Szoftvertechologia alapjai
Vizsga kérdések

Dallos Adém, Majnar Lészlo

2016. majus 21.

1. Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a
szoftverhez tartoznak.

A szoftver: Szamitégép-programok és a hozzajuk tartozé dokumentéciok Osszessége (Somer-
ville def.) A gyakorlatban hozzatartoznak a szakteriileti ismeretek és azok dokumentdcidi is,
amelyek alapjan a szoftvert kifejlesztették.

A szoftverhez tartozé termék: A programok és a hozza kapcsolédé dokumentaciok. (Kar-
bantartds??)

2. Mi a szoftverfolyamat? Sorolja fel a szoftverfolyamat f6bb
tevékenységeit.

A szoftverfolyamat: A szoftver termék eldéllitdsara irdnyuld tevékenységek sora.
Fébb tevékenységek:

1. Szoftverspecifikacié: A szoftver feladatainak és a megszoritasoknak specifikdcidja.

2. Szoftverfejlesztés: A szoftver rendszer tervezése és elkészitése (programkészités, tesz-
telés).

3. Szoftvervalidacié: Annak bizonyitasa, hogy az el6készitett rendszer a felhaszndlé elvardasainak
megfeleléen mikodik.

4. Szoftverevolicié: A szoftver karbantartdsa és tovabbfejlesztése a valtozd igényeknek
megfelelGen.

3. Sorolja fel a szoftverfolyamat altalanos modelljeit és jellemezze
azokat néhany széban.

A szoftverfolyamat modellje a folyamat absztrakt reprezentécidja.
e Vizesés modell: Az alapveto tevékenységek 6ndllé fazisok a folyamat soran.

e Evoliciés fejlesztés: A specifikacid, a fejlesztés és a validécié 6sszefonddik. Ez az alapja
a manapsag elterjedt alkalmazott agilis fejlesztési modszereknek.

e Formalis transzformaéacidok: A kovetelmények matematikai modelljébol, formélis transz-
formacioval allitja el6 a szoftvert. Ez a mddszer az 6se a mai modellkozponti fejlesztésnek.

e Integracié ujrafelhasznalhaté komponensekb6l: A rendszert meglévé komponensek
integraldasaval allitja elo.

4. Miért van sziikség arra, hogy a szoftvertervezok szamara eti-
kai kdédexet allitsanak Ossze? Sorolja fel a fontosabb etikai
eloirasokat.

Sziikségesség:

e Bizalmassag: A szoftvertervezonek tisztelnie kell a munkaaddja, vagy megrendelGje bi-
zalmat, attdl fliggetleniil, hogy alairtak-e titoktartasi nyilatkozatot.

e Hozzaértés: A tervezd nem vaéllalhat el olyan munkéat, amely meghaladja képességeit,
nem tintetheti fel hamis szinben tudasat, képességeit.

e Szellemi jogok: Tiszteletben kell tartania a szellemi tulajdonjogokat.

e Szamitégépes visszaélések: A tervezd nem hasznélhatja fel ismereteit arra, hogy masoknak
kozvetve, vagy kozvetleniil kart okozzon.

Elo6irasok:

e A helyi, nemzeti és nemzetkozi szabalyok ismerete és betartasa.

Etikus és bizalmat kelto viselkedés, ami tobb, mint pusztan a torvények betartasa.

A megbizé titkainak megtartdsa.

A szellemi tulajdonjogok tiszteletben tartasa.

A szamitégépes visszaélések megakaddlyozasa, ill. elkertilése.

5. Melyek az eredendo6 rendszertulajdonsagok? Hogyan csopor-
tositjuk 6ket?

A rendszer t6bb, mint komponenseinek halmaza. Alapvet6 tulajdonsigai tobbnyire nem szarmaztathatéak
a komponensek tulajdonsdgaibdl. A rendszer eredendd tulajdonsagai a komponensek kozti Ossze-

tett kapcsolatok, kolesonhatdsok kovetkezményei. Ezért az eredendd tulajdonsagok csak akkor
allapithatok meg és valnak mérhetévé, mikor megtortént a komponensek integracidja.

Eredendd rendszertulajdonsagok:

e A rendszer silya: Ez kiszdmithatd a komponensek silydbdl.

e A rendszer megbizhatésiaga: Nemcsak a rendszer komponenseitél, hanem azok kap-
csolatatol is fugg.

e A rendszer hasznslhatésdga: Osszetett tulajdonsag, amely nemcsak a hardver és szoft-
ver komponensektél flige, hanem a kornyezettdl és a miikodtetd, sét a felhasznalé embe-
rektol is.

Tulajdonsagok tipusai:

e Funkciondlis tulajdonsagok: A funkciondlis tulajdonsdgok akkor figyelheték meg, ha
a rendszer minden része egyiittmiikodik egy cél elérése érdekében. (pl. kerékpar!)

e Nem funkcionalis tulajdonsagok:

— Olyan rendszertulajdonsdgok, amelyeket a rendszer miikodési kornyezete is befolyésol.
Ezek gyakran kritikusak a szamitogép alapd rendszerek miikodése szempontjabdl,
ezért ezeket mar a tervezéskor definialni kell.

— Ilyenek lehetnek a megbizhatdsag, a teljesitmény, a biztonsdgossag, vagy a védelem.

6. Mi a kiillonbség a funkcionalis és a nem-funkcionalis rendszer-
tulajdonsagok kozott?

A funkcionalis tulajdonsagok akkor figyelhetOk meg, ha a rendszer minden része egyiittmiikodik

egy cél érdekében.

A nem funkciondlis tulajdonsagok pedig olyan rendszertulajdonsagok, amelyeket a rendszer
miikodési kornyezete is befolyasol. Pl.: teljesitmény, megbizhatdsag, biztonsag, védelem.

7. Melyek azok a tevékenységek, amelyek kozosek minden szoft-
verfolyamatban?

e Szoftverspecifikacié: A szoftver feladatainak és a megszoritasoknak specifikaciéja.

e Szoftverfejlesztés: A szoftver rendszer tervezése és elkészitése (programkészités, tesz-
telés).
e Szoftvervalidacié: Annak bizonyitasa, hogy az el6készitett rendszer a felhaszndlé elvardasainak

megfeleléen miikodik.

e Szoftverevolicié: A szoftver karbantartdsa és tovabbfejlesztése a valtozd igényeknek
megfelelGen.

8. Vazolja fel a vizesés modellt, sorolja fel a modell elonyeit és
hatranyait!

Kovetelmények
meghatarozasa

3

Rendszer- és
szoftvertervezés

h

¥

Implementacio
és egysegteszt

Integracio és
rendszerteszt

b

¥

Mikodtetés és
karbantartas

A vizesés modell elényei:
e JOl attekintheto és kovetheto fejlesztési projekt folyamatot eredményez.

e A folyamat termékei szerzédésekkel konnyen lefedhetOk. (specifikdcios és tervezési doku-
mentumok, program(ok), stb.)

o A tevékenységek jol, és pontosan tervezhetdk.
A vizesés modell hatranyai:

e Egymaistdl elkiiloniilt fazisokra osztja a projektet (koltséges egy korabbi fazishoz visszatérni
pl. specifikécids, vagy tervezési hiba esetén).

e Csak a projekt végén, az dtaddskor (a miikddtetés elsé 1épésekor) deriilnek ki a specifikédcids
hibék.
e Nem képes rugalmasan alkalmazkodni a felhasznaléi igények véltozdsaihoz.

e Csak a kovetelmények pontos ismeretében alkalmazhaté.

9. Mi a formalis rendszerfejlesztés? Milyen elonyei és hatranyai
vannak?

A vizesés modellhez hasonld, de a fejlesztés formalis matematikai eszkozokkel allitja el6 a fut-
tathaté programot a rendszerspecifikicié matematikai modelljébol, tobb transzformacios 1épésen
keresztiil.

Minden transzforméacié soran, 1épésenként kell végrehajtani a tesztelést.

Kovetelmeények Formalis Formalis Integracio és
meghatarozasa specifikacio transzformacio rendszerteszt
Formalis transzformaciok:

™ T2 T3 T4

) h h h

(Kﬁvetelmények) (R1) (R2) (R3 J Integracio és
meghatarozasa rendszerteszt
(G I) I 1 I)

A transzformaciok helyessegének bizonyitasa

Formalis rendszerfejlesztés eldnyei:
o Kritikus rendszerek esetén, ahol kulcskérdés a biztonsagossag, megbizhatosag, vagy védelem.
e A transzformacio és a bizonyitas részben automatizalhaté.
Formalis rendszerfejlesztés hatranyai:
e Specialis szakértelmet igényel.
e Egy rendszer kolcsonhatésait (pl. felhasznaldi interfész) nehéz formalisan specifikdlni.

o Komplex, nagy rendszereknél ez a mdodszer sem eredményez jobb mindséget, vagy koltség-
megtakaritast.

10. Mi az evolucios fejlesztési modell 1ényege? Miért nehéz kar-
bantartani az igy fejlesztett programokat?

Az alapgondolat: Ki kell dolgozni egy kezdeti implementéaciét, amelyet a felhasznédlé véleményezhet,
és azt kell finomitani az elfogaddsig. A specifikacié a fejlesztés és validacié parhuzamosan foly-
tathato tevékenységek.

Feltard fejlesztés: A kovetelmények feltardsa lépésenként, a megrendelével egyiittmiikbdve
torténik, folyamatosan kiegészitve a rendszert az \ij funkcidkkal, részekkel. (Ilyen az Agile médszerek
tobbsége.)

Eldobhaté prototipus: ,,Deszkamodellek” készitése és atadasa az ligyfélnek, a kévetelmények
pontosabb feltarasa érdekében.

Miért nehéz karbantartani? Azért nehéz karbantartani, mert minden miivelet egyszerre
folyik, és nincs részletes specifikicio.

11. Mi az ujrafelhasznalas orientalt fejlesztés lényege? Vazolja
fel a folyamatot! Milyen esetekben alkalmazhat6?

Miér 1étez6, ijrafelhasznalhatd szoftver-komponensek egységes szerkezetbe valé integralasa (kom-

ponens alapi rendszerfejlesztés). Polcrdl leveheté termékeket hasznél fel a fejlesztés sordn.

Gyakran beépiil a kordbban ismertetett folyamatokba. Az elérheté komponenseket megtaldlni,

azokat integralni nem egyszerii.
A folyamat modell:

Kévetelmények Komponensek Kévetelmények endszertervezeés
meghatarozasa elemzése modositasa Jrafelhasznaiass

Fejlesztés és Rendszer

integracio validacid

Milyen esetekben alkalmazhaté6?

Mind&ségjavitasa, koltségek és a fejlesztési id6 csokkentésének érdekében hasznalhaté. Csak ak-
kor hasznaljuk, ha tudjuk, hogy az adott komponens megfeleléen miikédik. Nagy rendszerek
épitésekor gyakran hasznalt stratégia a COTS termékek integraldsa. KiilonGsen a gyors fej-
lesztést kivandé eCommerce, eBusiness rendszerek korében. A fejlesztési idé nagysagrendekkel
csOkkenthetd.

12. Mi a kiilonbség a CASE eszkozok, -eszkozkészletek és -kornye-
zetek kozott?

e Eszk6zok (tools): Az egyes folyamatlépéseket tamogatjak, mint a terv konziszetcidjénak
ellenérzése, program forditas, teszteredmények Osszehasonlitasa, stb.

o Eszkozkészletek (workbench): A szoftverfolyamat egyes fazisait tdmogatjdk, mint pl.
specifikacié, vagy tervezés. Altaldban tobb, egymaéssal egytlittmiikodo eszkozbdl allnak.

e Kornyezetek (environments): A szoftverfolyamat tobb fontos, vagy valamennyi részét
tamogatjak. Legtobbszor tobb, integralt eszkozkészletbol allnak.

13. Miért célszerii projektszervezetben végezni a szoftverfejlesztést?

Azért célszerii, hogy a szoftver a tervezett {itemezés szerint, hataridére, a kovetelményeknek
megfelelGen késziiljon el. Tovabba a projekt menedzselésére azért van sziikség, mert a szoftverfej-
lesztés mindig kotott pénziigyi és megszabott idékeretek kozott folyik, amelyeket a megrendeld,
vagy a fejleszté szervezet jelol ki.

14. Miért és milyen gondot okoz a szoftverprojekt vezetoje szamara,
hogy a szoftver nem lathatd, megfoghaté? Milyen médon le-
het ezt a gondot csokkenteni?

Mivel a szoftver nem kézzel foghatd, tovabba a szoftverfejlesztés folyamata sincs szabvanyositva,
igy sokkal nehezebb meghatarozni, hogy mennyi idébe telik a fejlesztés, mennyi ember kellhet
hozza, mekkora ennek a koltsége. Tovabba a megrendel6 szamara nem nagyon tud a projekt
elkésziiltéig kézzel foghaté programot mutatni, amely igen csak megneheziti a dolgokat.

e A szoftverfejlesztési projekt gyakran egyedi, amely nem &altaldnosithaté folyamat.
e A projekt tervezést alfeladatokra kell bontani, és litemezni.

e Némely feladat futhat parhuzamosan is, ha a feladatok nem fiiggenek egymastol.

15. Milyen tipusi terveket kell késziteni egy projekt tervezésekor?

e Munkaterv, iitemezés: Az elvégzendo feladatok, iitemezésiik és Osszefliggéseik ter-
vezése.

e MinGségi terv: Meghatarozza a projektben hasznalandé mindségbiztositasi eljarasokat
és szabvanyokat.

e Validaciés terv: Meghatdrozza a rendszer validacidja soran hasznalandé mddszereket,
er6forrasokat, iitemezést.

o Konfiguracio-kezelési terv: Leirja a konfiguracid-kezelés eljardsait és strukturajat.
e Karbantartasi terv: A karbantartds kovetelményeinek, koltségeinek terve.

e Munkaerd-fejlesztési terv: Terv a projekten dolgozé csapat szaktudasanak, tapaszta-
latainak fejlesztésére.

16. Vazolja fel egy vizesés modell szerint végzendo fejlesztési pro-
jekt iitemezését oszlopdiagram formaban!

Név | Kezdé détum ! Zaré détum |

= @ Projektinditas 2016.03.11. 2016.03.16.
@ Projektszervezet felallitasa 2016.03.17. 2016.03.74.

o Piac elemzése 2016.03.15. |2016.03.16.

@ Feldll a projectszervezet 2016.03.17. 2016.03.17.

= @ Kovetelmények meghatarozasa 2016.03.17. 2016.04.18.
@ Megvalésithatésagi tanulmany 2016.03.17. 2016.03.18.

@ Erdforrasigények felmérése 2016.03.21. 2016.03.21.

© Kovetelmény specifikicié 2016.03.21. 2016.03.21.

o Demoprogram irdsa 2016.03.21. 2016.04.15.

© Aruhazzal valé szerzédés 2016.04.18. 2016.04.18.

@ Kévetelmény specifikdcid kész 2016.04.19, 2016.04.19.

= @ Sroftverterveres 2016.04.19. 2016.05.24.
' o Adatgyjés 2016.04.19. 2016.05.06.
© VPS bérlése 2016.04.19. 2016.04.22.

@ Algoritmusok kivalasztasa 2016.04.19, 2016.04.25,

@ Szoftvermodell készitése 2016.04.26. 2016.05.16.

@ Adatok felvétele az adatbazisba 2016.05.17. 2016.065.23.

© Atervek validaldsa 2016.05.24, 2016.05.24.

@ Szoftverterv kész 2016.05.25. 2016.05.25.

= @ Szoftver implementacio 2016.05.25. 2016.10.72.
o Programterverés 2016.05.25. 2016.05.25.

© Programozads 2016.05.26. 2016.08.17.

% Program tesztelés 2016.08.18. 2016.10.12.

@ Program kész 2016.10.15. 2016.10.13.

B @ Integracid, rendszertervezés 2016.10.13. 2017.01.13.
& Modulok intergralasa 2016.10.13. 2016.10.20.

© Rendszerteszt 2016.10.21. 2017.01.72.

@ Rendszerteszt kész 2017.01.13. 2017.01.13.

o Atadas 2017.01.16. 2017.01.16.

| 1d6 hatra | Id6 elére Kritikus Ut megjelenitése | Alspterv..

2016 2017
1 & 2 Szoftverte ez |
B I, T T I] I L
marsius nius Jifiurs auguUSTIUS szeplember niovemer december ‘januar
‘:ms.aﬂl
|
v
[===
I
I
&
R 4
h
—
[}
L 2
4
I
&

10

17. Kisérelje meg felvazolni egy evolicids folyamat szerint végzendo
fejlesztési projektterv oszlopdiagramjat!

Tazk Name

i ST
{[BEA 1241 18M1 26A1 03A2 1042 17H2 2442 S1H2 0701 1401 2101 2601 0402 1102 1802 2502 0403 1103 1803 2503 0104 08

Team assignmert
Requirements gathering
Analyziz

Review of analysis
Design

Design Rewiew
Task breakdown
Implementation 1.1
Test 14

Review 1.1
Implementation 1.2
Test1.2

Review 1.2
Implemertation 1.3
Test1.3

Review 1.3

Wirite help system
User training
Release 1

‘Wazh up meeting
Reguirements review
Analysis review
Design review
Implementation 2.1
Test 241

Revigw 2.1

= (=

18. Miért iterativ tevékenység a szoftverprojekt tervezése?

A szoftverprojekt tervezése egy folyamatos tevékenység. Amely a koncepcidé kidolgozasatdl a
rendszer ataddsaig tart. Az elérehaladast folyamatosan kovetni kell, projekttervet rendszeresen
feliil kell vizsgdlni és 4t kell dolgozni a valtozo allapotnak megfelelen (ezért iterativ).

19. Milyen kockazatokat kiilonboztethetiink meg egy szoftverfej-
lesztési projektben? Sorolja fel és jellemezze Oket!

A kockéazatkezelés a lehetséges kockdzati tényezdk azonositasat és a projektre gyakorolt hatasuk
minimalizalasara vonatkozé tervek készitését jelenti.

e Projekt kockazat: A projekt litemtervét, vagy az eréforrdsokat veszélyezteti.

e Termék kockazat: A szoftver minGségét, vagy teljesitményét veszélyezteti.

e Uzleti kockazat: A szoftver beszerzését, értékesitését veszélyezteti.

e Szervezeti kockazat: A fejlesztést végz6 szervezetet veszélyezteti.

11

20.

Sorolja fel a fontosabb szerepeket egy projektszervezetben!
Ismertesse néhany széban az egyes szerepek tevékenységeit!

Projektvezets (szakmai - adminisztrativ vezetd):

A projektvezeto felel6s a projektcélok megvaldsulasaért. Szakmai és adminisztrativ vezeto,
aki felelos a projekt sikeres, hatdridore val6é befejezéséért, a kezdetben meghatarozott ke-
retek kozott.

Rendszertervezo:
A rendszertervezés a szamitogép alapui rendszerek tervezésével foglalkozik (hardver, szoft-
ver, folyamatok) a szoftvertervezés ennek egy része.

Vezetd programozé:
A programozasi folyamat elérehaladasaért felels személy. Koriilotte helyezkednek el az
alabbiak.

Tartalék programozé:
Vezet6 programozd mellett 1év6 gyakorlott programozo.

Konyvtaros (adminisztrator):
A fejlesztési projekt dokumentécidinak és termékeinek (verzidk) elkészitéséért (készittetéséért),
rendben tartasaért felelds.

Tesztelo:
A modellek és termékek tesztelését, verifikaldsat végzi.

Miné6ségfelelss:
A min6ségbiztositasi szabdlyok betartasaért felel a teljes szoftverfolyamat soran.

Dokumentator:

Operéaciés rendszer szakérto:
Az operacios rendszer kivéilasztasaért felel6s személy.

Adatbazis szakérto:

Szakteriileti specialista:
Az alkalmazasi teriilet ismerGje, aki mar részt vett hasonlé rendszer kidolgozasaban.

CASE eszkoz szakérto:
A fejlesztés soran felhaszndlhaté CASE eszkozok kivalasztasaért felelés személy.

12

21. Mi a feladata a megvalésithatosagi tanulmanynak. Hol van a
helye a szoftverfolyamatban?

Feladata: Megalapozni azt a dontést, hogy érdemes-e a tervezett rendszert megvaldsitani.
Az alabbi kérdésekre ad valaszt:

e Mis, hasonld szervezeteknél milyen megoldasokat alkalmaztak hasonlé feladatokra.
e Mennyiben tamogatja a rendszer a megrendel6 altalanos célkitiizéseit.

o Megvalésithato-e a rendszer a tervezett koltségen beliil, az adott technoldgiaval, a kivant
hataridére.

e Integralhaté-e a rendszer mas, mar meglévd rendszerekkel.

Helye a szoftverfolyamatban: A megvaldsithatésagi tanulméany helye a kévetelménytervezés
folyamataban van a szoftverfolyamat soran.

22. Sorolja fel a legfontosabb szempontokat, amelyeket egy ter-
vezonek a felhasznaldi kovetelmények specifikalasakor tigyel-
nie kell!

e A felhasznaldéi kovetelményeket tigy kell megfogalmazni, hogy az informatikaban jaratlan
felhasznald is megértse.

o Ezért itt nem célszeri modelleket alkalmazni, hanem természetes nyelven, tablazatokkal
és diagrammokkal kell a felhasznal6i kovetelményeket érthetové és egyértelmiivé tenni.

e A természetes nyelv alkalmazasdnak nehézségei:

— Az egyértelmiiség és pontossdg hidanya
— A kovetelmények keveredése

— A kovetelmények 6tvozddése
e Dolgozzunk ki egységes formatumot az Gsszes kovetelmény leirdséra.

e Haszndljuk a nyelvet kovetkezetesen, pl. a sziikséges kdvetelményeket a , kell”, a kivanatos
kovetelményeket pedig a ,javallott” széval jelolhetjiik.

o Készitsiink glosszariumot a szovegben hasznalt fogalmak és roviditések magyarazatara.
e A fontos részeket vizualisan is emeljiik ki a sz6vegbdl.

o Keriiljiik a szamitogépes zsargon hasznalatat.

13

23.

24.

Milyen veszélyei vannak a természetes nyelv hasznalatanak a
kovetelmények specifikalasakor? Milyen médon lehet ezeket
csokkenteni?

Félreérthet6ség: A szoveg irdja és olvasdja egy adott kifejezésen mas fogalmat ért, vagy
azonos fogalmakat eltér6é mdédon értelmez.

Félreérthet6ség csokkentése: Egy adott fogalom, definicié minél pontosabb, érthetébb
lefrasa az ir6 altal. Akar példék segitségével valéo megfogalmazas.

Tuilzott rugalmassag: Ugyanaz a kovetelmény sokféle médon irhaté le.

A modularitds hianya: A természetes nyelvben nincs egyértelmii lehet6ség az 6sszefliggések
jelolésére. Igy egy kovetelmény megvaltozasakor az Gsszes kovetelményt at kell vizsgalni,
hogy a kapcsolédé kovetelményeket megtalaljuk.

Strukturalt nyelvii specifikicié alkalmazasa:

— A természetes nyelv szabdlyozott, strukturalt alkalmazasa a kovetelmények leiraséara.

— Egyértelmiibbé teszi a kovetelmények specifikdcidjat, de kozben megtartja a természetes
nyelv rugalmassagat.

— A strukturat tirlapok vagy sablonok alkalmazasdval tdmogatjak. Kotelezd informécidk

feltiintetésével az lrlapon.

Egy nagy rendszer fejlesztése soran kiknek kell részt venniiik
a felhasznaloi kovetelmények verifikalasaban? Miért?

Meghatarozzak a kvetelményeket, ellendrzik
Megrendeldk > hogy megfelelnek-e az igényeknek. Gyakran
valtoztatnak!
Vezetdk .| Adokumentum alapjan készitik az arajanlatot,
“| és tervezik a fejlesztési folyamatot (projektet).

Rendszertervezok ——>| A kbvetelmények alapjan tervezik a rendszert. ‘

Rendszerteszt- A kovetelményekre tamaszkodva tervezik a
tervezdk validacios teszteket.

Karbantartas _| A kbvetelmények alapjan keszitik el a rendszer
tervezok “| karbantartasi tervét.

14

25. Sorolja fel a rendszermodellek tipusait és jellemezze azokat
egy mondatban!

e Adatfeldolgozasi modell: Adatfolyam diagramok, az adatok feldolgozasdt mutatjék a
rendszeren beliil.

e Kompoziciés modell: Egyed-kapcsolat diagramok. Bemutatjak, hogyan épiilnek fel az
egyedek més egyedekbdl.

e Architekturalis modell: Az alrendszereket mutatjak be, amelyekbdl a rendszer felépiil.

e Osztalymodell: Objektum osztdly/6roklédési diagramok, az egyedek kozos tulajdonsigait
abréazoljék.

e Inger-valasz modell: Allapotétmenet diagramok, a rendszer belsé és kiilsé eseményekre
adott reakcioit irjak le.

26. Melyek a legfontosabb kiilonbségek a felhasznaléi és a rend-
szerkovetelmények specifikalasa kozott? Kiknek szélnak az
egyes specifikaciok?

Felhasznaléi kovetelmények: A rendszer szolgaltatdsainak kozérthet6 leirasa, diagrammok-
kal, tabldzatokkal, abrakkal. Itt nem célszerti modelleket alkalmazni, az egyértelmiiség érdekében.
Rendszerkovetelmények:

o Strukturalt dokumentum a rendszer szolgaltatasainak részletes leirasdaval (funkciondlis spe-
cifikicio).Ez a szerzédés alapja.

e A rendszerkovetelmények a felhaszndléi kovetelmények részletesebb és rendezett leirdsat
adjék.

e A rendszertervezés alapjaul szolgalnak, tartalmazhatjék a rendszer modelljeit.

o A rendszerkdvetelmények leirjdk, hogy a rendszernek mit kell elvégeznie, majd a tervek
hatarozzak meg, hogy hogyan tegye.

Kinek a szamara késziilnek az egyes dokumentumok?

e Felhasznaléi kovetelmények specifikacigja:
Megrendel6 vezetGségének, a rendszer végfelhasznaloinak, rendszertervezéknek és a szerz6déskotéknek.

¢ Rendszer kovetelmények specifikacigja:
A rendszer végfelhaszndléinak, a megrendelé kozépvezetOinek, a rendszertervezéknek és
szoftverfejlesztéknek.

e Szoftver specifikacio:
A rendszertrevezOknek, szoftverfejlesztOknek, teszteloknek és karbantartéknak.

15

27. Melyek a prototipuskészités céljai? Milyen prototipusok léteznek,
melyik milyen célbdl késziil?
Céljai:
e A prototipus elsédleges célja az, hogy segitse a felhaszndlékat a rendszerkovetelmények
megértésében.
o A kovetelménytervezés része, a kovetelmények feltarasanak és validacidjanak eszkoze.
e A szoftverrendszer kezdeti verzidja, amely alkalmas a rendszer koncepciéjanak bemu-
tatasara és kiprébalasara.
e A prototipus csokkenti a kévetelményekkel kapcsolatos kockazatokat.
Prototipusok tipusai:

e Evolicids prototipus: Célja egy miikod6 rendszer ataddsa a megrendelének. A legfon-
tosabb kovetelmények implementaldsdval egyszert rendszer késziil, amelyet djabb kove-
telmények feltarasaval fokozatosan egészitenek ki 1j funkcidkkal.

e Eldobhaté prototipus: Célja a kévetelményspecifikaciobdl fakadd kockazat csckkentése.
A prototipust egy kezdeti specifikaci6 alapjan készitik, validalasra atadjak a felhasznalonak,
majd eldobjak.

28. Mi a kuilonbség az evoluciés és az eldobhaté prototipus kozott?
Melyiket mikor érdemes alkalmazni?

e Evolicids prototipus: Célja egy miikod6 rendszer ataddsa a megrendelének. A legfon-
tosabb kovetelmények implementaldsdval egyszerti rendszer késziil, amelyet djabb kove-
telmények feltdrasaval fokozatosan egészitenek ki 1j funkcidkkal.

e Eldobhaté prototipus: Célja a kévetelményspecifikaciobdl fakadd kockazat csckkentése.
A prototipust egy kezdeti specifikaci6 alapjan készitik, validalasra atadjak a felhasznalonak,
majd eldobjak.

Az eldobhaté prototipus nem tekinthetd végleges rendszernek, mert:
— A kivételek, hibak kezelése altalaban hidnyzik.
— T6bb rendszertulajdonsag kimaradhat a prototipusbdl.
— Nem késziil specifikacié a hosszu tava karbantartasra.

— A prototipus még nem a megfelel6 struktira szerint épiil.

Alkalmazasi teriiletek:

e Evoliciés prototipus:
Weblap fejlesztésben és e-business alkalmazasokban hasznéljak.

e Eldobhaté prototipus:
A kovetelmények validdlasa: a prototipus felfedheti a félreértéseket, hibakat és hidnyossagokat
a kovetelményekben

16

29. Mit jelent az adatbazis-programozas? Milyen rendszerek fej-
lesztésére alkalmas?

e Az evolicids fejlesztés az adatbazison alapuld tizleti alkalmazédsok teriiletén <aldnosan
alkalmazott technika.

o A kereskedelmi adatbazis-kezel6 rendszerek olyan 4GL fejleszt6 eszkozoket tartalmaz-
nak, amelyek tdmogatjak a lekérdezést/adatkezelést (SQL), tdblazatkezelést, jelentés ge-
neralast, felhasznaldi feliiletek tervezését, stb.

e Az adatfeldolgozési alkalmazédsokban sok kozos feladat van: adatbdzis manipuldcidk (ke-
resés, frissités, rendezés, stb.), egyszerii miiveletek, tirlapkezelés, stb. Egy 4GL-ben ezeket
altalanositjak.

e Gyakran integralhatok CASE eszkozokkel is. Ezek generalhatnak SQL-t, vagy alacsonyabb
szintu kédot.

Adatbéazison alapulé rendszerek fejlesztésére alkalmas. (77)

30. Melyek a prototipus készitésének elonyei? Ismertese a pro-
totipuskészito technikakat! Melyiket milyen esetben célszeri
alkalmazni?

Prototipuskészités elényei:
e Segit felismerni a szoftver felhasznaldja és készitéje kozti félreértéseket.

e Kideriilhet, hogy hidanyzik valamely szolgaltatas, vagy ellentmondasok vannak a szolgaltatasok
kozott.

o A szoftverfolyamat elején mar egy — legalabbis részben, modellként - miikod6 rendszer all
rendelkezésre.

e A prototipus felhasznédlhaté a rendszer-specifikacié alapjaként.

e Téamogathatja a felhasznaldok képzését és a rendszertesztet is.
Prototipuskészité technikak:

e Evoliciés prototipus készitése:

— Célja egy miikdd6 rendszer dtaddsa a megrendelének (esetleg korlatozott funkciona-
litassal)

A legfontosabb kévetelmények implementaldasaval egyszert rendszer késziil, amelyet
djabb kovetelmények feltarasaval fokozatosan egészitenek ki 1j funkcidkkal.

Az AGILIS fejlesztés alapveté mddszere.

— Weblap fejlesztésben és e-business alkalmazasokban hasznaljak.

17

— Olyan rendszereknél célszer(i alkalmazni, ahol nem készithet6 el elére a végleges spe-
cifikacié. Ilyenek altalaban az intenziv felhasznaldi interfész-hasznélatot igényld rend-
szerek.

— Nincs részletes rendszerspecifikacio, sokszor a részletes kovetelménydokumentum is
hidnyzik.

— A felhasznalé mar a rendszer fejlesztése kozben jelezheti, hogy milyen iranyban kivanja
folytatni a fejlesztést.

— A fejlesztéshez gyors, iterdlhaté fejleszté eszkozokre és médszerekre van sziikség.

— Mivel nem késziil kovetelményspecifikacid, a validécié is csak a rendszer bemutatasaval
torténhet.

— A specifikdcid, a tervezés és az implementacié dtlapolhaté.

— A rendszer inkrementumok sorozataként fejlédik, és keriil a felhasznaldhoz, vagyis
a felhaszndlé kulcsfigurai minden inkrementum tervezésében és értékelésében részt
vesznek.

— Gyors fejleszt6 eszkozok és technikak alkalmazhatok (CASE eszkozok, 4GL, folya-
matmodellezé nyelvek: BPML-Business Process Modeling Language).

— A felhaszndléi feliiletek GUI fejleszté eszkozokkel készithetdk.
e Eldobhatd prototipus készitése:

— Célja a kovetelményspecifikaciobdl fakado kockazat csokkentése.

— A prototipust egy kezdeti specifikicié alapjan készitik, validalasra atadjak a fel-
haszndalonak,majd eldobjak.

— A kovetelményspecifikdcié elkésziilte utdn nem hasznalhaté fel.
— Az eldobhaté prototipus nem tekinthetd végleges rendszernek, mert:

* A kivételek, hibak kezelése altaldban hianyzik.

* Tobb rendszertulajdonsag kimaradhat a prototipusbdl.

* Nem késziil specifikdcio a hosszi tavu karbantartdsra.

* A prototipus még nem a megfelel§ struktira szerint épiil.

31. Mit tenne, ha egy eldobhaté prototipust a megrendel6 meg
akarna vasarolni? Milyen érveket hozna fel allaspontja in-
doklasara?

Az eldobhaté prototipus nem tekinthet6 végleges rendszernek, mert:
o A kivételek, hibak kezelése dltalaban hianyzik.
e TGbb rendszertulajdonsag kimaradhat a prototipusbdl.
e Nem késziil specifikdcié a hosszi tavia karbantartésra.

e A prototipus még nem a megfelel§ struktira szerint épiil.

18

A vezetok gyakran nyomast gyakorolnak a fejlesztékre, hogy egy miikédé eldobhaté prototipust
végleges rendszerként adjanak at. Ez nagyon veszélyes, mert:

e Az eldobhaté prototipus nem alakithaté gy, hogy a nem-funkciondlis kévetelményeknek
(teljesitmény, megbizhatésdg, skdldzhatésag, stb.) eleget tegyen.

e A prototipus rendszerint dokumentélatlan marad, mert a cél a gyors elkészités és bemu-
tatés.

o A viéltoztatdsok miatt a rendszer strukturaja altalaban romlik a fejlesztés soran.

e A prototipus készitésekor az altalanos szervezeti szabvanyokat nem tartjak be (minéségbiztositas,
technoldgiai fegyelem, projekt dokumentélas)

32. Ismertesse a formalis specifikacié helyét és jelentGségét a
szoftverfolyamatban!

Formalis specifikaci6: A formélis specifikacié egy matematikai jelolésrendszert alkalmaz, pon-
tosan specifikalt szétarral, szintaxissal és szemantikaval. A specifikalas és a tervezés nagymértékben
osszefonddik egymassal. Az architektira-tervezés adhatja az alapot egy specifikacié struktiurajahoz.

A szoftverspecifikacié folyamatanak elérehaladdsaval az tigyfél befolyasa csokken, a véllalkozo
befolyasa novekszik.

A vallalkozd befolyasanak novekedése

A megrendéiﬁ befoiyésénak csokkenése

kl:'eﬂ'gais Zr}éléik k__Retn(Ijsz_er- k|_,/Architekturalis Formalis Magasszintt
DUE e s Db e tervezes specifikacio tervezés
meghatarozasa specifikalasa

Specifikacio
Tervezes

A specifikacids és a tervezési tevékenységek egymassal parhuzamosan is végezhetdk:

Rendszer- .
kévetelmények Formalis

SPECiﬂkiﬂkacic')
Rendstekturalis

modellezés fervezes

Felhasznaloi
kdvetelmények
meghatarozasa

Magasszinti
tervezes

Formalis specifikaciés technikak:
e Algebrai megkozelités: A rendszert miiveletei és azok kapcsolatai alapjan irja le.

e Modell alapti megkozelités: A rendszert allapotmodellel specifikdlja, amely halma-
zokbdl és sorozatokbdl allé matematikai konstrukcidkat tartalmaz, a miiveleteket pedig
aszerint definidlja, ahogy azok a rendszer allapotat modositjak.

19

A formalis specifikacié alkalmazasa:
o A formalis specifikacid a szoftverfejlesztés kezdeti szakaszaban kivan nagyobb eréfeszitéseket.

o A kovetelmények alaposabb és részletesebb elemzése azzal jar, hogy kevesebb lesz a hiba
a kovetelményspecifikacioban.

o A kovetkezetlenségek és a hidnyossagok felfedhetok és kijavithaték a formélis modellekkel.

e Ezért a kovetelmények késon felfedezett hibaibdl eredd tobbletmunka lesz kevesebb.

33. Sorolja fel a formalis specifikacié elonyeit és hatranyait! Mi-
lyen tipusi rendszerek specifikalasakor alkalmazzak a formalis
modszereket?

Formalis specifikacié hatranyai: A formadlis mdédszerek - az elOzetes varakozasok ellenére
nem tudtak teret hoditani, mert:

e Kialakultak tobbé-kevésbé sikeres mddszerek, mint az OO tervezés, konfiguracidkezelés, a
strukturalt programozas, stb., amelyek javitottdk a szoftver mindségét.

° Ujabban a szoftver gyors piacra keriilése fontosabb, mint a minéség. A gyors fejlesztési
technikdk nem illeszkednek a formdlis mddszerekhez.

e A formalis modszerek csak korlatozottan alkalmazhatdk példaul a felhasznaléi interfészek,
feliiletek és munkafolyamatok specifikdlasara.

e A formalis médszerek nehezen, vagy egyaltaldn nem alkalmazhatok nagy rendszerek esetén.
o Még kevés eszkoz késziilt a formalis mddszerek tamogatasara.

e A formalis médszereknek csak korlatozott felhasznalasi lehet6ségei vannak. Alkalmazédsuk
kockézata és koltsége sok esetben nagyobb, mint a varhaté elonyok.

A formadlis specifikacié elényei:

e Azoknil a rendszereknél, amelyeket formalis modszerekkel fejlesztettek, a hibaardny joval
alacsonyabb volt.

e Ezért elsosorban kritikus rendszerek fejlesztésénél alkalmazzak, ahol a rendszer igen magas
verifikalasi és validalasi koltségeihez és az esetleges hibakbdl ered6 katasztréfa koltségeihez
képest még kifizetodo a hasznalata.

Milyen tipust rendszereknél alkalmazzak?

A nagy rendszereket alrendszerekre bontjak, amelyek kozott jol definidlt interfészeket kell spe-
cifikdlni. Az alrendszerek kozti interfészek specifikdlasa teszi lehet6vé, hogy az alrendszerek
fejlesztése egymastdl fliggetlenil torténjen. Az interfészek absztrakt adattipusokkal, vagy ob-
jektum osztalyokkal definidlhatok. A formaélis specifikicié algebrai megkozelitése kiilondsen al-
kalmas az interfészek pontos specifikdlasara. A formélis specifikaciét nyilt interfészek, kommu-
nikéciés protokollok definidldséara is alkalmazzak.

20

34. Melyek azok a rendszerek, amelyeknél a formalis specifikaciét
leginkabb alkalmazzak? Miért?

Elsosorban kritikus rendszerek fejlesztésénél alkalmazzdak, ahol a rendszer igen magas verifikdlasi
és validédlasi koltségeihez és az esetleges hibakbol ered6 katasztréfa koltségeihez képest még
kifizet6d6 a hasznélata.

35. Hol foglal helyet az architekturalis tervezés a szoftverfolya-
matban? Mire szolgal a rendszer architekturalis terve?

Kovetelmény
specifikacio

Tervezési tevékenységek

Interfész
tervezeés

Algoritmus
tervezés

Specifikacié

Architekturalis
tervezés
A A 4

Rendszer Szoftver Interfész omponens |Adatstruk-| |Algoritmus
architektura| specifikacid specifikacig specifikacig |tura spec. pecifikacid

Mire szolgal a rendszer architekturalis terve?

Az architekturalis tervezés az a tervezési folyamat, amelynek soran kijelolik a rendszert alkotd
alrendszereket és azt a keretrendszert, amely vezérli az alrendszereket és biztositja kozottik a
kommunikéciét. A folyamat végeredménye a szoftver architektira, amely a tervezés alapjdul
szolgdl. Ez a rendszertervezés folyamatanak kezdeti 1épcsofoka.

Feladata:

e Osszekotni a specifikacio és a tervezés folyamatat

e Kialakitani a rendszer alapveté strukturdjat és azt a keretrendszert, amely a rendszert
egységbe foglalja és miikodését iranyitja.

Gyakran egyes specifikacids tevékenységekkel parhuzamosan végezhets. A kezdeti architekturalis
elképzelések mar a specifikdciéban tiikrozodhetnek. Magaba foglalja a f& rendszerkomponensek
és azok vezérlésének, valamint kommunikéciéjanak meghatarozasat.

36. Kliens/szerver modell

Olyan osztott rendszermodell, amely bemutatja hogyan oszlanak meg az adatok és a feldol-
gozasok a komponensek kozott.

21

Elemei:

e Szerverek: Adatkezel6 szerverek, nyomtatészerverek, alkalmazas szerverek, kommunikacios
szerverek, stb.

e Kliensek: Tobbnyire 6nallé alrendszerek, amelyek hozzaférnek a szerverek szolgaltatasaihoz.
Egyszerre sok példanyban futnak.
Tipusai:

— Vékony kliens: Bongészo, szkriptekkel
— Vastag kliens: komplett kis alrendszer, helyi adatokkal, funkcidkkal

e Halbézat: A klienseknek biztosit hozzaférést a szerverek szolgdltatasaihoz.

37. Milyen el6nyei és hatranyai vannak a kliens/szerver modell-
nek?
El6nyo6k:
e JOl strukturalt, osztott architektira.
e Konnyen kiegészithet6 0j szerverrel (4j funkciéval).
e Alacsonyabb hardver kovetelményei vannak.
Hatranyok:

e Nincs megosztott, kozos adatmodell, mindegyik alrendszer a sajat szempontjai szerint
kialakitott adatmodellt hasznélja (ez elény a teljesitmény szempontjabdl).

e Redundans adatkezelés folyhat minden szerverben.

e Nincs kozponti név- és szolgdltatds nyilvantartds, nehéz megtalalni, hogy milyen szerverek
és szolgaltatdsok léteznek.

38. Mi a kiilonbség a vékony- és a vastag kliens kozott? Melyik
milyen célra alkalmas?

Vékony kliens: A vékony kliens egy minimalis eszkozokkel rendelkez6 kliens. Ez a kliens
tipus a sziikséges eréforrdsokat is a tévoli (host) gépen veszi igénybe. Egy vékony kliens fel-
adata tobbnyire kimeriil az alkalmazdasszerver altal kiilldott adatok grafikus megjelenitésében; a
tényleges, nagy mennyiségii adat mozgatasat, kezelését igényld feladatot az alkalmazas szerver
végzi el. (Pl.: Web bongész6bél futé alkalmazdsok)

Vastag kliens: A vastag kliens képes arra, hogy onmaga hajtson végre nagyobb adat-
mennyiségekkel feldolgozasokat, amikor a szerver inkabb elsddleges taroléként viselkedik. Ennek
ellenére, a kifejezés inkabb a szamitégép szoftverére vonatkozik, és egyre inkabb alkalmazzak
halézati szdmitégépek esetén, ahol a szamitogép jelentds halozati alkalmazdsokat (is) futtat.

22

39. Milyen modelleket alkalmaznak az objektumorientalt tervezésben?
Melyik mire alkalmas?

Objektum-modellek:

e A rendszer felbontdsa egyluttmiikodé objektumokra. Az objektumok egyéni dllapottal és
az allapotokon értelmezett miiveletekkel rendelkeznek.

e A rendszert jél definialt interfészekkel rendelkezd, lazan csatolt objektumokra bontja, ame-
lyek egymas szolgaltatasait veszik igénybe.

e Az objektum orientalt felbontas az objektum osztédlyok, attributumaik és muveleteik azo-
nositasat (felismerését és helyes modellezését) jelenti.

e Az implementacié soran a konkrét objektumok ezekbdl az osztalyokbdl jonnek létre. Az
objektumok miiveleteinek koordinalasat valamilyen vezérlési modellel abrazoljék.

Adatfolyam-modellek:

e A rendszer felbontasa funkcionalis modulokra, amelyek az inputokat outputokkd transz-
formaljak (csévezeték modellnek is nevezik). A modulok funkciondlis transzformécidk.

e Az adatfolyam modellben az inputot funkciondlis transzforméciék dolgozzék fel és ennek
eredményeként allitjak el az outputot.

e Tulajdonképpen megegyezik a UNIX shell ,pipe and filter” modelljével.

e Régota alkalmazzdk az adatfeldolgozasi rendszerek modellezésére. (féleg kotegelt, szek-
vencidlis adatfeldolgozds esetén)

e Interaktiv rendszerek modellezésére csak nagyon preciz specifikalassal alkalmas.

40. Mi a kiilonbség a kozpontositott vezérlés és az esemény alapi
vezérlési modell kozott?

Kozpontositott vezérlés: Egy alrendszer végzi a teljes rendszer vezérlését, inditja, leallitja,
stb. a tobbi alrendszert.

e Hivas-visszatérés modell: Fa-struktirdji modell, ahol a csticson van a vezérl6 alrend-
szer. A vezérlés hivasok sorozatan keresztiil jut el a modulokhoz. Leginkabb szekvencialis
rendszerekhez alkalmazhaté (pl.: listafeldolgozés, listazés, jelentésgeneralas)

e Kezel6-modell: Konkurens rendszerek modellezésére alkalmas. Egy kozponti rendszer-
komponens koordindlja, inditja, allitja le a rendszerfolyamatokat (komponenseket, vagy
alrendszereket), amelyek parhuzamosan is végrehajthaték. Alkalmazhaté szekvencidlis
rendszerekben is, ahol a vezérlé modul allapotvéltozdk értéke alapjan hivja meg az egyes
alrendszereket.

23

Esemény alapu vezérlés:
Minden alrendszer reagalhat az 6t érintd kiils6, vagy mas alrendszer altal generdalt eseményekre.
Eseményvezérelt rendszer lehet pl. egy tablazatkezelo is, ahol egy cella értékének megvaltozasa
mas celldkat is megvaltoztat, vagy mas alrendszert aktivizal.

e Broadcast-modell: Az eseményrél mindegyik alrendszer értesiil, és az reagal ra, ame-
lyiknek ez a feladata.

e Megszakitasvezérelt-modell: Valés idejii rendszerek modellje, ahol egy megszakitas-
kezel6 észleli az eseményt és elinditja az esemény feldolgozdsaért felelés alrendszert.

41. Milyen vezérlési modellek alkalmazhaték parhuzamos rend-
szerekben?

Konkurens rendszerek modellezésére alkalmas. Egy kozponti rendszerkomponens koordinélja,
inditja, allitja le a rendszerfolyamatokat (komponenseket, vagy alrendszereket), amelyek parhuzamosan
is végrehajthatok. Alkalmazhato szekvencislis rendszerekben is, ahol a vezérlé modul allapotvaltozdk
értéke alapjan hivja meg az egyes alrendszereket.

42. Milyen UML modellekkel abrazolhaté a rendszer és kornye-
zetének kapcsolata?

Kornyezeti modell:
o A rendszer hatdrainak dbrazolasara szolgdlnak (mi tartozik a rendszerhez és mi nem).

e A hatéarok kijelolése gyakran nem technikai, hanem tarsadalmi, vagy szocialis szempon-
toktdl is fiigg.

e A rendszer és kiilsé rendszerek kozti kapcsolatok abrazoldsa ugyancsak a kornyezeti mo-
dellek feladata.

e A kornyezeti modell dbrazolasi médja dltaldban egyszerii blokkdiagram.

43. Mire szolgalnak az objektumorientalt tervezésben alkalmaz-
hat6 diagramok? Soroljon fel és jellemezzen néhanyat!

e Alrendszer modellek: Az objektumok logikai csoportositasat mutatjak az Gsszefliggd
alrendszerekben.

e Szekvencia modellek: Az objektumok interakcidinak sorrendjét abrazoljak.

° Allapotmodellek: Bemutatjak, hogy egy objektum hogyan valtoztatja az allapotat,
valaszol bizonyos eseményekre.

¢ Egyéb modellek: Haszndlati eset modellek, 6roklédési modellek, osztalydiagramok, stb.

24

44. Ismertesse a valos ideju rendszerek fobb jellegzetességeit.

A valds idejii rendszerek olyan (gyakran beépiild) szoftverrendszerek, amelyek figyelik kornye-
zetiiket és adott (rovid) id6n beliil képesek reagalni a kornyezeti hatdsokra (ingerekre). Altaldban
inger-valasz tipusu rendszerek.

Vannak:

e Periodikus ingerek: 1ddzités hatasara végez valamit a rendszer.

e Aperiodikus ingerek: Rendszerteleniil bekovetkezo kiilsé inger hatasara kell valamit
csindlni.

A valés idejii rendszerek miikédésében az id6 kritikus tényezo.
A valés idejii rendszerek gyakran az dtlagosnal nagyobb felel6sségii feladatot latnak el.
A valés idejii rendszerekhez mindig tartoznak hardver eszkozok is:

e Erzékelsk, amelyek adatokat gytijtenek.

e Szabdlyozok, miikodtetok, amelyek a rendszer kornyezetét befolyasoljak.

45. Melyek a {6 kiilonbségek az atlagos adatfeldolgozo rendszerek
és a valés idejii rendszerek kozott?

H((((

46. Van-e szerepe a valés idejii rendszerek tervezésében a hard-
vertervezésnek? Miért?

A rendszer hardver és a szoftver elemeit egyiitt kell megtervezni, célszeriien elosztva a funkcidkat
a hardver és a szoftver kozott. A dontést azonban, hogy mit kell hardverben és mit szoftverben
megvaldsitani, célszerii halogatni, az optimalis megoldas megtaldlasa érdekében. Egy funkcié
sok esetben hardverrel jobb teljesitménnyel valdsithaté meg, de hosszabb fejlesztést igényel és a
véltozasok nehezebben koévethetok.

47. Milyen programnyelveket alkalmaznak a valdsideji rendsze-
rek programozasara?

e C: Lehetséges effektiv programokat irni, de nem feltétleniil tAmogatja a parhuzamos folya-
matokat, vagy a megosztott eréforrasok kezelését. Ezeket azonban az opericids rendszer
megoldhatja.

e Ada: Valos idejii rendszerek programozasara késziilt, ezért tamogatja a konkurencidt és
az Ujabb verzidi mar az litemezést és az idozitést is kezelik.

e JAVA: A Java tdmogatja a konkurenciét (szélak és szinkronizalt mddszerek), ezért alkal-
mas a kevéssé kritikusan valds idejii rendszerek fejlesztésére.

25

48. Miért kevéssé alkalmas a Java programozasi nyelv szigorian
valoés ideji rendszerek programozasara?

Nem hasznalhat6 szigortian real-time rendszerekhez, mert:

e Nem lehet megadni egy szal végrehajtasi idejét,

A | szemétgylijtés” nem vezérelheto,

A megosztott eréforrasokat tartalmazé sorok méretét nem lehet lekérdezni,

A kiilonbo6z6 virtudlis gép implementaciok kiilonbozé idozitéssel futtatjak ugyanazt a szoft-
vert,

A futdsi ido tar- és processzorhasznalatdnak elemzése nem lehetséges.

49. Melyek a valos idejii futtatorendszerek fobb komponensei?

A valds ideji futtatorendszer komponensei

Utemezési
informaciok
Valés idejii Megszakitas-
6ra Utemez kezelé
Folyamatok
eroforras
igényei
Eroforrasra varéo Eréforras- Szabad er6-
folyamatok listaj kezeld forrasok listaja
folyamat eréf ok
Inditandoé Eloszté Processzorok
folyamatok listaj Cal listaja

Folyamatok futtatasa

50. Melyek a szoftver tjrafelhasznalasan alapulé fejlesztés elonyei
és hatranyai?
El6nyo6k:
e Javulé megbizhatésag: A komponenseket mar tébb miikédo rendszerben kiprébalték.

e Alacsonyabb projektkockazat: A komponensek dra és adaptaldsi kéltsége pontosabban
tervezhetd.

26

e A szaktudas jobb kihaszndlasa: A specidlis szaktudas a komponensben testesil meg,
nem sziikséges minden projekthez kiilon alkalmazni.

e Szabvanyossag: A szabvanyoknak valé megfelelést a komponensek garantaljék (interfészek,
kommunikéacids és GUI szabvanyok)

e Gyorsabb fejlesztés: Egy rendszer kifejlesztése gyorsabb, ha kevesebb eredeti fejlesztést
igényel.

Hatranyok:

e Novekvo karbantartasi kéltségek: A komponens forrdskddja és tervezési dokumentécidja
hianyaban novekszik a karbantartas koltsége.

o Az eszkOztamogatas hianya: A CASE eszko6zok gyakran nem tamogatjék az Gjrafelhasznalést.

e A ”nem mi taldltuk ki” jelenség: Egy teljes rendszer kidolgozasa nagyobb szakmai
kihivés.

e A komponenskonyvtarak karbantartasa: Sokba keriil a komponenskonyvtarak feltoltése
és folyamatos karbantartdsa.

e Az tujrafelhasznalhaté komponensek megtalalasa és adaptalasa: Még nem fejlédtek
ki a komponensek megtaldlasat és adaptalasat segit6 altalanos technikdk.

51. Soroljon fel harom érvet, amely tamogatja a komponens alapi
ujrafelhasznalast és harmat, amely ellene szdl!

El6nyo6k:
1. A komponens alapu fejlesztés beilleszthetd a szabalyos szoftverfolyamatba

2. A komponensek az objektumosztalyoknal sokkal absztraktabbak és kiilonéllé szolgaltatasoknak
tekinthetok

3. A legtobb programozasi nyelvben hivatkozhatunk kényvtarban tarolt komponensekre
Hatranyok:

1. A komponensek inkompatibilitasa miatt a koltség- és idémegtakaritdas a vartnal kevesebb
lehet (integréciés munkak).

2. Nehézséget okozhat a komponensek megtaldldsa (nincsenek szabvanyok a komponensek
tulajdonsigainak lefrdsara, hidnyoznak az egységes komponens konyvtarak).

3. A kovetelmények véltozasat kovetd evolicié lehetetlen, ha a komponensek nem cserélhetok.

27

52. Mi a programgenerator alapu ujrafelhasznalas lényege? Mi-
lyen teriileteken alkalmazzak?

A generdtor alapu tujrafelhaszndlas akkor lehetséges, ha egy programgenerator tartalmazza egy

szaktertilet alapvetd ismeretanyagét. (pl. adatfeldolgozds). Az ilyen programgenerdtorok tar-

talmazzdk a szabvanyos algoritmusokat és fliggvényeket, és ezek paraméterezését kovetoen a ge-

nerator automatikusan el6allitja a programot. A szakteriiletre kidolgozott nyelven, vagy jabban
grafikus eszkozokkel lehet elkésziteni a rendszer modelljét.

53. Miért alkalmazzak a generator alapu tjrafelhasznalast els6sorban
az adatfeldolgozd, eBusiness rendszerek fejlesztésében?

A generdtor alapu udjrafelhaszndlas igen koltséghatékony, de viszonylag kevés szakteriilethez
léteznek ilyen rendszerek.(pl.: adatfeldolgozd, e-business).
Ezzel a médszerrel konnyebben allithatok el6 az alkalmazasok, mint a komponens alapti médszerrel.

54. Mi a komponens, milyen interfészei vannak?

A komponensek szolgaltatdsokat nyujtanak a rendszer szdméra, a végrehajtis helyétdl és a
megvalositas nyelvétol fiiggetleniil.

e Egy komponens egy fliggetleniil végrehajthatd program, amely egy vagy tobb végrehajthato
objektumbdl all.

e A komponensek interfészeit publikdljak és minden interakcié ezeken az interfészeken ke-
resztil folyik. A komponens forraskédja sok esetben nem hozzaférhetd, belsé allapotai
nem lathatoak.

Komponens interfészei:
e Szolgaltatott interfészek: A komponens altal szolgaltatott interfészek.

e Sziikséges interfészek: Azok az interfészek, amelyeket a komponenst hasznalé rendszer-
nek, vagy kornyezetének kell biztositania.

55. Milyen nyelvek és kornyezetek alkalmasak a komponensek
integralasara?

A legtobb programnyelvben hivatkozhatunk konyvtdarban tdrolt komponensekre. Leggyakrab-

ban szkriptnyelveket hasznalnak komponensek integralasara.

Koztes integracids keretrendszerek: komponensek kézti kommunikaciét és informacidcserét tamogatd
szabvanyok és osztalyok. (Ilyen példaul a CORBA, JavaBean, COM, DCOM, stb.)

28

56. Milyen hatranyai vannak az ujrafelhasznalhaté komponen-
sekkel torténo szoftverfejlesztésnek?

Az ujrafelhasznalhatésag és a haszndlhatdsdg ellentmondésa: Minél dltaldnosabb interfésszel ren-
delkezik, anndl inkdbb tjrafelhasznalhaté, de annal bonyolultabb, vagyis kevésbé hasznalhaté.

57. Mire szolganak az alkalmazasi keretrendszerek, hogyan cso-
portosithaték?

A keretrendszer absztrakt és konkrét osztalyok gyijteményébdl és a koztilk 1év6 interfészekbdl
allé alrendszer-terv.

A keretrendszerek tigy implementalhatdék, hogy a terv részeit komponensek hozzaaddsdval egészitjiik
ki. Altaldban viszonylag nagy, ujrafelhasznalhaté egységek, de nem 6nallé alkalmazéasok.

Az alkalmazdsok tobb keretrendszer integraldsaval hozhatdk 1étre.

A keretrendszerek csoportositasa:

e A rendszer infrastruktiariajanak keretrendszerei: A rendszer infrastrukturalis alap-
jainak (kommunikécié, felhasznéloi feliiletek, titkositas, stb.) fejlesztését tamogatjdk.

o Koztes, integracios keretrendszerek: Komponensek kozti kommunikéciét és informacidcserét

tamogaté szabvanyok és osztalyok. (Ilyen példdul a CORBA, JavaBean, JMI, COM,
DCOM, .NET, stb.)

e Villalati alkalmazasok keretrendszerei: Az egyes specidlis szakteriileti alkalmazédsok
fejlesztését tamogatjdk. A szakteriileti tudédst tartalmazzék (pl. pénziigy, telekommu-
nikécid).

58. Mi a ,,polcrdl levehet6” termék? Leginkabb milyen rendsze-
rekben alkalmazzak?

A, polcrdl levehets”, COTS — Commercial Off-The-Shelf rendszerek dltaldban komplett alkal-
mazasi rendszerek, amelyek API-val rendelkeznek. Legtobbszor rendszerszoftver termékek, az
egyszeriu komponenseknél nagyobb funkcionalitassal.

Nagy rendszerek épitésekor gyakran hasznélt stratégia a COTS termékek integrélasa. Kiilonosen

a gyors fejlesztést kivand eCommerce, eBusiness rendszerek korében. A fejlesztési id6 nagysagrendekkel
csOkkenthetd.

29

59.

60.

61.

Milyen nehézségei vannak a COTS termékek alkalmazasanak?

A funkcionalitas és a teljesitmény nem tarthaté kézben: A COTS rendszerek
sokszor kevésbé effektivek mint azt a reklamokban igérik.

A COTS rendszerek egytittmiikédése bizonytalan: A kilonb6z6 COTS rendszerek
eltéro feltételezésekkel késziiltek (pl. sorkezelés), ezért az integracié nehéz lehet.

Az evolucié ellendrizhetetlen: A szallité és nem a felhaszndlé hatdrozza meg.

A COTS termékek tamogatasa: A szillité altal biztositott tdmogatas gyakran nem
terjed ki a rendszer teljes élettartamara.

Miért dragabb egy tjrafelhasznalhaté komponens kifejlesztése
az egyedi komponens kifejlesztésénél?

Az ujrafelhasznalhaté komponensek meglévé komponensek altaldanositasaval hozhatok 1étre.
Ehhez nagy tapasztalat kell(tehdt hozzaért6 személy).

Az ujrafelhasznalhaté komponensek fejlesztési koltségei tobbszorosen meghaladjak az egy-
szerl, specifikus komponensek koltségeit. Ezt egyetlen projekt koltségeibél nem lehet
fedezni, ezért kialakultak olyan szoftverfejleszté véllalatok, amelyek specializalodtak az
ujrafelhasznalhaté komponensek fejlesztésére.

Mi az alkalmazascsalad? Miért alakultak ki az alkalmazascsaladok?

Alkalmazas csalad: Az alkalmazdscsaldd az alkalmazasi rendszerek olyan termékcsalddja,
vagy termékvonulata, amelyek egy kozos, szakteriilet-specifikus architekturara épiilnek (,kozos

mag77

).

Kialakuldsanak célja: A kialakulds célja az volt, hogy az alkalmazdscsaldad magjat (szoftver
magjat) ujra feltudjak hasznélni, amikor egy 1j alkalmazdst szeretnénk fejleszteni.

62.

Hogyan osztalyozhaté az alkalmazascsaladok specializacidja?

e Platform specializacio: Az alkalmazas egyes verziéi kiilonbozé platformokra késziilnek

(pl. Windows, Solaris, Linux, ..), de a funkcionalitds azonos.

¢ Konfiguracids specializacié Az alkalmazas egyes verzidi kiilonboz6 perifériakkal képesek

egyiittmiikodni.(A periféridkat kezel6 komponensek kiilonboznek.)

e Funkcionadlis specializacio Az alkalmazas egyes verzidi eltéré funkcionalis kvetelmények

kielégitésére késziilnek.(A funkciondlis komponensek kiilénboznek.)

30

63. Mi a kiilonbség a tesztelés és a belovés kozott? Melyiknek
mi a célja?
Kiilonbségek:
e A verifikacid és validacio feladata a hibak, hidnyossagok létezésének felfedezése.
e A bel6vés ezen hibdk helyének lokalizélasa és kijavitédsa.

e A bel6vés a program viselkedésére vonatkozé feltételezések felallitasaval kezddédik, majd
ezen feltételezések vizsgalataval préobalja megtalalni a hibdkat.

e A bel6vés sordn felfedezett hibdk javitasa utan djra kell tesztelni a programot.
Tesztelés célja:

e Felfedni a rendszerben (esetleg mar a tervek szintjén) rejlé hibdkat, nem arrél megbizo-
nyosodni, hogy hibamentes a rendszer.

e Meggy06z6dni arrdl, hogy a rendszer egy-egy konkrét miikodési szituaciéoban hasznalhatéan
mukdodik.

Belovés célja:

e A felfedett hibak helyének lokalizalasa és kijavitdasa

64. Mi a célja a szoftver verifikacigjanak és mi a validacio felada-
ta?

Verifikacié: Annak ellendrzése, hogy valéban a megfelelé terméket készitjik el, vagyis, hogy a
szoftver megfelel a specifikacionak.

Validacié: Annak bizonyitdsa, hogy a terméket jol készitjiik el, vagyis hogy a szoftver valéban
a megrendeld elvarasainak megfeleléen miikodik (esetleg a specifikdcidval ellentétesen).

A szoftvernek azt kell megvaldsitania, amit a felhasznédlé valéban elvar téle.
A verifikacié és validacié (V&V) folyamata a szoftver teljes életcikluséra kiterjed, a szoftver
folyamat minden fazisiban szerepet kap.

65. Miért célszerii a szoftvertesztelés mellett atvizsgalast (ins-
pekcid) is tartani?

Szoftver-atvizsgalds (inspekcid): A rendszer reprezenticidjénak elemzése (Kovetelmény-

specifikécid, tervek, grafikus dbrazolasok, forrdaskéd). A forraskdd elemzése automatizalhaté. (Statikus

verifikacid)

Miért célszerii inspekciét is tartani?

o A szoftver atvizsgdlas célja a hidnyossagok felderitése, a koltséges tesztelés helyett a hibak
kb. 60 %-a felfedhetd az atvizsgalas sordn.

31

A fejlesztési folyamat kezdetétdl alkalmazhatd, a dokumentumok (kévetelmények, tervek)
atvizsgalasaval.

Egy atvizsgdlas soran tobb hidnyossig felfedezhetd, amig egy teszt tobbnyire egy hibat fed
fel.(Legalabbis, ha egy hibat detektdl, a tesztelést abba kell hagyni, és a hiba kijavitasat
kovetSen 1jbdl elolrél kell kezdeni.)

Sok koltséges tesztelést elézhet meg.

66. Mi a programtesztelés feladata? Milyen alaptipusai vannak?

Szoftvertesztelés: A szoftver implementacidéjanak tesztadatokkal vald futtatdsa és a viselkedés
megfigyelése(Dinamikus verifikdcid).
Tipusai:

e Hianyossagok tesztelése

— Feladata a rendszer hibainak és hidnyossdgainak felfedése.
— Fajtai:
+ Komponens tesztek:
Fekete doboz, ekvivalencia-osztalyok, struktirateszt, itvonal-teszt

* Integréacios tesztek:
»Fentrél lefelé /lentrél felfelé”, interfészteszt, stressz-tesztek

* Objektumorientalt tesztelés

e Statisztikai tesztelés: A rendszer teljesitményének és megbizhatésaganak tesztelése,
valés helyzetekben (valés felhaszndléi inputtal és gyakorisaggal).

67. Mire szolgal a szoftver atvizsgalasa? Mi a kiilonbség az atvizsgalas
és a tesztelés kozott?

A szoftver atvizsgdlasdnak célja: A szoftver dtvizsgalds célja a hidnyossigok felderitése, a
koltséges tesztelés helyett a hibdk kb. 60 %-a felfedheto az dtvizsgélds sordn.
Kiilonbségek:

o Egy atvizsgalas soran tobb hidnyossdg felfedezhetd, amig egy teszt tobbnyire egy hibat fed
fel.(Legalabbis, ha egy hibat detektdl, a tesztelést abba kell hagyni, és a hiba kijavitasat
kovetden 1jbdl elolrél kell kezdeni.)

o Az 4tvizsgdlds mér fejlesztési folyamat kezdetétél alkalmazhaté, a dokumentumok (kove-
telmények, tervek) atvizsgaldsival, mig a tesztek nem

e Az inspekcié alkalmas eszkoz arra, hogy ellenérizze, megfelel-e a program a specifikdciénak

32

68. Milyen hianyossagokat lehet els6sorban felfedezni a progra-
mok atvizsgalasa soran?

e Dokumentumokban és forraskédban rejlé hianyossagok

e Kovetelményekben és tervekben 1évé hidnyossagok felderitése

69. Mi a Cleanroom szoftverfejlesztési folyamat lényege?

o A szoftverhibdk elkeriilését, nem pedig megtaldlasat és kijavitasat célzé szigoru atvizsgalasi
folyamat. (A név a félvezets-gyartasbol szarmazik)

e A rendszer komponenseinek tesztelését helyettesiti dtvizsgdlasokkal, megfelelnek-e a spe-
cifikacionak.

o Inkrementalis fejlesztési mddszer, el6szor a kritikus inkrementumokat szallitja le.
e Statikus verifikacié (szigoru atvizsgéldsok)
o A rendszer statisztikai tesztelése

e Formalis specifikicié (dllapotdtmenet modell, strukturdlt programozas, csak néhény vezérlési
és adatabsztrakciés konstrukeié hasznélhato)

70. Ismertesse a grafikus felhasznaldi kezelofeliiletek tervezésének
alapelveit!

Alapelvek:

e A felhasznaléi jartassag figyelembevétele:
A feliiletnek olyan kifejezéseket és fogalmakat kell haszndlnia, amelyeket az atlagos fel-
hasznal6 ismer.

e A feliilet konzisztenciaja:
Azonos meniiknek és parancsoknak azonos formatummal kell rendelkezniiik, hasonlé miiveleteket
hasonlé médon és helyen kell jelezni és megvaldsitani.

e Minimalis meglepetés:
A felhasznaléban kialakul egy modell a rendszer mukddésérol. A hasonld tevékenységeknek
hasonlé hatast kell kivaltaniuk, kiilonben a rendszer kellemetlen meglepetéseket okoz fel-
haszndl6 szamara.

e Visszaallithatdésag:
Minden helyzetben szamitani kel arra, hogy a felhaszndlé hibazhat, ezért gondoskodni
kell arrél, hogy a hibat kijavithassa: Visszavondsi lehetdség (undo), esetleg tobbszintii.
Veszélyes tevékenységek megerdsitése (pl. torlés), ,Puha torlés”

e A felhasznalé tamogatasa:
A feliiletnek konnyen elérhetd segito, vagy siugd rendszerrel kell rendelkeznie. A sugdt
strukturdlni kell, nem szabad til sok informaéciét kozolni. Elényos a helyzetfiiggd sugd
alkalmazasa.

33

o A felhasznaldk sokfélesége:
Az alkalmi felhasznalok tobb tamogatast, a gyakorlott felhasznaldk egyszeriibb, gyorsabb
miik6dést varnak.

71. Miért fontos a grafikus felhasznaléi kezelofeliilet gondos ter-
vezése?

o A felhasznal6 a kezel6felilleten keresztiil keriil kapcsolatba a rendszerrel, ennek alapjan
alkot véleményt, csak ezutdn ismeri meg a rendszer funkcionalitasat.

o A rosszul tervezett kezelofeliilet gyakran katasztrofalis hibakhoz vezet.
e A szegényes, vagy kovetkezetlen felhaszndléi kezeldfeliilet sok rendszer bukédsahoz vezetett.

e Nagy fejlesztd szervezetekben szakértoket alkalmaznak (grafikus, pszicholégus, szakteriileti
szakértd), de kis/kozepes cégeknél gyakran a kezel6fellilet megtervezése is a szoftver tervezd
feladata.

72. Miért célszerii egyes rendszerekben kiillonb6z6 felhasznaloi
feliileteket kidolgozni a gyakorlott és az alkalmi felhasznalék
szamara?

Az alkalmi felhasznéldk tobb tamogatast, a gyakorlott felhaszndlék egyszeriibb, gyorsabb miikodést
varnak.

73. Milyen alapelemeket hasznalunk a grafikus felhasznaldi ke-
zelofelilleteken?

e Ablakok: Az ablaktechnikdval tobb ablakban egyszerre tobbféle informaécié jelenithetd
meg.

e Tkonok: Az ikonokkal az informaécié fajtai jelolhetdk: alloményok, folyamatok, stb.

e Meniik: A meniitechnikdval a parancsok egy strukturalt meniibol vélaszthaték ki. A
felhasznélénak nem kell egy parancsnyelvet megtanulnia és parancsokat begépelnie.

e Pozicionalas: Egér, vagy mas eszkoz alkalmazhaté egy mentipont kivalasztasara, vagy
egy ablakban a lényeges elemek meg- vagy kijelolésére.

e Grafika(szinek, képek): Grafikus elemek és szinek alkalmazdsa a szoveg mellett (vagy
helyett) dttekinthet6bbé teszi a képernyot.

34

74. Milyen eszkozoket alkalmazhatunk a grafikus felhasznaléi ke-
zelofeliileten a felhasznalé tamogatasara?

A kezel6feliilet tervezésekor figyelembe kell venni a felhasznaldk igényeit, gyakorlatat és képességeit.
A feliilletnek konnyen elérhet6 segito, vagy sigd rendszerrel kell rendelkeznie. A stgoét struk-
turdlni kell, nem szabad tudl sok informéciot k6zolni. Elonyos a helyzetfiiggo siugd alkalmazésa.

75. Milyen elonyei és hatranyai vannak a parancsnyelv alkalmazasanak
a felhasznaléi interakciokban?

A felhasznalé parancsokat gépelve utasitja a rendszert (pl. Unix)
Parancsnyelv el6nyei:

e Egyszerii, olcsé terminalon is alkalmazhato,
e Egyszertien feldolgozhat6 (pl. fordité technikaval)
e Bonyolult, egymasba dgyazott parancsok is kezelhetok,
e Rugalmas.
Parancsnyelv hatranyai:
e Nehezen tanulhatd, az atlagos felhaszndlé szamara bonyolult,
o Gépelési gyakorlatot kivan
e A hibakezelést (hibajelzés, visszavonas) nehéz megoldani

A parancsnyelveket a gyakorlott felhaszndlé szaméra lehet alkalmazni. A meniirendszer alter-
nativajaként célszeri biztositani.

76. Sorolja fel és jellemezze a felhasznaldi interakciok fajtait!

Kozvetlen manipulacié: A felhasznalé kozvetleniil a képernyén lathaté objektumot kezeli
(pl. torléshez kukaba viszi).

¢ El6nyei:

— Konnyen tanulhaté és gyors,
— A felhasznal6 azonnal visszajelzést kap, igy a tévedés gyorsan visszavonhato.
e Hatranyai:
— Bonyolult lehet a felhasznalé tevékenységérdl (szandékardl) a megfelelé informécidt
begylijteni a program szamara,

— Csak akkor hasznélhato, ha a feladatok és objektumok egyértelmiien megkiilonboztet-
het6 ikonokkal reprezentalhatok.

35

Meniikivalasztas: A felhaszndlé a rendszer <al felkindlt (sokszor helyzet-fliggd) listabol
valaszthat, a kijelolést egér, vagy kurzormozgatdssal, roviditett név beirassal is végezheti. Al-
kalmazhat6 az egyszerii (pl. érint6képernyds) termindlokon is.

¢ Eldbnyei:
— A felhasznalénak nem kell parancsokat megjegyeznie,
— Kevés gépelést igényel és a hibdk konnyen kivédhetok,
— Allapotfiiggd stgé alkalmazhato.

e Hatranyai:

— Az akcidk kozotti logikai Osszefiiggések (and, or) nem jelenitheték meg,
— Kevés valasztasi lehet6séget enged meg, a sok lehet6séghez strukturalni kell a mentiket.

— A gyakorlott felhasznélé szamara lassu.

I'jrlapkitiiltés: Az trlap az aktudlis allapothoz alkalmazhaté. Olyan rendszerekben alkal-
mazzék, ahol sok adatot kell bevinni (pl. adatrogzités).

¢ Elbnyei:

— A felhasznaldi hibak felfedhetdk és jelezheték, illetve kivédhetdk,
— Legordiilo valasztéasi lehetéséggel sok felhasznaldi tévedés kizarhato,

— Konnyen megtanulhato.
e Hatranyai:
— Nagy képernyoéfeliiletet foglal.

Parancsnyelv: A felhaszndlé parancsokat gépelve utasitja a rendszert (pl. Unix). A parancs-
nyelveket a gyakorlott felhasznal6 szamara lehet alkalmazni. A meniirendszer alternativajaként
célszeri biztositani.

¢ Elbnyei:

— Egyszeri, olcsé termindalon is alkalmazhato,
— Egyszertien feldolgozhat6 (pl. fordité technikédval)
— Bonyolult, egymésba agyazott parancsok is kezelhetok,
— Rugalmas.
e Hatranyai:

— Nehezen tanulhaté, az atlagos felhasznalé szaméra bonyolult,
— Gépelési gyakorlatot kivan

— A hibakezelést (hibajelzés, visszavonds) nehéz megoldani
Természetes nyelv:

e A felhaszndl6 a parancsokat természetes nyelven gépeli be, amelynek szotara korldtozott.
Az ilyen rendszerek altalaban specidlis alkalmazasi teriiletet szolgdlnak ki.

36

e A természetes nyelv megfelel¢ az alkalmi felhasznédlé szdmara de a gyakorlott felhasznéld
nem kedveli a tul sok gépelés miatt.

e Beszédfelismeréssel kombinalva — szlikitett kifejezésekkel — ma is hasznaljak.

77. Milyen lehet6ségek vannak az informacioé grafikus megjelenitésére?

e A rendszer megjeleniti a felhaszndl6 szamara kozlendd informécidkat.

e Ez az informécié megjelenhet kozvetleniil szoveges formaban, vagy més médon (pl. grafi-
kusan, akar hang kiséretében).

e A jol tervezett rendszerekben maga az informécio és az azt megjelenito szoftver kiilonvalik.

e A Model-View-Controller (MVC) éltaldnosan alkalmazott architektira az adatok tobbféle
megjelenitését.

Az informacio lehet statikus informacié:
o Ertéket kap a munkafizis (session) kezdetén és ez a session ideje alatt nem valtozik meg,
e Lehet numerikus, szoveges, vagy grafikus

Vagy dinamikus informacié:

o Megvaltozik a munkafazis alatt és a megvaltozott értéket a felhasznalé szamara meg kell
jeleniteni,

e Lehet numerikus, szoveges, vagy grafikus

78. frjon példakat, amikor az informaciot célszerii grafikusan,
analég modon megjeleniteni.

Digitalis megjelenités:

e Pontos értékeket kozol

e Kevés helyet foglal a képernyon.
Analég megjelenités:

e Egy pillantassal attekinthet6

e Relativ értékeket is képes kozolni:

— Egy allandé értékhez képest (egy hatdrhoz kozeli értéket szinnel még kiilon ki lehet
emelni), vagy

— Korabbi minimalis-maximalis értékhez képest

37

B 2
B |

79. Milyen szabalyokat kell betartani a szinek alkalmazasakor a
grafikus felhasznaloi kezel6feliileten?

Ne hasznaljunk tudl sok szint. Egy feliileten 4-5, egy rendszerben 7-8 szin a maximum.

e ElOszor tervezziink monokrom feliileteket, utana adjuk hozzé a szineket.

Az allapotvaltozasokat jelezziik szinvéltassal.

A végrehajtandé feladatokat jeloljiik szinkéddal, a kiilonboz6 feladatokat kiilonboztessiik
meg szinekkel is.

A szinkédolast alkalmazzuk kovetkezetesen a teljes rendszerben.

Egyes szinkombindcidk zavardak, vagy farasztjak a szemet.

80. Milyen szempontokat kell figyelembe venni a rendszer iize-
neteinek szovegezésekor?
Szempontok:

e A hibailizenetek tervezése kiilondsen fontos: a kezd6 felhasznild ezekkel talalkozik a leg-
gyakrabban. A rossz, vagy szamaéra érthetetlen hibatizenetek miatt elutasithatja a rend-
szert.

e Az lizeneteknek udvariasnak, elérevivének és kovetkezetesnek kell lennie.
e A hibaiizenetek tervezésének meghatdrozé tényezdje a felhasznalé héattere, gyakorlata.

Az lizenetek sz6vegezése:

e Szovegkornyezet: A tdjékoztaté rendszernek mindig a felhasznald tevékenységéhez és a
rendszer aktudlis dllapotdhoz igazodo tizenetet kell adnia.

e Tapasztalat: A tapasztalt felhasznalét mar idegesiti az a kifejtd magyarazat, amit a
kezd6 felhasznalé még hasznosnak tart és igényel. A tdjékoztaté rendszernek mindkét
tizenettipust fel kell kindlnia.

o Képzettség: Az iizeneteket a felhasznald képzettségéhez és gyakorlatahoz kell igazitani.
A kiilonbozé felhasznaldk szamaéra szant tizeneteket kiilonbozé mdédon, a szaméra érthetd
terminologiaval kell megfogalmazni.

38

e Stilus: Az lizeneteket pozitiv médon épito jelleggel kell megfogalmazni. Egy iizenet soha
nem lehet sérté és nem gunyolédhat.

e Kultaura: Hasznos, ha az iizenetek tervezdje tisztaban van azzal a kulturaval, ahol a
rendszert hasznélni fogjdk. Az egyik orszagban megfelel6 tizenetek a kulturalis kiilonbségek
miatt egy masik orszagban elfogadhatatlanok.

81. Miért célszerti a sugdérendszerbe tobb belépési pontot biz-
tositani?

A sigé tervezése:
e A felhaszndlé segitségért, informéaciéért fordul a sigdhoz.
e A siig6 tervezésekor mindkét igényt figyelembe kell venni.
e TGbbféle lehetéséget kell biztositani, ehhez tobb belépési pontra van sziikség.

e A j6 sugorendszer hierarchikus szerkezetli, de bonyolult halés strukturaji, ahol az in-
formécids egységek kozott sokféle kapcsolat van.

e Tobb ablak alkalmazéasaval érthetové teheto a bonyolult hierarchia.
A sugoérendszer hasznalata:

e TGbb belépési pontra van sziikség, hogy a felhasznalé a rendszer kiilénbo6zo allapotaibdl
léphessen be.

e Ugyanakkor hasznos azt jelezni, hogy éppen hol jar a stigé hierarchidjaban.

e Célszerl a korabban bejart utvonalat is megjeleniteni, mert a bonyolult haléban kénnyen
elvész a felhaszndl6. Ez a visszalépéseket is tamogathatja.

82. Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok
szamat csokkenteni?

Teszteset: A tesztesetek a teszthez sziikséges inputok és a vart outputok specifikacioi.
Tesztadat: A tesztadatok a rendszer tesztelésére kidolgozott input adatok.
Tesztadatok szamanak csokkentése: TODO Ekvivalenciaosztalyok?

83. Mi a ,fekete doboz” és a ,,fehér doboz” tesztelési stratégia
lényege? Melyiket milyen esetben lehet alkalmazni?

Fekete doboz tesztelés:

e Funkcionalis tesztelésnek is nevezik.

e A programot fekete doboznak tekintjiik, a tesztesetek a programspecifikacié alapjan késziilnek.

e Nem foglalkozik a program implementécidjaval.

39

o A tesztek tervezése a szoftverfolyamat korai szakaszdban megkezdédhet.(Egyes Agilis mdodszereknél
el6bb, mint a program tervezése!)

e Az elbrelathatéan hibat okozé tesztesetek tervezéséhez szakteriileti ismeretekre van sziikség.
Fehér doboz tesztelés (Struktirateszt):

e Fehér doboz vagy iivegdoboz tesztelésnek is nevezik, mert a tesztek a program struktirajanak,
implementaciéjanak ismeretében késziilnek.

e A struktira és a kéd ismeretében jabb ekvivalencia-osztdlyok definidlhaték

o A tesztel$ a tesztesetek készitésekor elemzi a kddot, hogy biztositsa minden utasitds leg-
alabb egyszeri végrehajtdsat (az Osszes lehetséges t-kombinécié tesztelésére nincs redlis
lehetdség).

Alkalmazasi teriiletek:
TODO

e Az objektumokhoz kapcsolédd miiveletek tesztelése: Fliggvények, vagy eljarasok, fekete-
vagy fehér doboz eljarassal tesztelhetok.

e Fekete doboz tesztek: integréicids teszt, objektumosztalyok tesztelése

84. Mit jelent a tesztadatok ekvivalencia-osztalyozasa? frjon példat
az ekvivalencia-osztalyok alkalmazasara.

Ekvivalencia-osztalyozas:

e A rendszer input és output adatait valamilyen kozos jellegzetesség szerint csoportositjak,
amelyekre a rendszer hasonlé médon reagal:

o A fejlesztOk legtobbszor az inputok tipikus értékeit veszik figyelembe.

o A teszteseteket a hatarértékek kozelében és az osztalyok kozepébdl célszerti kivalasztani:

Példa: ha az input 5 jegyt valés szam 10.000 és 99.000 kozott, akkor az ekvivalencia-osztalyok:

e Azok a szdmok melyek kisebb 10.000-nél
e Azok a szamok melyek 10.001-99.000 kozott vannak
e Azok a szamok melyek 99.900-99.999 kozo6tt vannak

e Azok a szamok melyek 99.999-nél nagyobbak

40

85. Mi a célja az utvonaltesztelésnek? Mi a ciklomatikus komp-
lexitas, hogyan szamithato?
Utvonal tesztelés célja:

e Az utvonal tesztelés strukturalis tesztelési stratégia. Célja, hogy minden fiiggetlen atvonalon
végighaladjon a teszt. Ekkor legalabb egyszer biztosan sor keriilt minden utasitas végrehajtasara,
és minden feltételes utasitas igaz és hamis eseteire.

e A kiindulas a program folyamat-grafja, amely a dontéseket reprezentdlé csomoépontokbdl
és a vezérlés iranyat képvisel6 élekbdl all. Eldallitasa viszonylag egyszerii, ha programban
nincs goto.

e Csak kisebb programok tesztelhetok ilyen moédon.
Ciklomatikus komplexitas:
e A fliggetlen utak szdma a programban.

e CC megmutatja, hogy hany tesztet kell végrehajtani az 6sszes fliggetlen Ut végrehajtasihoz,
vagyis minden vezérlo utasitas legalabb egyszeri végrehajtasahoz.

e Nem lehet a fiiggetlen utak Gsszes kombinaciéjat végrehajtani.

e A dinamikus programelemzok a forditaskor kiegészité kédot adnak a programhoz, amelyek
mérik, hogy az egyes vezérlo utasitasok hanyszor keriiltek végrehajtasra.

Ciklomatikus komplexitas szamolasa:

CC = Elekszama — Csomoépontokszama + 2

86. Ismertesse az integracios tesztelési stratégiakat! Mi az osszefiiggés
e stratégiak és a szoftverfolyamat modellje kozott?

Integracios tesztelés:

e Teljes rendszerek vagy alrendszerek tesztelése, amelyek el6z6leg mar tesztelt komponen-
sekbol allnak.

e A komponensek egyiittmiikodésébdl szarmazé hibak feltarasara szolgdl.
e Az integracids teszt fekete doboz tesztelés, a tesztek a specifikdciébol szarmaznak.
e Komplex rendszerben az észlelt hibds eredménybdl nehéz a hiba helyére kovetkeztetni.
e Az inkrementdlis integraciés tesztelés némileg segit.
Integracios tesztelés startégiai:

e Fentrol lefelé tesztelés:
A rendszer magas szintli komponenseit még a tervezés és az implementdcié alatt in-
tegraljak. A még el-nem késziilt komponenseket azonos interfésszel késziilt ,,csonkok”
helyettesitik, ahol sziikséges. Ezeket fokozatosan kicserélik a kész elemekkel.(Evoliciés
fejlesztésnél alkalmazhato)

41

Ateszteles
sorrendje

L

1. szint

h 4

1. szint

2. szint 2. szint 2. szint

oy S0 S D

3. szintl csonkok

e Lentrol felfelé tesztelés:
A hierarchia alsé szintjein 1év6é modulok integralasaval és tesztelésével kezdik, ahol a maga-
sabb szinteket tesztgeneratorok helyettesitik.(Inkrementélis és tjrafelhasznélds alapi fej-
lesztésnél alkalmazhatd)

Teszt
meghajtok
‘ N. szint| ‘ N. szint ‘ | N. szint ‘ ‘ N. szint ‘ | N. szint ‘

Atesztelés
sorrendje

Teszt
meghajtok

N-1 szint

A gyakorlatban a kett6 kombindciéjat hasznaljdk.
Tesztelési stratégiak:

e Szerkezeti validacio:
A fentrél lefelé teszteléssel felfedhetdk a hibak a rendszerarchitekturdban és a magas szintii
tervekben, még a folyamat korai szakaszaban. Ez a lentrdl felfelé tesztelésnél csak késobb

lehetséges.

¢ Rendszerdemonstracio:
A fentrol lefelé integréacio koran lehet6vé teszi a korlatozott demonstraciot. Ujrafelhasznalhatd
komponensek alkalmazasaval a lentrol felfelé megkozelitéssel is lehetséges.

42

e Tesztimplementacio:
A programcsonkokat nehéz implementalni, a lentrdl felfelé tesztelés tesztmeghajtoit vala-
mivel egyszer(ibb, de mindenképpen jelentés addiciondlis fejlesztést igényel.

e Tesztmegfigyelés:
A tesztek eredményét mindkét mddszernél nehéz megfigyelni. Mesterséges kornyezetre,
extra kédra van sziikség. Kiulonosen a fentrdl lefelé megkozelitésnél, ahol a magasabb
szintek sokszor nem szolgaltatnak outputokat.

87. Mi az interfésztesztelés, milyen hibakat lehet felfedni ilyen
modon?
Interfésztesztelés:

o Interfésztesztelésre akkor van sziikség, amikor egy nagyobb rendszer Gsszeépitésekor mo-
dulokat vagy alrendszereket integralunk.

o Az interfésztesztelés az objektumorientdlt fejlesztésnél fontos (kiilondsen objektumok és
osztalyok ujrafelhasznalasakor), mert az objektumokat az interfészeikkel definidljuk.

Felderithets hibak:
e Célja az interfészek specifikicids- (félreértések), vagy implementédciés hibainak felfedése.
Nem felderithet6 hibak:

e Egyedi objektum tesztelésével az interfészhibdkat nem lehet felfedni. A hibdk az objektu-
mok kozti interakcidkban jelentkeznek, nem egy egyedi objektum sajatossagaiként.

88. Melyek a tipikus interfészhibak? Milyen elveket kell alkal-
mazni az interfésztesztelés tervezésekor?
Tipikus interfészhibak:

e Interfész hibas alkalmazasa:
Egy hivé komponens hibaja lehet: rossz tipusu vagy sorrendii paraméterek, hibas szamu
paraméter, stb.

o Interfész félreértése:
A hivé komponens hibésan értelmezi az interfészt, vagy a hivott komponens valaszait.

e Ido6zitési hibak:
A hivé és a hivott komponens kiilonbozé sebességgel miikddik (osztott memoria, vagy
tizenettovabbitd interfész esetén), és a hivott nem aktudlis informdciét kap.

Interfésztesztelés iranyelvei:

o A teszteket ugy kell tervezni, hogy a paraméterek értékei a hatarértékek kozelében legye-
nek.

43

A pointer jellegli paramétereket null értékkel is tesztelni kell.

Olyan tesztesetet is tervezni kell, amely a hivott komponens hibdjat okozza. (A speci-
fikdcids hibak tobbsége a hibdk értelmezésébdl fakad.)

Uzenettovabbité, vagy interaktiv rendszereknél terhelési (stressz) tesztet kell végrehajtani.

Osztott memoriaju interfészeket a komponensek aktivalddasa sorrendjének megvéltoztatdsaval
is tesztelni kell (szinkronizacids hibdk).

89. Miért és miben kiilonbozik az objektumorientalt tesztelés a
funkcidorientalt rendszerek tesztelésétol?
Objektumorientalt tesztelés:
e A komponens- és integracids tesztelés az objektumorientalt rendszereknél is alkalmazhato.
e Fontos kiilonbségek:

— A tesztelend6 objektumok komponensként gyakran nagyobbak, mint az egyszerii
fiiggvények.(A fehér doboz tesztelés nehezebben alkalmazhato.)

— Az objektumok lazan koétédnek, és a rendszernek/alrendszernek nincs egyértelmii
teteje.

— Az ujrafelhasznalt komponensek kdédjahoz nem mindig lehet hozzdjutni, elemezni.
Megkiilonboztetések:
e A funkciéorientalt rendszereknél:

— A rendszer alapvet6 program-egységei (fiiggvények — modulok) jol elkiilonithetok,
— Ezek kiilon tesztelhetok.

e Az objektumorientalt rendszerek esetén:

— Az ilyen megkiilonboztetés nem lehetséges, az objektumok lehetnek egyszerii (pl.
lista), vagy komplex entitdsok (pl. egy alrendszer objektumai),

— Olykor nincs egyértelmii hierarchia az objektumok kozott, ezért az integracids tesztek
(fentrol lefelé, vagy lentrél felfelé) nem alkalmazhatdk.

90. Milyen szinteket kiillonboztethetiink meg az objektumorientalt
tesztelésben?

e Az objektumokhoz kapcsol6dé miiveletek tesztelése:
Fliggvények, vagy eljarasok, fekete- vagy fehér doboz eljardssal tesztelhetok.

e Objektumosztalyok tesztelése:
A fekete doboz eljaras alkalmazhatd, de az ekvivalencia-osztalyokat a miiveletsorozatokra
is ki kell terjeszteni.

44

e Egyiuttmiik6ds objektumcsoportok tesztelése:
Forgatokonyv alapjan kijelolhet6 az objektumok csoportja.

e Objektumorientalt rendszer tesztelése:
A rendszerkévetelmények verifikacidja és validacidja méas rendszerekhez hasonléan térténhet.

91. Mi az objektumorientalt csoporttesztelés? A rendszerterv
milyen elemeit lehet felhasznalni a csoportteszteléshez?

Objektumorientalt csoporttesztelés:

e Haszndlati eset vagy forgatékonyv alapjan: A tesztek a felhaszndléi interakciékon
alapulnak. Elonye, hogy a felhasznaldok altal leggyakrabban hasznalt részeket teszteli.

e Szdltesztelés: A rendszernek egy eseményre adott valaszat vizsgalja, amint az a rend-
szeren keresztiilhalad.

e Objektum egyiittmiikodési teszt: Az objektumok egyiittmiikdésének egy sorozatit
vizsgdlja, amely akkor ér véget, ha egy objektummiivelet nem hiv meg més objektum-
szolgaltatast.

Elemek: TODO

e Forgatékonyv alapjan kijelolhet6é az objektumok csoportja.

92. Mi a szoftver koltségbecslés célja? Milyen kérdésekre keresi
a valaszt?

Kérdések:
e Mekkora munkat igényel egy feladat elvégzése?
e Mennyi id6be keriil a feladat végrehajtasa?
e Mennyi a tevékenység Gsszes koltsége?

Koltségbecslés célja: Valaszt adni a kovetkezd koltségelemekre a szoftverfejlesztési projekt
soran:

e A hardver és szoftver koltségei a karbantartassal egyiitt,
e Utazasi és képzési koltségek,

e Munkakoltségek (bér, kozteher, helység, kisegité munkak, kommunikacié, rekredcio, ...)

45

93. Milyen modszereket ismer a szoftver koltségének elGzetes
becslésére?

Funkciépontok:
e A program jellemzo6inek kombinacidjan alapuld, nyelv-fiiggetlen mdodszer.
e Méri az alabbi jellemzsket:

— Kiils6 bemenetek és kimenetek
— Felhasznaldi interakcidk
— Kiils6 interfészek

— A rendszer altal hasznalt fajlok
e Mindegyikhez silyozasi tényez6t rendel:

— Egyszerii kiils6 bemenet: 3

— Bonyolult bels6 allomanyok: 15

e A sulyozasi tényezét egy szervezeten beliil, hasonlé jellegii szoftverek készitése soran gyiijtott
statisztikak alapjan finomitja.

A funkciéopontok szamitasa:

e A funkciépontok (FP) alapjan a kdédsorok szaméra (LOC — Lines Of Code) lehet kdvet-
keztetni:

e LOC = AVC * FP ahol:
AVC nyelvfiiggs szorzéfaktor (200-300 az assembly és 2-40 a 4GL nyelvekre)

e A funkciépont szamitds nagyon sok szubjektiv elemet tartalmaz.

e Automatikus szamitdsa nem lehetséges, mert a specifikdcié alapjan kell a funkciépontokat
megbecsiilni.

Objektumpontok:

e 4GL vagy més magas szintli nyelvek esetén a funkcidépontok alternativaja. Magas szinti
specifikicié alapjan konnyebben becsiilheto.

o Az objektumpont (NTC) nem azonos az objektumok szamdval, hanem az aldbbiakbdl
szamithato:

— A kiilon megjelenitendé képerny8k szama, az egyszertitl (1), a nagyon bonyolultig
3);
— A készitend§ jelentések szdma (2 — 5 — 8)

— A 4GL kiegészitése miatt sziikséges 3GL modulok szama (10)

46

A termelékenység becslése:

e Valésideji, beiiltetett rendszerek: 40 — 160 LOC / hé
e Rendszerprogramok: 150 — 400 LOC / hé

o Kereskedelmi alkalmazasok: 200 — 800 LOC / hé

e Objektumpontban szdmolva a termelékenység 4 és 50 pont / hénap kozotti, az eszkoztamogatottsdgtol
és a fejleszték képességeitdl fiiggden.

94. Hogyan értelmezheto6 a szoftver minosége? Milyen tényezokkel
lehet a szoftverminoséget jellemezni?

A szoftver min&sége:
e A mindség altalaban azt jelenti, hogy a termék megfelel specifikaciéjanak.
e Mindenki mést ért mindség alatt:

— A felhasznalé: A szoftver azt végezze amit elvarok téle, és gy miikodjon ahogy
én kivanom.” (Ebbe beleérti a gazdasigossagot, megbizhatdsdgot, stb. és a ki nem
mondott elvarasokat is.)

— A fejlesztd: , A szoftver feleljen meg a specifikdciénak” (Beleérti a karbantarthatésagot,
ujrafelhasznalhatdésagot, stb.)

e Az ISO definicigja: ,,Annak mértéke, amennyire a szoftver tulajdonsigai (a minéségi
jellemzék) megfelelnek a kovetelményeknek.”
De: mint tudjuk a szoftverkovetelmények gyakran nem teljesek és nem kovetkezetesek A
szoftver specifikaciéjat nehéz teljessé tenni, tehat a specifikdcionak valé megfelelés nem
garantalja, hogy a felhaszndlé elégedett lesz a termékkel.

Tényezok:
TODO

95. Ismertesse egy szervezeten beliil a minoségkezelés tevékenységeit!

e MinGségbiztositas: Szabvanyok és szervezeti eljarasok alkalmazasa.

Mindéségtervezés: Egy konkrét projekthez alkalmas eljarasok és szabvanyok kivalasztasa
és adaptédlasa.

e MindGségellendrzés: Annak biztositasa és ellenOrzése, hogy a fejlesztd csapat alkalmazza
a mindségi szabvanyokat és eljarasokat.

A mindségkezelés lehetdleg legyen fiiggetlen a projektvezetéstol.

47

96. Miért fontosak a min6ségi szabvanyok a szoftverkészitésben?
Mi a termékszabvany és a folyamatszabvany kozti kiilonbség?

Miért fontosak?
e A szabvanyok adjdk a keretet a hatékony minGségkezeléshez.

e Lehetnek: nemzetkozi-, nemzeti-, szervezeti- és projektszabvanyok.

A szabvanyok a legjobb gyakorlat és a korabbi projektek hibdinak Gsszegy(ijtott adatai
alapjan késziilnek.

Kiterjednek a szoftvertervezés terminoldgiaira, programozasi nyelvekre, jelolésrendszerre,
programozasi mddszerekre, ellenOrzésre, validalasra.

Folytonossagot biztositanak egy valtozé szervezetben, az j résztvevok a helyi szabvanyok
megismerésével hamarabb be tudnak kapcsoldédni a munkéaba.

Termékszabvanyok: A termékszabvanyok olyan tulajdonsagokat irnak el, amelyek a termék
minden elemére nézve kotelezoek:

e Dokumentaciés szabvanyok (pl. dokumentumok szerkezete)
e Kddolasi szabvanyok (programozési stilus, programnyelv haszndlat)

Folyamatszabvanyok: A folyamatszabvanyok a szoftverfejlesztés alatt kdvetendd folyamato-
kat hatarozzak meg (pl. a specifikacid, tervezés, stb. folyamata, médszerei, dokumentumai).

97. Mi az osszefiiggés a szoftverfolyamatok és az el6allitott szoft-
ver minosége kozott?

A termék mindGsége alapvetden fiigg az eléallitdsa soran alkalmazott folyamatok mindségétol
(pl. iparszerii gyartasnél).

Ez a szoftverfejlesztésnél is igy van, de sok minéségi jellemz6 nehezen mérhetd, szamszertsithetd.

Ugyanakkor a szoftvert egyedileg tervezik, a szoftverfejlesztés nem mechanikus folyamat.

A szoftverfejlesztés folyamata és a termék mindsége kozott erds Osszefiiggés van, de ez
nagyon Osszetett és alig megfoghatd.

Osszefiiggés a szoftverfolyamatok és az el8allitott szoftver mindsége kozott:
Szoftvernél ez nem ilyen egyszerii mert:

o A szoftverfejlesztésben az egyéni képzettség és gyakorlat kiillonésen fontos.

o Kiils6 tényezdk, mint az alkalmazas Gjszerlisége, vagy a piacra vitel siettetése, befolydsoljak
a mindséget.

48

98. Mi a mindségi feliilvizsgalat célja, milyen termékekre terjed-
het ki?

Elterjedt médszer a folyamatok és a termékek minoségének ellenorzésére. Szakértok egy cso-
portja figyelmesen atvizsgélja a szoftver komponenseit, a teljes szoftvert és a dokumentéacidkat.
Atnézik a specifikdcidkat, terveket, kédot, tesztterveket. Az eredményes feliilvizsgalat a szoftver
vagy a dokumentdcié elfogadasat jelenti. Az észrevételek kijavitdsa utan ujabb feliulvizsgalatra
keriilhet sor. A vezetés a fellilvizsgalatok eredményei alapjdn kovetheti a projekt elérehaladasat.
Feliilvizsgalat tipusai:

e A terv vagy a program vizsgalata, mint a VV esetén (a termék mindségét vizsgélja)
e Az elérehaladés vizsgélata (a folyamat és a termék minGségét vizsgalja)

e A mindség vizsgilata (a folyamat és a termék mindségét vizsgalja)

99. Mire szolgal a szoftver mérése? Mondjon néhany példat a
mérheto szoftverjellemzokre!

A szoftver mérés szamszertisitheto értékeket allit eld a szoftvertermék vagy —folyamat jellemz6ibél.
Célja a technikak és folyamatok objektiv 0sszehasonlitdsa, a mindség mérése.
Mérhet6 szoftverjellemzsok:

e Biztonsagossag
e Biztonsag

e Megbizhatdsig
e Rugalmassag

e Robusztussag
° Erthet('iség

o Tesztelhetoség
o Adaptalhatosag
e Modularitas

o Komplexitas Hordozhatésag
e Haszndlhatosig

e Ujrafelhasznalhatésig

49

100. Ismertesse a CMM (Capability Maturity Model) céljat és
lényegét!

A CMM - Capability Maturity Model a szervezet folyamatainak alkalmassdgat méri, osztalyozza

és értékeli.

A CMM-modell szintjei:

e Kezdeti: Nincsenek hatékony vezetési eljardsok, vagy hidnyzik a szervezet azok kovetke-
zetes alkalmazdaséra.

e Ismételhet6: Azonos tipusid projektekben ismételve a vezetési, minGségbiztositasi és
véaltozéaskezelési eljarasokat sikeres lehet (a siker egyéni teljesitményektél fiigg).

e Meghatarozott: A folyamatokat mar definidltdk, de a vezetési folyamatok még nem
tudjak azokat kovetkezetesen, maradéktalanul biztositani.

e Menedzselt: Mar vannak definidlt és bevezetett folyamatok, de azok folyamatos fej-
lesztése még nem biztositott.

e Optimalizalt: A folyamatok allandé fejlesztése definidlt és biztositott.

101. Miért fontos a szoftver koltségeinek becslése? Milyen tényezoket
vehetiink figyelembe a koltségbecslés soran?

Becslést adhatunk arra, hogy:
e Mekkora munkat igényel egy feladat elvégzése
e Mennyi idobe keriil a feladat végrehajtasa
e Mennyi a tevékenység Osszes koltsége

Figyelembe vehetjiik a:

Piaci lehet6ségeket

A koltségbecslés bizonytalansagait

A szerzédéses feltételeket

A kovetelmények valtozékonysdgat

A fejleszté gazdasagi helyzetét

50

102. Ismertesse a COCOMO II. koltségbecslési modszer modell-
jeit!
e Empirikus modell, a projektek gyakorlatabol gytijtott adatokon alapul.

e J6l dokumentalt, hosszu tapasztalat all mogotte (elsé verzié: 1981)

A COCOMO 2 haromszintii modellje:
e Korai prototipuskészités szintje: Becslés objektumpontok alapjan
e Korai tervezés szintje: Funkciopontok alapjan a forraskédok szamat becsli

e Poszt-architekturalis szint: Az architektura terv elkészilte utan becsli a szoftver
méretét

Korai prototipukészités szintje:
e Prototipuskészitést és ujrafelhasznalast is figyelembe vesz.

o A fejlesztéi produktivitdst objektumpontokkal szdmolja és a CASE hasznalatot is bekal-
kulalja.

e A formula:

PM = (NOP * (1 — %reuse))/PROD

Ahol: PM — a munka emberhénapban, NOP — az objektumpontok szama, PROD - pro-
duktivitas

Korai tervezési szint:
e A kovetelmények tisztdzdsa utan végezhetd a becslés.

e Az alabbi képlettel szdmol:

PM = Ax Méret® « M + PM,,

Ahol: M=PERS*RCPX*RUSE*PDIF*PREX*FCIL*SCED

PM,, = (ASLOC % (AT/100))/AT PROD

A = 2,5 a kezdeti szamitasban

B = 1,1 — 1,24 a projekt mérete, jdonsaga fiiggvényében.
M = projekttényezok:

PERS — személyi képességek,

RCPX — termék megbizhatdsag,

RUSE — sziikséges tjrafelhasznalas,

o1

PDIF — platform nehézségei

PREX — személyek gyakorlata,

FCIL — tamogatd eszkozok,

SCED - iitemezés

ASLOC = automatikusan generalt kédsorok,
AT = aut. rendszerkdd,

ATPRO = termelékenység,

Poszt-architekturalis szint:

e Ugyanazt a formulat alkalmazza, mint a korai tervezési becslés, de két tényezét figyelembe
vesz:

— A kovetelmények valtozékonysaga,

— A lehetséges ujrafelhasznalas mértéke.

o A sziikséges 1j kddsorok szamédnak becslésekor statisztikai és egyéb értékeket is figyelembe
vesz, mint:

— A kordbbi hasonlé projektek hidnya,
— A fejlesztés rugalmassaga,
— A csapat Osszetartdsa,

— A folyamat fejlettsége.

103. Forrasok:

e Vet6 Istvan 2016-os eléadas és gyakorlati diai.
e Egyéb webes jegyzetek.

e 2007-es tétel kidolgozas:
https://wiki.itk.ppke.hu/twiki/pub/PPKE/SzoftvertechnolégiaAlapjai/Vizsgatetelek07_szerk.pdf

92

	Mi a szoftver? Sorolja fel azokat a termékeket, amelyek a szoftverhez tartoznak.
	Mi a szoftverfolyamat? Sorolja fel a szoftverfolyamat fobb tevékenységeit.
	Sorolja fel a szoftverfolyamat általános modelljeit és jellemezze azokat néhány szóban.
	Miért van szükség arra, hogy a szoftvertervezok számára etikai kódexet állítsanak össze? Sorolja fel a fontosabb etikai eloírásokat.
	Melyek az eredendo rendszertulajdonságok? Hogyan csoportosítjuk oket?
	Mi a különbség a funkcionális és a nem-funkcionális rendszertulajdonságok között?
	Melyek azok a tevékenységek, amelyek közösek minden szoftverfolyamatban?
	Vázolja fel a vízesés modellt, sorolja fel a modell elonyeit és hátrányait!
	Mi a formális rendszerfejlesztés? Milyen elonyei és hátrányai vannak?
	Mi az evolúciós fejlesztési modell lényege? Miért nehéz karbantartani az így fejlesztett programokat?
	Mi az újrafelhasználás orientált fejlesztés lényege? Vázolja fel a folyamatot! Milyen esetekben alkalmazható?
	Mi a különbség a CASE eszközök, -eszközkészletek és -környezetek között?
	Miért célszeru projektszervezetben végezni a szoftverfejlesztést?
	Miért és milyen gondot okoz a szoftverprojekt vezetoje számára, hogy a szoftver nem látható, megfogható? Milyen módon lehet ezt a gondot csökkenteni?
	Milyen típusú terveket kell készíteni egy projekt tervezésekor?
	Vázolja fel egy vízesés modell szerint végzendo fejlesztési projekt ütemezését oszlopdiagram formában!
	Kísérelje meg felvázolni egy evolúciós folyamat szerint végzendo fejlesztési projektterv oszlopdiagramját!
	Miért iteratív tevékenység a szoftverprojekt tervezése?
	Milyen kockázatokat különböztethetünk meg egy szoftverfejlesztési projektben? Sorolja fel és jellemezze oket!
	Sorolja fel a fontosabb szerepeket egy projektszervezetben! Ismertesse néhány szóban az egyes szerepek tevékenységeit!
	Mi a feladata a megvalósíthatósági tanulmánynak. Hol van a helye a szoftverfolyamatban?
	Sorolja fel a legfontosabb szempontokat, amelyeket egy tervezonek a felhasználói követelmények specifikálásakor ügyelnie kell!
	Milyen veszélyei vannak a természetes nyelv használatának a követelmények specifikálásakor? Milyen módon lehet ezeket csökkenteni?
	Egy nagy rendszer fejlesztése során kiknek kell részt venniük a felhasználói követelmények verifikálásában? Miért?
	Sorolja fel a rendszermodellek típusait és jellemezze azokat egy mondatban!
	Melyek a legfontosabb különbségek a felhasználói és a rendszerkövetelmények specifikálása között? Kiknek szólnak az egyes specifikációk?
	Melyek a prototípuskészítés céljai? Milyen prototípusok léteznek, melyik milyen célból készül?
	Mi a különbség az evolúciós és az eldobható prototípus között? Melyiket mikor érdemes alkalmazni?
	Mit jelent az adatbázis-programozás? Milyen rendszerek fejlesztésére alkalmas?
	Melyek a prototípus készítésének elonyei? Ismertese a prototípuskészíto technikákat! Melyiket milyen esetben célszeru alkalmazni?
	Mit tenne, ha egy eldobható prototípust a megrendelo meg akarna vásárolni? Milyen érveket hozna fel álláspontja indoklására?
	Ismertesse a formális specifikáció helyét és jelentoségét a szoftverfolyamatban!
	Sorolja fel a formális specifikáció elonyeit és hátrányait! Milyen típusú rendszerek specifikálásakor alkalmazzák a formális módszereket?
	Melyek azok a rendszerek, amelyeknél a formális specifikációt leginkább alkalmazzák? Miért?
	Hol foglal helyet az architekturális tervezés a szoftverfolyamatban? Mire szolgál a rendszer architekturális terve?
	Kliens/szerver modell
	Milyen elonyei és hátrányai vannak a kliens/szerver modellnek?
	Mi a különbség a vékony- és a vastag kliens között? Melyik milyen célra alkalmas?
	Milyen modelleket alkalmaznak az objektumorientált tervezésben? Melyik mire alkalmas?
	Mi a különbség a központosított vezérlés és az esemény alapú vezérlési modell között?
	Milyen vezérlési modellek alkalmazhatók párhuzamos rendszerekben?
	Milyen UML modellekkel ábrázolható a rendszer és környezetének kapcsolata?
	Mire szolgálnak az objektumorientált tervezésben alkalmazható diagramok? Soroljon fel és jellemezzen néhányat!
	Ismertesse a valós ideju rendszerek fobb jellegzetességeit.
	Melyek a fo különbségek az átlagos adatfeldolgozó rendszerek és a valós ideju rendszerek között?
	Van-e szerepe a valós ideju rendszerek tervezésében a hardvertervezésnek? Miért?
	Milyen programnyelveket alkalmaznak a valósideju rendszerek programozására?
	Miért kevéssé alkalmas a Java programozási nyelv szigorúan valós ideju rendszerek programozására?
	 Melyek a valós ideju futtatórendszerek fobb komponensei?
	Melyek a szoftver újrafelhasználásán alapuló fejlesztés elonyei és hátrányai?
	Soroljon fel három érvet, amely támogatja a komponens alapú újrafelhasználást és hármat, amely ellene szól!
	Mi a programgenerátor alapú újrafelhasználás lényege? Milyen területeken alkalmazzák?
	Miért alkalmazzák a generátor alapú újrafelhasználást elsosorban az adatfeldolgozó, eBusiness rendszerek fejlesztésében?
	Mi a komponens, milyen interfészei vannak?
	Milyen nyelvek és környezetek alkalmasak a komponensek integrálására?
	Milyen hátrányai vannak az újrafelhasználható komponensekkel történo szoftverfejlesztésnek?
	Mire szolgának az alkalmazási keretrendszerek, hogyan csoportosíthatók?
	Mi a „polcról leveheto” termék? Leginkább milyen rendszerekben alkalmazzák?
	Milyen nehézségei vannak a COTS termékek alkalmazásának?
	Miért drágább egy újrafelhasználható komponens kifejlesztése az egyedi komponens kifejlesztésénél?
	Mi az alkalmazáscsalád? Miért alakultak ki az alkalmazáscsaládok?
	Hogyan osztályozható az alkalmazáscsaládok specializációja?
	Mi a különbség a tesztelés és a belövés között? Melyiknek mi a célja?
	Mi a célja a szoftver verifikációjának és mi a validáció feladata?
	Miért célszeru a szoftvertesztelés mellett átvizsgálást (inspekció) is tartani?
	Mi a programtesztelés feladata? Milyen alaptípusai vannak?
	Mire szolgál a szoftver átvizsgálása? Mi a különbség az átvizsgálás és a tesztelés között?
	Milyen hiányosságokat lehet elsosorban felfedezni a programok átvizsgálása során?
	Mi a Cleanroom szoftverfejlesztési folyamat lényege?
	Ismertesse a grafikus felhasználói kezelofelületek tervezésének alapelveit!
	Miért fontos a grafikus felhasználói kezelofelület gondos tervezése?
	Miért célszeru egyes rendszerekben különbözo felhasználói felületeket kidolgozni a gyakorlott és az alkalmi felhasználók számára?
	Milyen alapelemeket használunk a grafikus felhasználói kezelofelületeken?
	Milyen eszközöket alkalmazhatunk a grafikus felhasználói kezelofelületen a felhasználó támogatására?
	Milyen elonyei és hátrányai vannak a parancsnyelv alkalmazásának a felhasználói interakciókban?
	Sorolja fel és jellemezze a felhasználói interakciók fajtáit!
	Milyen lehetoségek vannak az információ grafikus megjelenítésére?
	Írjon példákat, amikor az információt célszeru grafikusan, analóg módon megjeleníteni.
	Milyen szabályokat kell betartani a színek alkalmazásakor a grafikus felhasználói kezelofelületen?
	Milyen szempontokat kell figyelembe venni a rendszer üzeneteinek szövegezésekor?
	Miért célszeru a súgórendszerbe több belépési pontot biztosítani?
	Mi a teszteset és a tesztadat? Hogyan lehet a tesztadatok számát csökkenteni?
	Mi a „fekete doboz” és a „fehér doboz” tesztelési stratégia lényege? Melyiket milyen esetben lehet alkalmazni?
	Mit jelent a tesztadatok ekvivalencia-osztályozása? Írjon példát az ekvivalencia-osztályok alkalmazására.
	Mi a célja az útvonaltesztelésnek? Mi a ciklomatikus komplexitás, hogyan számítható?
	Ismertesse az integrációs tesztelési stratégiákat! Mi az összefüggés e stratégiák és a szoftverfolyamat modellje között?
	Mi az interfésztesztelés, milyen hibákat lehet felfedni ilyen módon?
	Melyek a tipikus interfészhibák? Milyen elveket kell alkalmazni az interfésztesztelés tervezésekor?
	Miért és miben különbözik az objektumorientált tesztelés a funkcióorientált rendszerek tesztelésétol?
	Milyen szinteket különböztethetünk meg az objektumorientált tesztelésben?
	Mi az objektumorientált csoporttesztelés? A rendszerterv milyen elemeit lehet felhasználni a csoportteszteléshez?
	Mi a szoftver költségbecslés célja? Milyen kérdésekre keresi a választ?
	Milyen módszereket ismer a szoftver költségének elozetes becslésére?
	Hogyan értelmezheto a szoftver minosége? Milyen tényezokkel lehet a szoftverminoséget jellemezni?
	Ismertesse egy szervezeten belül a minoségkezelés tevékenységeit!
	Miért fontosak a minoségi szabványok a szoftverkészítésben? Mi a termékszabvány és a folyamatszabvány közti különbség?
	Mi az összefüggés a szoftverfolyamatok és az eloállított szoftver minosége között?
	Mi a minoségi felülvizsgálat célja, milyen termékekre terjedhet ki?
	Mire szolgál a szoftver mérése? Mondjon néhány példát a mérheto szoftverjellemzokre!
	Ismertesse a CMM (Capability Maturity Model) célját és lényegét!
	Miért fontos a szoftver költségeinek becslése? Milyen tényezoket vehetünk figyelembe a költségbecslés során?
	Ismertesse a COCOMO II. költségbecslési módszer modelljeit!
	Források:

