
Szoftvertechológia alapjai
Vizsga kérdések

Dallos Ádám, Majnár László

2016. május 21.

1

1. Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a
szoftverhez tartoznak.

A szoftver: Számı́tógép-programok és a hozzájuk tartozó dokumentációk összessége (Somer-
ville def.) A gyakorlatban hozzátartoznak a szakterületi ismeretek és azok dokumentációi is,
amelyek alapján a szoftvert kifejlesztették.
A szoftverhez tartozó termék: A programok és a hozzá kapcsolódó dokumentációk. (Kar-
bantartás??)

2. Mi a szoftverfolyamat? Sorolja fel a szoftverfolyamat főbb
tevékenységeit.

A szoftverfolyamat: A szoftver termék előálĺıtására irányuló tevékenységek sora.
Főbb tevékenységek:

1. Szoftverspecifikáció: A szoftver feladatainak és a megszoŕıtásoknak specifikációja.

2. Szoftverfejlesztés: A szoftver rendszer tervezése és elkésźıtése (programkésźıtés, tesz-
telés).

3. Szoftvervalidáció: Annak bizonýıtása, hogy az előkésźıtett rendszer a felhasználó elvárásainak
megfelelően működik.

4. Szoftverevolúció: A szoftver karbantartása és továbbfejlesztése a változó igényeknek
megfelelően.

3. Sorolja fel a szoftverfolyamat általános modelljeit és jellemezze
azokat néhány szóban.

A szoftverfolyamat modellje a folyamat absztrakt reprezentációja.

• Vı́zesés modell: Az alapveto tevékenységek önálló fázisok a folyamat során.

• Evolúciós fejlesztés: A specifikáció, a fejlesztés és a validáció összefonódik. Ez az alapja
a manapság elterjedt alkalmazott agilis fejlesztési módszereknek.

• Formális transzformációk: A követelmények matematikai modelljéből, formális transz-
formációval álĺıtja elő a szoftvert. Ez a módszer az őse a mai modellközpontú fejlesztésnek.

• Integráció újrafelhasználható komponensekből: A rendszert meglévő komponensek
integrálásával álĺıtja elő.

2

4. Miért van szükség arra, hogy a szoftvertervezők számára eti-
kai kódexet álĺıtsanak össze? Sorolja fel a fontosabb etikai
elő́ırásokat.

Szükségesség:

• Bizalmasság: A szoftvertervezőnek tisztelnie kell a munkaadója, vagy megrendelője bi-
zalmát, attól függetlenül, hogy alá́ırtak-e titoktartási nyilatkozatot.

• Hozzáértés: A tervező nem vállalhat el olyan munkát, amely meghaladja képességeit,
nem tűntetheti fel hamis sźınben tudását, képességeit.

• Szellemi jogok: Tiszteletben kell tartania a szellemi tulajdonjogokat.

• Számı́tógépes visszaélések: A tervező nem használhatja fel ismereteit arra, hogy másoknak
közvetve, vagy közvetlenül kárt okozzon.

Elő́ırások:

• A helyi, nemzeti és nemzetközi szabályok ismerete és betartása.

• Etikus és bizalmat keltő viselkedés, ami több, mint pusztán a törvények betartása.

• A megb́ızó titkainak megtartása.

• A szellemi tulajdonjogok tiszteletben tartása.

• A számı́tógépes visszaélések megakadályozása, ill. elkerülése.

5. Melyek az eredendő rendszertulajdonságok? Hogyan csopor-
tośıtjuk őket?

A rendszer több, mint komponenseinek halmaza. Alapvető tulajdonságai többnyire nem származtathatóak
a komponensek tulajdonságaiból. A rendszer eredendő tulajdonságai a komponensek közti össze-
tett kapcsolatok, kölcsönhatások következményei. Ezért az eredendő tulajdonságok csak akkor
állaṕıthatók meg és válnak mérhetővé, mikor megtörtént a komponensek integrációja.
Eredendő rendszertulajdonságok:

• A rendszer súlya: Ez kiszámı́tható a komponensek súlyából.

• A rendszer megb́ızhatósága: Nemcsak a rendszer komponenseitől, hanem azok kap-
csolatától is függ.

• A rendszer használhatósága: Összetett tulajdonság, amely nemcsak a hardver és szoft-
ver komponensektől függ, hanem a környezettől és a működtető, sőt a felhasználó embe-
rektől is.

Tulajdonságok t́ıpusai:

• Funkcionális tulajdonságok: A funkcionális tulajdonságok akkor figyelhetők meg, ha
a rendszer minden része együttműködik egy cél elérése érdekében. (pl. kerékpár!)

3

• Nem funkcionális tulajdonságok:

– Olyan rendszertulajdonságok, amelyeket a rendszer működési környezete is befolyásol.
Ezek gyakran kritikusak a számı́tógép alapú rendszerek működése szempontjából,
ezért ezeket már a tervezéskor definiálni kell.

– Ilyenek lehetnek a megb́ızhatóság, a teljeśıtmény, a biztonságosság, vagy a védelem.

6. Mi a különbség a funkcionális és a nem-funkcionális rendszer-
tulajdonságok között?

A funkcionális tulajdonságok akkor figyelhetők meg, ha a rendszer minden része együttműködik
egy cél érdekében.
A nem funkcionális tulajdonságok pedig olyan rendszertulajdonságok, amelyeket a rendszer
működési környezete is befolyásol. Pl.: teljeśıtmény, megb́ızhatóság, biztonság, védelem.

7. Melyek azok a tevékenységek, amelyek közösek minden szoft-
verfolyamatban?

• Szoftverspecifikáció: A szoftver feladatainak és a megszoŕıtásoknak specifikációja.

• Szoftverfejlesztés: A szoftver rendszer tervezése és elkésźıtése (programkésźıtés, tesz-
telés).

• Szoftvervalidáció: Annak bizonýıtása, hogy az előkésźıtett rendszer a felhasználó elvárásainak
megfelelően működik.

• Szoftverevolúció: A szoftver karbantartása és továbbfejlesztése a változó igényeknek
megfelelően.

4

8. Vázolja fel a v́ızesés modellt, sorolja fel a modell előnyeit és
hátrányait!

A v́ızesés modell előnyei:

• Jól áttekinthető és követhető fejlesztési projekt folyamatot eredményez.

• A folyamat termékei szerződésekkel könnyen lefedhetők. (specifikációs és tervezési doku-
mentumok, program(ok), stb.)

• A tevékenységek jól, és pontosan tervezhetők.

A v́ızesés modell hátrányai:

• Egymástól elkülönült fázisokra osztja a projektet (költséges egy korábbi fázishoz visszatérni
pl. specifikációs, vagy tervezési hiba esetén).

• Csak a projekt végén, az átadáskor (a működtetés első lépésekor) derülnek ki a specifikációs
hibák.

• Nem képes rugalmasan alkalmazkodni a felhasználói igények változásaihoz.

• Csak a követelmények pontos ismeretében alkalmazható.

9. Mi a formális rendszerfejlesztés? Milyen előnyei és hátrányai
vannak?

A v́ızesés modellhez hasonló, de a fejlesztés formális matematikai eszközökkel álĺıtja elő a fut-
tatható programot a rendszerspecifikáció matematikai modelljéből, több transzformációs lépésen
keresztül.
Minden transzformáció során, lépésenként kell végrehajtani a tesztelést.

5

Formális transzformációk:

Formális rendszerfejlesztés előnyei:

• Kritikus rendszerek esetén, ahol kulcskérdés a biztonságosság, megb́ızhatóság, vagy védelem.

• A transzformáció és a bizonýıtás részben automatizálható.

Formális rendszerfejlesztés hátrányai:

• Speciális szakértelmet igényel.

• Egy rendszer kölcsönhatásait (pl. felhasználói interfész) nehéz formálisan specifikálni.

• Komplex, nagy rendszereknél ez a módszer sem eredményez jobb minőséget, vagy költség-
megtakaŕıtást.

10. Mi az evolúciós fejlesztési modell lényege? Miért nehéz kar-
bantartani az ı́gy fejlesztett programokat?

Az alapgondolat: Ki kell dolgozni egy kezdeti implementációt, amelyet a felhasználó véleményezhet,
és azt kell finomı́tani az elfogadásig. A specifikáció a fejlesztés és validáció párhuzamosan foly-
tatható tevékenységek.
Feltáró fejlesztés: A követelmények feltárása lépésenként, a megrendelővel együttműködve
történik, folyamatosan kiegésźıtve a rendszert az új funkciókkal, részekkel.(Ilyen az Agile módszerek
többsége.)
Eldobható protot́ıpus:

”
Deszkamodellek” késźıtése és átadása az ügyfélnek, a követelmények

pontosabb feltárása érdekében.
Miért nehéz karbantartani? Azért nehéz karbantartani, mert minden művelet egyszerre
folyik, és nincs részletes specifikáció.

6

11. Mi az újrafelhasználás orientált fejlesztés lényege? Vázolja
fel a folyamatot! Milyen esetekben alkalmazható?

Már létező, újrafelhasználható szoftver-komponensek egységes szerkezetbe való integrálása (kom-
ponens alapú rendszerfejlesztés). Polcról levehető termékeket használ fel a fejlesztés során.
Gyakran beépül a korábban ismertetett folyamatokba. Az elérhető komponenseket megtalálni,
azokat integrálni nem egyszerű.
A folyamat modell:

Milyen esetekben alkalmazható?
Minőségjav́ıtása, költségek és a fejlesztési idő csökkentésének érdekében használható. Csak ak-
kor használjuk, ha tudjuk, hogy az adott komponens megfelelően működik. Nagy rendszerek
éṕıtésekor gyakran használt stratégia a COTS termékek integrálása. Különösen a gyors fej-
lesztést ḱıvánó eCommerce, eBusiness rendszerek körében. A fejlesztési idő nagyságrendekkel
csökkenthető.

12. Mi a különbség a CASE eszközök, -eszközkészletek és -környe-
zetek között?

• Eszközök (tools): Az egyes folyamatlépéseket támogatják, mint a terv konziszetciájának
ellenőrzése, program ford́ıtás, teszteredmények összehasonĺıtása, stb.

• Eszközkészletek (workbench): A szoftverfolyamat egyes fázisait támogatják, mint pl.
specifikáció, vagy tervezés. Általában több, egymással együttműködő eszközből állnak.

• Környezetek (environments): A szoftverfolyamat több fontos, vagy valamennyi részét
támogatják. Legtöbbször több, integrált eszközkészletből állnak.

13. Miért célszerű projektszervezetben végezni a szoftverfejlesztést?

Azért célszerű, hogy a szoftver a tervezett ütemezés szerint, határidőre, a követelményeknek
megfelelően készüljön el. Továbbá a projekt menedzselésére azért van szükség, mert a szoftverfej-
lesztés mindig kötött pénzügyi és megszabott időkeretek között folyik, amelyeket a megrendelő,
vagy a fejlesztő szervezet jelöl ki.

7

14. Miért és milyen gondot okoz a szoftverprojekt vezetője számára,
hogy a szoftver nem látható, megfogható? Milyen módon le-
het ezt a gondot csökkenteni?

Mivel a szoftver nem kézzel fogható, továbbá a szoftverfejlesztés folyamata sincs szabványośıtva,
ı́gy sokkal nehezebb meghatározni, hogy mennyi időbe telik a fejlesztés, mennyi ember kellhet
hozzá, mekkora ennek a költsége. Továbbá a megrendelő számára nem nagyon tud a projekt
elkészültéig kézzel fogható programot mutatni, amely igen csak megneheźıti a dolgokat.

• A szoftverfejlesztési projekt gyakran egyedi, amely nem általánośıtható folyamat.

• A projekt tervezést alfeladatokra kell bontani, és ütemezni.

• Némely feladat futhat párhuzamosan is, ha a feladatok nem függenek egymástól.

15. Milyen t́ıpusú terveket kell késźıteni egy projekt tervezésekor?

• Munkaterv, ütemezés: Az elvégzendo feladatok, ütemezésük és összefüggéseik ter-
vezése.

• Minőségi terv: Meghatározza a projektben használandó minőségbiztośıtási eljárásokat
és szabványokat.

• Validációs terv: Meghatározza a rendszer validációja során használandó módszereket,
erőforrásokat, ütemezést.

• Konfiguráció-kezelési terv: Léırja a konfiguráció-kezelés eljárásait és struktúráját.

• Karbantartási terv: A karbantartás követelményeinek, költségeinek terve.

• Munkaerő-fejlesztési terv: Terv a projekten dolgozó csapat szaktudásának, tapaszta-
latainak fejlesztésére.

8

16. Vázolja fel egy v́ızesés modell szerint végzendő fejlesztési pro-
jekt ütemezését oszlopdiagram formában!

9

10

17. Kı́sérelje meg felvázolni egy evolúciós folyamat szerint végzendő
fejlesztési projektterv oszlopdiagramját!

18. Miért iterat́ıv tevékenység a szoftverprojekt tervezése?

A szoftverprojekt tervezése egy folyamatos tevékenység. Amely a koncepció kidolgozásától a
rendszer átadásáig tart. Az előrehaladást folyamatosan követni kell, projekttervet rendszeresen
felül kell vizsgálni és át kell dolgozni a változó állapotnak megfelelően (ezért iterat́ıv).

19. Milyen kockázatokat különböztethetünk meg egy szoftverfej-
lesztési projektben? Sorolja fel és jellemezze őket!

A kockázatkezelés a lehetséges kockázati tényezők azonośıtását és a projektre gyakorolt hatásuk
minimalizálására vonatkozó tervek késźıtését jelenti.

• Projekt kockázat: A projekt ütemtervét, vagy az erőforrásokat veszélyezteti.

• Termék kockázat: A szoftver minőségét, vagy teljeśıtményét veszélyezteti.

• Üzleti kockázat: A szoftver beszerzését, értékeśıtését veszélyezteti.

• Szervezeti kockázat: A fejlesztést végző szervezetet veszélyezteti.

11

20. Sorolja fel a fontosabb szerepeket egy projektszervezetben!
Ismertesse néhány szóban az egyes szerepek tevékenységeit!

• Projektvezető (szakmai - adminisztrat́ıv vezető):
A projektvezető felelős a projektcélok megvalósulásáért. Szakmai és adminisztrat́ıv vezető,
aki felelos a projekt sikeres, határidőre való befejezéséért, a kezdetben meghatározott ke-
retek között.

• Rendszertervező:
A rendszertervezés a számı́tógép alapú rendszerek tervezésével foglalkozik (hardver, szoft-
ver, folyamatok) a szoftvertervezés ennek egy része.

• Vezető programozó:
A programozási folyamat előrehaladásáért felelős személy. Körülötte helyezkednek el az
alábbiak.

• Tartalék programozó:
Vezető programozó mellett lévő gyakorlott programozó.

• Könyvtáros (adminisztrátor):
A fejlesztési projekt dokumentációinak és termékeinek (verziók) elkésźıtéséért (késźıttetéséért),
rendben tartásáért felelős.

• Tesztelő:
A modellek és termékek tesztelését, verifikálását végzi.

• Minőségfelelős:
A minőségbiztośıtási szabályok betartásáért felel a teljes szoftverfolyamat során.

• Dokumentátor:

• Operációs rendszer szakértő:
Az operációs rendszer kiválasztásáért felelős személy.

• Adatbázis szakértő:

• Szakterületi specialista:
Az alkalmazási terület ismerője, aki már részt vett hasonló rendszer kidolgozásában.

• CASE eszköz szakértő:
A fejlesztés során felhasználható CASE eszközök kiválasztásáért felelős személy.

12

21. Mi a feladata a megvalóśıthatósági tanulmánynak. Hol van a
helye a szoftverfolyamatban?

Feladata: Megalapozni azt a döntést, hogy érdemes-e a tervezett rendszert megvalóśıtani.
Az alábbi kérdésekre ad választ:

• Más, hasonló szervezeteknél milyen megoldásokat alkalmaztak hasonló feladatokra.

• Mennyiben támogatja a rendszer a megrendelő általános célkitűzéseit.

• Megvalóśıtható-e a rendszer a tervezett költségen belül, az adott technológiával, a ḱıvánt
határidőre.

• Integrálható-e a rendszer más, már meglévő rendszerekkel.

Helye a szoftverfolyamatban: Amegvalóśıthatósági tanulmány helye a követelménytervezés
folyamatában van a szoftverfolyamat során.

22. Sorolja fel a legfontosabb szempontokat, amelyeket egy ter-
vezőnek a felhasználói követelmények specifikálásakor ügyel-
nie kell!

• A felhasználói követelményeket úgy kell megfogalmazni, hogy az informatikában járatlan
felhasználó is megértse.

• Ezért itt nem célszerű modelleket alkalmazni, hanem természetes nyelven, táblázatokkal
és diagrammokkal kell a felhasználói követelményeket érthetővé és egyértelművé tenni.

• A természetes nyelv alkalmazásának nehézségei:

– Az egyértelműség és pontosság hiánya

– A követelmények keveredése

– A követelmények ötvöződése

• Dolgozzunk ki egységes formátumot az összes követelmény léırására.

• Használjuk a nyelvet következetesen, pl. a szükséges követelményeket a
”
kell”, a ḱıvánatos

követelményeket pedig a
”
javallott” szóval jelölhetjük.

• Késźıtsünk glosszáriumot a szövegben használt fogalmak és rövid́ıtések magyarázatára.

• A fontos részeket vizuálisan is emeljük ki a szövegből.

• Kerüljük a számı́tógépes zsargon használatát.

13

23. Milyen veszélyei vannak a természetes nyelv használatának a
követelmények specifikálásakor? Milyen módon lehet ezeket
csökkenteni?

• Félreérthetőség: A szöveg ı́rója és olvasója egy adott kifejezésen más fogalmat ért, vagy
azonos fogalmakat eltérő módon értelmez.

• Félreérthetőség csökkentése: Egy adott fogalom, defińıció minél pontosabb, érthetőbb
léırása az ı́ró által. Akár példák seǵıtségével való megfogalmazás.

• Túlzott rugalmasság: Ugyanaz a követelmény sokféle módon ı́rható le.

• A modularitás hiánya: A természetes nyelvben nincs egyértelmű lehetőség az összefüggések
jelölésére. Így egy követelmény megváltozásakor az összes követelményt át kell vizsgálni,
hogy a kapcsolódó követelményeket megtaláljuk.

• Strukturált nyelvű specifikáció alkalmazása:

– A természetes nyelv szabályozott, strukturált alkalmazása a követelmények léırására.

– Egyértelműbbé teszi a követelmények specifikációját, de közben megtartja a természetes
nyelv rugalmasságát.

– A struktúrát űrlapok vagy sablonok alkalmazásával támogatják. Kötelező információk
feltüntetésével az űrlapon.

24. Egy nagy rendszer fejlesztése során kiknek kell részt venniük
a felhasználói követelmények verifikálásában? Miért?

14

25. Sorolja fel a rendszermodellek t́ıpusait és jellemezze azokat
egy mondatban!

• Adatfeldolgozási modell: Adatfolyam diagramok, az adatok feldolgozását mutatják a
rendszeren belül.

• Kompoźıciós modell: Egyed-kapcsolat diagramok. Bemutatják, hogyan épülnek fel az
egyedek más egyedekből.

• Architekturális modell: Az alrendszereket mutatják be, amelyekből a rendszer felépül.

• Osztálymodell: Objektum osztály/öröklődési diagramok, az egyedek közös tulajdonságait
ábrázolják.

• Inger-válasz modell: Állapotátmenet diagramok, a rendszer belső és külső eseményekre
adott reakcióit ı́rják le.

26. Melyek a legfontosabb különbségek a felhasználói és a rend-
szerkövetelmények specifikálása között? Kiknek szólnak az
egyes specifikációk?

Felhasználói követelmények: A rendszer szolgáltatásainak közérthető léırása, diagrammok-
kal, táblázatokkal, ábrákkal. Itt nem célszerű modelleket alkalmazni, az egyértelműség érdekében.
Rendszerkövetelmények:

• Strukturált dokumentum a rendszer szolgáltatásainak részletes léırásával (funkcionális spe-
cifikáció).Ez a szerződés alapja.

• A rendszerkövetelmények a felhasználói követelmények részletesebb és rendezett léırását
adják.

• A rendszertervezés alapjául szolgálnak, tartalmazhatják a rendszer modelljeit.

• A rendszerkövetelmények léırják, hogy a rendszernek mit kell elvégeznie, majd a tervek
határozzák meg, hogy hogyan tegye.

Kinek a számára készülnek az egyes dokumentumok?

• Felhasználói követelmények specifikációja:
Megrendelő vezetőségének, a rendszer végfelhasználóinak, rendszertervezőknek és a szerződéskötőknek.

• Rendszer követelmények specifikációja:
A rendszer végfelhasználóinak, a megrendelő középvezetőinek, a rendszertervezőknek és
szoftverfejlesztőknek.

• Szoftver specifikáció:
A rendszertrevezőknek, szoftverfejlesztőknek, tesztelőknek és karbantartóknak.

15

27. Melyek a protot́ıpuskésźıtés céljai? Milyen protot́ıpusok léteznek,
melyik milyen célból készül?

Céljai:

• A protot́ıpus elsődleges célja az, hogy seǵıtse a felhasználókat a rendszerkövetelmények
megértésében.

• A követelménytervezés része, a követelmények feltárásának és validációjának eszköze.

• A szoftverrendszer kezdeti verziója, amely alkalmas a rendszer koncepciójának bemu-
tatására és kipróbálására.

• A protot́ıpus csökkenti a követelményekkel kapcsolatos kockázatokat.

Protot́ıpusok t́ıpusai:

• Evolúciós protot́ıpus: Célja egy működő rendszer átadása a megrendelőnek. A legfon-
tosabb követelmények implementálásával egyszerű rendszer készül, amelyet újabb köve-
telmények feltárásával fokozatosan egésźıtenek ki új funkciókkal.

• Eldobható protot́ıpus: Célja a követelményspecifikációból fakadó kockázat csökkentése.
A protot́ıpust egy kezdeti specifikáció alapján késźıtik, validálásra átadják a felhasználónak,
majd eldobják.

28. Mi a különbség az evolúciós és az eldobható protot́ıpus között?
Melyiket mikor érdemes alkalmazni?

• Evolúciós protot́ıpus: Célja egy működő rendszer átadása a megrendelőnek. A legfon-
tosabb követelmények implementálásával egyszerű rendszer készül, amelyet újabb köve-
telmények feltárásával fokozatosan egésźıtenek ki új funkciókkal.

• Eldobható protot́ıpus: Célja a követelményspecifikációból fakadó kockázat csökkentése.
A protot́ıpust egy kezdeti specifikáció alapján késźıtik, validálásra átadják a felhasználónak,
majd eldobják.
Az eldobható protot́ıpus nem tekinthető végleges rendszernek, mert:

– A kivételek, hibák kezelése általában hiányzik.

– Több rendszertulajdonság kimaradhat a protot́ıpusból.

– Nem készül specifikáció a hosszú távú karbantartásra.

– A protot́ıpus még nem a megfelelő struktúra szerint épül.

Alkalmazási területek:

• Evolúciós protot́ıpus:
Weblap fejlesztésben és e-business alkalmazásokban használják.

• Eldobható protot́ıpus:
A követelmények validálása: a protot́ıpus felfedheti a félreértéseket, hibákat és hiányosságokat
a követelményekben

16

29. Mit jelent az adatbázis-programozás? Milyen rendszerek fej-
lesztésére alkalmas?

• Az evolúciós fejlesztés az adatbázison alapuló üzleti alkalmazások területén általánosan
alkalmazott technika.

• A kereskedelmi adatbázis-kezelő rendszerek olyan 4GL fejlesztő eszközöket tartalmaz-
nak, amelyek támogatják a lekérdezést/adatkezelést (SQL), táblázatkezelést, jelentés ge-
nerálást, felhasználói felületek tervezését, stb.

• Az adatfeldolgozási alkalmazásokban sok közös feladat van: adatbázis manipulációk (ke-
resés, frisśıtés, rendezés, stb.), egyszerű műveletek, űrlapkezelés, stb. Egy 4GL-ben ezeket
általánośıtják.

• Gyakran integrálhatók CASE eszközökkel is. Ezek generálhatnak SQL-t, vagy alacsonyabb
szintu kódot.

Adatbázison alapuló rendszerek fejlesztésére alkalmas. (??)

30. Melyek a protot́ıpus késźıtésének előnyei? Ismertese a pro-
tot́ıpuskésźıtő technikákat! Melyiket milyen esetben célszerű
alkalmazni?

Protot́ıpuskésźıtés előnyei:

• Seǵıt felismerni a szoftver felhasználója és késźıtője közti félreértéseket.

• Kiderülhet, hogy hiányzik valamely szolgáltatás, vagy ellentmondások vannak a szolgáltatások
között.

• A szoftverfolyamat elején már egy – legalábbis részben, modellként - működő rendszer áll
rendelkezésre.

• A protot́ıpus felhasználható a rendszer-specifikáció alapjaként.

• Támogathatja a felhasználók képzését és a rendszertesztet is.

Protot́ıpuskésźıtő technikák:

• Evolúciós protot́ıpus késźıtése:

– Célja egy működő rendszer átadása a megrendelőnek (esetleg korlátozott funkciona-
litással)

– A legfontosabb követelmények implementálásával egyszerű rendszer készül, amelyet
újabb követelmények feltárásával fokozatosan egésźıtenek ki új funkciókkal.

– Az AGILIS fejlesztés alapvető módszere.

– Weblap fejlesztésben és e-business alkalmazásokban használják.

17

– Olyan rendszereknél célszerű alkalmazni, ahol nem késźıthető el előre a végleges spe-
cifikáció. Ilyenek általában az intenźıv felhasználói interfész-használatot igénylő rend-
szerek.

– Nincs részletes rendszerspecifikáció, sokszor a részletes követelménydokumentum is
hiányzik.

– A felhasználó már a rendszer fejlesztése közben jelezheti, hogy milyen irányban ḱıvánja
folytatni a fejlesztést.

– A fejlesztéshez gyors, iterálható fejlesztő eszközökre és módszerekre van szükség.

– Mivel nem készül követelményspecifikáció, a validáció is csak a rendszer bemutatásával
történhet.

– A specifikáció, a tervezés és az implementáció átlapolható.

– A rendszer inkrementumok sorozataként fejlődik, és kerül a felhasználóhoz, vagyis
a felhasználó kulcsfigurái minden inkrementum tervezésében és értékelésében részt
vesznek.

– Gyors fejlesztő eszközök és technikák alkalmazhatók (CASE eszközök, 4GL, folya-
matmodellező nyelvek: BPML-Business Process Modeling Language).

– A felhasználói felületek GUI fejlesztő eszközökkel késźıthetők.

• Eldobható protot́ıpus késźıtése:

– Célja a követelményspecifikációból fakadó kockázat csökkentése.

– A protot́ıpust egy kezdeti specifikáció alapján késźıtik, validálásra átadják a fel-
használónak,majd eldobják.

– A követelményspecifikáció elkészülte után nem használható fel.

– Az eldobható protot́ıpus nem tekinthető végleges rendszernek, mert:

∗ A kivételek, hibák kezelése általában hiányzik.

∗ Több rendszertulajdonság kimaradhat a protot́ıpusból.

∗ Nem készül specifikáció a hosszú távú karbantartásra.

∗ A protot́ıpus még nem a megfelelő struktúra szerint épül.

31. Mit tenne, ha egy eldobható protot́ıpust a megrendelő meg
akarna vásárolni? Milyen érveket hozna fel álláspontja in-
doklására?

Az eldobható protot́ıpus nem tekinthető végleges rendszernek, mert:

• A kivételek, hibák kezelése általában hiányzik.

• Több rendszertulajdonság kimaradhat a protot́ıpusból.

• Nem készül specifikáció a hosszú távú karbantartásra.

• A protot́ıpus még nem a megfelelő struktúra szerint épül.

18

A vezetok gyakran nyomást gyakorolnak a fejlesztőkre, hogy egy működő eldobható protot́ıpust
végleges rendszerként adjanak át. Ez nagyon veszélyes, mert:

• Az eldobható protot́ıpus nem alaḱıtható úgy, hogy a nem-funkcionális követelményeknek
(teljeśıtmény, megb́ızhatóság, skálázhatóság, stb.) eleget tegyen.

• A protot́ıpus rendszerint dokumentálatlan marad, mert a cél a gyors elkésźıtés és bemu-
tatás.

• A változtatások miatt a rendszer struktúrája általában romlik a fejlesztés során.

• A protot́ıpus késźıtésekor az általános szervezeti szabványokat nem tartják be (minőségbiztośıtás,
technológiai fegyelem, projekt dokumentálás)

32. Ismertesse a formális specifikáció helyét és jelentőségét a
szoftverfolyamatban!

Formális specifikáció: A formális specifikáció egy matematikai jelölésrendszert alkalmaz, pon-
tosan specifikált szótárral, szintaxissal és szemantikával. A specifikálás és a tervezés nagymértékben
összefonódik egymással. Az architektúra-tervezés adhatja az alapot egy specifikáció struktúrájához.
A szoftverspecifikáció folyamatának előrehaladásával az ügyfél befolyása csökken, a vállalkozó
befolyása növekszik.

Formális specifikációs technikák:

• Algebrai megközeĺıtés: A rendszert műveletei és azok kapcsolatai alapján ı́rja le.

• Modell alapú megközeĺıtés: A rendszert állapotmodellel specifikálja, amely halma-
zokból és sorozatokból álló matematikai konstrukciókat tartalmaz, a műveleteket pedig
aszerint definiálja, ahogy azok a rendszer állapotát módośıtják.

19

A formális specifikáció alkalmazása:

• A formális specifikáció a szoftverfejlesztés kezdeti szakaszában ḱıván nagyobb erőfesźıtéseket.

• A követelmények alaposabb és részletesebb elemzése azzal jár, hogy kevesebb lesz a hiba
a követelményspecifikációban.

• A következetlenségek és a hiányosságok felfedhetők és kijav́ıthatók a formális modellekkel.

• Ezért a követelmények későn felfedezett hibáiból eredő többletmunka lesz kevesebb.

33. Sorolja fel a formális specifikáció előnyeit és hátrányait! Mi-
lyen t́ıpusú rendszerek specifikálásakor alkalmazzák a formális
módszereket?

Formális specifikáció hátrányai: A formális módszerek - az előzetes várakozások ellenére
nem tudtak teret hód́ıtani, mert:

• Kialakultak többé-kevésbé sikeres módszerek, mint az OO tervezés, konfigurációkezelés, a
strukturált programozás, stb., amelyek jav́ıtották a szoftver minőségét.

• Újabban a szoftver gyors piacra kerülése fontosabb, mint a minőség. A gyors fejlesztési
technikák nem illeszkednek a formális módszerekhez.

• A formális módszerek csak korlátozottan alkalmazhatók például a felhasználói interfészek,
felületek és munkafolyamatok specifikálására.

• A formális módszerek nehezen, vagy egyáltalán nem alkalmazhatók nagy rendszerek esetén.

• Még kevés eszköz készült a formális módszerek támogatására.

• A formális módszereknek csak korlátozott felhasználási lehetőségei vannak. Alkalmazásuk
kockázata és költsége sok esetben nagyobb, mint a várható előnyök.

A formális specifikáció előnyei:

• Azoknál a rendszereknél, amelyeket formális módszerekkel fejlesztettek, a hibaarány jóval
alacsonyabb volt.

• Ezért elsosorban kritikus rendszerek fejlesztésénél alkalmazzák, ahol a rendszer igen magas
verifikálási és validálási költségeihez és az esetleges hibákból eredő katasztrófa költségeihez
képest még kifizetodo a használata.

Milyen t́ıpusú rendszereknél alkalmazzák?
A nagy rendszereket alrendszerekre bontják, amelyek között jól definiált interfészeket kell spe-
cifikálni. Az alrendszerek közti interfészek specifikálása teszi lehetővé, hogy az alrendszerek
fejlesztése egymástól függetlenül történjen. Az interfészek absztrakt adatt́ıpusokkal, vagy ob-
jektum osztályokkal definiálhatók. A formális specifikáció algebrai megközeĺıtése különösen al-
kalmas az interfészek pontos specifikálására. A formális specifikációt nýılt interfészek, kommu-
nikációs protokollok definiálására is alkalmazzák.

20

34. Melyek azok a rendszerek, amelyeknél a formális specifikációt
leginkább alkalmazzák? Miért?

Elsősorban kritikus rendszerek fejlesztésénél alkalmazzák, ahol a rendszer igen magas verifikálási
és validálási költségeihez és az esetleges hibákból eredő katasztrófa költségeihez képest még
kifizetődő a használata.

35. Hol foglal helyet az architekturális tervezés a szoftverfolya-
matban? Mire szolgál a rendszer architekturális terve?

Mire szolgál a rendszer architekturális terve?
Az architekturális tervezés az a tervezési folyamat, amelynek során kijelölik a rendszert alkotó
alrendszereket és azt a keretrendszert, amely vezérli az alrendszereket és biztośıtja közöttük a
kommunikációt. A folyamat végeredménye a szoftver architektúra, amely a tervezés alapjául
szolgál. Ez a rendszertervezés folyamatának kezdeti lépcsőfoka.
Feladata:

• Összekötni a specifikáció és a tervezés folyamatát

• Kialaḱıtani a rendszer alapvető struktúráját és azt a keretrendszert, amely a rendszert
egységbe foglalja és működését iránýıtja.

Gyakran egyes specifikációs tevékenységekkel párhuzamosan végezhető. A kezdeti architekturális
elképzelések már a specifikációban tükröződhetnek. Magába foglalja a fő rendszerkomponensek
és azok vezérlésének, valamint kommunikációjának meghatározását.

36. Kliens/szerver modell

Olyan osztott rendszermodell, amely bemutatja hogyan oszlanak meg az adatok és a feldol-
gozások a komponensek között.

21

Elemei:

• Szerverek: Adatkezelő szerverek, nyomtatószerverek, alkalmazás szerverek, kommunikációs
szerverek, stb.

• Kliensek: Többnyire önálló alrendszerek, amelyek hozzáférnek a szerverek szolgáltatásaihoz.
Egyszerre sok példányban futnak.
T́ıpusai:

– Vékony kliens: Böngésző, szkriptekkel

– Vastag kliens: komplett kis alrendszer, helyi adatokkal, funkciókkal

• Hálózat: A klienseknek biztośıt hozzáférést a szerverek szolgáltatásaihoz.

37. Milyen előnyei és hátrányai vannak a kliens/szerver modell-
nek?

Előnyök:

• Jól struktúrált, osztott architektúra.

• Könnyen kiegésźıthető új szerverrel (új funkcióval).

• Alacsonyabb hardver követelményei vannak.

Hátrányok:

• Nincs megosztott, közös adatmodell, mindegyik alrendszer a saját szempontjai szerint
kialaḱıtott adatmodellt használja (ez előny a teljeśıtmény szempontjából).

• Redundáns adatkezelés folyhat minden szerverben.

• Nincs központi név- és szolgáltatás nyilvántartás, nehéz megtalálni, hogy milyen szerverek
és szolgáltatások léteznek.

38. Mi a különbség a vékony- és a vastag kliens között? Melyik
milyen célra alkalmas?

Vékony kliens: A vékony kliens egy minimális eszközökkel rendelkező kliens. Ez a kliens
t́ıpus a szükséges erőforrásokat is a távoli (host) gépen veszi igénybe. Egy vékony kliens fel-
adata többnyire kimerül az alkalmazásszerver által küldött adatok grafikus megjeleńıtésében; a
tényleges, nagy mennyiségű adat mozgatását, kezelését igénylő feladatot az alkalmazás szerver
végzi el. (Pl.: Web böngészőből futó alkalmazások)
Vastag kliens: A vastag kliens képes arra, hogy önmaga hajtson végre nagyobb adat-
mennyiségekkel feldolgozásokat, amikor a szerver inkább elsődleges tárolóként viselkedik. Ennek
ellenére, a kifejezés inkább a számı́tógép szoftverére vonatkozik, és egyre inkább alkalmazzák
hálózati számı́tógépek esetén, ahol a számı́tógép jelentős hálózati alkalmazásokat (is) futtat.

22

39. Milyen modelleket alkalmaznak az objektumorientált tervezésben?
Melyik mire alkalmas?

Objektum-modellek:

• A rendszer felbontása együttműködő objektumokra. Az objektumok egyéni állapottal és
az állapotokon értelmezett műveletekkel rendelkeznek.

• A rendszert jól definiált interfészekkel rendelkező, lazán csatolt objektumokra bontja, ame-
lyek egymás szolgáltatásait veszik igénybe.

• Az objektum orientált felbontás az objektum osztályok, attribútumaik és műveleteik azo-
nośıtását (felismerését és helyes modellezését) jelenti.

• Az implementáció során a konkrét objektumok ezekből az osztályokból jönnek létre. Az
objektumok műveleteinek koordinálását valamilyen vezérlési modellel ábrázolják.

Adatfolyam-modellek:

• A rendszer felbontása funkcionális modulokra, amelyek az inputokat outputokká transz-
formálják (csővezeték modellnek is nevezik). A modulok funkcionális transzformációk.

• Az adatfolyam modellben az inputot funkcionális transzformációk dolgozzák fel és ennek
eredményeként álĺıtják elő az outputot.

• Tulajdonképpen megegyezik a UNIX shell
”
pipe and filter” modelljével.

• Régóta alkalmazzák az adatfeldolgozási rendszerek modellezésére. (főleg kötegelt, szek-
venciális adatfeldolgozás esetén)

• Interakt́ıv rendszerek modellezésére csak nagyon prećız specifikálással alkalmas.

40. Mi a különbség a központośıtott vezérlés és az esemény alapú
vezérlési modell között?

Központośıtott vezérlés: Egy alrendszer végzi a teljes rendszer vezérlését, ind́ıtja, leálĺıtja,
stb. a többi alrendszert.

• Hı́vás-visszatérés modell: Fa-struktúrájú modell, ahol a csúcson van a vezérlő alrend-
szer. A vezérlés h́ıvások sorozatán keresztül jut el a modulokhoz. Leginkább szekvenciális
rendszerekhez alkalmazható (pl.: listafeldolgozás, listázás, jelentésgenerálás)

• Kezelő-modell: Konkurens rendszerek modellezésére alkalmas. Egy központi rendszer-
komponens koordinálja, ind́ıtja, álĺıtja le a rendszerfolyamatokat (komponenseket, vagy
alrendszereket), amelyek párhuzamosan is végrehajthatók. Alkalmazható szekvenciális
rendszerekben is, ahol a vezérlő modul állapotváltozók értéke alapján h́ıvja meg az egyes
alrendszereket.

23

Esemény alapú vezérlés:
Minden alrendszer reagálhat az őt érintő külső, vagy más alrendszer által generált eseményekre.
Eseményvezérelt rendszer lehet pl. egy táblázatkezelő is, ahol egy cella értékének megváltozása
más cellákat is megváltoztat, vagy más alrendszert aktivizál.

• Broadcast-modell: Az eseményről mindegyik alrendszer értesül, és az reagál rá, ame-
lyiknek ez a feladata.

• Megszaḱıtásvezérelt-modell: Valós idejű rendszerek modellje, ahol egy megszaḱıtás-
kezelő észleli az eseményt és elind́ıtja az esemény feldolgozásáért felelős alrendszert.

41. Milyen vezérlési modellek alkalmazhatók párhuzamos rend-
szerekben?

Konkurens rendszerek modellezésére alkalmas. Egy központi rendszerkomponens koordinálja,
ind́ıtja, álĺıtja le a rendszerfolyamatokat (komponenseket, vagy alrendszereket), amelyek párhuzamosan
is végrehajthatók. Alkalmazható szekvenciális rendszerekben is, ahol a vezérlő modul állapotváltozók
értéke alapján h́ıvja meg az egyes alrendszereket.

42. Milyen UML modellekkel ábrázolható a rendszer és környe-
zetének kapcsolata?

Környezeti modell:

• A rendszer határainak ábrázolására szolgálnak (mi tartozik a rendszerhez és mi nem).

• A határok kijelölése gyakran nem technikai, hanem társadalmi, vagy szociális szempon-
toktól is függ.

• A rendszer és külső rendszerek közti kapcsolatok ábrázolása ugyancsak a környezeti mo-
dellek feladata.

• A környezeti modell ábrázolási módja általában egyszerű blokkdiagram.

43. Mire szolgálnak az objektumorientált tervezésben alkalmaz-
ható diagramok? Soroljon fel és jellemezzen néhányat!

• Alrendszer modellek: Az objektumok logikai csoportośıtását mutatják az összefüggő
alrendszerekben.

• Szekvencia modellek: Az objektumok interakcióinak sorrendjét ábrázolják.

• Állapotmodellek: Bemutatják, hogy egy objektum hogyan változtatja az állapotát,
válaszol bizonyos eseményekre.

• Egyéb modellek: Használati eset modellek, öröklődési modellek, osztálydiagramok, stb.

24

44. Ismertesse a valós idejű rendszerek főbb jellegzetességeit.

A valós idejű rendszerek olyan (gyakran beépülő) szoftverrendszerek, amelyek figyelik környe-
zetüket és adott (rövid) időn belül képesek reagálni a környezeti hatásokra (ingerekre). Általában
inger-válasz t́ıpusú rendszerek.
Vannak:

• Periodikus ingerek: Időźıtés hatására végez valamit a rendszer.

• Aperiodikus ingerek: Rendszertelenül bekövetkező külső inger hatására kell valamit
csinálni.

A valós idejű rendszerek működésében az idő kritikus tényező.
A valós idejű rendszerek gyakran az átlagosnál nagyobb felelősségű feladatot látnak el.
A valós idejű rendszerekhez mindig tartoznak hardver eszközök is:

• Érzékelők, amelyek adatokat gyűjtenek.

• Szabályozók, működtetők, amelyek a rendszer környezetét befolyásolják.

45. Melyek a fő különbségek az átlagos adatfeldolgozó rendszerek
és a valós idejű rendszerek között?

:((((

46. Van-e szerepe a valós idejű rendszerek tervezésében a hard-
vertervezésnek? Miért?

A rendszer hardver és a szoftver elemeit együtt kell megtervezni, célszerűen elosztva a funkciókat
a hardver és a szoftver között. A döntést azonban, hogy mit kell hardverben és mit szoftverben
megvalóśıtani, célszerű halogatni, az optimális megoldás megtalálása érdekében. Egy funkció
sok esetben hardverrel jobb teljeśıtménnyel valóśıtható meg, de hosszabb fejlesztést igényel és a
változások nehezebben követhetők.

47. Milyen programnyelveket alkalmaznak a valósidejű rendsze-
rek programozására?

• C: Lehetséges effekt́ıv programokat ı́rni, de nem feltétlenül támogatja a párhuzamos folya-
matokat, vagy a megosztott erőforrások kezelését. Ezeket azonban az operációs rendszer
megoldhatja.

• Ada: Valós idejű rendszerek programozására készült, ezért támogatja a konkurenciát és
az újabb verziói már az ütemezést és az időźıtést is kezelik.

• JAVA: A Java támogatja a konkurenciát (szálak és szinkronizált módszerek), ezért alkal-
mas a kevéssé kritikusan valós idejű rendszerek fejlesztésére.

25

48. Miért kevéssé alkalmas a Java programozási nyelv szigorúan
valós idejű rendszerek programozására?

Nem használható szigorúan real-time rendszerekhez, mert:

• Nem lehet megadni egy szál végrehajtási idejét,

• A
”
szemétgyűjtés” nem vezérelhető,

• A megosztott erőforrásokat tartalmazó sorok méretét nem lehet lekérdezni,

• A különböző virtuális gép implementációk különböző időźıtéssel futtatják ugyanazt a szoft-
vert,

• A futási idő tár- és processzorhasználatának elemzése nem lehetséges.

49. Melyek a valós idejű futtatórendszerek főbb komponensei?

50. Melyek a szoftver újrafelhasználásán alapuló fejlesztés előnyei
és hátrányai?

Előnyök:

• Javuló megb́ızhatóság: A komponenseket már több működő rendszerben kipróbálták.

• Alacsonyabb projektkockázat: A komponensek ára és adaptálási költsége pontosabban
tervezhető.

26

• A szaktudás jobb kihasználása: A speciális szaktudás a komponensben testesül meg,
nem szükséges minden projekthez külön alkalmazni.

• Szabványosság: A szabványoknak való megfelelést a komponensek garantálják (interfészek,
kommunikációs és GUI szabványok)

• Gyorsabb fejlesztés: Egy rendszer kifejlesztése gyorsabb, ha kevesebb eredeti fejlesztést
igényel.

Hátrányok:

• Növekvő karbantartási költségek: A komponens forráskódja és tervezési dokumentációja
hiányában növekszik a karbantartás költsége.

• Az eszköztámogatás hiánya: A CASE eszközök gyakran nem támogatják az újrafelhasználást.

• A ”nem mi találtuk ki” jelenség: Egy teljes rendszer kidolgozása nagyobb szakmai
kih́ıvás.

• A komponenskönyvtárak karbantartása: Sokba kerül a komponenskönyvtárak feltöltése
és folyamatos karbantartása.

• Az újrafelhasználható komponensek megtalálása és adaptálása: Még nem fejlődtek
ki a komponensek megtalálását és adaptálását seǵıtő általános technikák.

51. Soroljon fel három érvet, amely támogatja a komponens alapú
újrafelhasználást és hármat, amely ellene szól!

Előnyök:

1. A komponens alapú fejlesztés beilleszthető a szabályos szoftverfolyamatba

2. A komponensek az objektumosztályoknál sokkal absztraktabbak és különálló szolgáltatásoknak
tekinthetők

3. A legtöbb programozási nyelvben hivatkozhatunk könyvtárban tárolt komponensekre

Hátrányok:

1. A komponensek inkompatibilitása miatt a költség- és időmegtakaŕıtás a vártnál kevesebb
lehet (integrációs munkák).

2. Nehézséget okozhat a komponensek megtalálása (nincsenek szabványok a komponensek
tulajdonságainak léırására, hiányoznak az egységes komponens könyvtárak).

3. A követelmények változását követő evolúció lehetetlen, ha a komponensek nem cserélhetők.

27

52. Mi a programgenerátor alapú újrafelhasználás lényege? Mi-
lyen területeken alkalmazzák?

A generátor alapú újrafelhasználás akkor lehetséges, ha egy programgenerátor tartalmazza egy
szakterület alapvető ismeretanyagát. (pl. adatfeldolgozás). Az ilyen programgenerátorok tar-
talmazzák a szabványos algoritmusokat és függvényeket, és ezek paraméterezését követően a ge-
nerátor automatikusan előálĺıtja a programot. A szakterületre kidolgozott nyelven, vagy újabban
grafikus eszközökkel lehet elkésźıteni a rendszer modelljét.

53. Miért alkalmazzák a generátor alapú újrafelhasználást elsősorban
az adatfeldolgozó, eBusiness rendszerek fejlesztésében?

A generátor alapú újrafelhasználás igen költséghatékony, de viszonylag kevés szakterülethez
léteznek ilyen rendszerek.(pl.: adatfeldolgozó, e-business).
Ezzel a módszerrel könnyebben álĺıthatók elő az alkalmazások, mint a komponens alapú módszerrel.

54. Mi a komponens, milyen interfészei vannak?

A komponensek szolgáltatásokat nyújtanak a rendszer számára, a végrehajtás helyétől és a
megvalóśıtás nyelvétől függetlenül.

• Egy komponens egy függetlenül végrehajtható program, amely egy vagy több végrehajtható
objektumból áll.

• A komponensek interfészeit publikálják és minden interakció ezeken az interfészeken ke-
resztül folyik. A komponens forráskódja sok esetben nem hozzáférhető, belső állapotai
nem láthatóak.

Komponens interfészei:

• Szolgáltatott interfészek: A komponens által szolgáltatott interfészek.

• Szükséges interfészek: Azok az interfészek, amelyeket a komponenst használó rendszer-
nek, vagy környezetének kell biztośıtania.

55. Milyen nyelvek és környezetek alkalmasak a komponensek
integrálására?

A legtöbb programnyelvben hivatkozhatunk könyvtárban tárolt komponensekre. Leggyakrab-
ban szkriptnyelveket használnak komponensek integrálására.
Köztes integrációs keretrendszerek: komponensek közti kommunikációt és információcserét támogató
szabványok és osztályok. (Ilyen például a CORBA, JavaBean, COM, DCOM, stb.)

28

56. Milyen hátrányai vannak az újrafelhasználható komponen-
sekkel történő szoftverfejlesztésnek?

Az újrafelhasználhatóság és a használhatóság ellentmondása: Minél általánosabb interfésszel ren-
delkezik, annál inkább újrafelhasználható, de annál bonyolultabb, vagyis kevésbé használható.

57. Mire szolgának az alkalmazási keretrendszerek, hogyan cso-
portośıthatók?

A keretrendszer absztrakt és konkrét osztályok gyűjteményéből és a köztük lévő interfészekből
álló alrendszer-terv.
A keretrendszerek úgy implementálhatók, hogy a terv részeit komponensek hozzáadásával egésźıtjük
ki. Általában viszonylag nagy, újrafelhasználható egységek, de nem önálló alkalmazások.
Az alkalmazások több keretrendszer integrálásával hozhatók létre.
A keretrendszerek csoportośıtása:

• A rendszer infrastruktúrájának keretrendszerei: A rendszer infrastrukturális alap-
jainak (kommunikáció, felhasználói felületek, titkośıtás, stb.) fejlesztését támogatják.

• Köztes, integrációs keretrendszerek: Komponensek közti kommunikációt és információcserét
támogató szabványok és osztályok. (Ilyen például a CORBA, JavaBean, JMI, COM,
DCOM, .NET, stb.)

• Vállalati alkalmazások keretrendszerei: Az egyes speciális szakterületi alkalmazások
fejlesztését támogatják. A szakterületi tudást tartalmazzák (pl. pénzügy, telekommu-
nikáció).

58. Mi a
”
polcról levehető” termék? Leginkább milyen rendsze-

rekben alkalmazzák?

A
”
polcról levehető”, COTS – Commercial Off-The-Shelf rendszerek általában komplett alkal-

mazási rendszerek, amelyek API-val rendelkeznek. Legtöbbször rendszerszoftver termékek, az
egyszerű komponenseknél nagyobb funkcionalitással.
Nagy rendszerek éṕıtésekor gyakran használt stratégia a COTS termékek integrálása. Különösen
a gyors fejlesztést ḱıvánó eCommerce, eBusiness rendszerek körében. A fejlesztési idő nagyságrendekkel
csökkenthető.

29

59. Milyen nehézségei vannak a COTS termékek alkalmazásának?

• A funkcionalitás és a teljeśıtmény nem tartható kézben: A COTS rendszerek
sokszor kevésbé effekt́ıvek mint azt a reklámokban ı́gérik.

• A COTS rendszerek együttműködése bizonytalan: A különböző COTS rendszerek
eltérő feltételezésekkel készültek (pl. sorkezelés), ezért az integráció nehéz lehet.

• Az evolúció ellenőrizhetetlen: A szálĺıtó és nem a felhasználó határozza meg.

• A COTS termékek támogatása: A szálĺıtó által biztośıtott támogatás gyakran nem
terjed ki a rendszer teljes élettartamára.

60. Miért drágább egy újrafelhasználható komponens kifejlesztése
az egyedi komponens kifejlesztésénél?

• Az újrafelhasználható komponensek meglévő komponensek általánośıtásával hozhatók létre.
Ehhez nagy tapasztalat kell(tehát hozzáértő személy).

• Az újrafelhasználható komponensek fejlesztési költségei többszörösen meghaladják az egy-
szerű, specifikus komponensek költségeit. Ezt egyetlen projekt költségeiből nem lehet
fedezni, ezért kialakultak olyan szoftverfejlesztő vállalatok, amelyek specializálódtak az
újrafelhasználható komponensek fejlesztésére.

61. Mi az alkalmazáscsalád? Miért alakultak ki az alkalmazáscsaládok?

Alkalmazás család: Az alkalmazáscsalád az alkalmazási rendszerek olyan termékcsaládja,
vagy termékvonulata, amelyek egy közös, szakterület-specifikus architektúrára épülnek (

”
közös

mag”).
Kialakulásának célja: A kialakulás célja az volt, hogy az alkalmazáscsalád magját (szoftver
magját) újra feltudják használni, amikor egy új alkalmazást szeretnénk fejleszteni.

62. Hogyan osztályozható az alkalmazáscsaládok specializációja?

• Platform specializáció: Az alkalmazás egyes verziói különböző platformokra készülnek
(pl. Windows, Solaris, Linux, ..), de a funkcionalitás azonos.

• Konfigurációs specializáció Az alkalmazás egyes verziói különböző perifériákkal képesek
együttműködni.(A perifériákat kezelő komponensek különböznek.)

• Funkcionális specializációAz alkalmazás egyes verziói eltérő funkcionális követelmények
kieléǵıtésére készülnek.(A funkcionális komponensek különböznek.)

30

63. Mi a különbség a tesztelés és a belövés között? Melyiknek
mi a célja?

Különbségek:

• A verifikáció és validáció feladata a hibák, hiányosságok létezésének felfedezése.

• A belövés ezen hibák helyének lokalizálása és kijav́ıtása.

• A belövés a program viselkedésére vonatkozó feltételezések felálĺıtásával kezdődik, majd
ezen feltételezések vizsgálatával próbálja megtalálni a hibákat.

• A belövés során felfedezett hibák jav́ıtása után újra kell tesztelni a programot.

Tesztelés célja:

• Felfedni a rendszerben (esetleg már a tervek szintjén) rejlő hibákat, nem arról megbizo-
nyosodni, hogy hibamentes a rendszer.

• Meggyőződni arról, hogy a rendszer egy-egy konkrét működési szituációban használhatóan
muködik.

Belövés célja:

• A felfedett hibák helyének lokalizálása és kijav́ıtása

64. Mi a célja a szoftver verifikációjának és mi a validáció felada-
ta?

Verifikáció: Annak ellenőrzése, hogy valóban a megfelelő terméket késźıtjük el, vagyis, hogy a
szoftver megfelel a specifikációnak.
Validáció: Annak bizonýıtása, hogy a terméket jól késźıtjük el, vagyis hogy a szoftver valóban
a megrendelő elvárásainak megfelelően működik (esetleg a specifikációval ellentétesen).

A szoftvernek azt kell megvalóśıtania, amit a felhasználó valóban elvár tőle.
A verifikáció és validáció (V&V) folyamata a szoftver teljes életciklusára kiterjed, a szoftver
folyamat minden fázisában szerepet kap.

65. Miért célszerű a szoftvertesztelés mellett átvizsgálást (ins-
pekció) is tartani?

Szoftver-átvizsgálás (inspekció): A rendszer reprezentációjának elemzése (Követelmény-
specifikáció, tervek, grafikus ábrázolások, forráskód). A forráskód elemzése automatizálható.(Statikus
verifikáció)
Miért célszerű inspekciót is tartani?

• A szoftver átvizsgálás célja a hiányosságok feldeŕıtése, a költséges tesztelés helyett a hibák
kb. 60 %-a felfedhető az átvizsgálás során.

31

• A fejlesztési folyamat kezdetétől alkalmazható, a dokumentumok (követelmények, tervek)
átvizsgálásával.

• Egy átvizsgálás során több hiányosság felfedezhető, amı́g egy teszt többnyire egy hibát fed
fel.(Legalábbis, ha egy hibát detektál, a tesztelést abba kell hagyni, és a hiba kijav́ıtását
követően újból elölről kell kezdeni.)

• Sok költséges tesztelést előzhet meg.

66. Mi a programtesztelés feladata? Milyen alapt́ıpusai vannak?

Szoftvertesztelés: A szoftver implementációjának tesztadatokkal való futtatása és a viselkedés
megfigyelése(Dinamikus verifikáció).
T́ıpusai:

• Hiányosságok tesztelése

– Feladata a rendszer hibáinak és hiányosságainak felfedése.

– Fajtái:

∗ Komponens tesztek:
Fekete doboz, ekvivalencia-osztályok, struktúrateszt, útvonal-teszt

∗ Integrációs tesztek:

”
Fentről lefelé/lentről felfelé”, interfészteszt, stressz-tesztek

∗ Objektumorientált tesztelés

• Statisztikai tesztelés: A rendszer teljeśıtményének és megb́ızhatóságának tesztelése,
valós helyzetekben (valós felhasználói inputtal és gyakorisággal).

67. Mire szolgál a szoftver átvizsgálása? Mi a különbség az átvizsgálás
és a tesztelés között?

A szoftver átvizsgálásának célja: A szoftver átvizsgálás célja a hiányosságok feldeŕıtése, a
költséges tesztelés helyett a hibák kb. 60 %-a felfedheto az átvizsgálás során.
Különbségek:

• Egy átvizsgálás során több hiányosság felfedezhető, amı́g egy teszt többnyire egy hibát fed
fel.(Legalábbis, ha egy hibát detektál, a tesztelést abba kell hagyni, és a hiba kijav́ıtását
követően újból elölről kell kezdeni.)

• Az átvizsgálás már fejlesztési folyamat kezdetétől alkalmazható, a dokumentumok (köve-
telmények, tervek) átvizsgálásával, mı́g a tesztek nem

• Az inspekció alkalmas eszköz arra, hogy ellenőrizze, megfelel-e a program a specifikációnak

32

68. Milyen hiányosságokat lehet elsősorban felfedezni a progra-
mok átvizsgálása során?

• Dokumentumokban és forráskódban rejlő hiányosságok

• Követelményekben és tervekben lévő hiányosságok feldeŕıtése

69. Mi a Cleanroom szoftverfejlesztési folyamat lényege?

• A szoftverhibák elkerülését, nem pedig megtalálását és kijav́ıtását célzó szigorú átvizsgálási
folyamat. (A név a félvezető-gyártásból származik)

• A rendszer komponenseinek tesztelését helyetteśıti átvizsgálásokkal, megfelelnek-e a spe-
cifikációnak.

• Inkrementális fejlesztési módszer, először a kritikus inkrementumokat szálĺıtja le.

• Statikus verifikáció (szigorú átvizsgálások)

• A rendszer statisztikai tesztelése

• Formális specifikáció (állapotátmenet modell, strukturált programozás, csak néhány vezérlési
és adatabsztrakciós konstrukció használható)

70. Ismertesse a grafikus felhasználói kezelőfelületek tervezésének
alapelveit!

Alapelvek:

• A felhasználói jártasság figyelembevétele:
A felületnek olyan kifejezéseket és fogalmakat kell használnia, amelyeket az átlagos fel-
használó ismer.

• A felület konzisztenciája:
Azonos menüknek és parancsoknak azonos formátummal kell rendelkezniük, hasonló műveleteket
hasonló módon és helyen kell jelezni és megvalóśıtani.

• Minimális meglepetés:
A felhasználóban kialakul egy modell a rendszer muködésérol. A hasonló tevékenységeknek
hasonló hatást kell kiváltaniuk, különben a rendszer kellemetlen meglepetéseket okoz fel-
használó számára.

• Visszaálĺıthatóság:
Minden helyzetben számı́tani kel arra, hogy a felhasználó hibázhat, ezért gondoskodni
kell arról, hogy a hibát kijav́ıthassa: Visszavonási lehetőség (undo), esetleg többszintű.
Veszélyes tevékenységek megerőśıtése (pl. törlés),

”
Puha törlés”

• A felhasználó támogatása:
A felületnek könnyen elérhető seǵıtő, vagy súgó rendszerrel kell rendelkeznie. A súgót
strukturálni kell, nem szabad túl sok információt közölni. Előnyös a helyzetfüggő súgó
alkalmazása.

33

• A felhasználók sokfélesége:
Az alkalmi felhasználók több támogatást, a gyakorlott felhasználók egyszerűbb, gyorsabb
működést várnak.

71. Miért fontos a grafikus felhasználói kezelőfelület gondos ter-
vezése?

• A felhasználó a kezelőfelületen keresztül kerül kapcsolatba a rendszerrel, ennek alapján
alkot véleményt, csak ezután ismeri meg a rendszer funkcionalitását.

• A rosszul tervezett kezelőfelület gyakran katasztrofális hibákhoz vezet.

• A szegényes, vagy következetlen felhasználói kezelőfelület sok rendszer bukásához vezetett.

• Nagy fejlesztő szervezetekben szakértőket alkalmaznak (grafikus, pszichológus, szakterületi
szakértő), de kis/közepes cégeknél gyakran a kezelőfelület megtervezése is a szoftver tervező
feladata.

72. Miért célszerű egyes rendszerekben különböző felhasználói
felületeket kidolgozni a gyakorlott és az alkalmi felhasználók
számára?

Az alkalmi felhasználók több támogatást, a gyakorlott felhasználók egyszerűbb, gyorsabb működést
várnak.

73. Milyen alapelemeket használunk a grafikus felhasználói ke-
zelőfelületeken?

• Ablakok: Az ablaktechnikával több ablakban egyszerre többféle információ jeleńıthető
meg.

• Ikonok: Az ikonokkal az információ fajtái jelölhetők: állományok, folyamatok, stb.

• Menük: A menütechnikával a parancsok egy strukturált menüből választhatók ki. A
felhasználónak nem kell egy parancsnyelvet megtanulnia és parancsokat begépelnie.

• Pozicionálás: Egér, vagy más eszköz alkalmazható egy menüpont kiválasztására, vagy
egy ablakban a lényeges elemek meg- vagy kijelölésére.

• Grafika(sźınek, képek): Grafikus elemek és sźınek alkalmazása a szöveg mellett (vagy
helyett) áttekinthetőbbé teszi a képernyőt.

34

74. Milyen eszközöket alkalmazhatunk a grafikus felhasználói ke-
zelőfelületen a felhasználó támogatására?

A kezelőfelület tervezésekor figyelembe kell venni a felhasználók igényeit, gyakorlatát és képességeit.
A felületnek könnyen elérhető seǵıtő, vagy súgó rendszerrel kell rendelkeznie. A súgót struk-
turálni kell, nem szabad túl sok információt közölni. Előnyös a helyzetfüggő súgó alkalmazása.

75. Milyen előnyei és hátrányai vannak a parancsnyelv alkalmazásának
a felhasználói interakciókban?

A felhasználó parancsokat gépelve utaśıtja a rendszert (pl. Unix)
Parancsnyelv előnyei:

• Egyszerű, olcsó terminálon is alkalmazható,

• Egyszerűen feldolgozható (pl. ford́ıtó technikával)

• Bonyolult, egymásba ágyazott parancsok is kezelhetők,

• Rugalmas.

Parancsnyelv hátrányai:

• Nehezen tanulható, az átlagos felhasználó számára bonyolult,

• Gépelési gyakorlatot ḱıván

• A hibakezelést (hibajelzés, visszavonás) nehéz megoldani

A parancsnyelveket a gyakorlott felhasználó számára lehet alkalmazni. A menürendszer alter-
nat́ıvájaként célszerű biztośıtani.

76. Sorolja fel és jellemezze a felhasználói interakciók fajtáit!

Közvetlen manipuláció: A felhasználó közvetlenül a képernyőn látható objektumot kezeli
(pl. törléshez kukába viszi).

• Előnyei:

– Könnyen tanulható és gyors,

– A felhasználó azonnal visszajelzést kap, ı́gy a tévedés gyorsan visszavonható.

• Hátrányai:

– Bonyolult lehet a felhasználó tevékenységéről (szándékáról) a megfelelő információt
begyűjteni a program számára,

– Csak akkor használható, ha a feladatok és objektumok egyértelműen megkülönböztet-
hető ikonokkal reprezentálhatók.

35

Menükiválasztás: A felhasználó a rendszer által felḱınált (sokszor helyzet-függő) listából
választhat, a kijelölést egér, vagy kurzormozgatással, rövid́ıtett név béırással is végezheti. Al-
kalmazható az egyszerű (pl. érintőképernyős) terminálokon is.

• Előnyei:

– A felhasználónak nem kell parancsokat megjegyeznie,

– Kevés gépelést igényel és a hibák könnyen kivédhetők,

– Állapotfüggő súgó alkalmazható.

• Hátrányai:

– Az akciók közötti logikai összefüggések (and, or) nem jeleńıthetők meg,

– Kevés választási lehetőséget enged meg, a sok lehetőséghez strukturálni kell a menüket.

– A gyakorlott felhasználó számára lassú.

Űrlapkitöltés: Az űrlap az aktuális állapothoz alkalmazható. Olyan rendszerekben alkal-
mazzák, ahol sok adatot kell bevinni (pl. adatrögźıtés).

• Előnyei:

– A felhasználói hibák felfedhetők és jelezhetők, illetve kivédhetők,

– Legördülő választási lehetőséggel sok felhasználói tévedés kizárható,

– Könnyen megtanulható.

• Hátrányai:

– Nagy képernyőfelületet foglal.

Parancsnyelv: A felhasználó parancsokat gépelve utaśıtja a rendszert (pl. Unix). A parancs-
nyelveket a gyakorlott felhasználó számára lehet alkalmazni. A menürendszer alternat́ıvájaként
célszerű biztośıtani.

• Előnyei:

– Egyszerű, olcsó terminálon is alkalmazható,

– Egyszerűen feldolgozható (pl. ford́ıtó technikával)

– Bonyolult, egymásba ágyazott parancsok is kezelhetők,

– Rugalmas.

• Hátrányai:

– Nehezen tanulható, az átlagos felhasználó számára bonyolult,

– Gépelési gyakorlatot ḱıván

– A hibakezelést (hibajelzés, visszavonás) nehéz megoldani

Természetes nyelv:

• A felhasználó a parancsokat természetes nyelven gépeli be, amelynek szótára korlátozott.
Az ilyen rendszerek általában speciális alkalmazási területet szolgálnak ki.

36

• A természetes nyelv megfelelő az alkalmi felhasználó számára de a gyakorlott felhasználó
nem kedveli a túl sok gépelés miatt.

• Beszédfelismeréssel kombinálva – szűḱıtett kifejezésekkel – ma is használják.

77. Milyen lehetőségek vannak az információ grafikus megjeleńıtésére?

• A rendszer megjeleńıti a felhasználó számára közlendő információkat.

• Ez az információ megjelenhet közvetlenül szöveges formában, vagy más módon (pl. grafi-
kusan, akár hang ḱıséretében).

• A jól tervezett rendszerekben maga az információ és az azt megjeleńıtő szoftver különválik.

• A Model-View-Controller (MVC) általánosan alkalmazott architektúra az adatok többféle
megjeleńıtését.

Az információ lehet statikus információ:

• Értéket kap a munkafázis (session) kezdetén és ez a session ideje alatt nem változik meg,

• Lehet numerikus, szöveges, vagy grafikus

Vagy dinamikus információ:

• Megváltozik a munkafázis alatt és a megváltozott értéket a felhasználó számára meg kell
jeleńıteni,

• Lehet numerikus, szöveges, vagy grafikus

78. Írjon példákat, amikor az információt célszerű grafikusan,
analóg módon megjeleńıteni.

Digitális megjeleńıtés:

• Pontos értékeket közöl

• Kevés helyet foglal a képernyőn.

Analóg megjeleńıtés:

• Egy pillantással áttekinthető

• Relat́ıv értékeket is képes közölni:

– Egy állandó értékhez képest (egy határhoz közeli értéket sźınnel még külön ki lehet
emelni), vagy

– Korábbi minimális-maximális értékhez képest

37

79. Milyen szabályokat kell betartani a sźınek alkalmazásakor a
grafikus felhasználói kezelőfelületen?

• Ne használjunk túl sok sźınt. Egy felületen 4-5, egy rendszerben 7-8 sźın a maximum.

• Először tervezzünk monokróm felületeket, utána adjuk hozzá a sźıneket.

• Az állapotváltozásokat jelezzük sźınváltással.

• A végrehajtandó feladatokat jelöljük sźınkóddal, a különböző feladatokat különböztessük
meg sźınekkel is.

• A sźınkódolást alkalmazzuk következetesen a teljes rendszerben.

• Egyes sźınkombinációk zavaróak, vagy fárasztják a szemet.

80. Milyen szempontokat kell figyelembe venni a rendszer üze-
neteinek szövegezésekor?

Szempontok:

• A hibaüzenetek tervezése különösen fontos: a kezdő felhasználó ezekkel találkozik a leg-
gyakrabban. A rossz, vagy számára érthetetlen hibaüzenetek miatt elutaśıthatja a rend-
szert.

• Az üzeneteknek udvariasnak, előrevivőnek és következetesnek kell lennie.

• A hibaüzenetek tervezésének meghatározó tényezője a felhasználó háttere, gyakorlata.

Az üzenetek szövegezése:

• Szövegkörnyezet: A tájékoztató rendszernek mindig a felhasználó tevékenységéhez és a
rendszer aktuális állapotához igazodó üzenetet kell adnia.

• Tapasztalat: A tapasztalt felhasználót már idegeśıti az a kifejtő magyarázat, amit a
kezdő felhasználó még hasznosnak tart és igényel. A tájékoztató rendszernek mindkét
üzenett́ıpust fel kell ḱınálnia.

• Képzettség: Az üzeneteket a felhasználó képzettségéhez és gyakorlatához kell igaźıtani.
A különböző felhasználók számára szánt üzeneteket különböző módon, a számára érthető
terminológiával kell megfogalmazni.

38

• St́ılus: Az üzeneteket pozit́ıv módon éṕıtő jelleggel kell megfogalmazni. Egy üzenet soha
nem lehet sértő és nem gúnyolódhat.

• Kultúra: Hasznos, ha az üzenetek tervezője tisztában van azzal a kultúrával, ahol a
rendszert használni fogják. Az egyik országban megfelelő üzenetek a kulturális különbségek
miatt egy másik országban elfogadhatatlanok.

81. Miért célszerű a súgórendszerbe több belépési pontot biz-
tośıtani?

A súgó tervezése:

• A felhasználó seǵıtségért, információért fordul a súgóhoz.

• A súgó tervezésekor mindkét igényt figyelembe kell venni.

• Többféle lehetőséget kell biztośıtani, ehhez több belépési pontra van szükség.

• A jó súgórendszer hierarchikus szerkezetű, de bonyolult hálós struktúrájú, ahol az in-
formációs egységek között sokféle kapcsolat van.

• Több ablak alkalmazásával érthetővé tehető a bonyolult hierarchia.

A súgórendszer használata:

• Több belépési pontra van szükség, hogy a felhasználó a rendszer különböző állapotaiból
léphessen be.

• Ugyanakkor hasznos azt jelezni, hogy éppen hol jár a súgó hierarchiájában.

• Célszerű a korábban bejárt útvonalat is megjeleńıteni, mert a bonyolult hálóban könnyen
elvész a felhasználó. Ez a visszalépéseket is támogathatja.

82. Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok
számát csökkenteni?

Teszteset: A tesztesetek a teszthez szükséges inputok és a várt outputok specifikációi.
Tesztadat: A tesztadatok a rendszer tesztelésére kidolgozott input adatok.
Tesztadatok számának csökkentése: TODO Ekvivalenciaosztályok?

83. Mi a
”
fekete doboz” és a

”
fehér doboz” tesztelési stratégia

lényege? Melyiket milyen esetben lehet alkalmazni?

Fekete doboz tesztelés:

• Funkcionális tesztelésnek is nevezik.

• A programot fekete doboznak tekintjük, a tesztesetek a programspecifikáció alapján készülnek.

• Nem foglalkozik a program implementációjával.

39

• A tesztek tervezése a szoftverfolyamat korai szakaszában megkezdődhet.(Egyes Agilis módszereknél
előbb, mint a program tervezése!)

• Az előreláthatóan hibát okozó tesztesetek tervezéséhez szakterületi ismeretekre van szükség.

Fehér doboz tesztelés (Struktúrateszt):

• Fehér doboz vagy üvegdoboz tesztelésnek is nevezik, mert a tesztek a program struktúrájának,
implementációjának ismeretében készülnek.

• A struktúra és a kód ismeretében újabb ekvivalencia-osztályok definiálhatók

• A tesztelő a tesztesetek késźıtésekor elemzi a kódot, hogy biztośıtsa minden utaśıtás leg-
alább egyszeri végrehajtását (az összes lehetséges út-kombináció tesztelésére nincs reális
lehetőség).

Alkalmazási területek:
TODO

• Az objektumokhoz kapcsolódó műveletek tesztelése: Függvények, vagy eljárások, fekete-
vagy fehér doboz eljárással tesztelhetők.

• Fekete doboz tesztek: integrációs teszt, objektumosztályok tesztelése

84. Mit jelent a tesztadatok ekvivalencia-osztályozása? Írjon példát
az ekvivalencia-osztályok alkalmazására.

Ekvivalencia-osztályozás:

• A rendszer input és output adatait valamilyen közös jellegzetesség szerint csoportośıtják,
amelyekre a rendszer hasonló módon reagál:

• A fejlesztők legtöbbször az inputok tipikus értékeit veszik figyelembe.

• A teszteseteket a határértékek közelében és az osztályok közepéből célszerű kiválasztani:

Példa: ha az input 5 jegyű valós szám 10.000 és 99.000 között, akkor az ekvivalencia-osztályok:

• Azok a számok melyek kisebb 10.000-nél

• Azok a számok melyek 10.001-99.000 között vannak

• Azok a számok melyek 99.900-99.999 között vannak

• Azok a számok melyek 99.999-nél nagyobbak

40

85. Mi a célja az útvonaltesztelésnek? Mi a ciklomatikus komp-
lexitás, hogyan számı́tható?

Útvonal tesztelés célja:

• Az útvonal tesztelés strukturális tesztelési stratégia. Célja, hogy minden független útvonalon
végighaladjon a teszt. Ekkor legalább egyszer biztosan sor került minden utaśıtás végrehajtására,
és minden feltételes utaśıtás igaz és hamis eseteire.

• A kiindulás a program folyamat-gráfja, amely a döntéseket reprezentáló csomópontokból
és a vezérlés irányát képviselő élekből áll. Előálĺıtása viszonylag egyszerű, ha programban
nincs goto.

• Csak kisebb programok tesztelhetők ilyen módon.

Ciklomatikus komplexitás:

• A független utak száma a programban.

• CCmegmutatja, hogy hány tesztet kell végrehajtani az összes független út végrehajtásához,
vagyis minden vezérlő utaśıtás legalább egyszeri végrehajtásához.

• Nem lehet a független utak összes kombinációját végrehajtani.

• A dinamikus programelemzők a ford́ıtáskor kiegésźıtő kódot adnak a programhoz, amelyek
mérik, hogy az egyes vezérlő utaśıtások hányszor kerültek végrehajtásra.

Ciklomatikus komplexitás számolása:

CC = Élekszáma− Csomópontokszáma+ 2

86. Ismertesse az integrációs tesztelési stratégiákat! Mi az összefüggés
e stratégiák és a szoftverfolyamat modellje között?

Integrációs tesztelés:

• Teljes rendszerek vagy alrendszerek tesztelése, amelyek előzőleg már tesztelt komponen-
sekből állnak.

• A komponensek együttműködéséből származó hibák feltárására szolgál.

• Az integrációs teszt fekete doboz tesztelés, a tesztek a specifikációból származnak.

• Komplex rendszerben az észlelt hibás eredményből nehéz a hiba helyére következtetni.

• Az inkrementális integrációs tesztelés némileg seǵıt.

Integrációs tesztelés startégiái:

• Fentrol lefelé tesztelés:
A rendszer magas szintű komponenseit még a tervezés és az implementáció alatt in-
tegrálják. A még el-nem készült komponenseket azonos interfésszel készült

”
csonkok”

helyetteśıtik, ahol szükséges. Ezeket fokozatosan kicserélik a kész elemekkel.(Evolúciós
fejlesztésnél alkalmazható)

41

• Lentrol felfelé tesztelés:
A hierarchia alsó szintjein lévő modulok integrálásával és tesztelésével kezdik, ahol a maga-
sabb szinteket tesztgenerátorok helyetteśıtik.(Inkrementális és újrafelhasználás alapú fej-
lesztésnél alkalmazható)

A gyakorlatban a kettő kombinációját használják.
Tesztelési stratégiák:

• Szerkezeti validáció:
A fentről lefelé teszteléssel felfedhetők a hibák a rendszerarchitektúrában és a magas szintű
tervekben, még a folyamat korai szakaszában. Ez a lentről felfelé tesztelésnél csak később
lehetséges.

• Rendszerdemonstráció:
A fentrol lefelé integráció korán lehetővé teszi a korlátozott demonstrációt. Újrafelhasználható
komponensek alkalmazásával a lentről felfelé megközeĺıtéssel is lehetséges.

42

• Tesztimplementáció:
A programcsonkokat nehéz implementálni, a lentről felfelé tesztelés tesztmeghajtóit vala-
mivel egyszerűbb, de mindenképpen jelentős addicionális fejlesztést igényel.

• Tesztmegfigyelés:
A tesztek eredményét mindkét módszernél nehéz megfigyelni. Mesterséges környezetre,
extra kódra van szükség. Különösen a fentről lefelé megközeĺıtésnél, ahol a magasabb
szintek sokszor nem szolgáltatnak outputokat.

87. Mi az interfésztesztelés, milyen hibákat lehet felfedni ilyen
módon?

Interfésztesztelés:

• Interfésztesztelésre akkor van szükség, amikor egy nagyobb rendszer összeéṕıtésekor mo-
dulokat vagy alrendszereket integrálunk.

• Az interfésztesztelés az objektumorientált fejlesztésnél fontos (különösen objektumok és
osztályok újrafelhasználásakor), mert az objektumokat az interfészeikkel definiáljuk.

Feldeŕıthető hibák:

• Célja az interfészek specifikációs- (félreértések), vagy implementációs hibáinak felfedése.

Nem feldeŕıthető hibák:

• Egyedi objektum tesztelésével az interfészhibákat nem lehet felfedni. A hibák az objektu-
mok közti interakciókban jelentkeznek, nem egy egyedi objektum sajátosságaiként.

88. Melyek a tipikus interfészhibák? Milyen elveket kell alkal-
mazni az interfésztesztelés tervezésekor?

Tipikus interfészhibák:

• Interfész hibás alkalmazása:
Egy h́ıvó komponens hibája lehet: rossz t́ıpusú vagy sorrendű paraméterek, hibás számú
paraméter, stb.

• Interfész félreértése:
A h́ıvó komponens hibásan értelmezi az interfészt, vagy a h́ıvott komponens válaszait.

• Időźıtési hibák:
A h́ıvó és a h́ıvott komponens különböző sebességgel működik (osztott memória, vagy
üzenettovább́ıtó interfész esetén), és a h́ıvott nem aktuális információt kap.

Interfésztesztelés irányelvei:

• A teszteket úgy kell tervezni, hogy a paraméterek értékei a határértékek közelében legye-
nek.

43

• A pointer jellegű paramétereket null értékkel is tesztelni kell.

• Olyan tesztesetet is tervezni kell, amely a h́ıvott komponens hibáját okozza. (A speci-
fikációs hibák többsége a hibák értelmezéséből fakad.)

• Üzenettovább́ıtó, vagy interakt́ıv rendszereknél terhelési (stressz) tesztet kell végrehajtani.

• Osztott memóriájú interfészeket a komponensek aktiválódása sorrendjének megváltoztatásával
is tesztelni kell (szinkronizációs hibák).

89. Miért és miben különbözik az objektumorientált tesztelés a
funkcióorientált rendszerek tesztelésétol?

Objektumorientált tesztelés:

• A komponens- és integrációs tesztelés az objektumorientált rendszereknél is alkalmazható.

• Fontos különbségek:

– A tesztelendő objektumok komponensként gyakran nagyobbak, mint az egyszerű
függvények.(A fehér doboz tesztelés nehezebben alkalmazható.)

– Az objektumok lazán kötődnek, és a rendszernek/alrendszernek nincs egyértelmű
teteje.

– Az újrafelhasznált komponensek kódjához nem mindig lehet hozzájutni, elemezni.

Megkülönböztetések:

• A funkcióorientált rendszereknél:

– A rendszer alapvető program-egységei (függvények – modulok) jól elkülöńıthetők,

– Ezek külön tesztelhetők.

• Az objektumorientált rendszerek esetén:

– Az ilyen megkülönböztetés nem lehetséges, az objektumok lehetnek egyszerű (pl.
lista), vagy komplex entitások (pl. egy alrendszer objektumai),

– Olykor nincs egyértelmű hierarchia az objektumok között, ezért az integrációs tesztek
(fentrol lefelé, vagy lentről felfelé) nem alkalmazhatók.

90. Milyen szinteket különböztethetünk meg az objektumorientált
tesztelésben?

• Az objektumokhoz kapcsolódó műveletek tesztelése:
Függvények, vagy eljárások, fekete- vagy fehér doboz eljárással tesztelhetők.

• Objektumosztályok tesztelése:
A fekete doboz eljárás alkalmazható, de az ekvivalencia-osztályokat a műveletsorozatokra
is ki kell terjeszteni.

44

• Együttműködő objektumcsoportok tesztelése:
Forgatókönyv alapján kijelölhető az objektumok csoportja.

• Objektumorientált rendszer tesztelése:
A rendszerkövetelmények verifikációja és validációja más rendszerekhez hasonlóan történhet.

91. Mi az objektumorientált csoporttesztelés? A rendszerterv
milyen elemeit lehet felhasználni a csoportteszteléshez?

Objektumorientált csoporttesztelés:

• Használati eset vagy forgatókönyv alapján: A tesztek a felhasználói interakciókon
alapulnak. Előnye, hogy a felhasználók által leggyakrabban használt részeket teszteli.

• Száltesztelés: A rendszernek egy eseményre adott válaszát vizsgálja, amint az a rend-
szeren keresztülhalad.

• Objektum együttműködési teszt: Az objektumok együttműködésének egy sorozatát
vizsgálja, amely akkor ér véget, ha egy objektumművelet nem h́ıv meg más objektum-
szolgáltatást.

Elemek: TODO

• Forgatókönyv alapján kijelölhető az objektumok csoportja.

92. Mi a szoftver költségbecslés célja? Milyen kérdésekre keresi
a választ?

Kérdések:

• Mekkora munkát igényel egy feladat elvégzése?

• Mennyi időbe kerül a feladat végrehajtása?

• Mennyi a tevékenység összes költsége?

Költségbecslés célja: Választ adni a következő költségelemekre a szoftverfejlesztési projekt
során:

• A hardver és szoftver költségei a karbantartással együtt,

• Utazási és képzési költségek,

• Munkaköltségek (bér, közteher, helység, kiseǵıtő munkák, kommunikáció, rekreáció, ...)

45

93. Milyen módszereket ismer a szoftver költségének előzetes
becslésére?

Funkciópontok:

• A program jellemzőinek kombinációján alapuló, nyelv-független módszer.

• Méri az alábbi jellemzőket:

– Külső bemenetek és kimenetek

– Felhasználói interakciók

– Külső interfészek

– A rendszer által használt fájlok

• Mindegyikhez súlyozási tényezőt rendel:

– Egyszerű külső bemenet: 3

– Bonyolult belső állományok: 15

• A súlyozási tényezőt egy szervezeten belül, hasonló jellegű szoftverek késźıtése során gyűjtött
statisztikák alapján finomı́tja.

A funkciópontok számı́tása:

• A funkciópontok (FP) alapján a kódsorok számára (LOC – Lines Of Code) lehet követ-
keztetni:

• LOC = AVC * FP ahol:
AVC nyelvfüggő szorzófaktor (200-300 az assembly és 2-40 a 4GL nyelvekre)

• A funkciópont számı́tás nagyon sok szubjekt́ıv elemet tartalmaz.

• Automatikus számı́tása nem lehetséges, mert a specifikáció alapján kell a funkciópontokat
megbecsülni.

Objektumpontok:

• 4GL vagy más magas szintű nyelvek esetén a funkciópontok alternat́ıvája. Magas szintű
specifikáció alapján könnyebben becsülhető.

• Az objektumpont (NTC) nem azonos az objektumok számával, hanem az alábbiakból
számı́tható:

– A külön megjeleńıtendő képernyők száma, az egyszerűtől (1), a nagyon bonyolultig
(3),

– A késźıtendő jelentések száma (2 – 5 – 8)

– A 4GL kiegésźıtése miatt szükséges 3GL modulok száma (10)

46

A termelékenység becslése:

• Valósidejű, beültetett rendszerek: 40 – 160 LOC / hó

• Rendszerprogramok: 150 – 400 LOC / hó

• Kereskedelmi alkalmazások: 200 – 800 LOC / hó

• Objektumpontban számolva a termelékenység 4 és 50 pont / hónap közötti, az eszköztámogatottságtól
és a fejlesztők képességeitől függően.

94. Hogyan értelmezhető a szoftver minősége? Milyen tényezőkkel
lehet a szoftverminőséget jellemezni?

A szoftver minősége:

• A minőség általában azt jelenti, hogy a termék megfelel specifikációjának.

• Mindenki mást ért minőség alatt:

– A felhasználó:
”
A szoftver azt végezze amit elvárok tőle, és úgy működjön ahogy

én ḱıvánom.” (Ebbe beleérti a gazdaságosságot, megb́ızhatóságot, stb. és a ki nem
mondott elvárásokat is.)

– A fejlesztő:
”
A szoftver feleljen meg a specifikációnak”(Beleérti a karbantarthatóságot,

újrafelhasználhatóságot, stb.)

• Az ISO defińıciója:
”
Annak mértéke, amennyire a szoftver tulajdonságai (a minőségi

jellemzők) megfelelnek a követelményeknek.”
De: mint tudjuk a szoftverkövetelmények gyakran nem teljesek és nem következetesek A
szoftver specifikációját nehéz teljessé tenni, tehát a specifikációnak való megfelelés nem
garantálja, hogy a felhasználó elégedett lesz a termékkel.

Tényezők:
TODO

95. Ismertesse egy szervezeten belül a minőségkezelés tevékenységeit!

• Minőségbiztośıtás: Szabványok és szervezeti eljárások alkalmazása.

• Minőségtervezés: Egy konkrét projekthez alkalmas eljárások és szabványok kiválasztása
és adaptálása.

• Minőségellenőrzés: Annak biztośıtása és ellenőrzése, hogy a fejlesztő csapat alkalmazza
a minőségi szabványokat és eljárásokat.

• A minőségkezelés lehetőleg legyen független a projektvezetéstől.

47

96. Miért fontosak a minőségi szabványok a szoftverkésźıtésben?
Mi a termékszabvány és a folyamatszabvány közti különbség?

Miért fontosak?

• A szabványok adják a keretet a hatékony minőségkezeléshez.

• Lehetnek: nemzetközi-, nemzeti-, szervezeti- és projektszabványok.

• A szabványok a legjobb gyakorlat és a korábbi projektek hibáinak összegyűjtött adatai
alapján készülnek.

• Kiterjednek a szoftvertervezés terminológiáira, programozási nyelvekre, jelölésrendszerre,
programozási módszerekre, ellenőrzésre, validálásra.

• Folytonosságot biztośıtanak egy változó szervezetben, az új résztvevők a helyi szabványok
megismerésével hamarabb be tudnak kapcsolódni a munkába.

Termékszabványok: A termékszabványok olyan tulajdonságokat ı́rnak elő, amelyek a termék
minden elemére nézve kötelezőek:

• Dokumentációs szabványok (pl. dokumentumok szerkezete)

• Kódolási szabványok (programozási st́ılus, programnyelv használat)

Folyamatszabványok: A folyamatszabványok a szoftverfejlesztés alatt követendő folyamato-
kat határozzák meg (pl. a specifikáció, tervezés, stb. folyamata, módszerei, dokumentumai).

97. Mi az összefüggés a szoftverfolyamatok és az előálĺıtott szoft-
ver minősége között?

• A termék minősége alapvetően függ az előálĺıtása során alkalmazott folyamatok minőségétől
(pl. iparszerű gyártásnál).

• Ez a szoftverfejlesztésnél is ı́gy van, de sok minőségi jellemző nehezen mérhető, számszerűśıthető.

• Ugyanakkor a szoftvert egyedileg tervezik, a szoftverfejlesztés nem mechanikus folyamat.

• A szoftverfejlesztés folyamata és a termék minősége között erős összefüggés van, de ez
nagyon összetett és alig megfogható.

Összefüggés a szoftverfolyamatok és az előálĺıtott szoftver minősége között:
Szoftvernél ez nem ilyen egyszerű mert:

• A szoftverfejlesztésben az egyéni képzettség és gyakorlat különösen fontos.

• Külső tényezők, mint az alkalmazás újszerűsége, vagy a piacra vitel siettetése, befolyásolják
a minőséget.

48

98. Mi a minőségi felülvizsgálat célja, milyen termékekre terjed-
het ki?

Elterjedt módszer a folyamatok és a termékek minőségének ellenőrzésére. Szakértők egy cso-
portja figyelmesen átvizsgálja a szoftver komponenseit, a teljes szoftvert és a dokumentációkat.
Átnézik a specifikációkat, terveket, kódot, tesztterveket. Az eredményes felülvizsgálat a szoftver
vagy a dokumentáció elfogadását jelenti. Az észrevételek kijav́ıtása után újabb felülvizsgálatra
kerülhet sor. A vezetés a felülvizsgálatok eredményei alapján követheti a projekt előrehaladását.
Felülvizsgálat t́ıpusai:

• A terv vagy a program vizsgálata, mint a VV esetén (a termék minőségét vizsgálja)

• Az előrehaladás vizsgálata (a folyamat és a termék minőségét vizsgálja)

• A minőség vizsgálata (a folyamat és a termék minőségét vizsgálja)

99. Mire szolgál a szoftver mérése? Mondjon néhány példát a
mérhető szoftverjellemzőkre!

A szoftver mérés számszerűśıthető értékeket álĺıt elő a szoftvertermék vagy –folyamat jellemzőiből.
Célja a technikák és folyamatok objekt́ıv összehasonĺıtása, a minőség mérése.
Mérhető szoftverjellemzők:

• Biztonságosság

• Biztonság

• Megb́ızhatóság

• Rugalmasság

• Robusztusság

• Érthetőség

• Tesztelhetőség

• Adaptálhatóság

• Modularitás

• Komplexitás Hordozhatóság

• Használhatóság

• Újrafelhasználhatóság

49

100. Ismertesse a CMM (Capability Maturity Model) célját és
lényegét!

A CMM - Capability Maturity Model a szervezet folyamatainak alkalmasságát méri, osztályozza
és értékeli.
A CMM-modell szintjei:

• Kezdeti: Nincsenek hatékony vezetési eljárások, vagy hiányzik a szervezet azok követke-
zetes alkalmazására.

• Ismételhető: Azonos t́ıpusú projektekben ismételve a vezetési, minőségbiztośıtási és
változáskezelési eljárásokat sikeres lehet (a siker egyéni teljeśıtményektől függ).

• Meghatározott: A folyamatokat már definiálták, de a vezetési folyamatok még nem
tudják azokat következetesen, maradéktalanul biztośıtani.

• Menedzselt: Már vannak definiált és bevezetett folyamatok, de azok folyamatos fej-
lesztése még nem biztośıtott.

• Optimalizált: A folyamatok állandó fejlesztése definiált és biztośıtott.

101. Miért fontos a szoftver költségeinek becslése? Milyen tényezőket
vehetünk figyelembe a költségbecslés során?

Becslést adhatunk arra, hogy:

• Mekkora munkát igényel egy feladat elvégzése

• Mennyi időbe kerül a feladat végrehajtása

• Mennyi a tevékenység összes költsége

Figyelembe vehetjük a:

• Piaci lehetőségeket

• A költségbecslés bizonytalanságait

• A szerződéses feltételeket

• A követelmények változékonyságát

• A fejlesztő gazdasági helyzetét

50

102. Ismertesse a COCOMO II. költségbecslési módszer modell-
jeit!

• Empirikus modell, a projektek gyakorlatából gyűjtött adatokon alapul.

• Jól dokumentált, hosszú tapasztalat áll mögötte (első verzió: 1981)

A COCOMO 2 háromszintű modellje:

• Korai protot́ıpuskésźıtés szintje: Becslés objektumpontok alapján

• Korai tervezés szintje: Funkciópontok alapján a forráskódok számát becsli

• Poszt-architekturális szint: Az architektúra terv elkészülte után becsli a szoftver
méretét

Korai protot́ıpukésźıtés szintje:

• Protot́ıpuskésźıtést és újrafelhasználást is figyelembe vesz.

• A fejlesztői produktivitást objektumpontokkal számolja és a CASE használatot is bekal-
kulálja.

• A formula:
PM = (NOP ∗ (1−%reuse))/PROD

Ahol: PM – a munka emberhónapban, NOP – az objektumpontok száma, PROD - pro-
duktivitás

Korai tervezési szint:

• A követelmények tisztázása után végezhető a becslés.

• Az alábbi képlettel számol:

PM = A ∗MéretB ∗M + PMm

Ahol: M=PERS*RCPX*RUSE*PDIF*PREX*FCIL*SCED

PMm = (ASLOC ∗ (AT/100))/ATPROD

A = 2,5 a kezdeti számı́tásban
B = 1,1 – 1,24 a projekt mérete, újdonsága függvényében.
M = projekttényezők:
PERS – személyi képességek,
RCPX – termék megb́ızhatóság,
RUSE – szükséges újrafelhasználás,

51

PDIF – platform nehézségei
PREX – személyek gyakorlata,
FCIL – támogató eszközök,
SCED – ütemezés
ASLOC = automatikusan generált kódsorok,
AT = aut. rendszerkód,
ATPRO = termelékenység,

Poszt-architekturális szint:

• Ugyanazt a formulát alkalmazza, mint a korai tervezési becslés, de két tényezőt figyelembe
vesz:

– A követelmények változékonysága,

– A lehetséges újrafelhasználás mértéke.

• A szükséges új kódsorok számának becslésekor statisztikai és egyéb értékeket is figyelembe
vesz, mint:

– A korábbi hasonló projektek hiánya,

– A fejlesztés rugalmassága,

– A csapat összetartása,

– A folyamat fejlettsége.

103. Források:

• Vető István 2016-os előadás és gyakorlati diái.

• Egyéb webes jegyzetek.

• 2007-es tétel kidolgozás:
https://wiki.itk.ppke.hu/twiki/pub/PPKE/SzoftvertechnológiaAlapjai/Vizsgatetelek07 szerk.pdf

52

	Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a szoftverhez tartoznak.
	Mi a szoftverfolyamat? Sorolja fel a szoftverfolyamat fobb tevékenységeit.
	Sorolja fel a szoftverfolyamat általános modelljeit és jellemezze azokat néhány szóban.
	Miért van szükség arra, hogy a szoftvertervezok számára etikai kódexet állítsanak össze? Sorolja fel a fontosabb etikai eloírásokat.
	Melyek az eredendo rendszertulajdonságok? Hogyan csoportosítjuk oket?
	Mi a különbség a funkcionális és a nem-funkcionális rendszertulajdonságok között?
	Melyek azok a tevékenységek, amelyek közösek minden szoftverfolyamatban?
	Vázolja fel a vízesés modellt, sorolja fel a modell elonyeit és hátrányait!
	Mi a formális rendszerfejlesztés? Milyen elonyei és hátrányai vannak?
	Mi az evolúciós fejlesztési modell lényege? Miért nehéz karbantartani az így fejlesztett programokat?
	Mi az újrafelhasználás orientált fejlesztés lényege? Vázolja fel a folyamatot! Milyen esetekben alkalmazható?
	Mi a különbség a CASE eszközök, -eszközkészletek és -környezetek között?
	Miért célszeru projektszervezetben végezni a szoftverfejlesztést?
	Miért és milyen gondot okoz a szoftverprojekt vezetoje számára, hogy a szoftver nem látható, megfogható? Milyen módon lehet ezt a gondot csökkenteni?
	Milyen típusú terveket kell készíteni egy projekt tervezésekor?
	Vázolja fel egy vízesés modell szerint végzendo fejlesztési projekt ütemezését oszlopdiagram formában!
	Kísérelje meg felvázolni egy evolúciós folyamat szerint végzendo fejlesztési projektterv oszlopdiagramját!
	Miért iteratív tevékenység a szoftverprojekt tervezése?
	Milyen kockázatokat különböztethetünk meg egy szoftverfejlesztési projektben? Sorolja fel és jellemezze oket!
	Sorolja fel a fontosabb szerepeket egy projektszervezetben! Ismertesse néhány szóban az egyes szerepek tevékenységeit!
	Mi a feladata a megvalósíthatósági tanulmánynak. Hol van a helye a szoftverfolyamatban?
	Sorolja fel a legfontosabb szempontokat, amelyeket egy tervezonek a felhasználói követelmények specifikálásakor ügyelnie kell!
	Milyen veszélyei vannak a természetes nyelv használatának a követelmények specifikálásakor? Milyen módon lehet ezeket csökkenteni?
	Egy nagy rendszer fejlesztése során kiknek kell részt venniük a felhasználói követelmények verifikálásában? Miért?
	Sorolja fel a rendszermodellek típusait és jellemezze azokat egy mondatban!
	Melyek a legfontosabb különbségek a felhasználói és a rendszerkövetelmények specifikálása között? Kiknek szólnak az egyes specifikációk?
	Melyek a prototípuskészítés céljai? Milyen prototípusok léteznek, melyik milyen célból készül?
	Mi a különbség az evolúciós és az eldobható prototípus között? Melyiket mikor érdemes alkalmazni?
	Mit jelent az adatbázis-programozás? Milyen rendszerek fejlesztésére alkalmas?
	Melyek a prototípus készítésének elonyei? Ismertese a prototípuskészíto technikákat! Melyiket milyen esetben célszeru alkalmazni?
	Mit tenne, ha egy eldobható prototípust a megrendelo meg akarna vásárolni? Milyen érveket hozna fel álláspontja indoklására?
	Ismertesse a formális specifikáció helyét és jelentoségét a szoftverfolyamatban!
	Sorolja fel a formális specifikáció elonyeit és hátrányait! Milyen típusú rendszerek specifikálásakor alkalmazzák a formális módszereket?
	Melyek azok a rendszerek, amelyeknél a formális specifikációt leginkább alkalmazzák? Miért?
	Hol foglal helyet az architekturális tervezés a szoftverfolyamatban? Mire szolgál a rendszer architekturális terve?
	Kliens/szerver modell
	Milyen elonyei és hátrányai vannak a kliens/szerver modellnek?
	Mi a különbség a vékony- és a vastag kliens között? Melyik milyen célra alkalmas?
	Milyen modelleket alkalmaznak az objektumorientált tervezésben? Melyik mire alkalmas?
	Mi a különbség a központosított vezérlés és az esemény alapú vezérlési modell között?
	Milyen vezérlési modellek alkalmazhatók párhuzamos rendszerekben?
	Milyen UML modellekkel ábrázolható a rendszer és környezetének kapcsolata?
	Mire szolgálnak az objektumorientált tervezésben alkalmazható diagramok? Soroljon fel és jellemezzen néhányat!
	Ismertesse a valós ideju rendszerek fobb jellegzetességeit.
	Melyek a fo különbségek az átlagos adatfeldolgozó rendszerek és a valós ideju rendszerek között?
	Van-e szerepe a valós ideju rendszerek tervezésében a hardvertervezésnek? Miért?
	Milyen programnyelveket alkalmaznak a valósideju rendszerek programozására?
	Miért kevéssé alkalmas a Java programozási nyelv szigorúan valós ideju rendszerek programozására?
	 Melyek a valós ideju futtatórendszerek fobb komponensei?
	Melyek a szoftver újrafelhasználásán alapuló fejlesztés elonyei és hátrányai?
	Soroljon fel három érvet, amely támogatja a komponens alapú újrafelhasználást és hármat, amely ellene szól!
	Mi a programgenerátor alapú újrafelhasználás lényege? Milyen területeken alkalmazzák?
	Miért alkalmazzák a generátor alapú újrafelhasználást elsosorban az adatfeldolgozó, eBusiness rendszerek fejlesztésében?
	Mi a komponens, milyen interfészei vannak?
	Milyen nyelvek és környezetek alkalmasak a komponensek integrálására?
	Milyen hátrányai vannak az újrafelhasználható komponensekkel történo szoftverfejlesztésnek?
	Mire szolgának az alkalmazási keretrendszerek, hogyan csoportosíthatók?
	Mi a „polcról leveheto” termék? Leginkább milyen rendszerekben alkalmazzák?
	Milyen nehézségei vannak a COTS termékek alkalmazásának?
	Miért drágább egy újrafelhasználható komponens kifejlesztése az egyedi komponens kifejlesztésénél?
	Mi az alkalmazáscsalád? Miért alakultak ki az alkalmazáscsaládok?
	Hogyan osztályozható az alkalmazáscsaládok specializációja?
	Mi a különbség a tesztelés és a belövés között? Melyiknek mi a célja?
	Mi a célja a szoftver verifikációjának és mi a validáció feladata?
	Miért célszeru a szoftvertesztelés mellett átvizsgálást (inspekció) is tartani?
	Mi a programtesztelés feladata? Milyen alaptípusai vannak?
	Mire szolgál a szoftver átvizsgálása? Mi a különbség az átvizsgálás és a tesztelés között?
	Milyen hiányosságokat lehet elsosorban felfedezni a programok átvizsgálása során?
	Mi a Cleanroom szoftverfejlesztési folyamat lényege?
	Ismertesse a grafikus felhasználói kezelofelületek tervezésének alapelveit!
	Miért fontos a grafikus felhasználói kezelofelület gondos tervezése?
	Miért célszeru egyes rendszerekben különbözo felhasználói felületeket kidolgozni a gyakorlott és az alkalmi felhasználók számára?
	Milyen alapelemeket használunk a grafikus felhasználói kezelofelületeken?
	Milyen eszközöket alkalmazhatunk a grafikus felhasználói kezelofelületen a felhasználó támogatására?
	Milyen elonyei és hátrányai vannak a parancsnyelv alkalmazásának a felhasználói interakciókban?
	Sorolja fel és jellemezze a felhasználói interakciók fajtáit!
	Milyen lehetoségek vannak az információ grafikus megjelenítésére?
	Írjon példákat, amikor az információt célszeru grafikusan, analóg módon megjeleníteni.
	Milyen szabályokat kell betartani a színek alkalmazásakor a grafikus felhasználói kezelofelületen?
	Milyen szempontokat kell figyelembe venni a rendszer üzeneteinek szövegezésekor?
	Miért célszeru a súgórendszerbe több belépési pontot biztosítani?
	Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok számát csökkenteni?
	Mi a „fekete doboz” és a „fehér doboz” tesztelési stratégia lényege? Melyiket milyen esetben lehet alkalmazni?
	Mit jelent a tesztadatok ekvivalencia-osztályozása? Írjon példát az ekvivalencia-osztályok alkalmazására.
	Mi a célja az útvonaltesztelésnek? Mi a ciklomatikus komplexitás, hogyan számítható?
	Ismertesse az integrációs tesztelési stratégiákat! Mi az összefüggés e stratégiák és a szoftverfolyamat modellje között?
	Mi az interfésztesztelés, milyen hibákat lehet felfedni ilyen módon?
	Melyek a tipikus interfészhibák? Milyen elveket kell alkalmazni az interfésztesztelés tervezésekor?
	Miért és miben különbözik az objektumorientált tesztelés a funkcióorientált rendszerek tesztelésétol?
	Milyen szinteket különböztethetünk meg az objektumorientált tesztelésben?
	Mi az objektumorientált csoporttesztelés? A rendszerterv milyen elemeit lehet felhasználni a csoportteszteléshez?
	Mi a szoftver költségbecslés célja? Milyen kérdésekre keresi a választ?
	Milyen módszereket ismer a szoftver költségének elozetes becslésére?
	Hogyan értelmezheto a szoftver minosége? Milyen tényezokkel lehet a szoftverminoséget jellemezni?
	Ismertesse egy szervezeten belül a minoségkezelés tevékenységeit!
	Miért fontosak a minoségi szabványok a szoftverkészítésben? Mi a termékszabvány és a folyamatszabvány közti különbség?
	Mi az összefüggés a szoftverfolyamatok és az eloállított szoftver minosége között?
	Mi a minoségi felülvizsgálat célja, milyen termékekre terjedhet ki?
	Mire szolgál a szoftver mérése? Mondjon néhány példát a mérheto szoftverjellemzokre!
	Ismertesse a CMM (Capability Maturity Model) célját és lényegét!
	Miért fontos a szoftver költségeinek becslése? Milyen tényezoket vehetünk figyelembe a költségbecslés során?
	Ismertesse a COCOMO II. költségbecslési módszer modelljeit!
	Források:

