

· funkcionális (mire jó, pl: tervező, szerkesztő, konfigurációs, prototípuskészítő, módszertámogató, nyelvi feldolgozó, programelemző, tesztelő, nyomkövető, dokumentációs, újratervezési eszközök),

· folyamat (mit támogat swfolyamatból: specifikáció, tervezés, implementáció, verifikáció és validáció),

· integráltság szempontból (=szolgáltatás, milyen széles tevékenységi körre terjed ki, pl: eszközök (egyes folyamatlépéseket támogatják, pl: terv konzisztenciája, program fordítása, teszteredmények összehasonlítása), eszközkészletek(=workbench, swfolyamat egyes fázisait támogatják, pl: specifikáció, tervezés), környezetek(swfolyamat több v valamennyi részét támogatják, integrált eszközkészletek);

Swfejlesztési projekt:

· különbség más projektektől: sw nem kézzelfogható, a termék egyedi, projekt is egyedi, fejlesztés folyamata nincs szabványosítva; swfolyamat fázisait tartalmazza (tevékenységek részletes kifejtése, projektszervezet kialakítása, képzés, részletes ütemezés); szakaszolás függ: folyamatmodell, technológia, termék jellege;

· menedzsment feladatai: ajánlatkészítés, projekt tervezés és ütemezés, projekt költségvetés tervezése, projekt felügyelete és ellenőrzése, személyek kiválasztása és vezetése (nem mindig legjobban felkészült szakemberek- képzés), beszámolók és ismertetők készítése;

· projekt tervezése: időigényes, folyamatos tevékenység (koncepciótól átadásig), előrehaladást követni kell, projekttervet felül kell vizsgálni, átdolgozni, többfélét készíteni;

· típusai: minőségi (meghatározza használandó minőségbiztosítási eljárásokat, szabványokat), validációs (módszerek, erőforrások, ütemezés), konfigurációs (konfiguráció-kezelés eljárásai, struktúrája), karbantartási (követelmények, költségek), munkaerő-fejlesztési terv (szaktudás fejl), munkaterv,ütemezés (elvégzendő feladatok és ütemezésük);

· szerkezete: bevezetés, projekt szervezete, kockázatelemzés, hw és sw erőforrások, munka felosztása, projekt ütemterve, projekt előrehaladásának megfigyelésére használandó technikák, készítendő jelentések, beszámolók meghatározása;

· tevékenységek szerkezete: kézzelfogható részeredmények: mérföldkő (pl: megvalósíthatósági tanulmány, felhasználói követelmények, értékelési jelentés, architektúra terv, rendszerkövetelmények), termék (leszállítandó részeredmény, pl: megvalósíthatósági tanulmány);;
· projekt ütemezése: tevékenységekre kell bontani idővel és erőforrással, lehet párhuzamosítani, függőségeket min-ra csökkenteni, szabály: 30% nem várt problémák, 20% kifelejtett tevékenységek miatt;

· folyamata: tevékenységek meghatározása, tevékenységek függőségeinek azonosítása, erőforrások becslése, emberek allokálása, projektdiagramok készítése (oszlopdiagram és tevékenységháló, pl: Gantt chart);
· nehézségei: nem könnyű előre megbecsülni- költségeket sem, termelékenység nem egyenesen arányos résztvevők számával, nem gyorsítható emberek allokálásával, váratlan események miatt ráhagyással kell tervezni;;
· kockázatkezelés: lehetséges kockázati tényezők azonosítása, projektre gyakorolt hatásuk minimalizálására vonatkozó tervek;

· típusai: projekt (ütemtervet vagy erőforrásokat veszélyezteti, pl: munkaerő-változás, vezetőség változása, hw/sw hiánya, követelmények változása, specifikáció késése, méret alábecslése), termék (sw minőségét, teljesítményét, pl: követelmények változása, specifikáció késése, méret alábecslése, CASE eszköz alkalmatlansága), üzleti (sw beszerzését, fejlesztést végző szervezetet, pl: technológia megváltozása, elavulása, termékverseny);

· más féle típusai: technológiai (újrafelhasznált komponensek hibái), emberi (kulcsember betegsége), szervezeti (rossz pénzügyi helyzet), eszközök, specifikáció, követelmények, becslés (alulbecsült idő);

· folyamata: azonosítás (lehetséges kockázatok listája), elemzés (valség, hatások, sorrendbe állítás), tervezése (elkerülés, hatások csökkentése), figyelése;

· tervezési stratégiák: kockázatkerülés (csökkenti valséget), minimalizálás (csökkenti hatást), biztonsági tervek (bekövetkezés esetén akcióterv);;
· swfejlesztési projekt vezetése: intuitív, kül szakismeretet igényel, emberek eredményes együttműködésére épül, emberközpontú, swtervezés megismerési folyamat- gondolkodás korlátai behatárolják (emberi memória szervezése, tudás reprezentációja, motivációk (alapvető szükségletek, személyes szükségletek, önmegvalósítás igénye);
· problémamegoldás: kül típusú ismeretek egyesítése kell, 1.lépés: szemantikus modell kialakítása, majd ábrázolása;
· személyiség-típusok: osztályozás: feladatorientált (munka, intellektuális kihívás), önorientált (személyes célok), kapcsolatorientált (együttműködés, közös siker);
· csoportmunka: meghatározza tagok együttműködési készsége, összetétele nem rugalmas, nem előnyös azonos motivációjú tagokból, fontos összetartás (tanul egymástól, de kritikai érzék tompulhat), alapfeltétel: csoportkommunikáció (rendszeres infócsere munka állapotáról, tervezett döntésekről, változásokról);
· csoportszervezés: vezető programozó, háttérprogramozó, könyvtáros;;
· dokumentálás: swfolyamat, swprojekt (előkészítő (pl: javaslat, előtanulmány), végrehajtást támogató (pl: projektindító, jegyzőkönyv, jelentések), lezáró (pl: értékelés, beszámoló)), minőségbiztosítás; célja: vezetésnek rálátás projekt előrehaladására, megrendelő betekinthessek, résztvevőknek legyen infó, minőség biztosítására, karbantartásra;

Swkövetelmények:

· rendszer szolgáltatásainak és megkötéseinek leírása – requirements engineering; feladata: felmérje, hogy megrendelő mit vár el, fejlesztési körülményeket meghatározza;

· típusai:
felhasználói (szolgáltatások közérthető leírása diagramokkal, táblázatokkal, ábrákkal; még nincsenek modellek, nem egyértelmű, köv keveredhetnek, ötvöződhetnek- egységes formátum, következetes nyelvhasználat, rövidítések magyarázata, fontos részek vizuális kiemelése; megrendelő, végfelhasználó, szerződéskötő),
· rendszerköv (részletes leírás szolgáltatásokról, rendszertervezés alapja (csak azt határozza meg, hogy mit kell tenni, de azt nem, hogy hogyan), modellt tartalmaz, szerződés alapja; rendszerépítő, végfelhasználó),
· swspec (sw részletes leírása fejlesztők számára; szoftverfejlesztő, tesztelő, karbantartó);;
· funkcionális köv: rendszer által nyújtandó funkciók és szolgáltatások leírása (bemenetre hogyan reagáljon);
· függ: sw típusa, várható felhasználás, felhasználók; egyértelműen, pontosan (felhasználói: általános, rendszer: részletesen bemenet, kimenet, kitétel), mindenre kiterjedően, ellentmondásmentesen, teljesség (felhasználó által igényelt összes szolgáltatást tartalmazza);
· hiba: félreértés, ellentmondás, nem teljes;;
· nem-funkcionális köv: rendszerre vonatkozó megszorítások, időbeli, fejlesztési korlátok, szabványok; néha verifikálható (néhány mérőszám alapján ellenőrizhető, pl: sebesség (tranzakció/mp), méret (kB-ban), használhatóság (szükséges képzési idő), megbízhatóság (hibák átlagos bekövetkezési ideje), robosztusság (újraindulási idő hiba után, adat-meghibásodás valsége), hordozhatóság (célrendszerek száma)); rendszercélok segítenek, hogy jobban megértsük felhasználó szándékait (pl: egyszerű használat);
· fontosság szerint súlyozni; (pl: biztonság, I/O eszközök tul, adatformátumok, teljesítmény, megbízhatóság, válaszidő, fejlesztés módszereire, minőségellenőrzésre, CASE eszközökre vonatkozó követelmények);
· osztályozása:
· termékre vonatkozó (viselkedését szabályozza, pl: sebesség, megbízhatóság, hordozhatóság, használhatóság),
· szervezeti (szabályzatok, módszertan, programozási nyelv, pl: telepítési, implementációs, szabvány),
· külső (pl: együttműködés más rendszerekkel, jogszabályi, adatvédelmi, etikai köv);;
· szakterületi köv: rendszer alkalmazási területéről- új funkcionális köv, megszorítás (pl: törvényi szabályozások); fejlesztők nem mindig értik, szakter specialistái kézenfekvőnek tartják, ezért nem fogalmazzák külön meg;;
· interfész specifikáció:
· típusai: proceduális (eljárások hívása másik rendszerből), adatszerkezetek, adatreprezentációk;
· jelölések:
· strukturált természetes nyelv (szabványos űrlapok (tartalmazza: funkció vagy egyed leírása, bemenetek és származási adatok, kimenetek és ahová kerülnek, egyéb felhasznált egyedek, elő és utófeltételek, mellékhatások), sablonok, több szintű számozás; hátrányai: félreérthető, túl rugalmas (ugyanaz sokféle módon írható le), modularitás hiánya),
· tervleíró nyelv (működési modell leírására, programozási nyelvhez hasonló, belőlük származó, de több absztrakt elem, pl: PDL (=Program Description Language), hátrányai: nem alkalmas szakterületi köv definiálására, jelölések csak programozói ismeretekkel érthetőek, inkább tervezési specifikáció, mint rendszer megértését segítő modell),
· grafikus jelölések (ábrák szöveges magyarázattal),
· matematikai specifikációk (egyértelmű, de nagy rendszereknél túl bonyolult, pl: véges állapotú automaták);;
· szoftverköv dokumentuma: SRS (=System Requirements Specification) írja le, hogy mit várnak tervezett rendszertől, mit kell megvalósítani, megszorítások (de nem rendszer tervét tartalmazza!), könnyen változtatható, referencia karbantartók számára, előrejelzést ad se életciklusára vonatkozóan, meghatározza rendszer reakcióit váratlan eseményekre;
· használói: megrendelő (köv meghatározása, ellenőrzés), vezető (árajánlat készítése, fejlesztési folyamat tervezése), rendszertervező, tesztelő, karbantartó;
· IEEE szabvány: bevezetés (cél, felhasználási terület, definíciók, rövidítések, hivatkozások, áttekintés), ált leírás (ismertetés, termék funkciói, használati jellemzők, megszorítások, feltételezések és függőségek), speciális köv (funkcionális, nem-f, interfész köv), függelék, tárgymutató;
· folyamatai: megvalósíthatósági tanulmány (megv jelentés), követelmények feltárása és elemzése (rendszermodellek), köv specifikálása (felhasználói és rendszerköv), köv validálása (köv dokumentumai), köv kezelése, változáskezelés (részletesen::
· megvalósíthatósági tanulmány: érdemes-e tervezett rendszert megvalósítani, máshol milyen megoldás hasonló feladatokra, megrendelő célkitűzéseit mennyire támogatja, költségen belül, adott technológiával, kívánt határidőre megvalósítható-e, integrálható-e meglévő rendszerekkel; milyen probléma van jelenlegi folyamatokkal, tervezett rendszer hogyan segít, milyen folyamatokat támogat, hogyan illeszkedik meglévő rendszerekhez; ajánlások funkciókra, megvalósítás módjára;;
· köv feltárása és elemzése: interjúkészítés megrendelő kulcsembereivel, de bonyolult: nem tudják mit várhatnak szgépes rendszertől, saját szakter fogalmait használják, egyes szakter-nek kül elvárásai, környezet változik; cél: rendszerköv strukturált feltárásának, elemzésének, tervezésének támogatása;
· folyamata: szakterület megismerése, követelmények összegyűjtése, osztályozás, ellentmondások feloldása, fontossági sorrend felállítása, köv ellenőrzése, köv specifikálása, kövdokumentáció;
· módszerei: megrendelő által szolgáltatott dokumentumok tanulmányozása, szakterület megismerése, brainstorming, strukturált kérdőívek, előkészített és vezetett megbeszélés, interjú, megfigyelés, prototípusok, forgatókönyvek;
· nézőpont-orientált feltárás: felismeri kül perspektívákat, segít egymásnak ellentmondó köv felfedésében, kívülről tekinti rendszert, főleg interaktív rendszerekhez alkalmas; típusai: adatforrás vagy nyelő (adatok előállításának és feldolgozásának nézőpontjai), reprezentációs eszközkészlet (kül típusú rendszermodellek nézőpontjai), szolgáltatás fogadója (felhasználók nézőpontjai);
· forgatókönyvek: esemény forgatókönyve, használati esetek;
· etnográfia: rendszer társ, szervezeti környezete, emberek munkavégzési módja, ált: prototípus készítéssel kiegészül;;
· köv validálása: igazolja, hogy a köv a megrendelő kívánságainak megfelelő rendszert definiálják;
· köv ellenőrzése: érvényesség, ellentmondás-mentesség, teljesség, megvalósíthatóság, igazolhatóság;
· köv kezelése: köv változásának követésére szolgál, CASE eszközök támogatják (pl: új köv, üzleti környezet változik); szükséges: köv egyedi azonosítása, változáskezelés folyamatának kidolgozása, köv és összefüggések változásának követése, változások és hatásuk elemzése;
· folyamata: felismert probléma analízise és változás specifikációja, költségek elemzése, változás átvezetése;;;
Rendszermodellek:

· Segíti az elemzőket a rendszer funkcionalitásának megértésében (a részek hogyan kapcsolódnak egymáshoz), egyes modellek alkalmazhatóak a felhasználóval folytatott kommunikációban is;;

· Nézőpontok:
· környezeti modell (rendszer nem működik önmagában, rendszer környezetét és kapcsolatait mutatják be),
· viselkedési modell (rendszer működését, mit csinál),
· szerkezeti=architekturális modell (rendszer felépítését, adatok szerkezetét);;

· Típusai:
· adatfeldolgozási (adatfolyam diagramok, adatok feldolgozását mutatja be, milyen adat lép be rendszerbe, mi történik vele),
· kompozíciós (egyed-kapcsolat diagramok, hogyan épülnek fel egyedek más egyedekből),
· architekturális (alrendszereket mutatja be, amelyekből rendszer felépül),
· osztály (obj osztály/öröklődési diagramok, attribútumok és funkciók, egyedek közös tul-t ábrázolja),
· inger-válasz modell (állapot-átmeneti diagramok, a rendszer belső és külső eseményekre adott reakcióit írják le);;

· Modell: rendszer absztrakt leírása (részleteket hagy el, egyszerűsít, kiemeli a lényeget), amelynek követelményeit előzőleg már összegyűjtötték, rendszerbe foglalták és elemezték; nem egy másik reprezentációja a rendszernek!;;

· Strukturált módszerek: része a rendszermodell készítése, meghatározzák elkészítendő modellek típusát, modellre vonatkozó szabályokat, eljárásokat; szabványokat adnak a készítendő dokumentumokra; CASE eszközök támogatják;

· hátránya: nem támogatják a nem-funkc rendszerköv megértését és modellezését; nem tartalmaznak információ arra, hogy egy módszer alkalmazható-e az adott problémára; túl sok dokumentáció (köv lényege elveszik); túl részletese (felhasználó számára nehezen érthető), pl: SSATM (kormányzati alkalmazás);;
· Környezeti modellek: rendszer határainak ábrázolására szolgálnak (mi tartozik rendszerhez, mi nem), interfészeket meghatározni, határok függenek: technikai, társadalmi, szociális szempontoktól; ábrázolási módja: egyszerű blokkdiagram;;
· Folyamatmodell: teljes munkafolyamatot bemutatja, ez alapján ki lehet jelölni, hogy a folyamat mely részeit kell támogatnia v elvégeznie szgépes rendszernek; folyamatok közti információáramlást adatfolyam modellek mutatják be, pl: BPM (=Business Process Modelling);;
· Viselkedési modellek: rendszer átfogó viselkedésének leírása; típusai:
· adatfolyam modell: rendszer hogyan dolgozza fel adatokat, hogyan áramlanak végig adatok feldolgozási lépések sorozatán, milyen átalakulásokon mennek keresztül; segítik elemzőket, hogy megértsék mi történik rendszerben; egyszerű jelölésrendszer (megrendelő is megérti), rendszert funkcionális szempontból jellemzik, külső kapcsolatokat is lehet ábrázolni;
· állapotátmenet modell: hogyan reagál rendszer kül eseményekre; gyakran valós idejű rendszerek modellezésére; állapot- csomópont, esemény- nyíl, esemény hatására a rendszer másik állapotba kerül; UML jelölésrendszer része, feltételezés: rendszer egy adott időpillanatban a lehetséges állapotok egyikében; strukturálása: nagy állapotszám miatt, áttekintő kép- részletes képek, szuperállapot kifejthető külön diagramon;;
· Adatmodellek: sokféle adat nagyméretű adatbázisokban- ált rendszerrel együtt kell létrehozni; rendszer által feldolgozott adatok logikai szerkezetének meghatározására szolgál; elterjedt: egyed-tulajdonság kapcsolat; UML nincs külön adatmodellezés, hanem obj és köztük lévő kapcsolattal modellezi adatokat; egyed- művelettel nem rendelkező objosztály; gyakran adatfolyam-modellekkel együtt használják;;
· adatszótár: egyed-kapcsolat modellek kiegészítése, tartalmazza: összes név, szöveges magyarázatok, egyedleírások, kapcsolatok, tulajdonságok; előnyei: névkezelés, ütközések kizárása, szervezeti infó tárolása, támogatja elemzést, tervezést, implementációt, evolúciót; sok CASE eszköz támogatja;;
· Használati eset modellek: r. egyszerű UML diagram, UML-ben köv feltárásának és összefüggéseinek forgatókönyv jellegű eszközei; aktorok és köztük lezajló interakciók (pálcikaember és gombóc); elemei: szereplők, használati eset, reláció; bonyolultabb esete: szekvencia diagram;;

· Objektummodellek: rendszerkövetelmények leírására, főleg interaktív rendszereknél; világ azon darabját analizálni, ami számunkra érdekes, közös tul-t megkeresni- osztályhierarchia kialakítása; objosztályokkal modellezi rendszert (közös tul rendelkező obj halmaza és obj által nyújtott szolgáltatások= műveletek absztrakciója); obj: objosztály példányai, végrehajtható egyedek az objosztály tul-val és szolgáltatásaival; legnehezebb: azonosítani objektumot; felhasználók számára nehezebben érthető; fajtái:

· öröklődési modell: objosztályokat taxonómiába szervezi (osztályozási séma, ami megmutatja, hogy egy osztály hogyan kapcsolódik más osztályokhoz közös tul-on és szolgáltatásokon keresztül); osztályhierarchia megszervezése- nehéz feladat, kerülni kell duplikálást; alacsonyabb szinten lévő osztályok öröklik tul-t, szolgáltatásokat, rendelkeznek spec tul és szolg-al;
· aggregációs modell: egyes obj más obj-ból épülnek fel, azok aggregátumaként; megmutatja, hogyan keletkezik több osztályból egy aggregált osztály; ált osztály tul-it nem örökli, hanem beletartozik;
· viselkedési modell: obj viselkedése az általuk biztosított műveletek sorrendjének ábrázolásával történik- szekvencia diagram (forgatókönyv, amely használati eseten alapul), együttműködési diagram (UML-ben, ahol obj által változz üzenetek sorozatát ábrázoljuk);;

· CASE eszközrendszer: sw eszközök csoportja, amely swfolyamat egy v több fázisát támogatja, pl: elemzés, implementáció, tesztelés, akár programgenerálás; segítik modellezést kövtervezés és rendszertervezés során; adott módszer támogatására v diagramkészítést végzik; komponensei: diagramszerkesztők, modell elemző és ellenőrző eszközök, adatbázis tároló és lekérdező eszközök, adatszótárak, jelentésgeneráló, űrlap definiáló, import/export eszközök, kódgenerátorok;;

· UML: Unified Modeling Language, renszer grafikus ábrázolására alkalmas eszközök (diagramok) gyűjteménye; egységes jelölésrendszer- grafikus nyelv, amely áttekinthető specifikációk, modellek, tervek és dokumentációk készítésére ad lehetőséget; automatikus transzformációkkal objorientált nyelvű programokká alakítható;
· építőkövei:
elemek (strukturális (obj, osztály, felhasználói eset), megnyilvánulási (művelet végzése, interakció, állapot), annotációs (kiegészítés, megjegyzés), csoportos elemek (alrendszer, csomag)),
· relációk (függőségi (szemantikai összefüggések), társítási (strukturális), általánosítási, megvalósítási (fogalom és megvalósítás közötti szemantikai kapcsolat),
· diagramok (statikus szempont: osztály (rendszer objelvű szerkezetének leírása), objdiagram (osztálydiagram egy példánya);;

· szempontjai:
dinamikus szempont: állapot, szekvencia (obj közötti üzenetváltás időbeli menete), tevékenység, együttműködési;
· felhasználói szempont: használati eset;
· implementációs szempont: komponens, alrendszer;
· környezeti szempont: konfigurációs (hw/sw konfig));;;

Swprototípus készítése:

· Prototípus: swrendszer kezdeti verziója, alkalmas rendszer koncepciójának bemutatására és kipróbálására, csökkenti követelményekkel kapcsolatos kockázatot; cél: kövtervezés, rendszer lépésenkénti kidolgozása, segítse felhasználót rendszerköv megértésében;
· Rendszerprototípus készítése: kövtervezés része, követelmények feltárásának (hogyan támogatja felhasználók munkáját) és validációjának (felfedi hibákat és hiányosságokat) eszköze;
· folyamata: prot feladatok megállapítása (protkészítési terv)- prot funkcióinak meghatározása (vázlat kidolgozása)- prot fejlesztése (futtatható prot)- prot kiértékelése (kiértékelési jelentés);
· előnyei: felfedi felhasználó és készítő közti félreértéseket (jobban illeszkedik igényekhez), szolgáltatás hiányát, ellentmondásokat; swfolyamat elején részben működő rendszer áll rendelkezésre; használhatóbb rendszer; jobb tervezési minőség, gyorsabban elkészül rendszer, kevesebb erőforrás; felhasználható rendszer-specifikációhoz, támogatja rendszertesztet;
· hátrányai: eldobható prototípust végleges sw-ként használják (telj, funkc, megbízhatóság), gyors fejlesztésből fakadó hibák (válaszidő, struktúra), egyes követelményeket nem lehet beépíteni prototípusba (pl: biztonság-kritikus funkciók), implementáció nem lehet szerződés jogi melléklete, nem-funkc köv nem tesztelhetők teljes mértékben;;
· evolúciós prototípus: cél: működő rendszer átadása; lf követelmények implementálása (újabb köv feltárásával bővíthető), weblapfejlesztésben és e-business alkalmazásokban használják; olyan rendszereknél, ahol nem készthető el előre a specifikáció (pl: intenzív felhasználói interfész használatot igénylő rendszerek); nincs részletes rendszerspec, sokszor részletes kövspec sem; fejlesztéshez gyors, iterálható fejlesztő eszközök és módszerek kellenek; validáció is csak rendszer bemutatásával történhet;
· folyamata: absztrakt spec elkészítése- prototípus építése- prot használata- megfelelő a rendszer?- nem: vissza építéshez, igen: rendszer átadása;
· jellemzői: spec, tervezés, implementáció átlapolható; inkrementumok sorozataként fejlődik rendszer- felhasználó tervezésben és értékelésben részt vesz; gyors fejlesztő eszközök alkalmazhatóak (CASE, 4GL, modellező nyelvek, pl: BPML= Business Process Modeling Language); felhasználói felületek GUI eszközökkel készíthetőek;
· előnyei: felgyorsul rendszerfejlesztés (fontosabb, mint köv részletes feltárása v karbantarthatóság), nő felhasználó elkötelezettsége (nagyobb valséggel felel meg elvárásoknak, átvételkor felhasználó ismeri rendszert), köv teljességének felfedése lehetséges;
· hátrányai: vezetési problémák (csak vízesés modellre alkalmazható, spec ismereteket igényel), karbantartás (folytonos változások szerkezet sérülését okozhatják, dokumentáció hiánya), szerződéskötési problémák (fix áras: előre kell ismerni rendszers vázlatos köv és tervét; ráfordítás alapú: megrendelő nem fogadja el);
· inkrementális fejlesztés: elterjedt; lépcsők és részfunkciók sorozata; inkrementációkon belül vízesésmodellek- RUF (=Rational Unfiied Process); készülhet hozzá spec és dok; felhasználó tanulmányozhatja- így prototípusként használható; tartalmazza prototípuskészítés sok előnyét, de folyamat jobban vezethető, struktúra kézben tartható; agilis módszerek alapja;
· folyamata: leszállítandó termék meghatározása- rendszer architektúra megtervezése- összes inkr vázlatos tervezése- rendszerinkrementum megtervezése- inkr kidolgozása- inkr validálása- inkr integrálása- rendszer validálása- megfelelő a rendszer? nem: vissza inkr tervezéshez, igen: rendszer átadása;;
· eldobható prototípus: cél: rendszerköv feltárása és validálása; kövspec-ból fakadó kockázat csökkentése; nem teljesen megértett köv megvalósítása segíti feltárást, kövspec elkészülte után nem használható fel; kezdeti spec alapján készítik, átadják validálsra felhasználónak, majd eldobják; nem végleges rendszer, mivel több rendszertul kimaradhat, nincs spec, nem megfelelő struktúra szerint készült;
· folyamata: köv körvonalazása- prot fejlesztés- prot kiértékelés (vissza fejl-hez is)- rendszerspec készítése- swfejlesztés újrafelhasználható komponensekkel- rendszer validálása (vissza fejl-hez is)- átadott sw;
· átadása: veszélyes, mert nem tesz eleget nem-funkc követelményeknek, dokumentálatlan, rossz struktúra, nem betartott általános szervezeti szabályok (pl: minőségbiztosítás, technológiai fegyelem);
· prototípuskészítési technikák:együtt alkalmazzék, vizuális programozás támogatása (fv-t, adatokat grafikus szimbólumokkal reprezentálják);
· fejlesztés dinamikus, magas szintű nyelven: hatékony futási idejű adatkezelő eszközöket tartalmaznak; gyors prototípuskészítéshez is használható környezetet is tartalmazhat; fejlett felhasználói interfész; rendszerprototípus kül részei kül nyelven programozhatóak- kapcsolatot kommunikációs keretrendszer teremti meg; nincs egyetlen ideális nyelv;
· alkalmas nyelv kiválasztásának szempontjai: alkalmazási terület jellege (term nyelvű feldolg: Lisp (listaalapú), Prolog (logikai)), felhasználói interakció jellege (intenzív, web alapú: Java, Smalltalk (objorientált)), támogatási környezet;
· adatbázis-programozás: 4GL (=Generation Language) fejlesztő rendszerek, amelyek támogatják lekérdezést, adatkezelést (SQL), táblázatkezelést, jelentés generálást, felhasználói felületek tervezését; közös: adatbázis manipuláció (keresés, frissítés, rendezés), egyszerű műveletek, űrlapkezelés – 4GL-ben általánosítva; gyakran integrálhatóak CASE eszközökkel is, amik SQL-t generálnak; IDE (=Integrated Design Environment);
· 4GL komponensei: adatbázis-programozási nyelv, interfészgenerátor, táblázatkezelő, jelentésgenerátor,
· 4GL tul: interaktív, grafikus űrlapgenerálás, űrlapkezelés, web-es kapcsolatok, nagy tár- és erőforrásigény;
· 4GL hátránya: szabványok hiánya (gyártó specifikus);
· komponensek és alkalmazások összeépítése: újrafelhasználható komponensek összeépítése kompozíciós mechanizmusokkal, amelyek szabványos vezérlő és komm eszközöket tartalmaznak a komp integrálásához; rendszesspec készítésekor figyelembe venni újrafelh komp-t- köv kompromisszuma;
· prototípuskészítés újrafelhasználással: alkalmazás szintjén (teljes alk rendszerek integrálása, pl: szövegszerkesztő), komponensek szintjén (szabványos keretrendszerbe, pl: Visual basic, .net, JavaBean);
· alkalmazás: újrafelh komp- komp összedolgozó fejlesztőkészlet+ vezérlő és integrációs sw- végrehajtható prototípus;
· hátrány: nincs szabványos nyilvántartás komp tul és interfészeiről; webservices (szolgáltatás nem beépül, hanem web-en elérhető, WSDL= Web Service Definition Language);
· összetett dokumentumok: egyes alkalmazásokból prototípus fejleszthető összdok fejlesztésével, több kül aktív elemet tartalmazhat (mindegyikhez egy alk), integráló szerep kül alk között;
· vizuális programozás: szkript nyelvekkel (pl: Visual Basic) alk interaktív módon fejleszthető; felhasználói felület szabványos elemekből épül, amelyhez kész komponensek v egyedi programrészletek rendelhetők; nagyszámú előre megírt komp segít, kisméretű prot készítésére alkalmas (pl: dátumkomponens, háttérrajzoló komp);
· hátrányai: egyszerű fejlesztésre alkalmas, nehéz csoportmunkát koordinálni, előrehaladás nehezen követhető, programrészek közti bonyolultabb összefüggések változásai nem követhetők, nincs megtervezett,egyértelmű rendszer-architektúra;;
· felhasználó felületek prototípusai: felhasználót bevonni tervezésbe; felh interfész a rendszerfejl költségek jelentős részét adják; interfész-generátorok segítenek, hogy felh gyorsan véleményt alkosson- jól strukturált program generálható, pl: weblap tervező eszközök;;;
Formális specifikáció:

· formális módszerek: sw matematikai reprezentációján és analízisén alapszik, pl: formspec, spec elemzése és bizonyítása, transzformációs fejlesztés, program verifikálás; nem tudnak teret hódítani: más módszerek már kialakultak (OO tervezés, konfigurációkezelés, strukturált programozás), sw gyors piacra kerülése fontosabb, mint minősége, csak korlátozottan alkalmazhatóak, nagy rendszerek esetén nehezen alk, kevés eszköz készült formális módszerek támogatására;
· alkalmazása: korlátozott felhasználási lehetőségei, alkalmazás kockázata és költsége nagyobb, mint várható előnyök, de alacsonyabb hibaarány- kritikus fejlesztéseknél (pl interfészspecifikáció, rakétairányítás);
· formális specifikáció: matematikai jelölésrendszert alkalmaz pontosan specifikált szótárral, szintaxissal és szemantikával; spec és tervezés összefonódik; alap spec struktúrájához: architektúra-tervezés; ügyfél befolyása csökken swspec folyamatának előrehaladásával, vállalkozóé nő;
· folyamata: felhasználói köv meghatározása- rendszerköv specifikálása- architekturális tervezés- form spec- magasszintű tervezés;
· technikák:
· algebrai megközelítés (rendszert műveletek és azok kapcsolatai írják le, pl: Larch (szekv), OBJ (szekvenciális), Lotos (konkurens)),
· modell alapú megközelítés (rendszert állapotmodell specifikálja, amely halmazokból és sorozatokból álló mat konstrukciókat tartalmaz, műv definíciója: ahogy rendszer állapotát módosítják, pl: Z, VDM, B (szekv), CSP, Petri nets (konkurens));
· alkalmazása: swfejl kezdeti szakaszában, köv alaposabb és részletesebb elemzése, következetlenségek és hiányosságok felfedése, kijavítása;;
· interfészspecifikáció: nagy rendszerek alrendszerei közötti jól definiált interfészek; lehetővé teszi, hogy alrendszerek fejlesztése egymástól függetlenül történjen; absztrakt adattípusokkal v objosztályokkal definiálhatóak; formspec algebrai megközelítése alkalmas interfészek, komm protokollok pontos specifikálására;
· algebrai spec struktúrája: Larch nyelv elemei:
· bevezetés (deklarálja típusnevet és importált specifikációkat, pl: sort <név>, imports <spec nevek>),
· leírás (tartomány és műveletei, informális),
· szignatúra (interfész szintaktikája, műveletek neve, paraméterei, tartományai),
· axióma (tartományon végezhető műveletek szemantikus leírása axiómákkal, jellemzi absztrakt adattípus viselkedését);
· készítése: felt: informális spec;
· spec strukturálása (absztrakt adattípusok v objosztályok meghatározása hozzájuk tartozó műveletekkel),
· spec elnevezése (nevek meghatározása),
· műveletek kiválasztása (minden példány létrehozásához, értékmódosításhoz, vizsgálathoz),
· informális műveletspec (műv milyen hatással van tartomány elemeire),
· szintaktika-definíció (szignatúra részének kidolgozása: minden művelethez definiálni szintaktikát és paramétereit),
· axióma-definíció (műv szemantikájának meghatározása, felt leírása);;
· viselkedésspecifikáció: algebrai spec nehézsége, ha obj műveletei nem függetlenek annak állapotától; elterjedtebb a modell alapú spec módszerek (rendszerspecifikációt a rendszer állapotmodelljeként fejezi ki, pl: VDM, B, Z nyelvek); Z: a rendszert halmazokkal és halmazok közötti relációkkal modellezi; kombinálja formális és informális leírásokat, grafikus ábrázolást alkalmaz; különösen alkalmas interfészek és sw specifikálására;
· szerkezete: formális leírásokat rövid, könnyen olvasható szövegrészek alakjában adja meg – sémák (állapotváltozók definiálására és áll-ra vonatkozó megszorítások és műv megadására szolgál); séma neve, séma szignatúrái, séma predikátumai;
· séma invariánsok: definiálja azokat feltételeke, amelyek mindig igazak;
· output sémák:
· konzisztencia: prédikátumoknak összes sémában konzisztensnek kell lenniük; ha inkonzisztens, akkor köv-ek ellentmondanak;
Architektúrális tervezés:

· Swtervezés folyamata: arch tervezés (rendszerarch)- absztrakt spec (swspec)- interfész tervezés (interfész spec)- komponens tervezés (komponens spec)- adatstruktúra tervezés (adatstruktúra spec)- algoritmus tervezés (alg spec);

· Arch tervezés: folyamat, amelynek során kijelölik a rendszert alkotó alrendszereket és keretrendszert (működést irányít, vezérli alrendszereket, biztosítja kommunikációt), végeredménye: swarchitektúra, amely tervezés alapja; gyakran specifikációs tevékenységekkel párhuzamosan végezhető;

· feladata: összeköti spec és tervezés folyamatát; kialakítani rendszer alapvető struktúráját és keretrendszert;

· előnyei: tervezői megbeszélések alapja (érthetővé teszi rendszer vázát), támogatja kritikus kérdések korai elemzését (eleget fog-e tenni, Pl. telj, megbízhatóság, karbantarthatóság), megalapozza újrafelhasználhatóságot (komponensek, termékcsaládok);

· tevékenységei: ált párhuzamosan zajlanak, rendszer strukturálása (alrendszerre bontjuk, azonosítjuk kommunikációs igényeket alrendszerek között), vezérlés modellezése (rendszer részei közötti kapcsolatok), moduláris felbontás (és köztük kapcsolat meghatározása);;

· Alrendszer: komponensek rendszere, amely önállóan oldja meg feladatát, modulokból v más alrendszerekből áll, szabványos interfészeken keresztül veszi igénybe többi alrendszer szolgáltatásait;
· Modul: rendszerkomponens, amely szolgáltatásokat nyújt más moduloknak, igénybe veszi mások szolgáltatásait, de nem fglen alrendszer, más egyszerűbb modulokból áll;
· Rendszerstruktúra: egymással lazán összefüggő részfeladatok (önállóan végrehajthatók, de egymással vezérlési és adatcsere kapcsolatban állnak), pl: banki szolgáltató rendszer (központi feladatok: ügyfélnyilvántartás, könyvelés, betétkezelés, hitelkezelés; ügyfélkiszolgálás: tranzakciók, személyes kiszolgálás, pénzforgalom, vásárlások, bankközi átutalások);;

· Architektúra modellek:
· statikus szerkezeti (alrendszereket és rendszerkomponenseket ábrázolja),
· dinamikus folyamat (folyamatokba szerveződést mutatja meg), interfész (alrendszerek között),
· kapcsolatmodell (alrendszerek közötti adatfolyamattal mutatja be kapcsolatokat);

· Architekturális stílusok: modell ált modellezési stílus alapján készül, alkalmazása egyszerűbbé, egységesebbé teszi, de heterogén nagy rendszereknél nem alkalmazható (eltérő funkció- eltérő modellezés);

· Követelmények: rendszerarchitektúra meghatározza teljesítményt (jobb, ha nagyobb modulok, mert kevesebb kommunikáció), védelmet (jobb, ha rétegzett szerkezet), biztonságot (egy vagy kevés alrendszerben legyen), rendelkezésre állást (jobb, ha redundáns komponensek), karbantarthatóságot (jobb, ha sok önálló könnyen változtatható komponens);;

· Rendszer strukturálása: együttműködő alrendszerekké való felbontása, egyszerű blokkdiagrammal ábrázoljuk, de részletesebben is modellezhető (alrendszerek hogyan osztják meg adatokat, kommunikálnak);;

· Tárolási modell: alrendszerek információcseréje: megosztott adatok központi adatbázisban (minden alrendszer elérheti), saját adatbázis; ha nagy adatmennyiség, akkor osztott adatbázis (pl: vállalatirányítási rendszerek, CASE, CAD);

· megosztott tárolók előnyei: sok adat esetén hatékonyabb; alrendszereknek nem kell azzal foglalkozni, hogyan keletkeztek adatok; védelem, biztonsági mentések, hozzáférések szabályozása, visszaállítás központi funkció; új alrendszerek integrálhatóak;

· hátrányai: alrendszereknek közös adatmodellt kell használniuk (telj); figyelni kell, hogy többi alrendszer hogyan használja adatokat; egyes alrendszerek eltérő követelményeket támasztanak közös funkciókkal szemben; bonyolult adatbázis elosztása több gép között;;

· Kliens-szerver architektúra: olyan osztott rendszermodell, mely bemutatja hogyan oszlanak meg adatok és feldolgozások komponensek között;

· elemei: szerverek (magok kezelik adatokat, pl: adatkezelő, nyomtató, kommunikációs szerver), kliensek (önálló alrendszerek, amelyek hozzáférnek szerver szolgáltatásaihoz, egyszerre több példányban futnak: vékony (böngésző scriptekkel), vastag kliens (komplett alrendszer)), hálózat (hozzáférést biztosít kliensek számára szerverek szolgáltatásaihoz);;

· előnyei: jól strukturált, könnyen kiegészíthető új funkcióval, alacsonyabb hardver követelmények;

· hátrányai: nincs megosztott, közös adatmodell, redundáns adatkezelés, nincs központi név- és szolgáltatás nyilvántartás (nehéz megtalálni, milyen szerverek és szolgáltatások léteznek);;

· Réteges modell (absztrakt gép modell): alrendszerek közötti interfészek modellezésére, rétegekbe szervezi rendszert (mindegyik adott szolgáltatásokat végez), támogatja alrendszerek inkrementális fejlesztését (rétegek kicserélhetőek);

· előnye: könnyen adaptálható kül platformokra (hardvert, oprendszert belső rétegekbe zárja);

· hátránya: strukturálása bonyolult (külső réteg csak köztes rétegeken keresztül férhet hozzá belsőkhöz), pl: verziókelező rendszer rétegei: verziókezelés- objkezelés- adatbáziskezelő- oprendszer;;

· Vezérlési modellek: alrendszerek közötti vezérlési folyamatokat modellezik;

· központosított vezérlés: egy alrendszer végzi teljes rendszer vezérlését (indítja, leállítja alrendszereket); hívás-visszatérés modell (fa struktúra: csúcson vezérlő alrendszer, a vezérlés hívások sorozatán keresztül jut el modulhoz, szekvenciális rendszerekhez, pl: listázás, jelentésgenerálás); kezelő modell (központi rendszerkomponens koordinálja rendszerfolyamatokat, párhuzamosan is végrehajtható, konkurens rendszerekhez, de szekvenciálishoz is);

· esemény alapú vezérlés: környezet által generált események (bináris jel, értékváltozás) irányítják rendszert, minden alrendszer reagálhat őt érintő külső vagy más alrendszer által generált eseményekre; broadcast modell (eseményről minden alrendszer értesül, az reagál akit érint), megszakítás-vezérelt modell (megszakítás-kezelő észleli esemény és elindítja megfelelő alrendszert, valós idejű rendszerekhez);;

· Moduláris felbontás: architektúra tervezés következő fázisa, alrendszereket bontja fel, szekvenciális feldolgozásra is;

· objektummodellek: rendszer felbontása jól definiált interfészekkel rendelkező, lazán csatolt, együttműködő modulokra, amelyek egyéni állapottal és műveletekkel rendelkeznek; egymás szolgáltatásait veszik igénybe;

· adatfolyam (=csővezeték) modellek: rendszer felbontása funkcionális modulokra, amelyek inputokat outputokká transzformálják; interaktív rendszerek modellezésére nem alkalmas;
· előnyei: segíti transzformációk újrafelhasználhatóságát, könnyen érthető, egyszerűen bővíthető, szekvenciális és konkurens rendszerekhez;
· hátrányai: nincs közös adatformátum, grafikus felhasználói felületek és menürendszer nem modellezhető így;;

· Szakterület-specifikus architektúrák: olyan arch modellek, amelyek vmely szakter alkalmazásaira jellemző ált tul figyelembe vételével készülnek; típusai:

· általános modellek: adott szakter számára megvalósított rendszerek fő jellemzőit tartalmazzák (ábrázolása adatfolyam modellel), újrafelhasználható, bottom-up, pl: fordítóprogram;

· referenciamodellek: absztrakt, idealizált, rendszerek nagyobb osztályait írják le, szakter tanulmányozására, szakter-i fogalmak közlésére, lehetséges arch összehasonlítására, top-down, pl: ISO-OSI (alkalmazási, megjelenítési, viszony, szállítási, hálózati, adatkapcsolati, fizikai réteg);;;

Osztott rendszerek:

· Jellemzői: erőforrás-megosztás, nyíltság (több hw/sw szállítótól termékek), konkurencia (párhuzamos folyamatok, időnként szinkronizáció), skálázhatóság, hibatűrés, átlátszóság;
· hátrányai: bonyolult (nehezebb tervezés, karbantartás), nehezen kezelhető (kül hw és oprendszerek), elosztott biztonság (segít: SSO(=Single-sign-on));;
· Tervezési kérdések: erőforrás azonosítása (névkonvenció kell, hogy erőforrások hivatkozhatóak legyenek), kommunikáció (TCP/IP, néha spec protokoll), szolgáltatás minősége (függ: hw, oprendszer, hálózat, rendszer rugalmassága, erőforrások), swarchitektúra (funkciók eloszlása komponensek között, middleware kell logikai komponensek közötti szolgáltatásra);
· többprocesszoros architehtúra: kül folyamatok kül processzorokon futnak, pl: ipari folyamatirányítás (érzékelő- feldolgozó- vezérlő proc);
· kliens-szerver architektúra: logikai szerkezetet mutatja;
· réteges architektúra: megjelenítés, alkalmazás, adatkezelés;;;
Objektumorientált tervezés:
· Objorientált fejlesztés fázisai:
· objor elemzés(OOA, alkalmazás objor modelljének kidolgozása),
· objor tervezés(OOD, követelményeknek megfelelő swrendszer objor modelljének kidolgozás),
· objor programozás(OOP, swterv megvalósítása);;
· Obj: rendszer elemeinek absztrakciója, karbantartja saját állapotát;
· olyan entitás amelynek jól körülhatárolt állapota (attribútumok értékkészlete) van és meghatározott műveletek (szolgáltatás) tartoznak hozzá;
· objosztály egy példánya; fglen, de együttműködnek egymással;
· szolgáltatásai adják rendszer funkcionalitását; nincsenek megosztott adatok, hanem kommunikáció üzenetekkel;
· korlátozott láthatóság (látható: export és import műveletek; láthatatlan: ábrázolás és megvalósítás); obj szekvenciálisan, párhuzamosan is végrehajthatók;
· kialakulás oka: nehezen áttekinthető sw;
· előnyei: könnyebb karbantartás, újrafelhasználható, egyértelmű leképezés;;
· Osztály: hasonló tul obj halmaza, onj template-je, tartalmazza attribútumok és szolgáltatások deklarációit;
· reláció: osztályok közötti kapcsolat;
· jellemzői: hasonló tul obj halmaza (szerkezetileg, viselkedésben), van neve (összes obj örökli), lehet attribútuma, paraméterei, tartoznak hozzá szolgáltatások (minden obj-ra vonatkozik, hozzáférési módok: public, private, protected), tartozhat hozzá import felület, lehet megvalósítási része, van látható és láthatatlan része, absztrakt v konkrét, lehet paraméteres (sablon) osztály;;
· Obj kommunikációja: üzeneteken keresztül, tartalma: kért szolgáltatás neve, szolgáltatás végrehajtásához szükséges infó, eredményt kérő neve; gyakran eljáráshívás, paraméterek átadása (név= eljárás neve, infó= paraméterlista); típusai:
· szinkron: hívóobj megvárja szolg befejeződését;
· párhuzamos: hívó tovább folyatatja működését, kommunikáció szöveges üzenetekkel;;
· Objosztályok közötti kapcsolatok: relációk:
· asszociáció (kétirányú társítás),
· aggregáció (obj-ok egymáshoz rendelése),
· kompozíció (másik osztály obj-t fizikailag tartalmazza),
· öröklődés (ált osztályból származtatással létrejött spec osztály);;
· öröklődés (=generalizáció): OOD alapvető eszköze, osztályok hierarchiába szerveződnek, ahol szülőosztálytól más osztályok öröklik attribútumait, műveleteit, és kiegészítik, megváltoztatják azokat;
· előnyei: entitások osztályozása, újrafelhasználhatóság tervezés és programozás szintjén is, ábrázolhatóak rendszerrel kapcsolatos szervezeti ismeretek;
· problémák: objosztályok nem önállóak (nem értelmezhetőek szülőosztályok nélkül), alacsony modell hatásfoka, külön kell elemzés, tervezés és implementációhoz öröklődési diagramokat készíteni, túl bonyolult osztályhierarchia esetén kritikus rendszereknél kerülendő;
· megközelítések: OOD feladata öröklődési hierarchia azonosítása és implementáció OOP feladata; implementáció hasznos eszköze és hierarchiát nem tervezési fázisban kell meghatározni;;
· UML modellezési nyelv: utóbbi 20 év során kidolgozott jelölések egységesítésével jött létre; objor analízis és tervezés során készíthető modellek ábrázolását támogatja, szabvánnyá vált;;
· Konkurens obj: obj meghatározhatja, hogy egy kért szolgáltatást sorosan v párhuzamosan hajt-e végre; implementálása:
· szerverek: obj párhuzamos folyamatként implementálva, műveletek külső üzenet hatására elindulnak, kiszolgálnak, ha befejeződik, akkor várakozó állapot;
· aktív obj: obj állapotát belső műveletei határozzák meg, nem külső hívások, műv-t folyamatosan végrehajtja, nem függesztődik fel;;
· Objor tervezés folyamata: lépései: definiáljuk rendszer összefüggéseit és használatának módjait; megtervezzük rendszerarchitektúrát; azonosítjuk rendszer lf obj-t; kidolgozzuk tervezési modelleket; meghatározzuk obj interfészeit;;
· Rendszerkörnyezet: statikus modell, amely alrendszerként írja le rendszerrel kapcsolatba lépő többi rendszert;
· rendszerhasználat modellje: dinamikus modell, amely rendszer és környezetének interakcióit írja le ált használati eset diagrammal (rendszer, aktorok, adatok, inger, válasz, megjegyzés);;
· architekturális tervezés: rendszer és környezete közötti együttműködés modellje adja alapot; rétegzett arch (max 7 réteg);;
· obj azonosítása: r nehéz, iteratív;
· megközelítések:
nyelvtani (term nyelvi leírásból fn=obj, attr, ige=műv);
szakter szerepköreinek, eseményeinek, szervezeti egységeinek felhasználása; viselkedés megértése (ki kezdeményezte, ki vett részt);
forgatókönyv alapú elemzés;;
· obj interfész specifikációja: cél: obj és más komponensek tervezése párhuzamosan folyhasson; interfész reprezentációja rejtett (így változtatható), műveleteket biztosítani adatokhoz való hozzáférésre; lehet több interfész is (kül megközelítések); UML: osztálydiagramok;;
· tervezési modellek: obj és kapcsolatokat ábrázolják;
· statikus: rendszer szerkezetét írják le objosztályokkal és relációkkal;
· dinamikus modell: obj közötti interakciókat írják le;
· példák: alrendszer (obj logikai csoportosítása), szekvencia (obj interakcióinak sorrendje), állapot (állt-ok változása eseményekre), egyéb modellek: használati eset, öröklődési modell, osztálydiagram;;
· CORBA (=Common Object Request Broker Architecture): meghatározza elosztott obj modelljét és végrehajtás szemantikáját, DOB(=Distributed Object Bus) architektúráját (ORB= Object Request Broker), interfészeket arch komponensek között, együttműködési interfészeket (IIOP); interfész definíciós nyelvet (IDL= Interface Definition Language), programozási nyelvek kapcsolatát;
· jellemzői: dinamikus szolgáltatás választás, névszolgáltatás;
· előnyei: sw bus alkalmazások közötti interfészre, magas szintű absztrakció, rugalmasság, hasznos szolgáltatások (pl: névkezelés);;
Valósidejű rendszerek:

· swrendszer, amely figyeli környezetét és adott időn belül képes reagálni hatásokra; ált inger-válasz típusú; inger: periodikus (időzítés hatására), aperiodikus (rendszertelen külső esemény hatására); kritikus tényező: idő; tartoznak hozzá hw eszközök is (érzékelő, szabályozó); együttműködő, párhuzamos folyamatokként kell megvalósítani;;
· elemei: érzékelőket vezérlő folyamatok (összegyűjtik adatokat, átmenetileg tárolják), számítási folyamatok (feldolgozza adatokat, kiszámítja rendszer válaszát), működtető folyamatok (szabályozókat, működtető jeleket generálja);;
· tervezése: cél: helyes és időben reagálás eseményekre; nemfunkc rendszerköv határozzák meg; hw és sw elemeket együtt kell tervezni (funkciókat célszerűen elosztani);;
· folyamata: meghatározzuk rendszer által feldolgozandó ingereket és válaszokat; meghatározzuk minden ingerre és válaszra időzítési követelményeket; párhuzamos folyamatokba szervezzük feldolgozást, ingerek és válaszok minden osztályához egy folyamatot rendelünk; megtervezzük algoritmusokat (végrehajtható legyen meghatározott idő alatt); megtervezzük ütemezési rendszert (időben indítja folyamatokat); swrendszert integráljuk futtatórendszer alatt; tesztelés (szimulált hardveren, majd megtervezett hardverrel);
· időzítés: sok szimuláció, mérés;
· modellezés: állapotátmenet diagramokkal (inger viszi át másik állapotba), hátránya: rendszer struktúráját nem ábrázolja, bonyolultan modellezhető;;
· programozás: alacsony szintű progr nyelven megírni (assembly) szigorú időzítések miatt; C (nem támogatja párhuzamos folyamatokat), Ada (támogatja konkurenciát, ütemezést), Java (támogatja konkurenciát, de nem használható szigorúan valós idejű rendszerekhez, mert nem lehet megadni szál végrehajtási idejét, szemétgyűjtést vezérelni, futási processzorhasználatot mérni);;
· futtató rendszer: spec oprendszer, amely folyamatokat és erőforrásokat vezérli; nincs fájl- adatbázis-kezelés;
· komponensei: ütemezési infók+ valós idejű óra+ megszakítás-kezelő- ütemező (kiválasztja köv futtatandó folyamatot)- erőforrásra váró folyamatok listája+folyamatok erőforrásigényei+szabad erőforrások listája- erőforrás-kezelő (mem és proc allokál folyamatokhoz)- befejezett folyamatok listája+processzorok listája- elosztó (köv folyamat végrehajtását indítja);
· non-stop rendszerek további komponensei: konfigurációkezelő (hwmodulok rendszer leállítása nélkül cserélhetőek), hibakezelő (detektálás, folyamatos működés biztosítása);;
· 3szoros moduláris redundancia: Neumann találta ki; hosszú ideig önállóan működő rendszer; akkor is jó eredmény, ha egyik modul meghibásodik, szavazó áramkör eldönti, melyik rossz eredmény; használata: űrkutatás;;;
tervezés újrafelhasználással:

· Cél: minőség javítása, költségek csökkentése, fejlesztési idő csökkentése;
· szintjei: alkalmazási rendszerek (beépítve másik rendszerbe), komponensek (pl: driver, interfész modul), függvények újrafelhasználása (pl: szabványos könyvtárak);
· előnyei: megbízhatóbb (már kipróbált komponensek), alacsonyabb projektkockázat (tervezhetőbb ár), szaktudás jobb kihasználása (tervezés, implementáció tesztelés már benne komponensekben), szabványosság, gyorsabb fejlesztés;
· hátrányai: magasabb karbantartási költségek, eszköztámogatás hiánya (CASE nem támogatja), „nem mi találtuk ki” jelenség (kisebb szakmai kihívás), komponenskönyvtárak karbantartása, újrafelhasználható komponensek megtalálása és adaptálása;;
· Kritikus követelmények: komponensek keresése, megbízható leírtaknak megfelelő működés, érthető, teljes és aktuális dokumentáció;;
· Újrafelhasználás programgenerátorral: tartalmazza: szabványos algoritmusokat, fv-t, paraméterezés után automatikusan előállítja programot; költséghatékony, de kevés szakterülethez létezik (üzleti adatfeldolg, eBusiness);
· típusai:
alkalmazásgenerátor (üzleti adatfeldolgozó rendszerek készítésére), szintaktikus elemző (progr nyelvek értelmezésére),
CASE eszközökben kódgenerátor (swtervől implementációt állít elő);
· folyamata: alkalmazás leírása,modellje+szakterületi alkalmazási ismeretek- programgenerátor- generált program (kapcsolódik még: adatbázis);;
· Komponens alapú fejlesztés: CBSE(=Component Based Software Engineering), kialakulás oka: objor fejl nem támogatja újrafelhasználást;
· komponens: objosztályoknál sokkal absztraktabbak; szolgáltatásokat nyújtanak rendszernek; fglenül végrehajtandó program, amely egy v több végrehajtandó obj-ból áll; interfészeit publikálják (interakció ezeken keresztül); forráskódja nem hozzáférhető, belső állapotai nem láthatóak; mérete: fv – alkalmazási rendszer;
· komponensek interfészei: szolgáltatott (ő adja), szükséges (rendszer biztosítja);
· fejlesztés folyamata: alkalmazkodó újrafelhasználás- beilleszthető swfolyamatba; prototípuskészítéssel v inkrementális módon; komp integrálására script nyelveket használnak; rendszerarch tervezése- komp meghatározása- komp keresése- kiválasztott komp egyesítése;
· hátrányai: inkompatibilis komponensek, nehéz megtalálni komp, kövváltozás estén nincs evolúció, nehezebb karbantartás;;
· Alkalmazási keretrendszerek: absztrakt és konkrét osztályok gyűjteménye és köztük lévő interfészekből álló alrendszer-terv; nagy egységek, de nem önálló alkalmazások (azt több keretrendszer integrálásával lehet);
· csoportosítása: infrastruktúra (komm, felhasználói felületek titkosítás fejlesztését támogatják), köztes integrációs (komp közötti komm és infócsere, pl: CORBA, JavaBean, .net), vállalati alkalmazások keretrendszerei (spec szakter-i alk fejlesztését támogatják, pl: pénzügy, telekomm);
· kibővítése: alk létrehozásakor konkrét osztályokkal bővíthető (absztrakt osztály kiegészítése konkréttal, műveletek hozzáadása);
· hátránya: bonyolultság;;
· „Polcról levehető” termékek: COTS(=Commercial Off-The-Shelf), kompellt alk rendszerek API-val; ált rendszersw, nagyobb funkcionalitással; fejlesztési idő nagyságrendekkel csökkenthető; pl: eCommerce, eBusiness;
· nehézségei: funkcionalitás és teljesítmény (kevésbé effektív), COTS rendszerek együttműködése bizonytalan (eltérő feltételezésekkel készültek), evolúció ellenőrizhetetlen, terméktámogatás hiánya;;
· Újrafelhasználható komponensek fejlesztése: meglévő komp általánosításával; stabil szakterületi absztrakció; állapotok elrejtése; fglen és önálló; hibakezelés interfészeken keresztül;
· hátrányai: kevésbé használható (bonyolult), többszörös fejlesztési költség, kevésbé effektív;
· Specifikus komponens újrafelhasználhatóvá tétele: kezdeti komp- név általánosítás- művelet ált- hibakezelés ált- komp hitelesítése- újrafelh komp;;
· Alkalmazáscsaládok: alk rendszerek olyan termékcsaládja, amely közös szakterspec arch-ra épül (közös mag);

· specializációja: platform (azonos funkcionalitás, pl: Windows, Linux), konfigurációs (kül perifériák), funkcionális specializáció (kül funkc köv);

· architektúrái: jól különválasztható és módosítható alrendszerekből áll, kezelendő egyedeket és azok leírását külön kell választani;

· fejlesztés: követelmények felderítése (alkcsalád meglévő tagjai lehetnek prototípusok), legközelebbi családtag kiválasztása, köv újratárgyalása, meglévő rendszer adaptálása (új modulok kifejlesztése), új családtag kibocsátása (dokumentálás, bevezetést és telepítést támogató funkciók);;

· Tervezési minták: magasabb szintű, implementációs részleteket nem tartalmazó, absztrakt tervek; egy probléma ismertetése és megoldásának absztrakt leírása; alkalmazzák öröklődést, polimorfizmust (műv átdefiniálása);
· elemei: név, probléma leírása, megoldás leírása, következmények;;;

Verifikáció és Validáció:
· Verifikáció: annak ellenőrzése, hogy valóban a megfelelő terméket készítjük el, vagyis, hogy a szoftver megfelel a specifikációnak.(„The product was built right”)

· Validáció: annak bizonyítása, hogy a terméket jól készítjük el, vagyis hogy a szoftver valóban a megrendelő elvárásainak megfelelően működik (esetleg a specifikációval ellentétesen). („The right product was built”); sw azt kell megvalósítania, amit a felhasználó valóban elvár tőle;;
· Verifikáció és validáció (V & V) folyamata: sw teljes életciklusára kiterjed, minden fázisában szerepet kap; cél: felfedni a rendszerben rejlő hibákat; swrendszer megfelel céljának (nem felt hibamentes); meggyőződni arról, hogy a rendszer egy-egy konkrét működési szituációban használhatóan működik;

· Technikái:

· swátvizsgálás (=inspekció):ellenőrizze, megfelel-e a program a specifikációnak; rendszer reprezentációjának elemzése (kövspec, tervek, formspec, grafikus ábrázolások, forráskód (elemzése automatizálható)) - stat;

· swtesztelés: sw implementációjának tesztadatokkal való futtatása és a viselkedés megfigyelése; nem-funkcionális rendszerkövetelmények vizsgálatára - dinamikus verifikáció;

· Elfogadás szintje: befolyásolja: sw funkciója (biztonság v prototípus), felh elvárásai (ha olcsó sw, több hiba), piacsi környezet (versenytársak), kritikus rendszerek;;

· Programtesztelés: legelterjedtebb validációs technika (bár a szoftverfolyamat végén helyezkedik el); hiba meglétét kell felfedeznie nem a hiba hiányát (sikeres, ha la 1 hibát felfedezett); egyetlen módszer a nem-funkcionális követelmények validálására; statikus verifikációval együtt kell alkalmazni; típusai:

· hiányosságok tesztelése: feladata a rendszer hibáinak és hiányosságainak felfedése,
· fajtái:
komponens tesztek (fekete doboz, ekvivalencia-osztályok, struktúrateszt, útvonal-teszt),
· integrációs tesztek („fentről lefelé/lentről felfelé”, interfészteszt, stressz-tesztek),
· objektumorientált tesztelés; pl: interaktív rendszer: összes rendszerfunkciót, fv-t, helytelen inputadatokkal is;

· statisztikai tesztelés: rendszer teljesítményének és megbízhatóságának tesztelése, valós helyzetekben (valós felhasználói inputtal és gyakorisággal);;

· belövés: felfedezett hibák helyének lokalizálása és kijavítása; program viselkedésére vonatkozó feltételezések felállításával kezdődik, majd ezen feltételezések vizsgálatával próbálja megtalálni a hibákat; felfedezett hibák javítása után újra kell tesztelni a programot;

· folyamata: (teszteredmények)- hiba lokalizálása- (specifikáció)- hibajavítás megtervezése- hiba kijavítása- program úrjatesztelése;;

· V és V tervezése: alapos, már fejlesztési folyamat elején elkezdeni; tervnek meg kell határoznia az arányokat a statikus verifikáció és a tesztelés között; nagyobb cégeknél általános szabványok, szabályok;

· modellje: kövspec- (átvételi teszt terve)- rendszespec- (rendszerintegrációs teszt terv)- rendszertervezés- (alrendszerint teszt terv)- részletes tervezés- modul és egység kód és teszt- alrendszer int teszt- rendszerint teszt- átvételi teszt- működés;

· sw tesztterv struktúrája: tesztelési folyamat (fő tesztfázisok leírása), köv nyomonkövethetősége (minden köv-t külön tesztelni), tesztelt elemek (tesztelendő szoftver termékek listája). tesztelés ütemezése (swfejl projekt részeként), tesztek dokumentálása (tesztelés utólagos ellenőrzésére - minőségbiztosítás), tesztek hardver és szoftver követelményei (szükséges erőforrások), megszorítások;;

· Program=Sw átvizsgálása: dokumentumok átvizsgálásának formalizált eszköze (tapasztalt szakemberek nézik át a dokumentumokat és a kódot, ellenőrző lista alapján);

· cél: hiányosságok felderítése forráskódban (hibák 60%-a felfedhető, pl: logikai hibák, kezdőérték nélküli változók, szabványoknak való meg nem felelés); fejlesztési folyamat kezdetétől alkalmazható, a dokumentumok (követelmények, tervek) átvizsgálásával; több hiányosság is felfedezhető (amíg egy teszt egy hibát fed fel); tapasztalt vizsgálók (inspektorok) már ismerik és könnyen megtalálják a típushibákat;

· automatizált statikus elemzés: forráskódot vizsgáló szoftver eszközök, nem futtatják a programot, hanem elemzik a program szövegét;

· fázisai: vezérlés folyamatának elemzése, adatok használatának elemzése, Interfész-elemzés, inf.áramlás elemzése, végrehajtási útvonalak elemzése;

· használata: olyan nyelveknél, amelyek nem tartalmaznak szigorú szabályokat a típusokra, így a fordító sok hibát nem vesz észre (pl: C); Unix, Linux tartalmazza a LINT statikus elemzőt (kimutatja az iniciálatlan változókat, elérhetetlen kódrészleteket); Javaban kevés hibaforrás (nincs goto, iniciálini kell a változókat, a tárkezelés automatikus);;

· Cleanroom swfejlesztés: szoftverhibák elkerülését, nem pedig megtalálását és kijavítását célzó szigorú átvizsgálási folyamat (rendszer komponenseinek tesztelése helyett); neve: félvezetőgyártásból;

· jellemzői: Formális specifikáció (állapotátmenet modell, strukturált programozás, csak néhány vezérlési és adatabsztrakciós kontrukció használható), Inkrementális fejlesztés, Statikus verifikáció (szigorú átvizsgálások), rendszer statisztikai tesztelése;

· folyamata: rendszer formspec+ működési profil fejlesztése- inkrementumok definiálása- strukturált program készítése- kód formális vizsgálata- inkrementum integrálása- statisztikai tervek készítése- integrált rendszer tesztelése- hibák kijavítása;

· szervezete: Specifikációs csapat (rendszerspec kidolgozását és karbantartását végzi), Fejlesztő csapat (fejlesztést és verifikálást végzi, szoftvert nem futtatja), Hitelesítő csapat (formspec alapuló statisztikai teszteket dolgozza ki a fejlesztéssel párhuzamosan és futtatja le);;;

Felhasználói kezelőfelület:

· Ezen keresztül kerül kapcsolatba a rendszerrel, ennek alapján alkot véleményt, csak ezután ismeri meg a rendszer funkcionalitását; baj: rosszul tervezett (hibák), szegényes, következetlen; mo: szakértők (grafikus, pszichológus);

· Fajtái: alfanumerikus, karakteres, grafikus (interakcióra egér, bill);

· Alapkövetelmények: strukturált, következetes, áttekinthető, Biztosítson segítő szolgáltatásokat, hibákat egyértelműen jelezze;;
· Grafikus felületek:

· jellemzői:
· ablakok (egyszerre több infó),
· ikonok (info fajtáját jelöli, pl: állomány, folyamata),
· menük (struktúrált, nem kell parancsnyelvet megtanulni, gépelni),
· pozícionálás (egér),
· grafika,színek (áttekinthetőbb);

· előnyei: Könnyebben megtanulható és használható, akár számítógépes ismeretek nélkül is; felhasználó több képernyőt használhat az interakcióra, gyorsan válthat különböző alkalmazások között, az információ látható maradhat az éppen nem aktív ablakban is; felhasználó a teljes képernyő bármely részét elérheti, ez gyors interakciót tesz lehetővé;;

· Tervezés: felhasználó-centrikus, ezért swtervezőnek meg kell ismernie felh tevékenységét (munkafolyamatokat) és felkészültségét, bevonni felh-t, prototípust készíteni;

· folyamata: felh tev elemzése és megértése- papír alapú tervek készítése- (tervezési prototípus)- tervek kiértékelése felhasználóval- din terv prototípus készítése- (végrehajtható prototípus)- tervek kiértékelése felh-val- végleges felh felület készítése;

· alapelvei: figyelembe kell venni a felhasználók igényeit, gyakorlatát; korlátozott fizikai és mentális képességek; ezek elvek minden felhasználói interakció tervezésének alapjául szolgálhatnak;
· felh jártasság figyelembevétele (felületnek olyan kifejezéseket és fogalmakat kell használnia, amelyeket az átlagos felhasználó ismer),
· felület konzisztenciája (ua formátum, hasonló műveleteket hasonló módon kell megvalósítani),
· min meglepetés (hasonló tevékenységeknek hasonló hatást kell kiváltaniuk),
· visszaállíthatóság (feh hibájának kijavítására lehetőség: Visszavonási lehetőség (undo), esetleg többszintű, Veszélyes tevékenységek megerősítése, pl. törlés, Puha törlés),
· felh támogatása (könnyen elérhető súgórendszer, nem túl sok infó, jó ha helyzetfüggő súgó),
· felh sokfélesége (alkalmi felhasználók több támogatást, a gyakorlott felhasználók egyszerűbb, gyorsabb működést várnak);

· kulcskérdések: Hogyan jusson el az információ a felhasználótól a rendszerhez, és Hogyan jusson el az információ a rendszertől a felhasználóhoz;;

· Interakciók fajtái:

· Közvetlen manipuláció: felhasználó közvetlenül a képernyőn látható objektumot kezeli;
· Előnyei: Könnyen tanulható és gyors, felhasználó azonnal visszajelzést kap, így a tévedés gyorsan visszavonható;
· Hátrányai: Bonyolult lehet a felhasználó tevékenységéről (szándékáról) a megfelelő információt begyűjteni a program számára, Csak akkor használható, ha a feladatok és objektumok egyértelműen megkülönböztethető ikonokkal reprezentálható;
· Menükiválasztás: felhasználó a rendszer által felkínált (sokszor helyzet-függő) listából választhat egérrel, rövidített névvel, Alkalmazható az egyszerű (pl. érintőképernyős) terminálokon is;
· Előnyei: felhasználónak nem kell parancsokat megjegyeznie, Kevés gépelést igényel és a hibák könnyen kivédhetők, Állapotfüggő súgó alkalmazható;
· Hátrányai: akciók közötti logikai összefüggések (and, or) nem jeleníthetők meg, Kevés választási lehetőséget enged meg, a sok lehetőséghez strukturálni kell a menüket. gyakorlott felhasználó számára lassú;

· Űrlapkitöltés: űrlap az aktuális állapothoz alkalmazható, ha sok adatot kell bevinni (pl. ,adatrögzítés);
· Előnyei: felhasználói hibák felfedhetők és jelezhetők, illetve kivédhetők, Könnyen megtanulható;
· Hátránya: Nagy képernyőfelületet foglal;

· Parancsnyelv: felhasználó parancsokat gépelve utasítja a rendszert (pl. Unix);
· Előnyei: Egyszerű, olcsó terminálon is alkalmazható, Egyszerűen feldolgozható (pl. fordító technikával), Bonyolult, egymásba ágyazott parancsok is kezelhetők, Rugalmas;
· Hátrányai: Nehezen tanulható, az átlagos felhasználó számára bonyolult, Gépelési gyakorlatot kíván, hibakezelést (hibajelzés, visszavonás) nehéz megoldani;

· Természetes nyelv: felhasználó a parancsokat természetes nyelven gépeli be, amelynek szótára korlátozott, ált spec alkalmazási területet szolgálnak ki; megfelelő az alkalmi felhasználó számára de a gyakorlott felhasználó nem kedveli a túl sok gépelés miatt;;

· Inf megjelenítése: rendszer megjeleníti a felhasználó számára közlendő információkat; célszerű: többszörös felhasználói interfészek (külön felület eseti és gyakorlott felh-nak); jól tervezett rendszerekben maga az információ és az azt megjelenítő szoftver különválik;

· Model-View-Controller (MVC: Smalltalk, 1979, minta: modell=adattárolás, view=felhfelület, control=kapcsolat,vezérlés – felelősség megosztása, laza kapcsolatok, előnyei: többszörös nézet, de azonos modell, input feldolg logikája módosítható felület módosítása nélkül, kód újrafelhasználhatóság, külön fejleszthető rétegek) általánosan alkalmazott architektúra az adatok többféle megjelenítését támogatja;;

· Infó:

· statikus: Értéket kap a munkafázis (session) kezdetén és ez a session ideje alatt nem változik meg, numerikus, vagy szöveges;

· dinamikus: Megváltozik a munkafázis alatt és a megváltozott értéket a felhasználó számára meg kell jeleníteni, numerikus, vagy szöveges;

· megjelenítés módjának kiválasztása:
· felhasználónak pontos információra van-e szüksége (numerikus), vagy különböző adatok közti kapcsolatok, arányok érdeklik (grafikus);
· Milyen gyorsan változik az információ? Azonnal szükség van-e rá? (A gyorsan változó információt grafikusan, vagy többféle módon kell megjeleníteni.);
· Egy változást követően be kell-e avatkoznia a felhasználónak valamilyen akcióval? (Ha igen, a megváltozott információt ki kel emelni.);
· Szükség van-e közvetlen beavatkozási felületre?(Ha igen, az információ közelében kell erre lehetőséget adni.);
· Szöveges vagy numerikus a megjelenítendő információ? Fontosak-e a relatív értékek? (Ha igen, grafikus.);

· megjelenés:
· alternatív (relatív és pontos értékek is),
· analóg (egy pillantással áttekinthető, relatív értékeket is),
· digitális (pontos, kevés helyet foglal),
· figyelmeztető szöveg (inf jellegére ikonnal is lehet utalni),
· hang, nagy mennyiségű adat (ismerni szakter-en alkalmazott jelölésmódokat, pl: időjárást térképpen, vegyi üzem csövekkel, telhálózat vonalakkal);;

· Színek: segíthetnek a bonyolult összefüggések megértésében, különleges esetekre, értékekre felhívhatják a figyelmet, de: sokféle, rikító szín alkalmazása taszító, rossz színkompozíció hibalehetőségeket okozhat, sok ember színtévesztő vagy színvak; szabályok: Ne használjunk túl sok színt (egy felületen 4-5, egy rendszerben 7-8 max), Először tervezzünk monokróm felületeket, utána adjuk hozzá a színeket, állapotváltozásokat jelezzük színváltással, különböző feladatokat különböztessük meg színekkel is (következetesen), Egyes színkombinációk zavaróak, vagy fárasztják a szemet;;

· Felhasználói támogatás: kiterjed a rendszer minden megjelenési formájára, beépítve felh felületbe, Célszerű a súgó és az üzenő rendszert összeépíteni, hogy minden üzenetről magyarázatot kérhessen a felhasználó;

· hibaüzenetek: udvarias, előrevivő, következetes; felhasználó háttere, gyakorlata a hibaüzenetek tervezésének meghatározó tényezője;

· szövegezése: szövegkörnyezet (igazodjon felh tevékenységéhez, rendszer akt állapotához), tapasztalat (kifejtő magyarázat helytt rövid is), képzettség (kül terminológiával megfogalmazni), stílus (építő jelleggel, nem gúnyolódva), kultúra;;

· Súgó:
· tervezése: felh segítségért és infóért fordul súgóhoz; hierarchikus szerkezetű, de bonyolult hálós struktúrájú, Több ablak alkalmazásával érthetővé tehető a bonyolult hierarchia;

· infótartalma: nem on-line kézikönyv, szövegeit az alkalmazást és a szakterületet jól ismerő embereknek kell megfogalmaznia;

· használata: Több belépési pontra van szükség, hogy a felhasználó a rendszer különböző állapotaiból léphessen be (jelezzük, épp hol jár, bejárt útvonal, visszalépések);;

· Felhasználói dokumentáció: papíralapú, kezdőtől a gyakorlott felhasználóig mindenkit figyelembe kell vennie (5 féle dok);

· doktípusok:
· Funkcionális leírás (funkc rövid leírása),
· Bevezető kézikönyv (rendszer helyes használatának leírása, sok példával),
· Referencia kézikönyv (rendszer lehetőségei, hibaüzenetek és teendők hiba esetén, minden esetre kiterjedően),
· Telepítési dokumentum (telepítés menete, a teendők listája, a beállítások ismertetése),
· Üzemeltetési-, adminisztrátori kézikönyv (rendszer működtetésének, a hibák kijavításának leírása);;
· Felh felületek értékelése: szoftverrendszer ellenőrzésének, jóváhagyásának része, használhatóság ellenőrzésére szolgál; alapos értékelés nagyon sokba kerül, mert sok valódi felhasználót kell bevonni, laboratóriumi körülmények között megfigyelni és véleményüket kiértékelni;

· Egyszerűbb módszerek: Kérdőívek, felhasználók megfigyelése munka közben, jellegzetes rendszerhasználat felvétele videóra, Kódrészletek beépítése a gyakori hibák gyűjtésére;

· használhatóság jellemzői:
· tanulhatóság (Mennyi idő alatt tudja egy új felhasználó produktív módon megtanulni a rendszer használatát),
· műveleti sebesség (Mennyire felel meg a rendszer válaszideje a felhasználó munkatempójának),
· robosztusság (Mennyire toleráns a rendszer a felhasználói hibákkal szemben),
· visszaállíthatóság (Milyen jól áll helyre a rendszer a felhasználói hibák után),
· adaptálhatóság (Mennyire van kötve a rendszer egy egyedi munkamodellhez);;;

- 14 -

