
A di�úzió�egyenlet kétféle levezetése és néhány tulajdonsága:

A makrofizikai levezetés: egyensúlyi elvekb®l � a h®vezetési interpretációban Jelölje
u(t, x) az x ∈ Ω ⊂ Rd (d = 1, 2, 3) pont h®mérsékletét a t ≥ 0 id®pontban. A másik alapvet® fogalom
a h®áramlás id®t®l és helyt®l is függ® vektormez®je, az F (t, x). A harmadik a bels® h®források f(t, x)
s¶r¶ségfüggvénye.

Egy G ⊂ Ω térrészen belüli Q(t) =

∫
G
cρu(t, x) dx h®energia Q̇(t) megváltozása

= a ∂G peremen átáramló −
∫
∂G
F ds h®energia + a bels® h®források

∫
G
f(t, x) dx munkája ,

azaz ∫
G
cρut(t, x) dx = −

∫
∂G
F ds+

∫
G
f(t, x) dx

tetsz®leges korlátos G ⊂ Ω (nyílt) tartományon, ahol ρ az anyags¶r¶ség és c a fajh®. Az
∫
G div(v) dx =∫

∂G v ds divergenciatétel valamint a di�úzió1 F = −k grad u törvényének segítségével∫
G
cρut(t, x) dx =

∫
G

div(k grad u) dx+

∫
G
f(t, x) dx ,

amib®l a
cρut(t, x) = div(k grad u) + f(t, x) (1)

végeredmény már közvetlenül adódik.2 Amennyiben a k di�úziós együttható állandó (és nem k = k(x) alakú
függvény), a k állandó kihozható a divergencia operátora elé, és a végeredmény a cρut = k∆u + f(t, x)
alakra egyszer¶södik. Ha nincsenek bels® h®források � azaz ha f(t, x) ≡ 0 �, akkor az a2 = k

cρ > 0

jelöléssel az (1) egyenlet az ut = a2∆u alakot ölti, amely egy el®re megadott Ω ⊂ Rd (d = 1, 2, 3) kor-
látos tartomány pontjaiban érvényes. A továbbiakban azt is feltesszük, hogy mind a c fajh®, mind a ρ
anyags¶r¶ség, és akkor velük együtt az a > 0 paraméter is térben�id®ben állandók.

A ut = a2∆u parciális egyenlethez perem� és kezdeti�érték feltételek is tartoznak. A kezdeti felté-
tel u(0, x) = g(x), x ∈ Ω alakú. Peremfeltétel többféle is lehet: a két legfontosabb típus a Dirichlet�
féle u(t, x) = h(t, x), (t, x) ∈ [0,∞) × ∂Ω peremfeltétel, illetve a (Carl) Neumann�féle ∂u

∂ν = h(t, x),
(t, x) ∈ [0,∞) × ∂Ω peremfeltétel. Magától értet®dik, hogy itt g és h el®re megadott függvények, míg

1a di�úziós törvényt a h®tanban Fourier, a kémiában Fick, az elektromosságtanban Ohm nevéhez kötik � hát nem
csodálatos, hogy ugyanaz a matematikai modell képes leírni a különböz® természettudományok `saját' jelenségeit? � A
di�úzió�egyenlet u változója csak a h®tanban jelent h®mérsékletet: a kémiában egy folyadékban oldott anyag 0 < u � 1
koncentrációját jelenti

2egy matematikus még az
∫
G

(cρut(t, x)− div(k grad u)− f(t, x)) dx = 0 képletet is közbeiktatja, majd a �ha egy függvény
integrálja minden G ⊂ Ω tartományon nulla, akkor a függvény azonosan nulla� tételre hivatkozik. (Ez a tétel csak folytonos
függvényekre igaz! És különben is, már a divergenciatétel is csak olyan G tartományokra teljesül, amelyek határa ... ráadásul a
t szerinti deriválást sem lehetett volna csak úgy bevinni az x szerinti integrálás jele mögé ... de nem akarom tovább karikírozni
a dolgot. Elég az hozzá, nem baj, ha egy mérnöknek id®nként eszébe jut, hogy minden számolás érvényességének megvannak
a maga feltételei � még akkor is, ha ezek a feltételek a számára releváns esetekben automatikusan teljesülnek).
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tetsz®leges x ∈ ∂Ω esetén ν(x) a kifelé mutató normális egységvektort, ∂u
∂ν = 〈grad u(t, x), ν(x)〉 pedig a

ν(x) mentén vett iránymenti deriváltat jelenti. A h ≡ 0 választás a legfontosabb, a Dirichlet�féle esetben
ez egyenletes h¶tést, a Neumann�féle esetben pedig teljes h®szigetelést jelent.

Megjegyzés: Homogén Neumann peremfeltétel esetén a divergencia�tételt felhasználva

Q̇(t) =

∫
Ω
cρut(t, x) dx =

∫
Ω

div(k grad u) dx =

∫
∂Ω
k grad u ds =

∫
∂Ω

0 ds = 0 ⇒ Q(t) ≡ Q(0)

adódik (hiszen 〈grad u(t, x), ν(x)〉 = 0 minden t ≥ 0 esetén), ami a h®tani interpretációban h®energia�
megmaradást, a kémiai interpretációban pedig a folyadékban oldott (és a di�úzióval terjed®) anyag meny-
nyiségének/tömegének megmaradását jelenti.

Megjegyzés: egy dimenzióban lineáris változó�transzformációkkal � �skálázással� � elérhet®, hogy
a = 1 és x ∈ [0, π] legyen. Valóban, ha eredetileg x ∈ [0, L], akkor

a τ = αt , y = βx , u(t, x) = U(αt, βx) = U(τ, y) lineáris helyettesítésekkel

ez utóbbi formulát (a jobb oldalon mint összetett függvényt) t szerint egyszer, valamint x szerint kétszer
deriválva ut = Uτ · α, uxx = Uyy · β2 adódik, így az α és a β paraméterek optimális megválasztásával

ut = a2uxx , (t, x) ∈ [0,∞)× [0, L] ⇒ Uτ ·α = a2Uyy ·β2 , azaz Uτ = Uyy ha βL = π és α = a2β2 .

Magától értet®dik, hogy a lineáris helyettesítések a perem� és a kezdeti feltételekre is vonatkoznak.

Megjegyzés: Az ut = uxx, u(t, 0) = u(t, π) = 0, u(0, x) = g(x) homogén Dirichlet feladat megoldható
Fourier�sor alakjában:

u(t, x) =

∞∑
n=1

cne
−n2t sin(nx) ahol cn =

2

π

∫ π

0
g(x) sin(nx) dx , n = 1, 2, . . . . (2)

Maga az egyenlet homogén lineáris, és a peremfeltétel is homogén. Így az u(t, x) (t ≥ 0, x ∈ [0, π])
megoldás az e−n

2t sin(nx) alapmegoldások lineáris kombinációja. A lineáris kombináció együtthatóit a
t = 0 kezdeti állapotot leíró g ∈ L2[0, π] függvény Fourier sorfejtése szolgáltatja. Hasonlóképpen, az
ut = uxx, ux(t, 0) = ux(t, π) = 0, u(0, x) = g(x) homogén Neumann feladat megoldása

u(t, x) =
c0

2
+
∞∑
n=1

cne
−n2t cos(nx) ahol cn =

2

π

∫ π

0
g(x) cos(nx) dx , n = 0, 1, 2, . . . . (3)

Fontos megjegyeznünk, hogy � még akkor is, ha a g függvény folytonos, s®t ha még a g(0) = g(π) = 0
kompatibilitási feltételek is teljesülnek � a megoldás �döccenve� indul: a t = 0 id®pontban a Fourier�sorok
konvergenciája általában csak az L2[0, π] térben garantált. Szerencsére ha t > 0, akkor a sorösszeg végte-
lenszer deriválható a t és az x hibrid változókban. A t→∞ határátmenetben a homogén Dirichlet feladat
megoldásának képlete egyenletes u(t, x) → 0 kih¶lést, a homogén Neumann feladat megoldásának képlete
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pedig az integrál�átlaghoz tartó u(t, x)→ c0
2 = 1

π

∫ π
0 g(x) dx teljes h®mérséklet�kiegyenlít®dést mutat.

(Ha az x ∈ [0, L] intervallumon maradtunk volna egy általános a > 0 paraméter mellett, akkor a
homogén Dirichlet feladat megoldása ez lett volna:

u(t, x) =

∞∑
n=1

gn exp

(
−
(
a
π

L

)2
n2t

)
sin
(π
L
nx
)

ahol a gn =
2

L

∫ L

0
g(x) sin

(π
L
nx
)
dx , n = 1, 2, . . .

állandók éppen a g : [0, L] → R függvény {sin
(
π
Lnx

)
}∞
n=1

, x ∈ [0, L] trigonometrikus rendszer szerinti
Fourier sorfejtésének együtthatói.)

Maximum�elv az ut = ∆u egyenletre: Most az eddigiekben tárgyalt di�úzió�egyenlet � amely-
ben tehát az ismeretlen függvény u : [0,∞)× Ω→ R alakú, egydimenziós t ≥ 0 id®� valamint tetsz®leges,
d�dimenziós x ∈ Ω ⊂ Rd térváltozóval � egy nagyon általános, roppant szemléletes és matematikailag
könnyen bizonyítható kvalitatív tulajdonságáról lesz szó. Ez a maximum�elv, amelynek érvényesülését
szinte naponta tapasztalhatjuk: Hidegzugok, melegzugok, csakúgy mint a koncentráció összes¶r¶södé-
sei vagy ritkulásai egydimenziós lineáris di�úzió révén nem jöhetnek létre. A maximum�elv alapvet®en
egyetlen valós függvényre teljesül és már a lineárisan csatolt ut = α2uxx + au + bv, vt = β2vxx + cu + dv
egyenletrendszerre sem érvényes � itt u és v egy�egy oldott anyagfajta térid®beli koncentrációját jelenti,
két olyan anyagét egyazon oldatban, amelynek α2 és β2 di�úziós egyethatója egymással nem egyenl®.
Ökölszabályként annyit mondhatunk, hogy a di�úzió�egyenlet stabilizál és homogenizál, de a di�úzió�
egyenletrendszer már nem rendelkezik ezekkel a tulajdonságokkal.

Következzék a szigorú matematika:
Legyen Ω ⊂ R2 korlátos (nyílt) tartomány, és legyen T > 0 tetsz®leges. Vezessük be az

ΩT = (0, T )× Ω , ∂∗ΩT =
(
{0} × Ω

)
∪
(
(0, T ]× ∂Ω

jelöléseket3. Ekkor
max{u(t, x) | (t, x) ∈ ΩT } = max{u(t, x) | (t, x) ∈ ∂∗ΩT } . (4)

Bizonyítás: A bizonyítás � jóllehet annak két részre bontása ugyancsak szellemes � nem használ fel
mást, mint az egyváltozós függvények vizsgálatának szokásos lépéseit.

1.) Tegyük fel el®ször, hogy ut < ux1x1 + ux2x2 . Megmutatjuk, hogy (4) még ekkor is teljesül. Az
indirekt feltevés azt mondja, van olyan (t∗, x∗) ∈ (0, T ]× Ω pont, hogy

u(t∗, x∗) = max{u(t, x) | (t, x) ∈ ΩT } > max{u(t, x) | (t, x) ∈ ∂∗ΩT } .

Ekkor ux1(t∗, x∗) = 0 és ux1x1(t∗, x∗) ≤ 0 valamint ux2(t∗, x∗) = 0 és ux2x2(t∗, x∗) ≤ 0. Így

ut(t
∗, x∗) < ∆u(t∗, x∗) = ux1x1(t∗, x∗) + ux2x2(t∗, x∗) ≤ 0 ,

3A d = 2 választás miatt könny¶ a szemléltetés. Itt ΩT egy, az R × R2 térid®ben fekv® korlátos nyílt henger, ∂∗ΩT az
ΩT henger �csillagos pereme� (azaz kezd®lapjának és palástja lezárásának az úniója � a �tényleges töltényhüvely�). Annak
rendje�módja szerint feltesszük, hogy az u függvény folytonos a [0,∞) × Ω zárt halmazon, a t id®változó szerint egyszer, az
x = (x1, x2) helyváltozó szerint kétszer folytonosan deriválható annak (0,∞)×Ω belsejében, továbbá ugyanott eleget tesz az
ut = ∆u(≡ ux1x1 + ux2x2) egyenletnek.
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amib®l u(t∗ − δ, x∗) > u(t∗, x∗) ha 0 < δ � 1 (azaz ha δ > 0 elegend®en kicsi). Tehát olyan ponto(ka)t
sikerült megkonstruálni a (0, T ] × Ω halmazban, ahol az u függvény értéke nagyobb a maximumnál, ami
ellentmondás.

2.) Most visszatérünk az eredeti u függvényhez. Az ε > 0 paraméter segítségével de�niáljuk a
vε(t, x) = u(t, x)− εt segédfüggvényeket. Mivel

(vε)t(t, x) = ut(t, x)− ε = ∆u(t, x)− ε < ∆u(t, x) = ∆vε(t, x) ,

a bizonyítás els® része szerint

max{vε(t, x) | (t, x) ∈ ΩT } = max{vε(t, x) | (t, x) ∈ ∂∗ΩT }

tetsz®leges ε > 0 esetén. A kívánt (4) tulajdonság az ε→ 0+ határátmenettel adódik. 2

A maximum�elvet a − u függvényre átfogalmazva a

min{u(t, x) | (t, x) ∈ ΩT } = min{u(t, x) | (t, x) ∈ ∂∗ΩT } (5)

minimum�elvet kapjuk. A maximum�elv és a minimum�elv együttes következménye � ha azokat a két
hipotetikus megoldás különbségére alkalmazzuk � az ut = ∆u + f(t, x), u(0, ·)

∣∣
Ω

= g, u
∣∣
(0,∞)×∂Ω

= h

kezdeti� és peremérték�feladat klasszikus (az el®z® lábjegyzetben felsorolt símasági feltételeket
kielégít®) megoldásának unicitása. Ez utóbbi kijelentés független a kérdéses megoldás létezését®l.

Vegyük észre, hogy a bizonyítás lokális jelleg¶ és tetsz®leges (t1, t2) × G ⊂ (0,∞) × Ω nyílt henger
�töltényhüvely�-t alkotó �csillagos perem��ére megismételhet®, akkor is ha az x térváltozó nem d = 2, hanem
d = 1, 3 vagy éppen d ≥ 4 dimenziós. A bizonyítás els® része azt is mutatja, hogy maga a maximum�elv
igaz az ut = ∆u−u2 nemlineáris reakció�di�úzió egyenletre is, ahol a−u2 �forrástag� soha nem lehet pozitív.

A mikrofizikai pontosabban a statisztikus fizikai levezetés: a diffúzió Brown�mozgás
szerinti interpretációjában Egyetlen pontszer¶ részecske bolyong a számegyenesen. Mozgásáról
csak annyit tudunk, hogy adott helyzetb®l δt id® alatt 1

2 valószín¶séggel jobbra, 1
2 valószín¶séggel balra

megy, éspedig δx távolságot.
Jelölje P (t, x) annak a valószín¶ségét, hogy a részecske a t id®pillanatban a számegyenes x pontjától

balra helyezkedik el. A t és a t + δt id®pillanat közötti lehetséges elmozdulásokat �gyelembe véve, a
P (t+δt, x) valószín¶ségét kifejezzük a t id®pillanathoz tartozó különböz® valószín¶ségekkel. Az az állapot,
hogy a t + δt id®pontban a részecske az x ponttól balra helyezkedik el, kétféleképpen alakulhat ki: ha a
t id®pillanatban balra volt az x − δx ponttól, vagy ha benne volt az (x − δx, x + δx) intervalumban. Az
el®z® esetben továbbra is balra marad az x ponttól, az utóbbi esetben pedig a jobbra vagy balra lépések
egyikével az x ponttól jobbra, másikával az x ponttól balra kerül. A valószín¶ségét �gyelembe véve azt
kapjuk, hogy a kétváltozós P függvény eleget tesz a

P (t+ δt, x) = P (t, x− δx) +
1

2
(P (t, x+ δx)− P (t, x− δx))

algebrai összefüggésnek. Ezután mindkét oldalból kivonjuk a P (t, x) valószín¶séget és osztunk a δt, a jobb
oldalon pedig b®vítünk a (δx)2 kifejezéssel. Igy

P (t+ δt, x)− P (t, x)

δt
=

1

2
· P (t, x− δx)− 2P (t, x) + P (t, x+ δx)

(δx)2
· (δx)2

δt
,
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majd a (δx)2

2δt = 1 skálázással és a δt, δx → 0 határátmenettel a remélt Pt(t, x) = Pxx(t, x) parciális
di�erenciálegyenlet adódik.

Ha a t = 0 kezdeti id®pontban a részecske biztosan az x = 0 pontban volt (azaz P (0, x) = H(x) ahol
H a Heaviside függvény), akkor a h®maggal (lásd a 10�ik oldalon) vett konvolúciós integrál a

P (t, x) =
1

2
√
πt

∫ ∞
−∞

H(ξ) e−
(x−ξ)2

4t dξ =
1

2
√
πt

∫ ∞
0

e−
(x−ξ)2

4t dξ =
1

2
√
πt

∫ x

−∞
e−

z2

4t dz = Φ

(
x√
2t

)
végeredménnyé egyszer¶södik. Itt Φ(x) = 1√

2π

∫ x
−∞ e

− s
2

2 ds, a standard normális eloszlás eloszlásfüggvénye.

A �zikusok ezt úgy mondják, hogy a di�úzió a Dirac deltát (vagy más néz®pontból a Heaviside függvény
általánosított deriváltját és ha úgy tetszik, Brown vízbe dobott pollen�csomagocskáját) t > 0 id® alatt az

N (0, σ) = N (0,
√

2t) normális eloszlás 1
σ
√

2π
e−

x2

2σ2 s¶r¶ségfüggvényévé keni szét.

Nemnegatív mátrixok hatványozásásra vezet® feladatok:

Perron�Frobenius Tétel: Legyen A = {aij}ni,j=1 nemnegatív, primitív mátrix. (Azaz ha az A
mátrixnak alkalmas k0�adik hatványa csupa pozitív elemet tartalmaz � vagy ami ezzel ekvivalens, ha az
irányított átmenetgráf összefügg® és körei hosszának lnko�ja egy. Konvenció: ({i} → {j}) ∈ E(G) ⇔
aji > 0.) Ekkor λ1 = r > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. Az r > 0 domináns sajátértékhez tartozó domináns
sajátvektor jobbról v > 0, balról wT > 0T , a wTv = 1 normálással. Továbbá

1

rk
Ak → vwT ha k →∞ és a konvergencia rendje lényegében

1

rk
|λ2|k .

Tanulságos gyakorló feladat: Legyen A = {aij}ni,j=1 0�1 mátrix. A.) Igazolja, hogy (Ak)i,j az
átmenetgráf j�edik csúcsából az i�edik csúcsba vezet® k hosszúságú irányított utak száma. B.) Határozza
meg a k0 értékét 1.) az A mátrix els® néhány hatványa révén illetve 2.) az A mátrixhoz rendelt
átmenetgráf közvetlen vizsgálatával � ha n = 4 és a11 = a14 = a21 = a32 = a43 = 1 és a többi aij nulla.

Példa 1. � Fibonacci rekurzió: Az f0 = f1 = 1, fn+1 = fn + fn−1 (n =1,2,. . . ) másodrend¶
lineáris rekurziót felbontva az n�edik év ifjú és öreg nyúlpárjainak száma szerinti két els®rend¶, egymáshoz
csatolt in+1 = on, on+1 = in + on lineáris rekurzióra, amelyek együtt mátrixos alakban is felírhatók:(

in+1

on+1

)
= F

(
in
on

)
, ahol F =

(
0 1
1 1

)
és

(
i0
o0

)
=

(
1

0

)
⇒

(
ik
ok

)
= Fk

(
i0
o0

)
, k = 0, 1, 2, . . .

⇒ fk = ik + ok =
1√
5

(
λk+1

1 − λk+1
2

)
, ahol λ1,2 =

1±
√

5

2
az F mátrix sajátértékei .

Példa 2. � stabil korfa az L Leslie�mátrixból négy korosztály esetén, a b1, b2, b3 > 0 születési/birth
és az s1, s2, s3 > 0 túlélési/survival rátákkal (amikor szintén teljesülnek a Perron�Frobenius tétel feltételei)

L =


0 b1 b2 b3
s1 0 0 0
0 s2 0 0
0 0 s3 0

 ⇒ 1

rk


xk1
xk2
xk3
xk4

 =
1

rk
Lkx0 → (vwT )x0 = (wTx0)v ha k →∞ .
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A karakterisztikus polinom p4(λ) = λ4 − b1s1λ
2 − b2s1s2λ − b3s1s2s3. Mivel 1 < r és 1 < R (ahol is

R = b1s1 + b2s1s2 + b3s1s2s3 az egyedenkénti utódok átlagos száma) jelentése egyarant a végtelenhez tartó
túlnépesedés, pusztán a biológiai tartalom alapján 1 < r ⇔ 1 < R. Hasonlóképpen, mivel mind az r < 1,
mind az R < 1 egyenl®tlenség az aszimptotikus kihalás biológiai tényét fogalmazza meg: r < 1 ⇔ R < 1.
Ugye a matematikai bizonyítás � amelyet szintén csak a 4× 4 Leslie mátrixokra mutatunk be4 � is men-
nyire szép? (És legalább utólag: mennyire egyszer¶?)

Példa 3. � Amikor kevesebb igaz: súlyozott permutáció�mátrix, avagy a cserebogarak/pajorok
négy korosztálya. Itt b1 = b2 = 0 valamint b3s1s2s3 = 1, és a p4(λ) = λ4 − 1 polinom gyökei ±1,±i.

Példa 4. � Neumann János � az u′t = u′′xx (t ≥ 0, 0 ≤ x ≤ L) diffúzió�egyenlet: numerikus
megoldás az (N) u′x(t, 0) = u′x(t, L) = 0 (Carl Neumann) valamint a (P) u(t, 0) = u(t, L) & u′x(t, 0) =
u′x(t, L) (periodikus) peremfeltétel és az u(0, x) = g(x) kezdeti feltétel esetén.

A numerikus uij ≈ u(iτ, jh) megoldást a véges di�erenciák módszerével határozzuk meg, amely egy
téglalap típusú rácsszerkezetet jelöl ki és olyan lineáris egyenletrendszerhez vezet, amelynek ismeretlenei
a pontos megoldás rácspontokban vett u(iτ, jh) értékeinek ui,j közelítései. A bels® rácspontokban (i =
1, 2, . . ., j = 1, 2 . . . , N−1) vett parciális deriváltakat az ui,j ismeretlenekb®l képzett (els®� és másodrend¶)
különbségi hányadosokkal pótolva5 az alábbi egyenletrendszert nyerjük:

ui+1,j − ui,j
τ

=
ui,j+1 − 2ui,j + ui,j−1

h2
⇔ ui+1,j = µui,j+1 + (1− 2µ)ui,j + µui,j−1 , (6)

ahol 0 < µ = τ
h2 pozitív paraméter. Amint arra részletesen is kitérünk majd, alapvet® fontosságú, hogy

teljesüljön a µ ≤ 1
2 egyenl®tlenség. Az átrendezett egyenletrendszer explicit módon, id®rétegenként oldható

4Az r > 1 ⇔ R > 1 (és az r < 1 ⇔ R < 1, valamint az r = 1 ⇔ R = 1) összefüggések bizonyítása: A λI − L mátrix
determinánsának az els® sor szerinti kifejtésével kapjuk, hogy az L mátrix p4 karakterisztikus polinomja

p4(λ) = λ4 − b1s1λ
2 − b2s1s2λ− b3s1s2s3

alakú, amelyb®l a λ = 1 választással p4(1) = 1−R adódik.
Ha most R > 1, akkor p4(1) < 0. De p4(λ) → ∞ ha λ → ∞ miatt p4(Ω) > 0 ha Ω ∈ R elegend®en nagy. Igy a Bolzano

tétel alkalmazható az [1,Ω] intervallumon (vagy ha úgy tetszik, az [1,∞) félegyenesen). Tehát van olyan r > 1 valós szám,
hogy p4(r) = 0. Megfordítva, ha r > 1, akkor a p4(r) = 0 képletet átrendezve, majd a jobb oldalt okosan növelve, a végén
átoszthatunk r4�el:

r4 = b1s1r
2 + b2s1s2r + b3s1s2s3 < b1s1r

4 + b2s1s2r
4 + b3s1s2s3r

4 ⇒ 1 < b1s1 + b2s1s2 + b3s1s2s3 = R .

Tehát R > 1 ⇔ r > 1. A még hiányzó R < 1 ⇔ r < 1 eset kezelése sem nehezebb. (Ha ez sikerül, r = 1 ⇔ R = 1 igazolása
már csak formális logika dolga.) Amennyiben tehát R < 1, akkor az 1 > b1s1 + b2s1s2 + b3s1s2s3 egyenl®tlenséget a λ ≥ 1
paraméter negyedik hatványával beszorozva

λ4 > b1s1λ
4 + b2s1s2λ

4 + b3s1s2s3λ
4 ≥ b1s1λ

2 + b2s1s2λ+ b3s1s2s3

adódik. Másképpen fogalmazva azt kaptuk, hogy p4(λ) > 0 minden λ ≥ 1 esetén. Ilymódon a p4 polinom domináns r > 0
gyöke a (0, 1) intervallumba kell, hogy essék. Ha pedig r < 1, akkor minden λ ∈ (r,∞) esetén p4(λ) > 0, speciálisan a λ = 1
választással is p4(1) > 0. De p4(1) = 1−R és kész.
Vegyük észre, hogy a bizonyítás mind a négy része explicit vagy implicit módon épített a Perron�Frobenius tételre.
5az id® szerinti ∂

∂t
els®rend¶ parciális derivált τ lépésköz¶ explicit Euler és a tér szerinti ∂2

∂2x
másodrend¶ parciális derivált

h = L
N

lépésköz¶ (másodrend¶) centrális közelítése alapján
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meg, kiindulva a nulladik id®réteg rácspontjaiban ismert u0,j = g(jh) ≥ 0 (j = 1, 2, . . . , N − 1) ⇔ u0 = g
numerikus kezdeti feltételekb®l. Így a közelít® megoldás kiszámítása � az (N) és a (P) feladatokban � az

AN =



1− µ µ 0 . . . 0
µ 1− 2µ µ 0 . . . 0

0 µ 1− 2µ µ 0
...

...
. . . . . . . . . . . .
. . . . . . . . . . . . 0

0 . . . 0 µ 1− 2µ µ
0 . . . 0 µ 1− µ


, ahol 0 < µ ≤ 1

2

illetve az

AP =



1− 2µ µ 0 µ
µ 1− 2µ µ 0 0

0 µ 1− 2µ µ
...

...
. . . . . . . . . . . .
. . . . . . . . . . . . 0

0 . . . 0 µ 1− 2µ µ
µ . . . 0 µ 1− 2µ


, ahol

{
0 < µ < 1

2 ha N − 1 páros
0 < µ ≤ 1

2 ha N − 1 páratlan

(N−1)×(N−1) méret¶ szimmetrikus mátrixok hatványozására egyszer¶södik: a közelít® megoldás a k�adik
id®rétegen az uk = Ak

Ng illetve az uk = Ak
Pg vektoros alakot ölti, k ∈ N. A numerikus peremfeltételeket6

úgymond �beolvasztottuk� az AN és az AP mátrixok sarokelemeibe. A Perron�Frobenius Tétel feltételei
itt és most a µ = τ

h2 <
1
2 és a µ = τ

h2 ≤ 1
2 egyenl®tlenségekre fogalmazhatók át.

Az (N) és a (P) feladatokat a d
dt

∫ L
0 u(t, x) dx =

∫ L
0 u′t(t, x) dx =

∫ L
0 u′′xx(t, x) dx = u′x(t, L)−u′x(t, 0) = 0

megmaradási tétel � energia�megmaradás a h®tani, anyag/tömeg�megmaradás a kémiai interpretációban
� kapcsolja össze. Jóllehet az (N) és a (P) feladatokban a Fourier�sorfejtés két különböz® teljes ortonormált
rendszer szerint történik, az (N) és a (P) feladatok megoldásai t → ∞ mellett (az x ∈ [0, L] változóban
egyenletesen) egyaránt az 1

L

∫ L
0 g(x) dx integrálátlaghoz tartanak.

A
∑N−1

`=1 uk,` =
∑N−1

`=1 g(`h) (ha k = 0, 1, 2, . . .) numerikus megmaradási tétel azon múlik, hogy az AN

és az AP mátrixok bármely sorában álló számok összege egy. (A mátrixok szimmetriája miatt ugyanez
igaz az oszlopösszegekre is.) A k → ∞ aszimptotikában a numerikus megoldás is homogenizálódik, és a
k�adik id®réteg (kτ, `h), ` = 1, . . . , N − 1 rácspontjaiban limk→∞ uk,` → 1

N−1

∑N−1
j=1 g(jh), ami hN = L

miatt az 1
L

∫ L
0 g(x) dx integrálátlag téglányösszeges közelítése. Mivel az AN és az AP mátrixokra egyaránt

r = 1 és v =
1√
N − 1

col(1, 1, . . . , 1) ∈ RN−1 , valamint wT =
1√
N − 1

row(1, 1, . . . , 1) ∈ RN−1 ,

6amelyek rendre (N) ui,0 = ui,1 & ui,N = ui,N−1 illetve (P) ui,0 = ui,N−1 & ui,1 = ui,N (i = 1, 2, . . .)
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a homogenizálódás ténye maga a Perron�Frobenius Tétel7 : uk → (vwT )g = v(wTg) = (wTg)v.

Megjegyzés: Amint az a (6) képletsor jobb oldalán álló lineáris egyenletrendszerb®l könnyen kiolvasható,
a maximum-elv numerikus változata is teljesül. A �visszafelé vett� átlagok a nemnegatív súlyokkal vett �
újabb érv Neumann János 0 < µ = τ

h2 ≤ 1
2 feltétele mellett !! � konvex lineáris kombinációk

ui+1,j = µui,j+1 + (1− 2µ)ui,j + µui,j−1 ⇒
{
ui+1,j ≤ max{ui,j+1 , ui,j , µui,j−1}
ui+1,j ≥ min{ui,j+1 , ui,j , µui,j−1}

tulajdonságaira utalnak. Az átlagképzés most megfogalmazott és szinte magától értet®d® szabályának
ereje abban van, hogy balra (nyugat) továbbá balra�fel (északnyugat) és balra�le (délnyugat) egymás után
ameddig csak lehet (tehát amíg ki nem jutunk a térbeli és az id®beli perem összes visszafelé elérhet® rác-
spontjába) alkalmazható. A közelít® megoldás nem vehet fel nagyobb értéket az

(
(i + 1)τ, jh

)
pontban,

mint amekkora a kezdeti, valamint a �csillagos� numerikus perem rácspontjaiban felvett értékek maximuma.
Ugyanez a szabály érvényes a megfelel® minimumokra is. A nem�negatív súlyokkal képzett átlag nem lehet
nagyobb, mint a maximum, és nem lehet kisebb, mint a minimum. Hidegzugok, melegzugok, csakúgy mint
a koncentráció összes¶r¶södései vagy ritkulásai az egydimenziós lineáris di�úzió révén nem jöhetnek létre
a numerikus, közelít® megoldások során sem.

Megjegyzés: Amint azt részletesen is kifejtettük, a pontos megoldás három jellegzetes tulajdonsága is
igaz marad az (N) és a (P) feladatokra alkalmazott (6) diszkretizációs eljárásra: 1.) energia�megmaradás a
h®tani, anyag/tömeg�megmaradás a kémiai interpretációban 2.) az id®ben aszimptotikus homogenizálódás
tulajdonsága 3.) a �maximum�elv� és a �minimum�elv�. Mindez Neumann János 0 < µ = τ

h2 ≤ 1
2

egyenl®tlenségén múlik, amely a 3.) tulajdonságot közvetlenül, az 1.) és a 2.) tulajdonságokat pedig
közvetett módon, esetünkben a Perron�Frobenius Tétel alkalmaz(hatóság/ás)án át implikálja.

A 0 < µ = τ
h2 ≤ 1

2 egyenl®tlenség legfontosabb haszna azonban az, hogy mind az (N), mind a (P),
mind a kés®bb ismertetend® (D) feladatban garantálja a (6) numerikus eljárás bels® stabilitását. Ezt kicsit
nehezebb megérteni, de végs® soron arról van szó, hogy µ = τ

h2 >
1
2 esetén a numerikus számítások (annak

megfelel®en, hogy az eddigi r = 1 domináns sajátérték helyébe egy vagy akár több olyan sajátérték lép,
amely[nek abszolút értéke] 1�nél nagyobb) teljesen �szétrázódnak�: érdemes kipróbálni8!

A fenti megfontolások világosan mutatják, mit kell elvárnunk egy jól megválasztott nu-
merikus (diszkretizációs avagy iteratív) közelít® módszert®l:

• Elvárjuk, hogy a számítógépes megoldás a pontos megoldás jó kvantitatív közelítését adja � ami azt
jelenti, hogy a közelít® és a pontos megoldás különbsége alkalmas normában nullához tartson, ha a
diszkretizációs lépésköz(ök) nullához tart(anak)illetve az iterációs lépések száma végtelenhez tart. (A

7ahol is vwT egy (N − 1) × (N − 1) méret¶ négyzetes mátrix, melyneknek minden eleme egyaránt 1
N−1

, wTg pedig egy
nemnegatív valós szám. (Tetsz®leges négyzetes mátrix `∞ és `1 normája az abszolút értékkel vett maximális sor� illetve
oszlopösszeg, amely az AN esetében egyaránt 1, s ez az 1 az col(1, 1, . . . , 1) sajátvektorhoz tartozó sajátérték is [s mert
bármely norma legalább akkora, mint az abszolút értékkel vett bármely sajátérték]: hát ezért lettek r, v, wT azok, amelyek.)

8A Los Alamos�i programozók a (lineáris skálázással elérhet®) a = 1 esettel foglalkoztak, az id® szerinti τ és a tér szerinti
h lépésközt pedig egyformának vették. Választásuk tehát µ = 1

h
� 1

2
volt ... amíg Neumann Jánost meg nem kérdezték, mi

okozza a számítógép számukra érthetetlen, exponenciálisan növekv® amplitúdójú oszcillációkat produkáló viselkedését.
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számítógépi számábrázolás és a kerekítési hibák miatt ez a nullához tartás soha nem valósulhat meg
ténylegesen. Numerikus szempontból a nagyon kis lépésköz is veszélyes; a nagyon sokadik iteráció
pedig már nem javít semmit.)

• Elvárjuk, hogy a számítógépes megoldás a pontos megoldás jó kvalititatív közelítését adja � ami azt
jelenti, hogy a választott közelít® eljárás respektálja a feladat �zikáját.

Vajon elégedettek lennénk egy numerikus eljárással, amely negatív tömeghez vagy negatív illetve egynél
nagyobb koncentrációhoz vezetne? Vagy ha következetesen és markánsan csökkentené/növelné az összener-
giát vagy az össztömeget, jóllehet olyan feladattal van dolgunk, amelyikben ezek megmaradó mennyiségek?
Nyilván nem.

A térid® henger alakú tartományain a maximum is, és a minimum is a térbeli vagy az id®beli �töltény-
hüvely� peremen (is) felvétetik. Képletekkel kifejezve:

min{u(t, x) | t = t1 , x1 ≤ x ≤ x2 vagy t1 ≤ t ≤ t2 , x = x1, x2}
≤ min{u(t, x) | t1 ≤ t ≤ t2 , x1 ≤ x ≤ x2} ≤ max{u(t, x) | t1 ≤ t ≤ t2 , x1 ≤ x ≤ x2}

≤ max{u(t, x) | t = t1 , x1 ≤ x ≤ x2 vagy t1 ≤ t ≤ t2 , x = x1, x2} ,

ahol 0 < t1 < t2 < ∞ és 0 ≤ x1 < x2 ≤ L tetsz®legesek. Az ut = ∆u parciális di�erenciálegyenletre
érvényes maximum� és minimum�elvet már tárgyaltuk, s®t annak bizonyítását is bemutattuk. (Az egydi-
menziós esetben teljesül a Pólya�Sturm tulajdonság is: az egyidej¶leg zérus (vagy bármely más) Celsius
h®mérséklet¶ pontok

N(t) = #{x ∈ [0, L] | u(t, x) = 0} , t > 0

száma véges és az id®ben monoton csökken. A �pupli��k száma tehát soha nem n®het az id® el®rehaladtával.)

Megjegyzés: Az AN mátrix sajátértékei�sajátvektorai explicit alakban is megadhatók. Nemnegatív,
primitív mátrixról lévén szó, a Perron�Frobenius tétel szerinti domináns sajátérték λ1 = 1, s1 = col(1, 1, . . . , 1) ∈
RN−1 domináns sajátvektorral. A sajátértékek és a sajátvektorok sorszámozása k = 1, 2, . . . , N − 1 lesz,
hiszen AN (N − 1)× (N − 1)�es mátrix:

λNk = 1− 4µ sin2

(
k − 1

2N
π

)
, sNk =


cos( k−1

2(N−1)π)

cos( 3(k−1)
2(N−1)π)
...

cos( (2N−3)(k−1)
2(N−1) π)

 , k = 1, 2, . . . , N − 1 .

Vegyük észre, hogy k = 1 esetén a domináns λN1 = 1, sN1 = col(1, 1, . . . , 1) ∈ RN−1 sajátérték�sajátvektor
párt kapjuk vissza, továbbá azt is, hogy

N →∞ esetén
1

µh2
(λNk − 1) = − 4

N2

π2
sin2

( k − 1

2(N − 1)
π
)
→ − (k − 1)2
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minden �x k > 1 egész esetén. Mindez világosan mutatja az AN diszkretizációs mátrix, valamint az
egydimenziós ∆N operátorok9 közötti szoros sajátértékek�sajátvektor/sajátfüggvény egyszóval spektrális
kapcsolatokat. A megfelel®en skálázott sajátértékek egymáshoz tartanak, és a cos(kx) sajátfüggvények is
(az sNk -ra kapott k = 1, 2, . . . , N − 1 képlet szerint) mintegy "diszkretizálódnak".

Példa 5. � A Példa 4. folytatása: numerikus megoldás a (D) u(t, 0) = u(t, L) = 0 (Dirichlet)
peremfeltétel és az u(0, x) = g(x) kezdeti feltétel esetén.

A feladat most10 � az

AD =



1− 2µ µ 0 . . . 0
µ 1− 2µ µ 0 . . . 0

0 µ 1− 2µ µ 0
...

...
. . . . . . . . . . . .
. . . . . . . . . . . . 0

0 . . . 0 µ 1− 2µ µ
0 . . . 0 µ 1− 2µ


, ahol 0 < µ ≤ 1

2

(N − 1) × (N − 1) méret¶ szimmetrikus mátrix hatványozására egyszer¶södik. � Egyszer¶ indirekt
okoskodással 1 > |λn| (n = 1, 2, . . . , N − 1) ha 0 < µ ≤ 1

2 , következésképpen Ak
D → 0 ha k →∞.11

Példa 6. � Markov egér a cellák labirintusában avagy véletlen bolyongás háromosztatú, a
kettes és a hármas cella között kétkapus labirintusban. Jelölje ξn = i azt az eseményt, hogy az egér az
n�edik id®pontban éppen az i�edik cellában van, ahol n = 0, 1, 2, . . . és i = 1, 2, 3. Így a P átmenetmátrix
� melynek elemei a pij = P (ξn+1 = j | ξn = i) valószín¶ségek12:

P =

 0 1/2 1/2
1/3 0 2/3
1/3 2/3 0

 ⇒ πTk = πT0 P
k → πT0 (vwT ) =

1

8
(2, 3, 3) ha k →∞ ,

9a homogén Neumann peremfeltételt mind az egydimenziós ∆ Laplace�operátorba, mind a diszkretizáció AN mátrixába
beépítettük. Amint az a (3) sorfejtésb®l is látszik, a [0, π] intervallumhoz tartozó ∆N operátor sajátértékei {− n2}∞n=0,
sajátvektorai pontosabban sajátfüggvényei � hiszen olyan vektortérben dolgozunk, amelynek elemei függvények � pedig
{cos(nx)}∞n=0 ⊂ L2[0, π]. Az ẋ = Ax homogén lineáris közönséges di�erenciálegyenlet x(0) = x0 ∈ Rd pontból induló
x(t) = eAtx0 ∈ Rd, t ∈ (−∞,∞) megoldásának mintájára szabad azt is írnunk, hogy az ut = ∆N homogén Neumann�
feladat u(0) = g ∈ L2[0, π] pontból induló megoldása u(t) = T (t)g = e∆N tg ∈ L2[0, π], t ∈ [0,∞). Itt T (t) = e∆N t :

L2[0, π] → L2[0, π] minden �x t ∈ [0,∞) esetén korlátos lineáris operátor, melynek sajátértékei {e− n
2t}
∞
n=0, sajátfüggvényei

pedig változatlanul {cos(nx)}∞n=0 ⊂ L2[0, π].
10A numerikus peremfeltételek (D) ui,0 = 0 & ui,N = 0 (i = 1, 2, . . .), a numerikus kezdeti feltételek pedig a korábbiakkal

egyez®en u0,j = g(jh) (j = 1, 2, . . . , N − 1).
11Itt jegyezzük meg, hogy az AP , AD mátrixok teljes sajátérték�sajátvektor rendszere is explicit módon számolható.
12Sor�sztochasztikus konvenció, ahol az átmenetgráfban ({i} → {j}) ∈ E(G) ⇔ pij > 0: az egér az egymás utáni id®pon-

tokban mindig egyforma valószín¶séggel választ az aktuális cella kapui között � a cellalabirintusokból származó ilyetén
bolyongások G gráfjai és P Markov mátrixai mind speciális szerkezet¶ek: tekinthetjük többszörös élekkel rendelkez® irányítás
(és külön súlyozás) nélküli gráfoknak is ®ket, a hozzájuk tartozó P = PG = D−1

G AG mátrixoknak pedig minden sajátértéke
valós. Itt DG = diag(2, 3, 3) az a diagonális mátrix, amelynek elemei az irányítás nélküli G gráf csúcspontjainak fokszámai,
AG pedig a G gráf szomszédsági mátrixa (ahol is a12 = a21 = a13 = a31 = 1 és a23 = a32 = 2 [a többi elem pedig nulla]).
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mert r = 1, v = col(1, 1, 1) ∈ R3 és wT = 1
8(2, 3, 3) (bármely πT0 ∈ Σ = {(x, y, z) ∈ row(R3) | x+ y + z =

1 , x, y, z ≥ 0} kezdeti eloszlásra). Felismerjük wT koordinátáiban az átmenetgráf csúcsainak fokszámát?

Most visszatérünk a Példa 4. AN mátrixához: Vizsgáljuk a

di�úzió�egyenlet: u′t = u′′xx ahol 0 ≤ t ≤ T , 0 ≤ x ≤ L
homogén (N) peremfeltétel: u′x(t, 0) = u′x(t, L) = 0 ahol 0 ≤ t ≤ T
kezdeti feltétel: u(0, x) = g(x) ahol 0 ≤ x ≤ L

 feladat (7)

közelít® és pontos megoldásának eltérését a [0, T ]×[0, L] téglalap (iτ, jh) rácspontjaiban, ahol i = 0, 1, 2, . . . ,M ,
j = 0, 1, 2, . . . , N és Mτ = T , Nh = L, valamint µ = τ

h2 ≤ 1
2 . Célunk tehát hibabecslés levezetése

a (6) egyenletrendszerb®l kiszámolt ui,j ≈ u(iτ, jh) közelít® megoldás és a mostantól uij = u(iτ, jh) által
jelölt pontos megoldás között.

Feltesszük, hogy az u(t, x) pontos megoldás folytonos az [0, T ] × [0, L] halmazon, és azt is (ami a
�döccenve� indulás miatt már nem jelenti az általánosság megszorítását), hogy a (0, T ] × (0, L) halmazon
t szerint kétszer, x szerint négyszer folytonosan deriválható.13 A bels® rácspontokban tehát

ui+1,j − ui,j
τ

+m1
i,j =

ui,j+1 − 2ui,j + ui,j−1

h2
+m2

i,j ⇔ ui+1,j = µui,j+1 + (1− 2µ)ui,j + µui,j−1 + τmi,j ,

ahol mi,j = m2
i,j −m1

i,j . Bevezetve a rácspontokban vett lokális hibákat jelöl® ei,j = ui,j − ui,j változókat, a
legutóbbi valamint a (6) sorszámú egyenlet különbsége

ei+1,j = µei,j+1 + (1− 2µ)ei,j + µei,j−1 + τmi,j , legalábbis a bels® rácspontokban . (8)

Idézzük fel az AN mátrix bal fels® és jobb alsó sarokeleméhez vezet® numerikus (N) ui,0 = ui,1 & ui,N =
ui,N−1 peremfeltételeket. A pontos megoldásra érvényes u′x(t, 0) = u′x(t, L) = 0 peremfeltétel alapján
ui,0 = ui,1 +O(h2) és ui,N = ui,N−1 +O(h2) adódik. Tehát a közelít® megoldás értékeit az egymás utáni
id®rétegeken kiszámoló

ui+1 = ANui (i = 0, 1, 2, . . . ,M − 1) , u0 = g ∈ RN−1 ⇔ ui = Ai
Ng (i = 0, 1, 2, . . . ,M) (9)

mátrixhatványozás valamint az id®rétegr®l id®rétegre haladó hibaterjedés mechanizmusát leíró

ei+1 = ANei + mi (i = 0, 1, 2, . . . ,M − 1) , e0 = 0 ∈ RN−1 (10)

13A megfelel® Taylor polinomok alapján

u(t+ τ) = u(t) + τ ut(t) +O(τ2) ⇒ ui+1,j − ui,j
τ

= ut(iτ, jh) +m1
i,j

és

u(x+ h) = u(x) + h ux(x) + h2

2
uxx(x) + h3

6
uxxx(x) +O(h4)

u(x− h) = u(x)− h ux(x) + h2

2
uxx(x)− h3

6
uxxx(x) +O(h4)

}
⇒ ui,j+1 − 2ui,j + ui,j−1

h2
= uxx(iτ, jh) +m2

i,j

ahol |m1
i,j | ≤ Cτ és |m2

i,j | ≤ Ch2 és így |mi,j | ≤ C(τ + h2) minden bels® rácspontban, azaz ha i = 1, 2, . . . ,M és j =
1, 2, . . . , N − 1. (Itt C alkalmas állandó.)
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inhomogén mátrix�rekurzió alapszerkezete megegyezik egymással. Ez egy roppant lényeges és nagy ál-
talánosságban is érvényes megállapítás. Ha van módszerünk a közelít® megoldás kiszámítására,
akkor ennek a módszernek egy változata a hibabecsléshez is elvezet.

Tanulságos gyakorló feladat: Idézzük fel a numerikus sorok konvergenciáját biztosító kritériumok
egyikét � mondjuk az integrálkritériumot � és alkalmazzuk azt a sor maradékösszegére. Mi mást
kaphatnánk, mint egy becslést a konvergencia gyorsaságára? Konkrétan: legyen s =

∑∞
n=1

1
n3 és legyen

sN =
∑N

n=1
1
n3 , amikor is |sN − s| ≤

∫∞
N+1

1
x3 dx = 1

2(N+1)2 . Hogyan kaphatunk alsó becslést?

Visszatérve a (7) feladat (9) numerikus megoldásához tartozó (10) hibaterjedési rekurzióra, ez utóbbit
kifejezetten könny¶ explicit hibabecsléssé alakítani. Valóban, az

ηi = max{|ei,j | | j = 1, 2, . . . , N − 1} , i = 0, 1, 2, . . . ,M − 1 ahol η0 = 0 ,

a (8) formula és az mi,j�re adott becslés alapján az i szerinti rekurzióval � és most kell nagyon a µ ≤ 1
2

feltevés (de a végeredményb®l is látszik, hogy τ és h2 legalábbis azonos nagyságrend¶ kell hogy legyen) �

ηi+1 ≤ (2µ+ |1− 2µ|)ηi + τC(τ + h2) = ηi + τC(τ + h2) ⇒ M
max
i=0

ηi ≤
M

max
i=0

iτC(τ + h2) = TC(τ + h2) .

Összefoglalás: A (7) perem�és kezdetiérték problémát megoldó numerikus eljárás hibája tehát a
lépésközök minden határon túl való csökkentésével � természetesen a µ = τ

h2 ≤ 1
2 feltételre mindvégig

vigyáznunk kell � nullához tart, éspedig legalább T (τ + h2) rendben. Már korábban kifejtettük, hogy a
pontos megoldás kvalitatív tulajdonságai is meg®rz®dnek:∫ L

0 u(t, x) dx =
∫ L

0 g(x) dx ∀ t ≥ 0

limt→∞ u(t, x)→ c0
2 = 1

L

∫ L
0 g(x) dx

max� és min�elv a �csillagos� peremeken

 illetve


∑N−1

j=1 ui+1,j =
∑N−1

j=1 ui,j ∀ i = 0, 1, . . .

limi→∞ ui,j → 1
N−1

∑N−1
j=1 g(jh)

max� és min�elv a �visszafelé vett� átlagokra

A megadott határértékek x ∈ [0, L]�ben és j = 1, 2, . . . , N − 1�ben egyenletesek.

A di�úzió�egyenlet a számegyenesen � Poisson megoldóképlete és a normális eloszlás

Tétel: Tetsz®leges g : R→ R folytonos és korlátos függvény esetén

u(t, x) =

{
g(x) ha t = 0

1
2
√
πt

∫∞
−∞ g(ξ) exp

(
− (x−ξ)2

4t

)
dξ ha t > 0

(11)

megoldása, éspedig egyetlen megoldása az ut = uxx, (t, x) ∈ [0,∞) × R egyenletnek, az u(0, x) = g(x)
kezdeti feltétel mellett. A konvolúciós integrál magfüggvénye az úgynevezett �h®mag�.

Közvetlen behelyettesítés mutatja, hogy a megadott formula t > 0 esetén valóban megoldja a a parciális
egyenletet. (A formula levezetése jóval keményebb dió.) Azt sem könny¶ igazolni, hogy u(t, x)→ g(x) ha
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t → 0+. Amennyiben az g függvénynek véges sok éspedig csupa els®fajú szakadása van, akkor is igaz a
(11) megoldóképlet, de ekkor a szakadási pontokban u(t, x∗)→ g(x∗−0)+g(x∗−0)

2 ha t→ 0+.

Most visszatérünk a di�úzió�egyenlet statisztikus �zikai vizsgálatához, amelyet a 3�ik oldal alján
kezdtünk el. Elöljáróban áttekintjük a normális eloszlások kétparaméteres N (µ, σ) családját, ahol µ ∈ R a
várható érték, σ > 0 pedig a szórás (és σ2 a szórásnégyzet).

El®ször az általános N (µ, σ), majd a standard normális N (0, 1) eloszlást írjuk le:

N (µ, σ) s¶r¶ségfüggvénye fµ,σ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 és eloszlásfüggvénye Φµ,σ(x) =

∫ x

−∞
fµ,σ(s) ds ,

N (0, 1) s¶r¶ségfüggvénye f(x) = f0,1(x) =
1√
2π
e−

x2

2 és eloszlásfüggvénye Φ(x) = Φ0,1(x) =

∫ x

−∞
f(s) ds.

A kett® kapcsolata:

fµ,σ(x) =
1

σ
f

(
x− µ
σ

)
és Φµ,σ(x) = Φ

(
x− µ
σ

)
.

A 3�ik oldal alján lév® számolások tehát a (11) formula g = H (egységugrás más néven Heaviside függvény:
H(x) = 0 ha x < 0, H(x) = 1

2 ha x = 0, H(x) = 1 ha x > 0) speciális esetéb®l indulnak és semmi mást
nem igényelnek mint lineáris változó�helyettesítéseket az integrálban. Az els® helyettesítés az x − ξ = z
(és így �ξ fut 0�tól ∞�ig� alapján �z fut x�t®l −∞�ig� ahol a �− d ξ = d z� formula szerint a �z határai
megfordulnak�), a második helyettesítés �- a t > 0 esetben � pedig a z√

2t
= s választással14:

P (t, x) =
1

2
√
πt

∫ x

−∞
e−

z2

4t dz =
1√
2π

∫ x√
2t

−∞
e−

s2

2 ds = Φ

(
x√
2t

)
= Φ0,

√
2t(x) .

Normális eloszlások id®ben változó családjának eloszlásfüggvényeit kaptuk, a µ = 0 és σ =
√

2t paraméterekkel.
Az x változó szerinti deriválással s¶r¶ségfüggvényekre is áttérhetünk:

Px(t, x) = ϕ0,
√

2t(x) már amennyiben t > 0 (és x ∈ R) . (12)

A Pt = Pxx egyenletet x szerint deriválva, (Px)t = (Px)xx adódik. Már tudjuk, hogy ez utóbbi egyenletet
� ismét csak a t > 0 értékekre � a (12) formula oldja meg. De hogyan válasszuk meg a kezdeti feltételt?
Mihez vezet a t→ 0+ határátmenet? Ha az x ∈ R értékét rögzítjük, akkor

lim
t→0+

Px(t, x) = lim
t→0+

ϕ0,
√

2t(x) = lim
t→0+

1

2
√
πt
e−

x2

4t =

{
0 ha x 6= 0
∞ ha x = 0 .

Milyen értelemben lesz ez a szokatlan határérték függvény, pláne eloszlásfüggvény (mert hogy eloszlásfügg-
vények egy családja �indul el� bel®le ha t > 0)? Ezen a ponton szokás a Dirac deltát, mint disztribúció�

14Lehetett volna érvelnünk közvetlenül a 4t = 2σ2 ⇔ 2
√
πt = σ

√
2π észrevétel alapján is.
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értelemben15 általánosított függvényt bevezetni. A δ = δ0 Dirac delta az az általánosított függvény, amely
minden x ∈ R \ {0} esetén zérus, az alatta lév® terület azonban egy. A di�úzió a Dirac deltát (vagy
más néz®pontból a Heaviside függvény disztribúció értelemben általánosított deriváltját és ha úgy tetszik,
Brown vízbe dobott pollen�csomagocskáját � amely azonnal számtalan kicsiny pollen�szemcsére esik szét)

t > 0 id® alatt az N (0, σ) = N (0,
√

2t) normális eloszlás 1
σ
√

2π
e−

x2

2σ2 s¶r¶ségfüggvényévé keni szét.

Az eddigiek alapján az ut = a2uxx, (t, x) ∈ [0,∞) × R di�úziós egyenletet is könnyen megoldhatjuk.
Az u(t, x) = U(τ, x), τ = ct lineáris helyettesítéssel

ut =
d

dt
u(t, x) =

d

dt
U(ct, x) =

d

dτ
U(τ, x)·c = Uτ (τ, x)·c és uxx = Uxx alapján ut = a2uxx ⇔ Uτ ·c = a2Uxx,

adódik, tehát a c = a2 választással az eddig vizsgált �vegyük a di�úziós együtthatót a2 = 1�nek� esethez

15Disztribúciónak az u : C∞0 (R,R) → R folytonos lineáris funkcionálokat nevezzük. Ezek egyike a δ(ϕ) = ϕ(0) képlettel
de�niált Dirac delta disztribúció. Itt

C∞0 (R,R) = {ϕ : R→ R | ϕ végtelenszer deriválható és egy ϕ�t®l függ®, korlátos intervallumon kívül azonosan zérus } .

A lokálisan (Lebesgue szerint) integrálható f : R → R függvényt azzal az uf disztribúcióval szokás azonosítani, amelyet a
(minden ϕ ∈ C∞0 (R,R) esetén érvényes) uf (ϕ) =

∫∞
−∞ f(x)ϕ(x) dx formula de�niál. Ha u disztribúció, akkor a (∂u)(ϕ) =

− u(ϕ′) képlettel de�niált deriváltja is az. Tehát bármely disztribúció disztribúció értelemben véve akárhányszor deriválható.
Fontos észrevétel az is, hogy C1 függvényekre a hagyományos derivált és a disztribúció értelemben vett derivált azonosnak

tekinthet®, hiszen bármely ϕ ∈ C∞0 (R,R) esetén

(∂uf )(ϕ) = − uf (ϕ′) = −
∫ ∞
−∞

f(x)ϕ′(x) dx = [− f(x)ϕ(x)]∞−∞ +

∫ ∞
−∞

f ′(x)ϕ(x) dx =

∫ ∞
−∞

f ′(x)ϕ(x) dx = (uf ′)(ϕ) .

Ami a H Heaviside függvény disztribúció értelemben vett deriváltját illeti, arra

(∂uH)(ϕ) = − uH(ϕ′) = −
∫ ∞
−∞

H(x)ϕ′(x) dx = −
∫ ∞

0

ϕ′(x) dx = [− ϕ(x)]∞0 = ϕ(0) = δ(ϕ) ⇔ ∂uH = δ

adódik. A Dirac deltát úgy is lehet értelmezni, mint a 0 ∈ R számhoz tartozó egy�pont�mértéket. Ezt a δ(A) = 1 ha 0 ∈ A
és 0 ha 0 6∈ A valamint az

∫∞
−∞ f(x) dδ = f(0) képletek fejezik ki (ahol A ⊂ R tetsz®leges halmaz, illetve f tetsz®leges, az

x0 = 0 pontban folytonos valós függvény).
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jutunk. Ha a kezdeti feltétel változatlanul u(0, x) = U(0, x) = H(x), akkor16

U(τ, x) = Φ0,
√

2τ (x) ⇒ u(t, x) = Φ
0,
√

2a2t
(x) = Φ0,a

√
2t(x) , (t, x) ∈ (0,∞)× R .

Az ut = uxx − bux, u(0, x) = H(x) feladat u(t, x) = Φ0,
√

2t(x− bt) megoldásához az u(t, x) = eαteβxz(t, x)

helyettesítés vezet el: a paraméterek optimális, α = − b2

4 és β = b
2 megválasztása révén a feladat a már

ismert zt = zxx, z(0, x) = e−βxu(0, x) alakra egyszer¶södik. A szokásos di�úzió�egyenlet és az ut = −bux
transzport�egyenlet fenti kombinációja azt a kísérletet modellezi, amikor a pollen�csomagocskát állóvíz
helyett patakvízbe dobjuk: a patak folyásiránya az x irány, sebessége pedig a b > 0 állandó.

Összefoglalás: Az ut = − div(F ) + f egyenlet változatai alapvet®en F és f választásától valamint
� rendszerek esetében � a csatolásoktól függenek:

• di�úzió: F = F diff = − k1 grad u

• advekció: F = F adv = k2uv, ahol v az áramló közeg ismert sebessége

• advekció�di�úzió: F = F adv−diff = − k1 grad u+ k2uv

• reakció�di�úzió: ut = α2∆u + f(u, v), vt = β2∆v + g(u, v) � ahol u̇ = f(u, v), v̇ = g(u, v) egy, az
Ω tartomány minden pontjában azonos módon lejátszódó kémiai reakció egyenletrendszere

• chemotaxis�di�úzió: F = F chtaxis−diff = − `u grad c − β2 grad u, ahol a szaporodni is képes bak-
térium (koncentrációja u) menekül egy küls® kémiai folyamatban képz®d® méreg (koncentrációja c)
el®l � így a csatolt rendszer: ct = α2∆c+ f(c), ut = β2∆u− ` div(u grad c) + g(c, u)

Mindezek a parciális di�erenciálegyenletek perem� és kezdeti feltételekkel együtt értend®k.
Az els® három példa mindegyike � már amennyiben az f forrástag sem függ az u ismeretlent®l � az

advekció�di�úzió egyenlettel bezárólag lineáris feladat. A k1 di�úziós együttható a legegyszer¶bb esetben
valódi, az x ∈ Rd (d = 1, 2, 3) térváltozótól független állandó: a div(k1 grad u) = k1∆u azonosság ekkor
érvényes. A di�úziós k1 és az advekciós k2 együtthatók helyt®l és id®t®l való függetlensége az alkalmazások

16A találékony Olvasó a lineáris helyettesítést a (11) formulában is bizton el tudja végezni. Brown virágpor�kísérletét
az u(0, ·, ·) = δ(0,0) Dirac delta kezdeti s¶r¶ségfüggvénnyel ellátott kétdimenziós ut = a2(uxx + uyy) egyenlet természetesen
jobban modellezi. Mivel az x és az y irányú Brown�mozgások függetlenek egymástól, a megoldás a két egydimenziós formula

u(t, x, y) =
1

4a2πt
e
− x2+y2

4a2t , (t, x, y) ∈ (0,∞)× R× R

szorzataként adódik. A megoldás körszimmetrikus és nem függ az egymásra mer®leges x és y irányok konkrét megválasztásától.
Ezek a szimmetriák természetesen a kezdetiérték�feladatban is jelen vannak és a(z áttérés polárkoordinátákra)

ha u(t, x, y) = u(t, r cos(φ), r sin(φ)) = U(t, r, φ) , akkor uxx + uyy = Urr +
1

r
Ur +

1

r2
Uφφ és U nem függ a φ�t®l ,

illetve a(z áttérés az origó körül elforgatott koordinátákra)

ha u(t, x, y) = u(t, ξ cos(φ)− η sin(φ), ξ sin(φ) + η cos(φ)) = U(t, ξ, η) , akkor uxx + uyy = Uξξ + Uηη

változó�transzformációkkal fejezhet®k ki. � A mögöttes számolásokat könny¶ elrontani. Senki ne szomorodjon el, ha a
levezetések csak a második vagy a harmadik próbálkozásra sikerülnek.
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többségében jogosult feltételezés. Az inhomogenitás megjelenésének di�úzióegyenletben szokásos módja
az f forrástag f = f(t, x) alakú választása. Az áramló közeg v sebessége az advekcióegyenletben szinte
mindig v = v(t, x) alakú17. Inhomogenitást a peremfeltételek inhomogenitása is okozhat18.

Amennyiben az f forrástag f = f(t, x, u) vagy akár csak f = f(u) alakú, már nemlineáris feladat�tal
állunk szemben: tipikusan ez a helyzet a reakció�di�úzió egyenletek esetében. A nemlineáris feladatok
min®ségileg mások, és a lineáris feladatoknál sokkal de sokkal nehezebbek.

A félév folyamán tárgyalni fogjuk

• a kedvez® gének térbeli (egyenes menti) terjedését leíró ut = uxx+u(1−u) Fisher�egyenlet valamint

• az idegi ingerületvezetés Hodgkin�Huxley modelljének (ez három közönséges és egy parciális di�eren-
ciálegyenletb®l álló rendszer) utazó hullámát, továbbá

• az ut = α2uxx + au+ bv, vt = β2vxx + cu+ dv alakú rendszerekben meg�gyelhet® mintázatképz®dés
Turing féle alapmechanizmusát.

A félév nagyobb részében egyébként közönséges di�erenciálegyenletekkel foglalkozunk. A zárt alakban
megoldható parciális di�erenciálegyenletek tipikusan azok, amelyek közönséges di�erenciálegyenletekre re-
dukálhatók: ilyenkor próbafüggvények �bevetésével� speciális alakú megoldásokat keresünk.19

A dinamikus rendszer és a diszkretizációs/közelít® módszer fogalma I. : El®készítés

Amint azt a fenti fejezetcím is egyértelm¶en kifejezi, a különböz® típusú feladatokat:

• algebrai egyenletek,

• közönséges di�erenciálegyenletek,

• di�úzió típusú, más szóval parabolikus parciális di�erenciálegyenletek,

s®t

• azok megoldásának elméleti és numerikus vonatkozásait

együttesen fogjuk tárgyalni, a hangsúlyt a közönséges di�erenciálegyenletek autonóm változataira téve.
Ezt a tárgyalási módszert nemcsak a matematika, hanem a biológiai modell�alkotás bels® természete is

indokolttá teszi. Ugyanazt a biológiai jelenséget � attól függ®en, hogy a konkrét helyzetben mi-
lyen tényez®ket kell �gyelembe vennünk és melyeket lehet elhanyagolnunk � a matematika különböz®

17s®t a valódi alkalmazások jó részében v maga is (a Navier�Stokes egyenletekkel kapcsolatos) ismeretlen
18A Dirichlet peremfeltétel u

∣∣
∂Ω

= h(t, x) alakú inhomogenitása (legalábbis a h®tani alkalmazásokban) könnyen meg-
valósítható. A Neumann peremfeltétel � amúgy ∂u

∂ν

∣∣
∂Ω

= h(t, x) alakú � inhomogenitása a gyakorlatban csak ritkán fordul
el®. (A h függvény mindkét esetben a t ≥ 0, x ∈ ∂Ω változókra értelmezett.)

19Ha egy lineáris parciális egyenlet bels® szimmetriái és értelmezési tartományának szimmetriái azonos szerkezet¶ek, akkor
az általános megoldás is gyakorta el®állítható speciális függvények szerinti (nem feltétlenül trigonometrikus Fourier�)sorfejtés
avagy különféle integráltranszformációk révén. Leger®sebb eszközünk azonban a számítógép, pontosabban a feladat ter-
mészetének leginkább megfelel® számítógépes eljárás.
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ágazatain belül egyaránt lehet modellezni.

Különféle egyfaj� és kétfaj/többfaj�modellek a populációdinamikában. Sok példa

A populációdinamika történetileg els® matematikai modellje Malthus

ẋ = rx , x(0) = x0 > 0 ⇒ x(t) = x0e
rt (13)

nevéhez f¶z®dik. Itt az r > 0 állandó interpretálható úgy, mint a b születési ráta és a d halálozási ráta (birth
rate illetve death rate) különbsége. A b > 0 és a d > 0 konstansnak vétele egyfajta átlagolást fejez ki (és
nem azt, hogy minden egyed egyformán képes a szaporodásra, sem azt, hogy a halál minden korosztályban
egyformán arathat). Ami a (13) egyenletben a leginkább kritizálható, az az er®forrás�korlátok �gyelmen
kívül hagyása. Verhulst modellje ebb®l a szempontból sokkal realisztikusabb:

ẋ = rx
(
1− x

K

)
x(0) = x0 , 0 ≤ x0 ≤ K

}
⇒ x(t) =

Kx0

x0 + (K − x0)e−rt
(14)

Itt r > 0 a növekedési ráta, K > 0 pedig a környezet eltartóképessége. Verhulst di�erenciálegyenlete
is �nomításra szorul: �gyelmen kívül hagyja például azt a tényt, hogy csak az ivarérett korú egyedek
szaporodhatnak. Egy faj egyedeinek a szaporodás szempontjából két korosztályra bontására már Fibonacci
is ügyelt � jóllehet csak egyetlen konkrét számpélda kapcsán20 � vagy hatszáz évvel korábban. Leslie
modellje a huszadik századi matematika absztrakciós erejével ismétli meg Fibonacci gondolatmenetét. A
modellalkotás szempontjából Leslie egyetlen újítása az egyes korosztályok közötti túlélési ráta (survival rate)
s ezen keresztül a maximálisan lehetséges életkor szerepeltetése � amint ezt a 4�ik oldal els® két példájának
összehasonlítása azonnal mutatja.

Az eddigi négy modell közül egyedül Verhulst (14) modellje nemlineáris. Természetesen ennek is van
diszkrét idej¶ változata, az

xn+1 = Rxn
1+R−1

K
xn
, n = 0, 1, 2, . . .

0 ≤ x0 ≤ K

}
⇒ xN =

Kx0

x0 + (K − x0)R−N
, N = 0, 1, 2, . . . (15)

Beverton�Holt féle nemlineáris rekurzió21. Itt R > 1 jelenti a növekedési rátát, s a logisztikus (14) di�er-
enciálegyenlethez hasonlóan most is K > 0 a környezet eltartóképessége. A K →∞ határátmenettel (14)

20Fibonacci példájában az egyetlen faj egyedeinek évenkénti száma magától értet®d®en csak egész szám lehetett. Ha az
id®változó nem diszkrét, avagy ha (a diszkrét id®változó mellett) térváltozónk is van, és a térváltozó nem diszkrét, akkor az
illet® faj egyedszáma helyett mindig a biomassza tömege a kérdéses. Ugyanez természetesen a populációdinamika többfaj�
modelljeire is érvenyes.

21A zárt alakú megoldás azért lehetséges, mert az an = 1
xn

új változó és az α = 1
R
, β = R−K

RK
új paraméterek bevezetése

után a mértani sorozat rekurzív de�níciójánál csak kicsivel bonyolultabb

an+1 = αan + β , n = 0, 1, 2, . . . ⇒ aN = αNa0 + β
αN − 1

α− 1
N = 0, 1, 2, . . .

formulákat kapjuk. A folytonos idej¶ Verhulst (14) modellt és a diszkrét idej¶ Beverton�Holt modellt a lépésköz h = R−1
r
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illetve (15) Malthus sokat kritizált, de nagy történeti fontosságú (13) modelljébe, illetve ennek diszkrét idej¶
xn+1 = Rxn változatába megy át. A legfontosabb matematikai észrevétel azonban az, hogy a 4�ik oldalon
tárgyalt Példa 1 és Példa 2 mátrix�hatványozásai a Beverton�Holt féle nemlineáris f : [0,K]→ [0,K],
x→ f(x) = Rx

1+R−1
K

x
függvény iterálásának felelnek meg.

A tényt, hogy szaporodás csak az ivarérettség elérése után lehetséges, folytonos idej¶ modellekben
id®késleltetés bevezetésével szokás kifejezésre juttatni. Késleltetett egyenletek esetében a jöv®t nemcsak
a t = t0 jelen, hanem az s ∈ [t0 − τ, t0] közelmúlt határozza meg. Itt a τ > 0 állandó a késleltetés
mértéke, az annál régebbi állapotok már nincsenek hatással a jöv® alakulására. Kézenfekv®, hogy Malthus
(13) di�erenciálegyenletének az ẋ(t) = bx(t− τ)− dx(t) késleltetett egyenlet felel meg: szaporodni csak a
τ > 0�nál id®sebb egyedek képesek. Verhulst (14) modelljét Hutchinson az

ẋ(t) = rx(t)

(
1− x(t− τ)

K

)
alakú késleltetett di�erenciálegyenletre módosította. Els®rend¶ parciális valamint integro�di�erenciálegyenlet
modellek is lehetségesek, amelyek az egyes populációk folytonos koreloszlásását is �gyelembe tudják venni.

A térbeliség �gyelembe vétele a populációdinamikában többféle módon is lehetséges. Az id®változóhoz
hasonlóan a térváltozó is lehet folytonos vagy diszkrét. Diszkrét térváltozóra a legegyszer¶bb példákat az
Rd (d = 1, 2, 3) egy korlátos részhalmazának rács�, illetve cellafelbontásai szolgáltatják. Cellafelbontás
alatt szabályos, minél több szimmetriával rendelkez® rácsfelbontásokat értünk. Lehetséges az is, hogy a tér
pontjait egy adott véges gráf csúcspontjaival reprezentáljuk. A numerikus módszerek szinte mindegyike a
tér� és az id®változó diszkretizálását igényli. A diszkretizációval, illetve a számítógépes közelít® eljárásokkal
kapcsolatos általános szempontok a két részletben tárgyalt Példa 4 révén már nem ismeretlenek el®ttünk.
Érdemes visszalapozni az 5-7 valamint a 9-10 oldalakhoz.

A folytonos térváltozó Verhulst (14) modelljébe legegyszer¶bben a di�úzió�operátor hozzáadásával
építhet® be. A térváltozó koordinátái a dimenziótól függ®en x ∈ Ω ⊂ R, (x, y)T ∈ Ω ⊂ R2, vagy
(x, y, z)T ∈ Ω ⊂ R3. A t id®változó mellett ezek lesznek az ismeretlen u : [0,∞) × Ω → R függvény
változói az

ut = ru
(

1− u

K

)
+ a2∆u

alakú reakció�di�úzió egyenletben. Az Ω ⊂ Rd (d = 1, 2, 3) tartomány Ω = Ω ∪ ∂Ω lezártjának pontjaihoz
kezdeti, ∂Ω határához pedig peremfeltételt is kell rendelnünk.

A diszkrét tér a dinamikában önálló � ugyanakkor a dinamikus rendszerek általános elméletével több
ponton is érintkez® � diszciplinákat képez. Ezek egyike a celluláris automaták, másika a neurális hálók
világa, a maga peremfeltételeivel, input�outputjaival és visszacsatolásaival.

választása melletti
xn+1 = xn + hrxn

(
1− xn+1

K

)
, n = 0, 1, 2, . . .

semiimplicit Euler diszkretizáció is összekapcsolja. Valóban,

xn+1 = xn + r
R− 1

r
xn
(

1− xn+1

K

)
⇔ xn+1 = Rxn −

R− 1

K
xnxn+1 ⇔ (15) .
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A populációdinamika egyfaj�modelljeinél maradva, mindenképpen meg kell említeni, hogy az r, b, d,K
paraméterek szezonális, az évszakok változásától függ® ingadozásokat � általában éves periodicitást �
mutatnak. Így nem�autonóm mátrix� és/vagy di�erenciálegyenlet�modellekhez jutunk.

Sajnos az egyenletekben szerepl® paraméterek mérése, meghatározása nem könny¶ feladat. Ez a tény
önmagában indokolja sztochasztikus modellek bevezetését. Ami a sztochasztikát illeti, a félév folyamán
egyedül a véletlen gráfok három legfontosabb típusának � Erd®s�Rényi, Albert�Barabási és Strogatz�
Watts (más néven Bernoulli, skálafüggetlen illetve kis�világ gráfok) � konstrukcióit fogjuk megismerni,
illetve a rajtuk értelmezett sztochasztikus dinamikák egyikét�másikát számítógéppel szimulálni.

Ez eddig elmondottak mind�mind kiterjeszthet®k arra az esetre, amikor több, egymás élet�lehet®ségeire
a legkülönfélébb módokon ható fajokból álló ökoszisztémákat vizsgálunk. Ez a többfaj�modellek világa. Két
faj együttélésének (közös er®forrásokért) verseng®, szimbiotikus, avagy éppen ragadozó�zsákmány eseteinek
szokásos

ẋ = x(c1 + a1x+ b1y)
ẏ = y(c2 + a2x+ b2y)

}
ahol c1, c2, a1, a2, b1, b2 ∈ R adott konstansok és x, y ≥ 0 (16)

kvadratikus di�erenciálegyenlet�modellje Lotka és Volterra nevéhez f¶z®dik. Az esetszétvásztásokat a
c1, c2, a1, a2, b1, b2 ∈ R paraméterek el®jelei határozzák meg. A hat paraméter közül három (de nem bárme-
lyik három) lineáris változó�helyettesítésekkel ±1�re kiskálázható. A Kolmogorov féle általánosítás

ẋk = xkfk(x1, x2, . . . , xd) ahol xk ≥ 0 , k = 1, 2, . . . , d (17)

alakú. Itt fk : Rd+ → R (k = 1, 2, . . . , d) adott folytonosan di�erenciálható függvények. A biológiailag
releváns fázistér � amint az a (16) és a (17) egyenletrendszerekben is megjelenik � R2 illetve Rd nemnegatív
(és az indukált dinamikára invariáns) ortánsa. Magától értet®dik, hogy az ortánsok végtelen távoli pontja
egyetlen trajektóriát sem vonzhat: minden trajektóriának t → ∞ mellett a biológia okán egyenletesen
korlátosnak kell maradnia. Ez azt is jelenti, hogy szimbiotikus ökoszisztémákat kvadratikus Lotka�Volterra
rendszerekkel csak az Rd korlátos részhalmazain lehet modellezni.

A kétdimenziós Lotka�Volterra (16) rendszerek konkrét példákon és általánosításokon át történ® � nem
minden részletében egyformán olvasmányos, de reményeim szerint mégiscsak jól követhet® � bemutatása
a Nemlineáris Dinamika jegyzet22 3.8 fejezetében található. A dinamika jellege az egyensúlyi helyzetek
kis környezetében a linearizálás módszerével, a �nyom�determináns� ábra szerinti esetszétválasztásokkal
állapítható meg. Az x ≥ 0, y ≥ 0 síknegyeden kívüli pontokkal nem kell tör®dnünk, mivel azok semmilyen
biológiai jelentést sem hordoznak. Az origó mindig egyensúlyi helyzet, a vízszintes y = 0, x ≥ 0 és a
függ®leges x = 0, y ≥ 0 féltengelyek pedig egyenként is mindig invariánsak: a dinamika rajtuk könnyen
megrajzolható.

Mind az x, mind az y tengelyen tipikusan egy�egy, az origótól különböz® egyensúlyi helyzet van, ezek
az y = 0, c1 + a1x + b1y = 0 illetve az x = 0, c2 + a2x + b2y = 0 lineáris egyenletrendszerek megoldásai.
A nemnegatív x, y ≥ 0 ortáns x, y > 0 belsejében � ismétcsak a tipikus esetben � legfeljebb egyetlen
egyensúlyi helyzet van, éspedig az a pont, ahol a c1 + a1x + b1y = 0 és a c2 + a2x + b2y = 0 egyenesek
metszik egymást. A vektormez® a c1 +a1x+ b1y = 0 egyenes pontjaiban függ®leges (és az ẏ derivált ottani
el®jelét®l függ®en felfelé vagy lefelé mutat), az c2 + a2x + b2y = 0 egyenes pontjaiban vízszintes (és az ẋ

22http://digitus.itk.ppke.hu/∼garay/NDS jegyzet/
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derivált ottani el®jelét®l függ®en jobbra vagy balra mutat). Az egyensúlyi helyzetek környezetében az is
eligazít, ha egy�két közeli pontra rárajzoljuk a vektormez® ottani elemét23.

A globális dinamika megrajzolásához fontos a következ®t tudni: egy kétdimenziós Lotka�Volterra (16)
rendszernek pontosan akkor létezik periodikus megoldása, ha a bels® egyensúlyi helyzetéhez tartozó sajátértékek
λ1,2 = ±iω, ω 6= 0. Ez esetben a bels® egyensúlyi helyzet centrum, de az egymásba skatulyázott periodikus
megoldások nem szükségképpen töltik ki az x, y > 0 pozitív ortáns egészét. Ennek a ténynek az ismeretében
(ha még a végtelen távoli pont körüli dinamikát is �feltérképezzük�: ez roppant nehéz tud lenni!!) az egyen-
súlyi helyzetek körüli lokális ábrák összeköttetései, más szóval a közöttük lév® trajektória�kapcsolódások
is egyértelm¶vé válnak és így a teljes, globális fázisportré is megrajzolható.

A kétdimenziós Lotka�Volterra (16) rendszerek a síkbeli autonóm di�erenciálegyenletek fázisportré�
analízisének legjobb gyakorló terepe. A globális dinamikát bemutató ábra részenként, mindig ugyanazokon
a lépéseken keresztül, fokozatosan készítend® el. S eközben a biológiai és a matematikai/geometriai intuíció
végig �párhuzamosan�, egymást er®sítve m¶ködik.

A dinamikus rendszer és a diszkretizációs/közelít® módszer fogalma. II. : A részletek

A dinamikus rendszer fogalma egy X állapottér változásait írja le az id® függvényében. Ez a fogalom
csak olyan változásokat enged meg, amelyeket egy állandó, a múló id®vel nem változó, mindig ugyanúgy
ható törvény kényszerít ki és amikor a jöv®beli állapot csak a jelenlegi állapottól és a közben eltelt id®
hosszúságától függ.

Az X állapottért®l csak azt követeljük meg, hogy metrikus tér legyen, a d távolsággal. El®ször a
folytonos idej¶ dinamikus rendszer fogalmát de�niáljuk, ami a (T mint time) T = R választásnak felel meg.

A tantárgy nevét adó sz¶kebb definíció: Legyen (X, d) metrikus tér. A Φ : R × X → X
leképezés folytonos idej¶ dinamikus rendszer X�en, ha igazak rá az alábbi axiómák:

(i) Φ (mindkét változójában egyszerre) folytonos

(ii) Φ(0, x) = x ∀ x ∈ X

(iii) Φ(t,Φ(s, x)) = Φ(t+ s, x) ∀ t, s ∈ R ∀ x ∈ X

Az (ii) és (iii) axiómák egyszer¶en az id® múlását fejezik ki az aktuális állapot megváltozásának
tükrében. Zérus id® alatt nem változik semmi, t + s id® pedig úgy telik el, hogy el®ször az s, utána
pedig a t id®. Az s = −t, t ≥ 0 választással x = Φ(0, x) = Φ(t − t, x) = Φ(t,Φ(t, x)) ∀ x ∈ X, tehát a
Φ(t, ·) : X → X t�id®leképezés (angolul t�time map) az X metrikus térnek önmagára történ®, kölcsönösen
egyértelm¶, oda�vissza folytonos leképezése, röviden az X�et önmagára viv® homeomor�zmus. (Folytonos
idej¶ dinamikai rendszerekben a jöv® és a múlt szerepe tehát matematikailag felcserélhet®. A jelen állapot
ebben az absztrakcióban a jöv®t is és a múltat is egyértelm¶en meghatározza.)

23különösen hasznos ez, ha a forgásirányt szeretnénk megállapítani egy (stabil vagy instabil) fókuszpont esetében; de akkor
is segít, ha a kétdimenziós Lotka�Volterra (16) rendszer P =

(
x0
0

)
, x0 > 0 egyensúlyi helyzetének típusára vagyunk kíváncsiak:

ez esetben az ẏ derivált el®jelét kell csak megállapítanunk az
(
x0
ε

)
, 0 < ε � 1 pontban (hiszen a dinamikát már ismerjük a

teljes y = 0, x ≥ 0 féltengelyen)
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Rögzített x esetén a Φ dinamikus rendszer x ∈ X ponton átmen® trajektóriája a

γ(x) = {Φ(t, x) ⊂ X | t ∈ R}

halmaz, amelyet az X térbeli t → Φ(t, x) paraméteres görbeként szemléltethetünk. Az X állapottér
tehát a trajektóriák úniója, amelyek az X egyrét¶ fedését alkotják. Ez az ábrázolásmód a fázisportré.
Természetesen elegend® csak a legjellemz®bb, legjellegzetesebb trajektóriákat feltüntetnünk: egyensúlyi
helyzetek, periodikus megoldások � a többi trajektória közül csak annyit kell megrajzolni, amelyek az
el®bb kiemelt trajektóriák vonzási�taszítási tulajdonságait már egyértelm¶vé teszik.

Alapvet® példánk � amely egyúttal minden kés®bbi általánosítást is meghatároz � az

ẋ = f(x) , x ∈ Rd (18)

közönséges, autonóm differenciálegyenlet megoldó�operátora. Természetesen feltesszük,
hogy az (18) egyenletnek minden x(0) = x0 ∈ Rd kezdeti feltétel esetén pontosan egy megoldása van
(egzisztencia és unicitás), éspedig a teljes számegyenesen értelmezett x0,x0 : R → Rd függvény, amely
folytonosan függ az x0 ∈ Rd kezdeti feltételt®l (folytonos függés)24.25 Az x0 kezdeti érték egyfel®l a megoldás
paramétere, másfel®l � ha egyszerre vetünk számot az összes megoldással, a megoldást meghatározó kétvál-
tozós függvény második változója is a t ∈ R id®változó mellett. Ez indokolja, hogy x0 helyett x�et írjunk,

a (t, x0)→ x0,x0 jelölést pedig a (t, x)→ Φ(t, x) alakra cseréljük .

Közönséges di�erenciáegyenleteket számítógép segítségével oldunk meg, minden egyes kezdetiérték prob-
lémát egyenként. A fázisportré aszimptotikusan stabil alakzatait a számítógép � ha elegend®en sok ideig
futtatjuk, mindig újabb és újabb x0 kezd®pontból indítva � automatikusan megrajzolja. Ha ugyanazt a
numerikus eljárást az ẋ = − f(x) egyenletre alkalmazzuk, akkor ugyancsak az ẋ = f(x) egyenlet trajek-
tóriáit kapjuk, de az id®ben negatív irányítással: így a fázisportré repulzív, önmagától ellök®, a t → −∞
határátmenetben attraktív alakzataihoz jutunk. A számítógép alkalmas nyeregpont szeparatrixainak (ez
két dimenzióban a két �bemen®� és a két �kimen®� trajektóriát jelenti, amelyek t → ∞ illetve t → −∞
esetén tartanak oda) ábrázolására is, de ehhez a szokásos programot egy extra ciklussal kell kiegészítenünk.

24A t0 ∈ R kezdeti id®pontot, mivel az (18) di�erenciálegyenlet jobb oldalán álló f függvény nem függ a t változótól (és
ebben az értelemben autonóm), bátran vehetjük t0 = 0�nak. A matematikai analízis egy feladata korrekt kit¶zés¶, ha pontosan
egy megoldása van és ez az egyetlen megoldás folytonos módon függ a feladatban szerepl® összes paramétert®l � egzisztencia,
unicitás, folytonos függés. A jelen esetben egyetlen paraméter van, az x0 ∈ Rd kezdeti állapot, amelyt®l a megoldás folytonosan
függ � akkor pedig az x0 maga is változó, a megoldó�operátor egyik változója: ez az a néz®pont, ami az x0 ↔ x bet¶cserét
indokolja. (Az absztrakció egy magasabb szintjén maga az f függvény is paraméter ... de ebbe most ne menjünk bele.)

25Mindehhez elegend® feltenni az f : Rd → Rd globális Lipschitz�folytonosságát, azaz a

|f(x)− f(x̃)| ≤ L|x− x̃| ∀ x, x̃ ∈ X = Rd (19)

egyenl®tlenség teljesülését, alkalmasan választott L ≥ 0 Lipschitz�konstanssal, ahol | · | az Rd tér normáját jelöli. (Az
x = (x1, x2, . . . , xd) ∈ Rd jelölés mintájára használhattuk volna az

ẋk = fk(x1, x2, . . . , xd) és xk(0) = (x0)k , k = 1, 2, . . . , d

koordinátás írásmódot is. A d = 1, 2, 3 esetben � az er®sebb hagyomány kedvéért � indexek nélkül, a szokásos x, y, z
változókkal koordinátázunk. Ha nem kifejezetten másként speci�káljuk, akkor a | · | norma az euklideszi normát jelenti.)
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Legyen p > 0 egész szám és legyen a maximális megengedett lépésköz h0 > 0. A φ : [0, h0] × Rd →
Rd leképezés p�edrend¶ egylépéses diszkretizációs operátor az ẋ = f(x) egyenletre26, ha
alkalmas K = K(f) > 0 konstanssal

|Φ(h, x)− φ(h, x)| ≤ Khp+1 ∀h ∈ [0, h0] ∀x ∈ Rd . (20)

A diszkretizációs operátor iterálása a diszkretizációs/közelít® módszer maga27

xk = φk(h, x0) ⇔ xk+1 = φ(h, xk) , k = 0, 1, 2, . . . .

Rögzített T > 0 esetén a hp+1�rend¶ (20) lokális hibabecslés a [0, T ] intervallumon hp�rend¶ globális
hibabecslést indukál, amely a T függvényében exponenciálisan gyorsan növekszik. Valóban, ha a (19)
egyenl®tlenségben L > 0, akkor a lépésköz h = T

N ≤ h0 választása mellett

|Φ(kh, x)− xk| = |Φ(kh, x)− φk(h, x)| ≤ K

L
eLkhhp ≤ K

L
eLThp ∀ k = 0, N ∀ x ∈ Rd . (21)

A tényleges hiba a mindig érvényes (21) becslésnél általában jobb szokott lenni, különösen akkor, ha az
alkalmazott numerikus módszert a feladat bels® természetének megfelel®en választjuk:

Tekintsük a Newton második törvényét potenciális er®térben leíró

ẍ+ V ′(x) = 0 , x ∈ R ⇔ (PN)

{
ẋ = y
ẏ = −V ′(x)

,

(
x

y

)
∈ R2

di�erenciálegyenletek családját. A (PN) di�erenciálegyenletek két különleges tulajdonsággal rendelkeznek:

• pontos megoldások mentén az E(x, y) = y2

2 + V (x) összenergia meg®rz®dik

26Természetesen azzal a feltevéssel élünk, hogy az f függvény és a h lépésköz ismeretében φ(h, x) ténylegesen és hatékonyan
kiszámítható. Magasabb rend¶ módszerek esetén mind a φ leképezés, mind a (18) di�erenciálegyenlet jobb oldalán álló f
függvény magasabb rend¶ símaságát is fel kell tennünk. Ez utóbbi feltevés maga után vonja a Φ megoldó�operátor ugyanolyan
rend¶ símaságát. Ennél sokkal fontosabb tudnunk, hogy az ebben a fejezetben leírtak érvényességét érdemben nem korlátozza,
ha a (18) di�erenciálegyenletben � és ennek következtében a (19)�(21) egyenl®tlenségek mindegyikében � az értelmezési
tartományokat sz¶kítenünk kell.

27a számítógép képerny®jén általában nem az xk pontsorozat jelenik meg, hanem egy, az egymásutáni xk pontokat összeköt®
görbe vonal, leggyakrabban spline�görbe. A p = 1 esetben � erre legjobb példa az xk+1 = xk +hf(xk) ⇔ X = x+hf(x) ⇔
X = φE(h, x) explicit Euler módszer � töröttvonalat kapunk. Az explicit Euler módszer ikertestvére az X = x+ hf(X) ⇔
X = φI(h, x) implicit Euler módszer. (Mint a számítógépnek adott utasítás, az implicit Euler módszer is explicit képletté válik:
jóllehet az X = x + hf(X) egyenlet pontos megoldása csak ritkán írható fel zárt alakban, a pontos X = φI(h, x)megoldást
� elegend®en kicsiny, mondjuk a h = 1

2L
lépésköz�választás esetén � az X0 = x kezd®pontból indított X`+1 = x+ hf(X`),

` = 0, 1, . . . sorozat már néhány lépés után is roppant jól közelíti. Valóban, a (19) becslés okán az X = x+hf(X) egyenlet jobb
oldala, mint Fh,x : Rd → Rd, X → Fh,x(X) = x+hf(X) leképezés a q = 1

2
állandóval kontrakciót határoz meg.) A MATLAB

kezdetiérték problémák megoldására leggyakrabban használt ODE45 eljárása egy negyed� és egy ötödrend¶ Runge�Kutta
módszer enyhén heurisztikus kombinációja, adaptív, �kanyarban lassíts, jól belátható egyenes szakaszon gyorsíts� lépésköz�
szabályozással. A MATLAB ODEs15 eljárásról annyit mindenképpen érdemes tudni, hogy nemcsak a lépésközt változtatja
adaptív módon, hanem az aktuálisan használt alapmódszer 1 ≤ p ≤ 5 rendjét is. Az s bet¶ a sti� (magyarul merev) szó
kezd®bet¶jére utal. Az ODEs15 eljárást akkor szokás használni, ha a feladatban különböz® lépték¶ id®skálák egyszerre jelennek
meg. Egy ẋ = Ax alakú állandó együtthatós lineáris egyenlet is lehet merev � ha például 105 és 10−5 (pláne ha 1010 és
10−10) egyaránt az A mátrix sajátérteke.
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• az id® múlása a fázisportrén/fázissíkon meg®rzi a területet

Az E = E(x, y) összenergia megmaradása a pontos megoldások dinamikájának jól ismert tulajdonsága,
amelyet matematikailag az összetett függvény deriválási szabálya igazol:

d

dt
E(x(t), y(t))

∣∣
(PN) = (E′x · ẋ+ E′y · ẏ)

∣∣
(PN) = V ′(x) · y + y · (−V ′(x)) = 0 . (22)

Ennél nehezebb igazolni, hogy a pontos megoldások dinamikájában a terület is változatlan marad: ez
Liouville alábbi tételének speciális esete és a div

( y
−V ′(x)

)
divergencia azonosan nulla voltával egyenérték¶.

Liouville Tétel: Tekintsük az ẋ = f(x), x ∈ Rd egyenletet. Legyen V0 ⊂ Rd korlátos tartomány,
∂V0 peremmel és ν kifelé mutató normális egységvektorral. Legyen továbbá V (t) = Φ(t, V0), t ≥ 0. Ekkor

d

dt
mesh(V (t)) =

∫
V (t)

divf(x) dx ∀ t ≥ 0 . (23)

Bizonyítás: A bizonyítás amennyire váratlan és szellemes, annyira egyszer¶ és rövid is. Megértenünk
akkor könny¶, ha el®ször arra a speciális esetre gondolunk, amikor az f �áramlás� a folyton növekv®
V (t) tartomány ∂V (t) peremét minden pontban és minden t ≥ 0 id®ben kifelé metszi. A ∂V (t) peremre
ráépül® vékony határréteg térfogatát 0 < h� 1 esetén az intergrálközelít® összegek lokális, �alapterület ×
magasság� elve szerint (mesh mint measure) felírva, majd az utolsó lépésben Gauss integrálátalakító tételét
használva:

mesh(V (t+ h))−mesh(V (t)) ≈
∫
∂V (t)

f(x) · hν dS = h

∫
∂V (t)

f(x) dS = h

∫
V (t)

divf(x) dx .

Átosztva a h > 0 paraméterrel, a h→ 0+ határátmenetb®l Liouville nevezetes (23) formuláját kapjuk. 2

A diszkrét idej¶ eset kezelése jóval egyszer¶bb és nem igényel mást, mint annak ismeretét, hogy a
determináns geometriai jelentése térfogat, a mátrix oszlopvektorai által kifeszített parallelepipedon tér-
fogata. (Ez a geometriai jelentés az új koordinátarendszerre való áttérés alapvet® integráltranszformációs
képletének magyarázata is egyben.) Egy F : Rd → Rd C1 leképezés pontosan akkor ®rzi meg a d�dimenziós
el®jeles térfogatot, ha a J(x) = f ′(x) Jacobi mátrix determinánsának értéke azonosan egy: det(J) ≡ 1.

A semiimplicit Euler módszert a (PN) feladatok osztályán úgy szokás de�niálni, mint a

φS : [0, h0]× R2 → R2 , φS

(
h,

(
x

y

))
=

(
x+ hy

y − hV ′(x+ hy)

)
leképezést, amely mögött természetesen most is a deriváltak különbségi hányadosokkal történ® közelítése
áll:

X−x
h = y

Y−y
h = −V ′(X)

}
⇔

X = x+ hy

Y = y − hV ′(x+ hy)

}
A Verlet (más néven Störmer�Verlet) módszert a (PN) feladatok osztályán úgy szokás de�niálni, mint a

φV :

(
h,

(
x

y

))
→
(
X

Y

)
=

(
x+ hy − h2

2 V
′(x)

y − h
2V
′(x)− h

2V
′
(
x+ hy − h2

2 V
′(x)

))
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leképezést. Mindkét esetben direkt számolás igazolja, hogy det(J) ≡ 1. A semiimplicit Euler módszer
esetén

J =
∂(X,Y )

∂(x, y)
=

(
1 h

−hV ′′(x+ hy) 1− hV ′′(x+ hy) · h

)
⇒ det(J) ≡ 1 ∀ h > 0 ,

s már készen is vagyunk. A Verlet módszer esetében a számolás bonyolultabb. A φS módszer rendje p = 1,
a φV módszer rendje p = 2. Az igazi kérdés egy matematikus számára az, hogyan lehetett rájönni a Verlet
módszer képletére. Egy informatikus és egy bionikus mérnök els® kérdése az, mire lehet a φS és a φV
módszereket használni? És miért el®nyös, ha használja ®ket? Erre kicsiny és nagy válasz egyaránt könnyen
adható.28

A kicsiny válasz egy konkrét numerikus példa, vagy ha úgy tetszik, az alábbi táblázat:
A gravitációs inga/hajóhinta ẍ + sin(x) = 0 egyenletét oldjuk meg, az x(0) = π

2 , ẋ(0) = 0 kezdeti
feltétellel. Maga az egyenlet természetesen (PN) típusú és V (x) = 1 − cos(x). (Elvben lehetne akár

V (x) = − cos(x) is, de a szabad konstansot érdemes úgy választani, hogy az E(x, y) = y2

2 +V (x) összenergia
lehetséges minimuma � az inga alsó egyensúlyi helyzetében � zérus legyen.) A kezdeti feltételt/állapotot
úgy választottuk, hogy az onnan induló pontos megoldás energiája egységnyi legyen. Hat MATLAB
kísérletet végeztünk, az energiát mindig a megfelel® numerikus megoldás mentén vizsgálva a [0, T ] id®�
intervallumon. A lépésköz h (és a lépések N számával T = Nh). Emlékeztetünk arra, hogy φE , φI , φS
és φV rendre az explicit Euler módszert, az implicit Euler módszert, a semiimplicit Euler módszert és a
Verlet módszert jelentik. Íme a numerikus eredmények:

# módszer h T a numerikus energia t = 0 és t = T között
1 φE 0.001 100 monoton n® 1 és 1.068 . . . között
2 φE 0.001 1000 monoton n® 1 és 1, 70 . . . között
3 φI 0.001 100 monoton fogy 1 és 0.934 . . . között
4 φI 0.001 1000 monoton fogy 1 és 0.46 . . . között
5 φS 0.1 10000 oszcillál 0.957 és 1.045 között
6 φV 0.1 10000 oszcillál 0.998 és az 1.000 . . . között

Az utolsóel®tti kísérletben az oszcillációk összessége sinus�hullám, az utolsó kísérletben ciklois�hullám
jelleg¶ volt. (Az oszcillációk száma mindkét esetben jó közelítéssel ezer volt.) A numerikus energia az
1
2y

2
k + V (xk) kifejezés értékeinek k = 0, 1, . . . , N sorozata, amikor is a közelít® megoldás egymás utáni

pontjait behelyettesítjük a tényleges energia E(x, y) = 1
2y

2 +V (x) képletébe. Lehet csodálkozni, jóllehet a
táblázat sokkoló jellegét részben a fázistér kétdimenziós volta okozza.29

Célfeladathoz tehát célprogram tartozik. De ahhoz, hogy a számítógépet a valóban éles
esetekben is jól tudjuk használni, tudnunk kell, mi van a célprogramok "fekete dobozá"�ban: a konkrét
feladat�osztály �zikájától függ® hibrid, gondosan konstruált, ám ugyanakkor heurisztikus elemeket is jóc-
skán tartalmazó algoritmusok.

28Kifejezetten ajánlom a http://digitus.itk.ppke.hu/∼garay/ tárhely ábrákkal gazdagon illusztrált Numerikus Dinamika cím¶
vetíthet® el®adását.

29Ge és Marsden egy tétele szerint nem létezik olyan diszkretizációs eljárás, amely egyszerre lenne képes az energia és a
terület mindegyikének pontos meg®rzésére egy, a (PN) típusba tartozó általános feladat esetén.
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A nagy válasz pedig az, hogy az általános, d + d = 2d dimenziós, Hamilton típusú ẋ = ∂H
∂y , ẏ = − ∂H

∂x
di�erenciálegyenletek hatékony számítógépes kezelését a Verlet módszer és az annak nyomán felfedezett
további szimplektikus algoritmusok tették lehet®vé.30 A hagyományosan, többtest�problémaként felfogott
molekuláris dinamika

Mẍ+ V ′(x) = 0 ⇔ (MD)

{
ẋ = M−1y
ẏ = −V ′(x)

alapegyenlete is Hamilton típusú.31 A pontos megoldások (22) mintájára a H szintfelületein haladnak.

Láttuk tehát, hogy a közönséges, autonóm di�erenciálegyenletek elmélete a T = R, a megoldások
számítógépes, diszkretizációval történ® meghatározása viszont a T = hN (itt h > 0 a lépésköz) id®�
választást igényli. A tantárgy nevét adó sz¶kebb de�níció (i)�(ii)�(iii) axiómáinak mindegyike értelmes
marad akkor, ha a bennük szerepl® R helyére hN kerül. Ez utóbbi esetben az id® csak el®re mehet32. A T
megválasztására összesen hat lehet®ségünk van, R mellett Z és hZ, hN mellett R+ = [0,∞) és N (h > 0
rögzített, a h = 1 választást külön esetekként kezeljük): a felsoroltakon kívül az R additív csoportnak és
az R+ = [0,∞) additív félcsoportnak nincsenek más zárt részcsoportjai illetve zárt rész�félcsoportjai (az
{0} ∈ R egyelem¶ additív csoporttól most tekintsünk el).

A tantárgy nevét adó tágabb definíció: Legyen (X, d) metrikus tér és legyen T az R, R+, Z,
N, hZ, hN halmazok bármelyike. A Φ : T×X → X leképezés T idej¶ dinamikus rendszer X�en, ha igazak
rá az alábbi axiómák:

(i) Φ folytonos,

(ii) Φ(0, x) = x ∀ x ∈ X,

(iii) Φ(t,Φ(s, x)) = Φ(t+ s, x) ∀ t, s ∈ T ∀ x ∈ X.

A hatféle id®választást párokba csoportosítva

• T = R (illetve T = R+) esetén Φ folytonos idej¶ (semi)dinamikus rendszer,

• T = Z (illetve T = N) esetén Φ diszkrét idej¶ (semi)dinamikus rendszer,

• T = hZ (illetve T = hN) esetén Φ h > 0 lépésköz¶ (semi)dinamikus rendszer.

Közönséges di�erenciálegyenlet alappéldák a természettudományokban

30Ezek olyan diszkretizációs eljárások, amelyek egy sor �zikailag releváns megmaradó mennyiséget (köztük a 2d�dimenziós
térfogatot) pontosan meg®rzik, és a H = E összenergiát csak nagyon lassan és kicsit torzítják.

31A Hamilton�függvény H(x, y) = 1
2
〈M−1y, y〉+V (x). IttM = MT d×d méret¶ és pozitív de�nit mátrix (az általánosított

tömegmátrix), V : Rd → R a potenciális energia (V ′(x) = grad V (x) gradiens�vektorral), x, y ∈ Rd pedig az atomi sokaság
helyzetre és momentumra vonatkozó kanonikus koordinátái, 〈·, ·〉 pedig az Rd euklideszi téren értelmezett skaláris szorzás.

32Ezen a megállapításon mit sem változtat, hogy az ẋ = f(x) egyenletet az id®ben visszafelé is meg tudjuk oldani (ha
ugyanazt a diszkretizációs módszert az ẋ = − f(x) egyenletre alkalmazzuk), és az sem, hogy az (19) egyenl®tlenség maga után
vonja, hogy minden elegend®en kicsiny h > 0 rögzített lépésköz esetén az Rd → Rd, x→ φ(h, x) leképezés homeomor�zmus.
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Két példa a villamosságtanból33:

RLC�kör van der Pol oszcillátor

VL + VC + VR = v(t) & IL = IC = IR IC + IR + IL = i(t) & VC = VR = VL

VL = LİL ⇔ IL = 1
L

∫ t
−∞ VL(s) ds

VR = `(IR) = RIR IR = n(VR) = − µ
(
VR − 1

3V
3
R

)
, µ > 0

VC = 1
C

∫ t
−∞ IC(s) ds ⇔ IC = CV̇C

A t id®változó szerint deriválva, majd az azonos oszlopban lév® egyenleteket összeadva:

RLC�kör van der Pol oszcillátor

LÏ +Rİ + 1
C I = d

dt v(t) CV̈ − µ(1− V 2)V̇ + 1
LV = d

dt i(t) , µ > 0

Két példa a mechanikából34:

lineáris rugó gravitációs inga/hajóhinta

mẍ+ bẋ+ kx = F (t) m`θ̈ + bθ̇ +mg sin(θ) = F (θ) , b ≥ 0

Egyetlen fontos példa a kémiából.35

33Az LRC�kör sorosan kapcsolt áramköri elemekb®l áll, v(t) küls® vezérl® feszültséggel. Az LRC�kör ellenállása a VR = `(IR)
képlet szerint ohmikus/lineáris ellenállás. Mivel IC a kondenzátoron tárolt Q = QC töltésmennyiség IC = Q̇C deriváltja,
az LRC�kör egyenlete az LQ̈ + RQ̇ + 1

C
Q = v(t) alakban is felírható. A van der Pol oszcillátor párhuzamosan kapcsolt

áramköri elemekb®l áll, i(t) küls® vezérl® áramer®sséggel. A van der Pol oszcillátor �ellenállása� alagút�dióda, az IR = n(VR)
nemlineáris karakterisztikával. Mindkét áramkörben egy C kapacitású kondenzátor, és egy L indukciós együtthatójú tekercs
is van. A küls® gerjesztés nélküli van der Pol egyenletnek többféle normálalakja is van, közülük az ẍ − µ(1 − x2)ẋ + x = 0
egyenlet, valamint az ẋ = y, ẏ = µ(1 − x2)y − x és az ẋ = µ

(
x − 1

3
x3 − y

)
, ẏ = 1

µ
x egyenletrendszerek a leggyakrabban

használatosak. A µ > 0 paraméter tetsz®leges értéke mellett a van der Pol egyenletrendszernek létezik aszimptotikusan stabil
periodikus Γ ⊂ R2 megoldása, amely az origó kivételével az R2 fázissík minden pontját magához vonzza. Ez a Γ = Γµ, µ > 0
periodikus megoldás a µ = 0 választásnak megfelel® ẍ + x = 0 ⇔ ṙ = 0, ϕ̇ = −1 polárkordinátás alakba átírt rendszer
r = 2 körpályájából bifurkálódik. Id®ben periodikus küls® (például sinus�os) gerjesztés esetén káosz is lehetséges. Utóbbi a
periodikusan gerjesztett, súrlódásos gravitációs ingára/hajóhintára is igaz.

34Mindkét példa azma = F Newton törvény alkalmazása vízszintes rugó (m tömeg, b súrlódási együttható, k rugóállandó, és
F (t) küls® er®) illetve gravitációs inga/hajóhinta (m tömeg, ` kötélhossz/rúdhossz, b közegellenállási együttható, g gravitációs
együttható, és F (t) küls® er®) esetén: az x a nyugalmi állapottól mért vízszintes kitérés, a θ a lefelé mutató függ®leges
vektorral bezárt szög mér®száma az inga felfüggesztési pontjában. (A súlytalan rugó végére rögzített tömeg egyenes mentén,
a súlytalan kötél/rúd végére rögzített tömeg egy függ®leges síkbeli körön mozog.)

35a Nemlineáris Dinamika jegyzet � http://digitus.itk.ppke.hu/∼garay/NDS jegyzet/ � 2.12 fejezetében öt autokatali-
tikus, oszcilláló reakció szerepel, egyikük (az u̇ = 1

8
− u + u2v, v̇ = µ − u2v Schnakenberg modell a 0 < µ < 1 paraméter-

tartományban) részletes tárgyalásával: az aszimptotikusan stabil periodikus pálya a µ paramétert növelve Hopf�bifurkációval
születik, és ugyancsak Hopf bifurkációval hal meg.
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Két36 példa a biológiából37:

Lotka�Volterra Hodgkin�Huxley

ẋ1 = r1x1

(
1 + a11x1 + . . .+ a14x4

)
CM V̇ = −gc`(V − VC`)− gNam3h(V − VNa)− gKn4(V − VK)

ẋ2 = r2x2

(
1 + a21x1 + . . .+ a24x4

)
τm(V ) · ṁ = m∞(V )−m

ẋ3 = r3x3

(
1 + a31x1 + . . .+ a34x4

)
τh(V ) · ḣ = h∞(V )− h

ẋ4 = r4x4

(
1 + a41x1 + . . .+ a44x4

)
τn(V ) · ṅ = n∞(V )− n

Vegyük észre, hogy az RLC�kör és a lineáris inga di�erenciálegyenlete matematika szempontból teljesen
azonos. Az is világos kell legyen, hogy a lineáris rugó egyenlete nem más mint a gravitációs inga/hajóhinta
θ = 0 alsó egyensúlyi helyzet körüli linearizáltja.

A küls® gerjesztés nélküli RLC�kör, lineáris inga és gravitációs inga/hajóhinta pontosan akkor ®rzi meg
az E(I,Q) = 1

2LI
2 + 1

2CQ
2 (a tekercs mágneses mez®jének energiája plus a kondenzátoron tárolt energia �

itt az I = IC = Q̇C = Q̇ összefüggésre is ügyelni kell), E(ẋ, x) = 1
2mẋ

2 + 1
2kx

2 (a mozgási plus a rugóban

tárolt energia), E(θ̇, θ) = 1
2m(`θ̇)

2
+mg`

(
1−cos(θ)

)
(a mozgási plus a helyzeti energia) összenergiát, ha az

R ≥ 0 ellenállás, illetve a b ≥ 0 súrlódási/közegellenállási együttható értéke 0. Az ezzel ellenkez® esetekben
az energia a megoldások mentén végig csökkenve Ljapunov�függvényként használható.38

Linearitás és lokális, egyensúlyi helyzet körüli linearizálás

Linearitás alatt itt és most algebrai, közönséges és parciális egyenletek linearitását értjük, amely lin-
earitás az általános megoldás szerkezetében is megjelenik. Az absztrakció magasabb szintjén a linearitás
az egyenletet, illetve az egyenlet megoldását meghatározó operátor tulajdonsága.

36természetesen csak mutatóba, az egyik a populációdinamikából és a másik az idegélettanból
37Az N fajból álló xi ≥ 0 ökoszisztémát modellez® Lotka�Volterra di�erenciálegyenlet az N = 4 speciális esetben szerepel.

Ha N ≥ 4, akkor az együtthatók ri > 0, aii < 0, aij ≤ 0, i, j = 1, 2, . . . , N választása mellett (az együtthatók ilyetén választása
� verseng® növényev®k � garantálja, hogy a végtelen távoli pont taszít és hogy az xi ≥ 0 féltengelyek mindegyikén pontosan
egy, az origótól különböz® Pi egyensúlyi helyzet van) is sikerült kimutatni a káosz létezését. Káosz amúgy már azN = 3 esetben
(egy ragadozó, két növényev®) is létezik, de az N = 3 választás mellett el®forduló legfurcsább jelenség mégis inkább egy, a
P1�P2�P3 pontokat a nemnegatív ortáns peremén összeköt®, és így a �k®�papír�olló� játékot modellez® aszimptotikusan stabil
heteroklinikus kör. Az N = 2 eset legfontosabb típusait láttuk a félév folyamán, az ri, aij ≶ 0 választásokat is megengedve. Ez
azonban messze nem a teljes karakterizáció � az ẋ = x(−1+2x−y), ẏ = y(−4+7x−3y) Cressman rendszer fázisportréjának
felrajzolása még számítógép segítségével is nehéz feladat. A másik példa szintén négy egyenletb®l áll és az ezüstdróttal
preparált tintahal�idegrost Hodgkin�Huxley kísérlet ekvivalens áramköri modelljét mutatja be. A tényleges Hodgkin�Huxley
modell az m,h, n kapuváltozók egyenleteit megtartja, de az els® egyenlet parabolikus parciális, az x helyváltozótól is függ®
egyenletté módosul, amelynek utazó hulláma a V akciós potenciál idegrost mentén történ® haladását írja le. A kapuváltozókra
vonatkozó egyenletek mindegyike átfogalmazható a τm(V )·ṁ = m∞(V )−m ⇔ ṁ = αm(V )·(1−m)−βm(V )·mminta szerint.
A Hodgkin�Huxley modell általánosított/kiterjesztett és egyszer¶sített változatai ma is lépten�nyomon használatosak.

38Érdemes felemlíteni, hogy mind az ẋ = x(−1+2x−y), ẏ = y(−4+7x−3y) Cressman rendszer, mind az ẍ−µ(1−x2)ẋ+x = 0
van der Pol oszcillátor (a µ � 1 esetben), mind az u̇ = 1

8
− u + u2v, v̇ = µ − u2v, 0 < µ < 1 Schnakenberg modell

esetében a szokatlan viselkedés f® oka a pozitív visszacsatolás. A van der Pol oszcillátorban (ha µ � 1), csakúgy mint a
Hodgkin�Huxley modellben és ez utóbbi számos általánosított/kiterjesztett és egyszer¶sített változatában kétféle id®skála
is megjelenik.
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Mindezt jól ismerjük a lineáris közönséges di�erenciálegyenletek elméletéb®l, legyen az homogén vagy
inhomogén, állandó vagy (az id®ben) változó együtthatós. Íme két konkrét példa

• a homogén lineáris egyenlet megoldásai vektorteret alkotnak valamint az

• �inhomogén általános� = �homogén általános� + �inhomogén partikuláris�

szabályok teljesülésére39:

ẍ+ 2ẋ+ x = 2 cos(t) ⇔ x(t) = c1e
−t + c2te

−t + sin(t) , c1, c2 ∈ R ,

ẋ = −3x+ 2y + 6 cos(t)− 4 sin(t)
ẏ = 2x− 6y − 3 cos(t) + 6 sin(t)

}
⇔

(
x(t)

y(t)

)
= c1e

−2t

(
2

1

)
+c2e

−7t

(
1

−2

)
+

(
2 cos(t)

sin(t)

)
, c1, c2 ∈ R .

Mindkét szabály változtatás nélkül érvényes a lineáris algebrai egyenletek körében is:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16



x
y
z
w

 =


5
13
21
29

 ⇔


x
y
z
w

 = c1


1
−2
1
0

+ c2


0
1
−2
1

+


0
1
1
0

 , c1, c2 ∈ R .

Vegyük észre, hogy a 0 kétszeres sajátértéke a lineáris egyenletrendszer mátrixának, és hogy a c1 és a c2

mellett álló két vektor a 0�hoz tartozó kétdimenziós sajátaltér bázisát alkotja.
A (homogén Dirichlet peremfeltétellel és az f(t, x) = 2 inhomogenitással ellátott) (t ≥ 0, x ∈ [0, π])

di�úzióegyenlet általános megoldása40 (amint azt lényegében már a 2�ik oldalon láttuk):

ut = uxx + f(t, x)
u(t, 0) = u(t, π) = 0

}
⇔ u(t, x) =

∞∑
n=1

cne
−n2t sin(nx) + x(π − x) , c1, c2, . . . ∈ R . (24)

Ha a kezdeti feltétel u(0, x) = g(x) = sin3(x) + x(π − x), akkor (24) és a sin(3x) = 3 sin(x) − 4 sin3(x)
azonosság miatt c1 = 3

4 , c3 = − 1
4 és cn = 0 ha n 6= 1, 3. Az így kapott u(t, x) = 3

4e
−t sin(x)− 1

4e
−9t sin(3x)+

x(π − x) megoldás a t < 0 esetén is értelmes. Azt, hogy a di�úzió�egyenletben az id® csak el®re mehet, a
kezdeti feltétel egy másik, kevésbé speciális választása mutatja41.

39A megoldásokat próbafüggvények segítségével számoltuk ki. Az els® példában az ẍ + 2ẋ + x = 0 homogén egyenlet
megoldásait x(t) = eλt alakban, az inhomogén egyenlet egy partikuláris megoldását x(t) = A cos(t)+B sin(t) alakban kerestük.
A második példában ugyanezeknek a próbafüggvényeknek a vektoros, x(t) = eλts illetve x(t) =

(
A
B

)
cos(t) +

(
C
D

)
sin(t) alakjait

használtuk. Az els® példa homogén részében tapasztalt λ2 +2λ+1 = 0 ⇔ λ1,2 = −1 bels® rezonanciával könnyen elbántunk:
a homogén egyenlet két alapmegoldásának szokásos választása e−t és te−t. Mivel a második példa homogén részének mátrixa
a szimmetrikus A =

(−3 2
2 −6

)
mátrix, az esetleges λ1 = λ2 bels® rezonancia ott semmiféle gondot nem okozott volna: minden

d×d méret¶ szimmetrikus valós mátrixhoz létezik sajátvektorainak olyan családja, amely az Rd tér ortonormált (azaz egymásra
páronként mer®leges egységvektorokból álló) bázisát alkotja. A c1, c2 ∈ R egyel®re még szabad konstansokat a kezdeti feltételek
megadása teszi egyértelm¶vé.

40a továbbra is lineáris egyenlet inhomogenitásának roppant kényelmes, f(t, x) = 2 választása mellett a partikuláris megoldás
legegyszer¶bb alakja u(t, x) = x(π − x) � a Dirichlet peremfeltétel inhomogenitása azt jelentené, hogy u(t, 0) = A(t) és
u(t, π) = B(t) volna (amikor is a v(t, x) = u(t, x)−A(t)− x

π

(
B(t)−A(t)

)
változó�transzformációt hívnánk segítségül)

41Ha a (24) képletben cn = 1
n
, akkor a t = 0 kezdeti id®pontban u(0, ·) = g ∈ L2[0, π] hiszen

∑
n

1
n2 = π2

6
< ∞, de

limn→∞
1
n
e−n

2t = ∞ miatt u(t, ·) 6∈ L2[0, π] ha t < 0 (a Fourier együtthatók soha nem tarthatnak végtelenhez. Négy-
zetösszegük korlátossága akkor és csak akkor típusú jellemzése az L2[0, π] � s®t bármely más � Hilbert tér elemeinek).
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Dinamikus rendszer linearitásának definíciója: Legyen (X, ‖ · ‖) Banach (azaz teljes normált)
tér és legyen T az R, R+, Z, N, hZ, hN halmazok bármelyike. A Φ : T × X → X dinamikus rendszer
lineáris, ha az (i)�(ii)�(iii) axiómák mellett az is igaz rá, hogy

• minden rögzített t ∈ T esetén Φ(t, c1x1 + c2x2) = c1Φ(t, x1) + c2Φ(t, x2) ∀ c1, c2 ∈ R ∀ x1, x2 ∈ X.

A (18) nemlineáris T = R, X = Rd alappélda lineáris változata az d × d méret¶, valós számokból
felépített A mátrix által meghatározott ẋ = Ax közönséges, autonóm lineáris di�erenciálegyenlet

ΦL : R× Rd → Rd , (t, x)→ ΦL(t, x) = eAtx

alakú megoldó�operátora.
Ha a (18) képletben szerepl® nemlineáris di�erenciálegyenletben f ∈ C1(Rd,Rd) és f(0) = 0, akkor az

f függvényt a 0 ∈ Rd egyensúlyi helyzet körül linearizálva f(x) = Ax+a(x) adódik, ahol A = f ′(0) a 0�ban
vett Jacobi mátrix és az a ∈ C1(Rd,Rd) függvényre a(0) = 0 és a′(0) = 0 (az azonosan nulla d× d mátrix).

Jelölje λ1, λ2, . . . , λd az A mátrix sajátétértékeit. A 0 ∈ Rd mint az ẋ = Ax di�erenciálegyenlet egyensú-
lyi helyzete nem�elfajult, ha minden k = 1, 2, . . . , d esetén Re λk 6= 0. A nem�elfajultságnak ez a de�níciója
az ẋ = f(x) di�erenciálegyenlet bármely más egyensúlyi helyzetére is automatikusan kiterjeszthet®.

A lokális fázisportrék lényegi azonossága nem�elfajult egyensúlyi helyzetek esetében:
A nemlineáris ẋ = f(x) di�erenciálegyenlet fázisportréja külön�külön, minden nem�elfajult egyensúlyi
helyzet kis környezetében kvalitatív szempontból azonos az ottani linearizált egyenlet fázisportréjával
(és kvantitatíve is csak alig különbözik t®le). A lokális fázisportréknak ez az azonosíthatósága � ha a
0 < h ≤ h0 lépésközt megfelel®en kicsinynek választjuk � kiterjed a φ(h, ·) : Rd → Rd diszkretizációs
operátorra is.42

Itt és most legyen elegend® számunkra a következ® példa, ahol egy síkbeli nyeregpont kimen® és bemen®
trajektóriáit egészen konkrét képletekkel is meg tudjuk adni, mind az eredeti (N) nemlineáris, mind az (L)
linearizált, mind a(z explicit Euler módszerrel) (D) diszkretizált esetben:

ẏ = y
ż = −z + y2

}
(N) ,

ẏ = y
ż = −z

}
(L) ,

Y = y + hy
Z = z + h(−z + y2)

}
(D) .

A kimen® trajektóriákat hordozó instabil sokaságok az alábbi, a teljes R = Y számegyenesen értelmezett
Y → Z függvények gra�konjai:

z = u(y) ⇔ u(y) =
y2

3
(N) , z = 0 (L) , z = uh(y) ⇔ uh(y) =

y2

3 + h
(D) .

A bemen® trajektóriákat hordozó stabil sokaságok mindegyike a(z y = 0 ⇔ Y = 0 egyenlet¶) z tengely.
Vegyük észre egy általános szabály megjelenését is: mind az (N), mind a (D) dinamikához tartozó instabil

42Arról van szó tehát, hogy bármely nem�elfajult egyensúlyi helyzet kis környezetében mind a linearizálás, mind a dis-
zkretizálás trajektóriát trajektóriába viv®, s®t (a trajektóriák mentén) az id®t is meg®rz®, és az identitáshoz nagyon közeli
koordináta�transzformáció. A mögöttes matematikai tétel a Grobman�Hartman Lemma, amelyet a a Nemlineáris Dinamika
jegyzet � http://digitus.itk.ppke.hu/∼garay/NDS jegyzet/ � több szempontból is részletesen tárgyal. A lényeget legjob-
ban az ottani 2.4 sorszámú ábra fejezi ki. A síkbeli, nem�elfajult egyensúlyi helyzetek osztályozását leíró nyom�determináns
diagram egyúttal a Grobman�Hartman Lemma kétdimenziós aleseteit is szemlélteti.
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sokaság az origóban érinti az (L) dinamika instabil alterét. Képletekkel kifejezve: u(0) = uh(0) = 0 és
d
dyu(y)

∣∣
y=0

= d
dyuh(y)

∣∣
y=0

= 0. A most észlelt szabályszer¶ség természetesen érvényes a stabil sokaságok,

illetve a stabil altér vonatkozásában is. És az is mindig igaz, hogy a h→ 0+ határátmenetben uh(y)→ u(y)
(legalábbis a z = 0 instabil altér origóhoz közeli, ‖y‖ � 1 részén).

Amint azt a két részletben tárgyalt Példa 4 kapcsán már láthattuk � érdemes visszalapozni az 5-7
valamint a 9-10 oldalakhoz �, a gyakorlatban használt diszkretizációs eljárások szinte mindegyike meg®rzi
a diszkretizált egyenlet lineáris struktúráját. Hogy másik, egyszer¶bb példát is mondjunk, tekintsük az
implicit Euler módszer alkalmazását az ẋ = Ax lineáris egyenletre, amikor is az általános X = x+ hf(X)
szabály az alábbi alakot ölti:

X = x+ hAX ⇔ (I − hA)X = x ⇔ X = (I − hA)−1x .

A második átalakítás természetesen csak akkor jogos, ha 0 ∈ R nem sajátértéke az (I−hA) mátrixnak, azaz
ha az A mátrix minden λk sajátértékére 1− hλk 6= 0, k = 1, 2, . . . , d. Ez a 6= 0 feltétel minden A mátrixra
teljesül, ha 0 < h� 1. Ha azonban az ẋ = Ax lineáris egyenlet aszimptotikusan stabil � ami a Re λk < 0
∀ k feltétellel ekvivalens �, akkor a h > 0 lépésközt tetsz®legesen nagynak is választva, 1 − hλk 6= 0
(k = 1, 2, . . . , d) automatikusan igaz lesz, s®t (a spektrálsugárról tanultak értelmében) ‖(I − hA)−1‖ → 0
ha h→∞. Ez itt és most feketén�fehéren azt jelenti, hogy az implicit Euler módszer által meghatározott
xn+1 = (I − hA)−1xn sorozat bármely x0 ∈ Rd esetén a 0 ∈ Rd origóhoz tart.

A fenti okoskodással szokás az implicit módszerek jogosultságát alátámasztani. Jóllehet az egyes
lépésekkel több munka van, a lépésköz � különösen a mérnökök által annyira favorizált aszimptotikusan
stabil egyensúlyi helyzetekhez egyre közeledve � nagynak, s®t egyre nagyobbnak választható. A dinamika
aszimptotikus stabilitása � még akkor is, ha az L nagy (!!) � alaposan felülírja�felülírhatja a (20) és a
(21) egyenl®tlenségeket, ugyanakkor az explicit Euler módszer és más explicit módszerek használatában
kikényszeríti� kikényszerítheti a lépésköz 0 < h� 1 választását, ami ugyancsak lassítja a számítógépet és
jócskán növeli a kerekítési�számábrázolási hibák összhatását.

Az egydimenziós ut = uxx di�úzió�egyenlet megoldásai többféle módon is kapcsolatba hozhatók lineáris
dinamikus rendszerekkel. Ehhez a (2) és a (11) képleteket kell újra�fogalmaznunk a lineáris funkcionálanalízis
nyelvén, a Fourier sorfejtés és a konvolúciós integrál alaptulajdonságainak felhasználásával.

A [0, π] intervallumon értelmezett ut = uxx, u(t, 0) = u(t, π) = 0 (t ≥ 0, x ∈ [0, π]) homogén Dirichlet
feladat (2) megoldásai lineáris dinamikus rendszert határoznak meg az X = L2[0, π] Hilbert téren. Az
u(0, ·) = g ∈ L2[0, π] kezdeti feltételhez tartozó Φ(t, g) megoldás minden rögzített t ≥ 0 esetén a g vál-
tozóban folytonos és lineáris. Jogos tehát a Φ(t, g) = T (t)g jelölés, ahol T (t) ∈ L(L2[0, π], L2[0, π]), az X =
L2[0, π] teret önmagába viv® folytonos lineáris operátor (melynek normája ‖T (t)‖ = ‖T (t)‖L(L2[0,π],L2[0,π]) =

e−t). A t = 0 kezdeti id®ponthoz a T (0) = IdL(L2[0,π],L2[0,π]) identitás�operátor tartozik. A t > 0 esetben
a T (t) operátort a

(Φ(t, g))(x) = (T (t)g)(x) =
∞∑
n=1

cne
−n2t sin(nx) ahol cn =

2

π

∫ π

0
g(x) sin(nx) dx , n = 1, 2, . . .
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képlet de�niálja.43 A linearitás ténye és a (ii) axióma teljesülése is rendben; a (iii) axióma a T (t + s) =
T (t)T (s) azonosság formáját ölti (és a minden a ∈ R paraméter esetén érvényes ea(t+s) = eateas formula
következménye). Igazából csak az (i) axióma teljesülése szorul bizonyításra, és az is csak a

‖T (t`)g` − g‖L2[0,π] → 0 ha ‖g` − g‖L2[0,π] → 0 és t` → 0+ (25)

speciális esetben. A ‖T (t`)g` − g‖L2
≤ ‖T (t`)g` − T (t`)g‖L2

+‖T (t`)g − g‖L2
≤ ‖g` − g‖L2

+‖T (t`)g − g‖L2

egyenl®tlenség miatt feltehetjük, hogy g` = g (` = 1, 2, . . .). Ami még hátra van, az (25) bizonyítása a
g` = g (` = 1, 2, . . .) speciális esetben: egy teljesen elemi, de nagyon szép és jellegzetes számolás44.

A kapott eredményt úgy is meg lehet fogalmazni, hogy az ut = uxx, u(t, 0) = u(t, π) = 0 (t ≥ 0,
x ∈ [0, π]) homogén Dirichlet feladat (2) megoldásai az X = L2[0, π] Hilbert téren a {T (t)}t≥0 lineáris
operátor�félcsoportot de�niálják, amely az id® t ≥ 0 és a kezdeti értékek g ∈ L2[0, π] változójában egyszerre
folytonos. Ez igaz az ut = uxx, ux(t, 0) = ux(t, π) = 0 (t ≥ 0, x ∈ [0, π]) homogén Neumann feladatra is.

A teljes számegyenesen értelmezett ut = uxx di�úzióegyenlet kezdeti értékeit nemcsak a

(BC(R), ‖ · ‖BC(R) = {g : R→ R | g folytonos és korlátos a ‖g‖BC(R) = sup
x∈R
|g(x)| normával}

Banach térb®l vehetjük, hanem az L1(R) vagy az L2(R) terekb®l is. A (11) formula minden esetben a teljes
számegyenesen értelmezett ut = uxx di�úzióegyenlet egy�egy megoldását de�niálja a (t, x) ∈ (0,∞) × R
halmazon, s®t a kezdetiérték feltételt is kielégíti a 10�ik oldal alján tárgyalt értelemben. A (25) határérték�
tulajdonság limt`→0 ‖T (t`)g − g‖X = 0 analogonja azonban nem minden g ∈ X = BC(R) választás mellett
teljesül: ez a negatív eredmény annak a következménye, hogy a BC(R) tér nem minden eleme lesz a teljes
számegyenesen egyenletesen folytonos függvény.

Összefoglalásként azt mondhatjuk � néhány további eredményt is bizonyítás nélkül közölve �, hogy
az ut = uxx (t ≥ 0, x ∈ R) egyenlet megoldó�operátora lineáris a Φ : R+ × X → X második változóját
jelent® kezdeti feltételek X = L1(R), X = L2(R) és X = BC(R) terein, dinamikus rendszert azonban csak
az X = L1(R), X = L2(R) tereken de�niál (s®t az 1 ≤ p < ∞ feltételnek eleget tev® X = Lp(R) terek
mindegyikén is), de nem de�niál dinamikus rendszert a BC(R) és az X = L∞(R) terek egyikén sem (mert
az (i) axióma nem teljesül).

43Ehhez egy kicsit szoktatnunk kell magunkat: adott t ≥ 0 és g ∈ L2[0, π] esetén Φ(t, g) = T (t)g ∈ L2[0, π] az a függvény,
amely az x ∈ [0, π] pontban a (Φ(t, g))(x) ∈ R értéket veszi fel. Amint arra már a 2�ik oldal alján utaltunk, a megoldás
�döccenve� indul. A konvergencia alapvet®en különbözik a t = 0 (amikor is a végtelen sor csupán L2 értelemben konvergens)
és a t > 0 (amikor is a végtelen sor és annak valamennyi vegyes deriváltja is egyenletesen konvergens) esetben: jobb lett volna
talán a (2) képletet is a (11) képlethez hasonlóan, kapcsos zárójeles esetszétválasztással megadni.

44Kiindulópontunk a 0 ≤ 1− e−n
2t` < 1 egyenl®tlenség és az

‖T (t`)g − g‖2L2[0,π] = ‖
∑
n

cne
−n2t` sin(nx) −

∑
n

cn sin(nx)‖2L2
= ‖

∑
n

cn(1− e−n
2t`) sin(nx)‖2L2

=
π

2

∑
n

c2n
(
1− e−n

2t`
)2

azonosság. Mivel
∑
n c

2
n konvergens, adott ε > 0 állandó mellett az indexeket két, ε�tól függ® csoportra bontjuk:

∑
n =∑N

n=1 +
∑∞
n=N+1, ahol

π
2

∑∞
n=N+1 c

2
n ≤ ε

2
. Válasszunk most olyan t∗ = t(ε) > 0 értéket, hogy

√
π
2
|cn|
(
1− e−n

2t∗
)
≤
√

ε
2N

legyen minden n = 1, 2, . . . , N esetén. Így

‖T (t`)g − g‖2L2[0,π] ≤
π

2

N∑
n=1

c2n
(
1− e−n

2t`
)2

+
ε

2
≤ π

2

N∑
n=1

c2n
(
1− e−n

2t∗)2 +
ε

2
≤ N ε

2N
+
ε

2
= ε

ha 0 < t` ≤ t∗ = t(ε), ami � az ε > 0 állandót minden határon túl csökkentve � pontosan a nullához tartás de�níciója.
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AZ ÖSSZEHASONLITÁS SZEMPONTJAI
tér

Rn tér L2([0, π])

〈x,y〉 =
∑n

k=1 xkyk skaláris szorzat 〈f, g〉 =
∫ π

0 f(x)g(x) dx

‖x‖2 =
∑n

k=1 x
2
k norma ‖g‖2 =

∫ π
0 |g(x)|2 dx

ek , k = 1, . . . , n standard ortonormált bázis
√

2
π sin(nx) , n = 1, 2, . . .

x =
∑n

k=1 xkek Fourier sor g =
∑∞

n=1 gn sin(nx)

xk = 〈ek,x〉 Fourier együtthatók gn = 2
π

∫ π
0 g(x) sin(nx) dx

‖x‖2 =
∑n

k=1 x
2
k Pythagoras/Parseval ‖g‖2 = π

2

∑∞
n=1 g

2
n

differenciálegyenlet
ẋ = Ax di�erenciálegyenlet ut = uxx

� peremfeltétel u(t, 0) = u(t, π) = 0

x(0) = x0 ∈ Rn kezdetifeltétel u(0, ·) = g ∈ L2([0, π])

x(t) = eλtv PRÓBAFÜGGVÉNYEK u(t, x) = cn(t) sin(nx)

λv = Av⇒ v = sk a kapott segédegyenlet ċn = −n2cn ⇒ cn(t) = e−n
2t

eλktsk , k = 1, . . . , n alapmegoldások e−n
2t sin(nx) , n = 1, 2, . . .

x(t) =
∑n

k=1 cke
λktsk általános megoldás I u(t, x) =

∑∞
n=1 cne

−n2t sin(nx)

ck = 〈sk,x〉 az együtthatók cn = 2
π

∫ π
0 g(x) sin(nx) dx

operátor

A operátor ∆D = ∂2

∂x2 & peremfeltétel

A = AT önadjungáltság ∆D = ∆T
D

λk ∈ R , sk sajátérték, sajátvektor −n2 ,
√

2
π sin(nx)

sk , k = 1, . . . , n teljes ortonormált rendszer
√

2
π sin(nx) , n = 1, 2, . . .

x =
∑n

k=1 cksk Fourier sor g =
∑∞

n=1 gn sin(nx)

A = diag(λk) f®tengelytétel I ∆D = diag(λn)

Ax =
∑

k λkcksk f®tengelytétel II ∆Dg =
∑∞

n=1−n2gn sin(nx)

Φ(t,x) = T (t)x = eAtx általános megoldás II Φ(t, g) = T (t)g = e∆Dtg
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Az el®z® oldalt teljesen kitölt® Táblázat azt mutatja, hogy az ut = uxx, u(t, 0) = u(t, π) = 0 (t ≥ 0,
x ∈ [0, π]) homogén Dirichlet feladat az X = L2[0, π] Hilbert téren értelmezett közönséges di�erenciálegyen-
letként is felfogható.

A szembet¶n® hasonlatosságok ellenére komoly különbségek is vannak. A Táblázat jobb alsó alsó részén
a ∆D (amely a homogén Dirichlet peremfeltétellel ellátott ∂2

∂x2 di�erenciál�operátor szokásos jelölése) nem
korlátos lineáris operátor. A T (t) = e∆Dt lineáris operátor viszont korlátos, de nem határozható meg az
Rd tér feletti mátrix�exponenciálisok eAt =

∑
k
tk

k!A
k formulájához hasonló sorfejtéssel.

A mintázatképz®dés Turing féle mechanizmusa

Els® hallásra ugyancsak meglep®, hogy az inhomogenitás homogén lineáris rendszerek megoldásaiban
is megjelenik. Ennek a viselkedésnek els®, egyébként teljesen spekulatív példáját Alan Turing (1912�1954)
adta meg 1952�es, még sok esztendeig nem igazán megértett és nem is igazán értékelt The chemical basis of
morphogenesis cím¶ cikkében. A jelenséget magát el®ször egy konkrét példa végeredményeként mutatjuk
be, és csak azután ismertetjük a (26)�(27) peremértékprobléma45 általános megoldásának levezetését.

A változók szétválasztása módszer, amelynek skalár változatán a (2) és a (3) képletek levezetése is
alapult, tehát a változók szétválasztása módszer vektoros alkalmazásával hosszadalmas, de mégsem nehéz
számolás igazolja, hogy az

u′x(t, 0) = u′x(t, π) = 0 , v′x(t, 0) = v′x(t, π) = 0 ahol t > 0 (26)

Neumann féle homogén peremfeltétellel ellátott

u′t = u′′xx + 4u+ 2v , v′t = 17v′′xx − 26u− 8v ahol t > 0 és x ∈ [0, π] (27)

parciális di�erenciálegyenlet�rendszer általános megoldása Fourier sorfejtéssel(
u

v

)
= c1,1e

t cos(x)

(
1

−1

)
+ exponenciálisan lecseng® tagok , c1,1 ∈ R (28)

alakú. Hogy mi ebben a mintázat? Csekély, de mégis ott van, éspedig a c1,1e
t cos(x)

(
1
−1

)
f®tagban, s annak

is cos(x)
(

1
−1

)
részében. Leszámítva azokat a kezdeti feltételeket � pontosan meg fogjuk mondani, melyek

ezek �, amelyekre c1,1 = 0, u(t, x) és v(t, x) el®jele minden elég nagy t > 0 és minden, a π
2 ponthoz nem túl

közeli x ∈ [0, π] esetén ellentétes egymással, de az, hogy u vagy v el®jele a pozitív, egyedül azon múlik, hogy
x ≷ π

2 . A mintázat tehát az el®jel, s ha c1,1 cos(x) (c1,1 6= 0) helyett c1,17 cos(17x) (c1,17 6= 0) állna, akkor
a �sign pattern� mintázat sokkal gazdagabb, a zebra csíkozásához hasonló lenne. Turing természetesen
jól tudta, hogy az et szorzótényez® t � 1 esetén biológiailag értelmetlen, a (27)�(26) modellt tehát csak
viszonylag rövid id®intervallumon de�niálta. Igazából az

u′t = α2u′′xx + f(u, v, µ) , v′t = β2v′′xx + g(u, v, µ) (29)

45Turing (27) helyett az u′t = u′′xx + 5u + 6v, v′t = 4v′′xx − 6u − 7v egyenletrendszert vizsgálta, amely a f®tagban et/2

aszimptotikát eredményezett
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feladat érdekelte, az (u0, v0, µ) egyensúlyi helyzet kis környezetében � ott, ahol az
(f(u,v,µ)
g(u,v,µ)

)
csatolás(f(u,v,µ)

g(u,v,µ)

)
≈
(a(µ)u+b(µ)v
c(µ)u+d(µ)v

)
línearizálása még jogosult, mert lokálisan nem változtatja meg a megoldások

lényegi viselkedését. Itt µ ∈ R bifurkációs paraméter, amely a µ0 kritikus értéken balról jobbra áthaladva
a (27)�(26) peremérték�feladat (u0, v0, µ) egyensúlyi helyzetének46 stabil⇒ instabil változását idézi el®.

Megjegyzés: Mindez a kémia nyelvén is elmondható. Egydimenziós térváltozóval leginkább egy hosszú
és vékony kémcs®ben van dolgunk, amelyben reakció és di�úzió zajlik egyszerre, a reakcióban két anyagfa-
jta vesz részt (ez a legegegyszer¶bb eset, a reakció által okozott h®mérséklet�változást elhanyagoljuk). A
di�úzióhoz valamely oldat vagy gáz jelenléte szükséges. A reakció kémiai átalakulás, a fogyó és keletkez®
anyagok pedig di�úzióval terjednek. Ilyen folyamatokat a (29) szerkezet¶ parciális di�erenciálegyenlet�
rendszerekkel szokás modellezni, ahol u és v az egyes anyagok koncentrációját jelölik, az f(u, v, µ) és a
g(u, v, µ) úgynevezett reakció�tagok a kémiai kinetikából jönnek, µ ∈ R pedig a bifurkációs paraméter. A
térbeliséget nem �gyelembevéve, a kémiai reakciót az u̇ = f(u, v, µ), v̇ = g(u, v, µ) kétszer kettes közönséges
di�erenciálegyenlet�rendszer írja le. A folyamatok az 0 ≤ u � 1, 0 ≤ v � 1 koncentráció�tartományban
zajlanak le. A µ ∈ R paraméter egy enzim jelenlétét méri, szerepe a reakció szabályozása. A mintáza-
tképz®dés akkor indul be, ha a µ paraméter egy kritikus µ0 értéket meghalad.

Turing semmit nem ír a konkrét (bio)kémiáról, s®t még a zebrákat sem említi. Méltán híressé vált
matematikai dolgozatát azzal a megjegyzéssel zárja, hogy az általa leírt mintázatképz®dés mechanizmusához
hasonló di�erenciálódási és szabályozási folyamatok játszódhatnak le az egyedfejl®dés során, az embrionális
szakasz legelejét®l kezdve.

És most jön a konkrét (27)�(26) példa konkrét matematikája. A (27) egyenletrendszert mátrixos formába
írva (

ut
vt

)
= A

(
u

v

)
+ D

(
uxx
vxx

)
, ahol A =

(
4 2
−26 −8

)
és D =

(
1 0
0 17

)
adódik. El®ször speciális, szorzat alakú

(u(t,x)
v(t,x)

)
= T (t)X(x)

(
c
d

)
megoldásokat keresünk.

Visszahelyettesítés a (27) egyenletbe, majd a t > 0 és az x ∈ [0, π] változókat átosztással két külön
oldalra gy¶jtve

T ′(t)

T (t)

(
c

d

)
= A

(
c

d

)
+
X ′′(x)

X(x)
D

(
c

d

)
,

következésképpen mind T ′(t)
T (t) = σ, mind X′′(x)

X(x) = λ állandók. A Neumann�féle homogén (26) peremfeltétel-

b®l X ′(0) = X ′(π) = 0. A λ sajátértékre és a hozzá tartozó X = Xλ sajátfüggvényre tehát egy lineáris
(állandó együtthatós, másodrend¶ homogén autonóm közönséges) di�erenciálegyenlet érvényes, amelyhez
az X ′(0) = X ′(π) = 0 homogén peremértékek tartoznak. Így

X ′′(x)− λX(x) = 0 , X ′(0) = X ′(π) = 0 ,

46az általánosság sérelme nélkül feltehetjük és fel is tesszük, hogy f(0, 0, µ) = g(0, 0, µ) = 0 és így (u0, v0, µ) = (0, 0, µ) ∈ R3

minden µ ∈ R esetén
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ahol a λ ∈ R állandó és az X : [0, π]→ R függvény egyaránt ismeretlen. Az általános

X(x) =
c1 cos(ωx) + c2 sin(ωx) ha λ = − ω2 < 0
c1x+ c2 ha λ = 0
c1 cosh(ωx) + c2 sinh(ωx) ha λ = ω2 > 0


megoldás abban a speciális esetben tesz eleget az X ′(0) = X ′(π) = 0 peremfeltételnek47, ha λ = − k2 ≤ 0,
k = 0, 1, 2, . . . és c2 = 0, c1 ∈ R pedig tetsz®leges, szabad konstans.

A λ meghatározása után most jön a σ meghatározása:

T ′(t)

T (t)

(
c

d

)
= A

(
c

d

)
− k2 D

(
c

d

)
⇔

(
A− k2 D− σI

)(c
d

)
=

(
0

0

)
∈ R2 .

Ez is sajátérték�sajátvektor probléma, amely már nem a homogén Neumann peremfeltétellel ellátott ∆N =
∂2

∂x2 di�erenciáloperátorra vonatkozik, hanem csak a k = 0, 1, 2, . . . egészekkel sorszámozott kétszer kettes
A − k2 D mátrixokra. A két sajátértéket mostantól kezdve σ = σk,1 & σk,2 jelöli, a hozzájuk tartozó

sajátvektorokat pedig
(
c
d

)
= sk,1&sk,2. A

T ′(t)
T (t) = σ egyenletben tehát σ = σk,` és így T (t) = Tk,`(t) = eσk,`t,

` = 1, 2.
Az eddigiek alapján az (27)�(26) feladat általános megoldását(

u(t, x)

v(t, x)

)
=

∞∑
k=0

2∑
`=1

ck,` e
σk,`t cos(kx) sk,`

alakban kereshetjük, az
(u(0,x)
v(0,x)

)
=
(g(x)
h(x)

)
kezdeti feltételhez tartozó megoldás pedig a mindkét koordinátájában

klasszikus, a [0, π] intervallumon cosinus�os Fourier sorfejtést kívánó(
g(x)

h(x)

)
=
∞∑
k=0

2∑
`=1

ck,` cos(kx) sk,`

képletb®l48 adódik. A (28) képlet49 már magában foglalja, hogy Re σk,` < 0 ha (k, `) 6= (1, 1) és σ1,1 = −1,
s1,1 =

(
1
−1

)
. Valóban, σ0,1 = −2 + 4i és σ0,2 = −2 − 4i ha k = 0, továbbá σ1,1 = 1, s1,1 =

(
1
−1

)
, valamint

σ1,2 = −23 ha k = 1. A k ≥ 2 esetben már érdemes a k�t meghagyni paraméternek:(
4− k2 2
−26 −8− 17k2

)
⇒ T = −4− 18k2 < 0 és : D = 17k4 − 76k2 + 20 > 0 , ha : k = 2, 3, . . . ,

47amint azzal a (3) képlet levezetése során már találkoztunk
48azért nem minden ennyire egyszer¶: a többszörös és a komplex sajátértékek külön �kezelést� kívánnak ...
49az általános esetben c1,1 és c1,2 a(
g1

h1

)
= c1,1s1,1+c1,2s1,2 lineáris egyenletrendszerb®l számolható, ahol g1 =

1

π

∫ π

0

g(x) cos(x) dx h1 =
1

π

∫ π

0

h(x) cos(x) dx.
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s®t D < T 2

4 ⇔ 17k4 − 76k2 + 20 < 81k4 + 36k2 + 4 ha k = 3, 4, . . .. A nyom�determináns diagramról
tanultak szerint a k ≥ 3 esetben stabil fókusz, a k = 2 esetben stabil csomó az eredmény.

Tanulságos gyakorló feladat: Ábrázolja az
(
A − µD

)
kétszer kettes mátrix λ1,2(µ)sajátértékeinek

változását a komplex számsíkon haladó egy�egy paraméteres görbe segítségével, legalább a µ paraméter
0 ≤ µ <≤ 2 értékeire.

Ha a reakció�tag nemlineáris, akkor a di�úzió sokkal bonyolultabb mintázatokat is okozhat. Ez a helyzet
a már két ízben is említett Schnakenberg modell di�úziós, a t > 0, 0 ≤ x ≤ 100 tartományon értelmezett
és ott homogén Neumann peremfeltétellel ellátott

u′t = u′′xx + 0.1− u+ u2v , v′t = 40v′′xx − 0.9− u2v

változatának esetében. (A kezdeti
(u(0,x)=g(x)
v(0,x)=h(x)

)
állapotot az

(
u0

v0

)
=
(

1
0.9

)
egyensúlyi helyzet (ami egy,

a [0, 100] intervallumon értelmezett konstans függvény) kicsiny perturbáltjának szokás50 választani. A
(t, x, u, v) ∈ R4 változók együttes bemutatására nincs igazán jó lehet®ség, de már a síkbeli színes ábrák
között is vannak nagyon mutatósak, különösen akkor, ha a 0 ≤ u, v ≤ 1 feltételhez sem ragaszkodunk.
(Matematikai szempontból ez csak skálázás kérdése.)

Diagonalizálható mátrixok függvényei: Az eAt mátrixfüggvény meghatározása akkor a legkön-
nyebb, ha létezik valós sajátvektorokból álló bázis. Ez az az eset, amikor az A (valós és d × d méret¶)
mátrixot (a valós számok teste felett) diagonalizálni lehet. Az általános módszert a d = 2 példán mutatjuk
be. Emlékeztetünk rá, hogy a v1, . . . oszlopvektorok az A mátrix jobboldali, a wT

1 , . . . sorvektorok pedig
baloldali sajátvektorai. A jobb� és baloldali sajátértékek egyaránt λ1, . . .. Tehát

Av1 = λ1v1 & Av2 = λ2v2 ⇔ A
(
v1 | v2

)
=
(
v1 | v2

)(λ1 0
0 λ2

)
⇔ AM = MD

⇔ M−1A = DM−1 ⇔
(
wT

1

wT
2

)
A =

(
λ1 0
0 λ2

)(
wT

1

wT
2

)
⇔

{
wT

1 A = λ1w
T
1

wT
2 A = λ2w

T
2

A = MDM−1 =
(
v1 | v2

)(λ1 0
0 λ2

)(
wT

1

wT
2

)
= λ1v1w

T
1 + λ2v2w

T
2

Ak =
(
MDM−1

)k
= MDkM−1 =

(
v1 | v2

)(λk1 0
0 λk2

)(
wT

1

wT
2

)
= λk1v1w

T
1 + λk2v2w

T
2

Azt kaptuk, hogy az eAt mátrix kiszámításához szükséges sorfejtést egyedül a D mátrix f®átlójában lév®

50
Ph.K.Maini et al., Turing's modell for biological pattern formation and the robustness problem, Interface Focus

2(2012), 487�496.
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sajátértékekre szükséges elvégezni. Az eredmény51:

eAt = MeDtM−1 = M

(
eλ1t 0

0 eλ2t

)
M−1 =

d∑
j=1

eλjtvjw
T
j .

Ha A = AT , azaz ha az A mátrix szimmetrikus, akkor sajátértékei valósak és a vj = wj sajátvektorok
egymásra mer®leges egységvektoroknak is választhatók és így az M mátrix ortonormált: M−1 = MT . Ha
az A mátrix ezen felül pozitív semide�nit is (azaz sajátértékei nemnegatívok és az xTAx kvadratikus alak
is az), akkor (szintén pozitív semide�nit) négyzetgyökét a

√
A =

∑d
j=1

√
λjvjv

T
j képlet de�niálja.52

Gráfokon értelmezett dinamikus rendszerek:

A részletes tárgyalást Simonovits András (2010) egy olyan diszkrét idej¶ példájával kezdjük, amelynek
szerkezete a dinamika oldaláról a lehet® legegyszer¶bb: bizonyos természetes, matematikailag és közgaz-
daságilag egyaránt jól indokolható (vagy legalábbis megfelel®en alátámasztható) feltevések esetén létezik
egyetlen, homogén �xpont, amely egyúttal globális attraktor is.

Az adócsalás egy ágens�alapú modellje Adott egy irányítás nélküli G gráf, amelyben sem hurokélek,
sem többszörös élek, sem izolált csúcsok nincsenek. A G gráf V (G) = {1, 2, . . . , N} csúcsai egy ország adó-
�zet®it jelentik. Az i�edik csúcs fokszáma di > 0, az i�edik csúccsal szomszédos csúcsok halmaza Ni
(i = 1, 2, . . . , N), amely tehát az i�edik adó�zet® ismer®seit � látni fogjuk, bizalmas ismer®seit � jelenti.
Ebben az országban egykulcsos adó van, és az adó be�zetése évente egyszer, önkentes adóbevállás alapján
történik. A matematikai egyszer¶ség kedvéért tegyük fel, hogy minden adó�zet® éves jövedelme egyformán
egységnyi. Jelölje 0 < θ < 1 az adókulcs mértékét. A t�edik évben (t = 0, 1, . . .) az i�edik adó�zet® által
bevallott jövedelem legyen xi,t.

Az adó�zet®k azonban nem tisztelik a törvényt. Feltéve, de meg nem engedve a modell szerint nem
vallják be teljes jövedelmüket: a feltételezés szerint mindenki úgy csal a rákövetkez® évben, hogy a saját
ismer®sei által bevallott jövedelmek átlagát veszi alapul és az xi,t+1 értékét egy kétváltozós elégedettségi
függvény feltételes maximumhelyeként számolja ki. Az elégedettségi függvényt egyrészt a nála maradó
1 − θxi,t+1 összeg nagysága, másrészt a várható büntetést®l való félelem határozza meg: ez utóbbi egye-
nesen arányos mind a bizalmas ismer®sök által az el®z® évben bevallott xi,t átlagos jövedelem�mel, mind
egy, az adott országra jellemz® m > 0 moralitási tényez®�vel. Az elégedettségi függvény de�níciója � a

51Ugyanez a módszer vezet az f(A) mátrixhoz, ha az f függvény Taylor�sorának konvergenciasugara nagyobb, mint
max1≤k≤d |λk| és az

1

rk
Ak = v1w

T
1 +

λk2
rk

v2w
T
2 + . . . +

λkd
rk

vdw
T
d → v1w

T
1 ha k →∞ és r = |λ1| > |λ2| ≥ . . . ≥ |λd|

formula szerint a Perron�Frobenius Tétel egy speciális esetét is bizonyítani képes.
52Ha a(z általánosított) Példa 6 G gráfjának nincsenek izolált csúcsai, akkor a PG = D−1

G AG = D
−1/2
G D

−1/2
G AGD

−1/2
G D

1/2
G

azonosság (és a D−1/2
G AGD

−1/2
G mátrix szimmetrikus volta � hiszen az AG szomszédsági mátrix is szimmetrikus, D−1/2

G pedig
a DG�vel együtt maga is diagonális) mutatja, hogy a PG átmenetmátrix minden sajátértéke valós kell legyen.
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közgazdászok szeretik a logaritmus függvényt53:

U : [0, 1]× [0, 1]→ [0, 1] , (x, x)→ U(x, x) = ln
(
1− θx

)
+mx

(
x− ln(x)

)
.

Az i�edik adó�zet® a (t+ 1)�edik évben bevallott jövedelmét a most már egyedül logikus

xi,t =
1

di

∑
j∈Ni

xj,t , i = 1, 2, . . . , N , t = 0, 1, 2, . . .

képlet és a szintén plauzibilis

xi,t+1 = F (xi,t) , ahol F (x) = arg max U(·, x) (30)

formula szerint számolja ki. Természetesen bizonyításra szorul, hogy a (30) formula valóban jólde�niált.
Ehhez pedig a magától értet®d® 0 ≤ xi,0 ≤ 1 (i = 1, 2, . . . , N) feltétel és az U(·, x) függvény konkavitása a
[0, 1] intervallumon éppen elegend®54.

A kapott diszkrét idej¶ dinamikus rendszer állapottere a [0, 1]N egységkocka, a dinamikát de�niáló
leképezés pedig

F : [0, 1]N → [0, 1]N ,
(
F(x)

)
i

= F

 1

di

∑
j∈Ni

xj

 , i = 1, 2, . . . , N .

A dinamika annyiban van csak a G gráfon de�niálva, hogy az i index (amely az egységkocka adott pontjához
annak i�edik koordinátáját rendeli) a G gráf i�edik csúcsára utal.

Az m > θ feltétel mellett implicit deriválásokkal könny¶ igazolni, hogy az F : [0, 1] → [0, 1] függvény
kielégíti az F ′(0) = m

θ > 1, F ′ > 0, F ′′ < 0 egyenl®tlenségeket. Mivel F (0) = 0, az F függvénynek egyetlen
x∗ > 0 �xpontja van a [0, 1] intervallum belsejében, és az is világos, hogy az x`+1 = F (x`), ` = 0, 1, 2, . . .
iterációt bármely 0 6= x0 ∈ [0, 1] pontból indítva az `→∞ határátmenetben x` → x∗.

Ahhoz, hogy az x∗ = (x∗, x∗, . . . , x∗) ∈ [0, 1]N pont (amely nyilván az F leképezés �xpontja is egyben)
az [0, 1]N \ {0} halmazon globális attraktor legyen, még a G gráf egy speciális tulajdonságát is meg kell
követelnünk. Az 0 origó maga is �xpont lévén, annak kizárása alapkövetelmény. Így mindenképpen el® kell
írnunk, hogy max1≤i≤N xi,0 > 0 legyen (magyarán, hogy a nulladik évben legalább egy adó�zet® bármilyen
kevés, de pozitív összeg¶ adót �zessen be. Különben senki soha nem fog be�zetni semmit.) De mit kell
feltennünk a G gráfról? Ugyanazt, amit a Perron�Frobenius Tételben, mert ez biztosítja, hogy a nulladik
évben pozitív összeg¶ adót akár egyedüliként be�zet® polgár hatása térben és id®ben egyaránt jól keverve
terjedjen szét a gráf egészén55. A remélt eredmény már az eddig számbavett feltételek következménye.

53amik mellett ténylegesen érvelni lehet, azok az ln
(
1− θx

)
és az x− ln(x) függvények monotonitási, konvexitási (mindkét

függvény szigorúan konkáv a [0, 1] intervallumon) és szingularitási tulajdonságai � és az is fontos szempont, hogy a modell
egészéb®l levont következtetések közgazdaságilag elfogadhatóak legyenek

54a számtani középképzés tulajdonságai közül azt a tényt kell kihasználnunk, hogy az átlag mindig a minimum és a max-
imum közé esik. Ez a tulajdonság az úgynevezett középképz® operátorokat de�niáló axiómák egyike. B®ven tanultunk annyi
matematikát, hogy � legalább abban az esetben, amikor a középképzés véges sok valós számra vonatkozik � a többi axiómát
is fel tudjuk sorolni . . . .

55Érdemes kipróbálni a körgráfok esetét, azzal a kezd® állapottal, hogy a nulladik évben csak egyetlen tényleges adóbe�zetés
történik. Attól függ®en, hogy a körgráf csúcsainak száma páros vagy páratlan, egészen máshogy alakul minden. Bármely
páros grá�al is ugyanaz a probléma adódik, mint a páros csúcsszámú körgráfok bármelyikével.
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Tétel: Tekintsük a (30) dinamikát a G gráfon, amelynek szomszédsági mátrixa legyen primitív mátrix.
A kezdeti állapotra tett el®írásunk legyen max1≤i≤N xi,0 > 0. Tegyük fel továbbá azt is, hogy m > θ.

Ekkor x∗ = (x∗, x∗, . . . , x∗) ∈ [0, 1]N az (30) dinamika aszimptotikusan stabil �xpontja, a [0, 1]N \ {0}
vonzási tartománnyal.

Bizonyítás: A G gráfra tett feltevés miatt van olyan T ∈ N, hogy a G gráf bármely két csúcsa között
létezik T hosszúságú út.

A kezdeti állapotra tett feltevés következtében min1≤i≤N xi,T > 0. Mivel a számtani közép mindig a
minimum és a maximum közé esik, a nemlineáris F függvény pedig monoton növekv®,

F ( min
1≤j≤N

xj,T ) ≤ xi,T+1 = F (xi,t) ≤ F ( max
1≤j≤N

xj,T ) , i = 1, 2, . . . , N ,

majd innen indukcióval, iteráltról iteráltra haladva

F t( min
1≤j≤N

xj,T ) ≤ xi,T+t ≤ F t( max
1≤j≤N

xj,T ) , i = 1, 2, . . . , N , t = 1, 2, 3, . . .

és 1 ≤ i ≤ N�ben a maximumot és a minimumot véve

F t( min
1≤j≤N

xj,T ) ≤ min
1≤i≤N

xi,T+t ≤ max
1≤i≤N

xi,T+t ≤ F t( max
1≤j≤N

xj,T ) , t = 1, 2, 3, . . . .

Most már csak a valós számsorozatok határértékére vonatkozó zsandár�pandúr�csend®r�rend®r elvre kell
hivatkozni. 2

A modell jogosultsága melletti fontos érv, hogy a θ növelésével párhuzamosan az x∗ = x∗(θ,m) értéke
általában csökken, s®t az eddig jogosan kizárt θ = m esetben a teljesen abszurd x∗ = 0 eredmény adódik.
Sajnos ez tényleg így van: ha egy adott országban az adómorál alacsony szinten áll, akkor az adókulcs
emelése nagyon nem tanácsos ... mert a ténylegesen befolyó adók csökkenésével szokott járni.

A modellel szembeni legkomolyabb érv az, hogy az U elégedettségi függvény és így a dinamikát végs®
soron meghatározó F függvény is adó�zet®r®l adó�zet®re, s®t az id®ben is változhat. És annyi minden más
közgazdasági, szociológiai, történelmi s®t pszichológiai tényez®t is �gyelembe lehetett volna még venni.

Ráadásul az adóhivatal nem meg�gyelni szeretné ezt a folyamatot. Célja a közbeavatkozás. De hogy
ezt miként tegye, arra nézve még az egyszer¶, magukra hagyott �játék��modellek is � Simonovits András
modellje is ilyen � adnak bizonyos támpontokat.

Véletlen gráfokról dióhéjban: A véletlen gráfok három leggyakrabban tárgyalt típusa

• Erd®s�Rényi gráfok (szokásos a Bernoulli gráfok elnevezés is)

• Strogatz�Watts gráfok (szokásos a kisvilág � smallworld � gráfok elnevezés is)

• Barabási�Albert gráfok (szokásos a skálafüggetlen � scalefree � gráfok elnevezés is)

El®ször azonban a skálafüggetlenség gráfelméleten kívüli jelentését vizsgáljuk meg.
Skálafüggetlenség: A legsz¶kebb, kizárólag matematikusok által használt de�níció: egy f : R\{0} → R

folytonosan deriválható függvény skálafüggetlen, ha van olyan g : R \ {0} → R folytonos függvény, hogy

f(cx) = g(c)f(x) ∀ c, x > 0 . (31)
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A (31) azonosság függvényegyenlet56: olyan algebrai összefüggés, amely a változók minden megengedett
értékeire teljesül, és amelyben az ismeretlen(ek) egy (vagy több) függvény.

Az (31) függvényegyenlet megoldásait könny¶ kiszámolni. Ha f(x0) = 0 valamely x0 > 0 értékre, akkor
a c > 0 változtatásával f(x) ≡ 0 adódik. Tehát a folytonosság miatt az összes többi esetben f(x) > 0 vagy
f(x) < 0 minden x > 0 esetén. Az algebrai azonosságról egy di�erenciálegyenletre áttérve, szellemes de

teljesen elemi lépések után f(x) = k xr adódik, ahol k és r = f ′(1)
f(1) valós paraméterek:

f(cx)

f(x)
= g(c) ⇒ f ′(cx) c f(x)− f(cx) f ′(x)

f2(x)
= 0 ⇒ f ′(c) c f(1)− f(c) f ′(1) = 0 ⇒

⇒ f ′(c) c

f(c)
=
f ′(1)

f(1)
⇒

∫
f ′(c)

f(c)
dc =

∫
r

c
dc ⇒ ln(f) = r ln(c) + C ⇒ f(c) = k cr .

A c változó helyébe rendre x�et és cx�et írva, a (31) azonosság alapján g(c) = cr adódik.57

A hétköznapi szóhasználatban a skálafüggetlenség egy folytonos eloszlás f s¶r¶ségfüggvényére
utalva azt jelenti, hogy az x → ∞ aszimptotikában f(x) ≈ a 1

xm , ahol a > 0 és m > 1 állandók.
(Látni fogjuk, ez a de�níció a P (ξ = k) ≈ a 1

km formula révén diszkrét eloszlásokra is kiterjeszthet®.)
A skálafüggetlenség csak az eloszlás aszimptotikájára vonatkozik: a s¶r¶ségfüggvény aszimptotikája � a
�power law� szabályt követve � legyen olyan, mint az a

xm hatványfüggvényé. Az y = a
xm függvénykap-

csolat szokásos ábrája az X = log(x), Y = log(y) új változókban az Y = −mX + log(a) egyenes. A
hatványfüggvény negatív kitev®je tehát iránytangensként is értelmezhet®.

A skálafüggetlen eloszlások prototípusa a standard Cauchy eloszlás, amelynek s¶r¶ségfüggvénye

f : R→ R+ , x→ f(x) =
1

π(1 + x2)
.

A várható érték a szokásos értelemben nem létezik, de az
∫∞
−∞

x
1+x2 dx integrál Cauchy féle f®értéke 0. A

szórás létezése még ilyen gyengített értelemben sem menthet®, a szórás nem de�niált (ha valaki nagyon
akarja, végtelenül nagy). A standard Cauchy eloszlásból a�n helyettesítésekkel kapjuk a Cauchy eloszlások
három�paraméteres családját.

A kétparaméteres Pareto eloszlások is skálafüggetlenek. Az xm > 0 és α > 0 paraméter¶ Pareto eloszlás
s¶r¶ségfüggvénye

fxm,α(x) =

{
αxαm

1
xα+1 ha x ≥ xm

0 ha x ≤ xm .

56A leghíresebb a Cauchy féle f(x + y) = f(x + f(y) ∀ x, y ∈ R függvényegyenlet, amelynek összes folytonos megoldása
f(x) = kx alakú, ahol a k ∈ R paraméter. Az f(1) = 1 normálás mellett a Cauchy féle függvényegyenlet egyetlen folytonos
megoldása f(x) = x (nem�folytonos megoldások is vannak b®séggel, de ezek egyike sem lesz (Lebesgue értelemben sem)
mérhet® függvény). Az elemi függvények szokásos azonosságainak illetve azonosságlistáinak mindegyike felfogható függvénye-
gyenletként illetve függvényegyenlet�rendszerként is, amelynek � alkalmas regularitási/símasági és normálási feltételek esetén
� egyetlen megoldása van, maga a kérdéses elemi függvény illetve függvénycsalád.

57A skálafüggetlen elnevezés a lineáris X = cx, Y = dy átskálázás olyan y = f(x) ⇔ Y = F (X) lehet®ségére utal, amikor
F ≡ f marad. Minden c > 0 esetén van olyan d = g(c) > 0, hogy y = f(x) ⇔ Y = f(X) . Ez pontosan azt jelenti,
hogy a g(c)f(x) = f(cx) formula azonosság az x > 0 (és a c > 0) valamennyi értékére: az átskálázás mit sem változtat az f
függvényen.
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A várható érték és a szórásnégyzet az α > 1 illetve az α > 2 esetekben lesz csak véges:

E(ξxm,α) =
αxm
α− 1

és D2(ξxm,α) =
αx2

m

(α− 1)2(α− 2)
.

A Pareto eloszlás klasszikus interpretációja a jövedelmek eloszlása egy gazdaságban, ahol xm > 0 a minimál-
bér és α > 1 egy, az adott gazdaságra jellemz® állandó. Pareto száz évvel ezel®tti nevezetes, híres�hírhedt
80�20 szabálya (mely szerint az összjövedelem 80 százaléka jut a lakosság leggazdagabb 20 százalékának)
az α = ln(5)

ln(4) = 1.161. . . választásnak felel meg.58

A skálafüggetlenség fogalma az elmúlt 20 évben két szempont miatt vált megkerülhetetlenül fontossá.
Az egyik az, hogy a tapasztalat szerint az úgynevezett szociális gráfok nagy része � ilyen az internet is �
skálafüggetlen. Barabási�Albert László és Albert Réka kutatásai úttör®k voltak ezen a területen. A másik
az, hogy a 2008�as gazdasági világválságot a pénzügyi matematika nem jelezte el®re59: olyasmi történt,
aminek a korábbi sztochasztikus modellek szerint elhanyagolhatóan kicsi volt a valószín¶sége. A nagyon
kicsiny valószín¶ség¶, de óriási hatásokat okozó jelenségekkel külön tudományág foglalkozik azóta, a ritka
jelenségek tudománya. A Fukushimai Atomer®m¶ balesete is egyike volt a tipikus ritka jelenségeknek. A
földrengés azonnal elszakította az elektromos távvezetékeket, de magában az er®m¶ben nem okozott komoly
károkat. De a tervez®k nem gondoltak arra, hogy egy kivételesen er®s cunami tönkreteheti az atomreaktor
h¶tési rendszerének mindkét (egymástól és a szokásos küls® áramellátástól egyaránt független) tartalék
áramfejleszt® egységének generátorait. Elég lett volna öt méterrel magasabbra helyezni ®ket, és akkor
semmi baj nem történik.

Erd®s�Rényi gráfok: Adva van n csúcspont és egy 0 < p < 1 szám. Az n csúcspont között lehetséges
(
n
2

)
él mindegyikét p valószín¶séggel behúzzuk. Az így kapott G(n, p) gráf csúcsainak fokszámeloszlása a

P (deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k , k = 0, 1, . . . , n− 1

binomiális eloszlás, amely nagy n�re jól közelíthet® a N (µ, σ) = N (np,
√
np(1− p)) normális eloszlással.

Az np = λ > 0, n→∞ határátmenetben a

P (deg(v) = k) = e−λ
λk

k!
, k = 0, 1, . . .

Poisson eloszlás a határérték.
Az Erd®s�Rényi gráfokra jellemz®ek a határértékképzés kritikus konstansai60. Ezek a kritikus konstan-

sok a gráf bizonyos vagy�vagy tulajdonságaival függenek össze, amelyek az egyes esetekben aszimptotikusan

58A jövedelem és a vagyon megoszlását sok más módon is szokás modellezni, többek között a lognormális eloszlással. (Jóllehet
az ilyen sommás megállapítások mindig er®sen vitathatók, egyes becslések szerint a Föld jelenlegi feln®tt lakosságának 69
százaléka az, amely az összvagyon 3 százalékát birtokolja, a legszegényebb 50 százaléknak pedig pontosan annyi vagyona van,
mint a leggazdagabb 62 személynek.)

59a rossz nyelvek szerint nem kevés pénzügyi matematikus sejtette azt, ami végül is bekövetkezett, de a saját jól felfogott
érdekében a �hallgatni arany� csendben maradást okosabbnak látta

60A határértékképzés kritikus konstansai gyakori szerephez jutnak bizonyos �zikai jelenségek � legyen ez most a fentr®l lefelé
történ® átszivárgás egy porózus közegen � sztochasztikus modellezésénel (más szóval a statisztikus �zikában): Tekintsük a
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egy valószín¶séggel teljesülnek. Hogy csak a legegyszer¶bb példákat vegyük,

limn→∞
np

ln(n) < 1 ⇒ G(n, p) nem összefügg®

limn→∞
np

ln(n) > 1 ⇒ G(n, p) összefügg®

és

limn→∞ np < 1 ⇒ G(n, p) maximális komponensének nagyságrendje const · ln(n)
limn→∞ np > 1 ⇒ G(n, p)�ben pontosan egy óriás�komponens van, const · n nagyságrenddel .

Strogatz�Watts gráfok61: a Watts�Strogatz konstrukció az n csúcsú d�reguláris körgráfból indul ki, amelynek
nd
2 számú éle van. (Itt 2 ≤ d < 2n szükségképpen páros szám: a d�reguláris körgráfot a hagyományos
körgráfból kiindulva úgy kapjuk meg, hogy minden egyes csúcsot a t®le jobbra és balra ≤ d

2 hosszúságú úttal
elérhet® többi csúccsal is közvetlen éllel kötjük össze. A gyakorlatban szokásos paraméter�választás 1 �
ln(n) � d � 2n.) Körbemenve a V1, V2, . . . , Vn csúcsokon, a Vi csúcstól �hátrafelé� �induló� (Vj , Vi) élek
mindegyikét 0 ≤ β ≤ 1 valószín¶séggel kicseréljük egy akkor�éppen�nem�élre, amelynek egyik végpontja
a Vi csúcs marad (az akkor�éppen�nem�élek közül az egyenletes eloszlás szerint válogatva). Így az eredeti
d�reguláris körgráf minden egyes élére pontosan egyszer kerül sor, és a konstrukció mindvégig kizárja
többszörös vagy hurokélek létrejöttét. A β = 0 esetben az eredeti d�reguláris körgráf változatlan marad, a
β = 1 esetben pedig egy G(n, p) Erd®s�Rényi gráfot kapunk, ahol � hiszen az élek száma nem változott
� p = nd

2 /
(
n
2

)
. A β interpolációs paraméter szokásos választása egyébként 0 < β � 1.

Barabási�Albert gráfok: a Barabási�Albert konstrukció kiindulópontja bármely n0 csúcspontú Gn0 (szokás
szerint összefügg®) gráf lehet, amelyhez lépésenként mindig egy új csúcspontot veszünk hozzá. Az új
csúcspontot és a már korábban meglév® csúcspontokat rendre 0 < m ≤ n0 számú éllel kötjük össze, a
párhuzamos és a hurokéleket most is kizárva. Az új élek behúzása azonban nem egymástól független
véletlenek szerint történik, hanem preferenciákat, a régi csúcspontok tudatos súlyozását követi. Az n0 +
i + 1�ik (i = 0, 1, . . .) új csúcspontnak a j�edik (j = 1, 2, . . . , n0 + i) csúcsponttal való összekötése annál
valószín¶bb, minél nagyobb a j�edik csúcspont aktuális fokszáma. A Barabási�Albert preferenciaszabály
szerint

(n0 + i+ 1, j) ∈ E(Gn0+i+1) valószín¶sége egyenesen arányos
deg(j)∑

1≤k≤n0+1 deg(k)
�val .

Matematikailag bizonyított eredmény, hogy az i→∞ határátmenetben az egyre növekv® gráf aszimptotikus
fokszámeloszlása a

P (deg(v) = k) ≈ const(m)
k3

, k � n0 (32)

Z×Z rácsgráfot, majd egymástól függetlenül, azonos 0 < p < 1 valószín¶séggel töröljük annak minden egyes élét. A kérdés az,
van�e az így meghatározott síkgráf komplemeterhalmazában olyan folytonos görbe, amely a �végtelen magasságot a végtelen
mélységgel� köti össze, abban az értelemben, hogy sem az északi, sem a déli irányban nem korlátos. A válasz a következ®: ha
p > 1

2
, akkor egy valószín¶séggel létezik ilyen görbe, ha viszont p < 1

2
, akkor egy valószín¶séggel nem létezik.

61a �kisvilág� véletlen gráfok konstrukciójának klasszikus példája: �nagyvilág� gráfra a rácsgráfok a legjobb példa � ter-
mészetesen egy rácsgráf soha nem lehet véletlen, és struktúrája szerint egy celluláris automata cellarendszerével azonosítható,
a rajta de�niált dinamika azonban nagyon is lehet sztochasztikus
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szabályt követi. Ez a valószín¶ség jóval nagyobb, mint az Erd®s�Rényi gráfokkal kapcsolatban is tár-
gyalt Poisson eloszlás esetében, ahol is a nagyon nagy fokszámú csúcspontok valószín¶sége exponenciálisan
kicsiny. Utóbbi megállapítás a Strogatz�Watts gráfokra is érvényes: a nagyon nagy fokszámú csúcspon-
tok valószín¶sége exponenciálisan kicsiny. A Barabási�Albert konstrukció és preferenciaszabály � ame-
lynek több évtizeddel korábban is voltak sporadikus el®zményei � arra ad példát, hogy egy ritka esemény
bekövetkezésének valószín¶sége a vágyottnál vagy a rettegettnél sokkal�sokkal nagyobb is lehet. A már
említett szociális gráfokra a (32) képlet γ = 3 kitev®je (ami a k exponense az ottani nevez®ben) helyett a
2 < γ < 3 kitev® a jellemz®.

A 0 < β < 1 esetben a Strogatz�Watts gráfok szerkezete minden tapasztalat, rengeteg szimuláció
és nem kevés egzakt matematikai eredmény szerint is er®sen különbözik mind az Erd®s�Rényi, mind a
Barabási�Albert gráfok szerkezetét®l.

Két adott gráf (lett légyen irányított vagy irányítatlan) szerkezetének egymáshoz közeli voltát a leg-
fontosabb szerkezeti indikátorok/paraméterek összehasonlítása révén állapíthatjuk meg. A szerkezeti paraméterek
matematikailag pontosan de�niált mennyiségek (ami nem azt jelenti, hogy meghatározásuk esetenként
ne lehetne NP�teljes feladat), de maga a �a szerkezet� és két gráf szerkezetének �közelsége� er®sen intu-
itív fogalom�alkotások (egyre szaporodó serege, egymással gyakorta polemizáló szempontrendszerekkel).
Ez nagyon eleven kutatási terület, különösen nagyméret¶ (és nem is mindig pontosan ismert) gráfok
elemzése és a számítógépes adatgy¶jtés szempontjából. A legnehezebb kérdések egyike, hogy az élet-
tudományokban felmerült (és jól�rosszul megtalált) gráfok szerkezete milyen el®nyökkel jár az evolúció
szempontjából. Itt fontos megjegyeznünk, hogy a gén regulációs, fehérje interakciós gráfok, csakúgy mint a
sejt�anyagcsere hálózatok jelent®s részének fokszámeloszlása a Barabási�Albert gráfok kapcsán megismert
P (deg(v) = k) ≈ const 1

kγ szabályt követi.

A legtöbbet vizsgált, legfontosabb gráfparaméterek, szerkezeti indikátorok az alábbiak:

• a csúcspontok (aszimptotikus) fokszámeloszlása,

• a két csúcspont közötti átlagos úthossz62,

• a klaszterezettség egymással rokon típusainak63 mértéke.
62A �kisvilág gráf� elnevezést a kifejezés legáltalánosabb jelentése szerint azokra a gráfokra szokás használni, amelyekben

ez az átlagos úthossz nagyon kicsiny � az ilyen gráfok talán leggyakrabban emlegetett példája a ma él® emberek közötti
személyes ismeretség gráfja, ahol az átlagos úthossz hat vagy hét körül lehet. (Ezt a kicsiny átlagos úthosszt alapvet®en az
teszi lehet®vé, hogy vannak emberek, akiknek számos ismer®se van még az egymástól távoli országokban, földrészeken is.)
Érdemes megemlíteni, hogy az ismeretségi gráf klaszterezettsége magas színt¶. Ez a két tulajdonság az emberi társadalom
globális és lokális jellegének egyenkénti és együttes fontosságára utal.

63Adott � irányítatlan, párhuzamos és hurokélek nélküli � gráf klaszterezettségének legegyszer¶bb típusa a háromszögek
számának a cseresznyék számához viszonyított aránya, amelyet lokálisan (a G gráf i�edik csúcspontjára [amennyiben di ≥ 2]
a #{(j, k) ∈ E(G) | j, k ∈ Ni} · 1

di(di−1)
képlettel) is és globálisan (egyszerre az egész gráfra) is lehet de�niálni. (Hogy mi a

háromszög, az magától értet®dik: egy három csúcsponttal bíró teljes részgráf. A cseresznye pedig egy majdnem�háromszög
részgráf (három csúcsponttal, és két éllel). A klaszterezettség fenti lokális de�níciójában az adott csúcsponthoz csak azok
a cseresznyék tartoznak, amelyekben ez a csúcspont a kett® fokszámú.) Világos, hogy egy háromszög három cseresznyéb®l
áll. A számos rokon fogalomalkotás egyike: egy gráf adott ` csúcspontja (például {i} ∪ Ni, ahol ` = di + 1) által kifeszített
részgráfjának klaszterezettsége az adott részgráf éleinek száma osztva

(
`
2

)
�vel, ami az ` csúcspontú teljes gráf éleinek a száma.

� Súlyozott rácsgráfok klaszterezése valamint színes vagy szürkeárnyalatos képek szegmentálása egymással rokon feladatok.
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A szerkezeti indikátorok közé szokás sorolni

• a gráfhoz rendelt mátrix(ok), például az adjacencia vagy a bolyongási mátrix spektrumát

is, jóllehet az algebrai gráfelmélet az alkalmazott tudományokban mintha kevesebb szerepet játszana64.

A legegyszer¶bb SIR modell, s a járványterjedési modellek f® szempontjai: El®ször a Kermack�
McKendrick közönséges di�erenciálegyenlet modellt ismertetjük, amely az R3 tér A = col(1, 0, 0), B =
col(0, 1, 0), C = col(0, 0, 1) csúcspontok által meghatározott szabályos H háromszögén van értelmezve. A
tengelyek és a modell változói az I, az R és az S, amelyek rendre az infected fert®z®tt, recovered gyógyult,
susceptible fert®zhet® szavak kezd®bet¶ire utalnak. A betegség lefolyásának megfelel® sorrend a SIR volna
�a fert®zés az egészséges egyedet beteggé teszi, majd a betegség lezajlása után az egyed meggyógyul, és az
adott betegségre immunissá válik �, de az IRS sorrend könnyebb geometriai szemléltetést tesz lehet®vé:
az I, R, S tengelyek rendre az x, y, z tengelyeknek felelnek meg. Az egyenletrendszer a következ®:

İ = τSI − I , Ṙ = I , Ṡ = −τSI , ahol I +R+ S = 1 és I,R, S ≥ 0 . (33)

A tényleges modell természetesen İ = rSI−ρI, Ṙ = ρI, Ṡ = −rSI, ahol mind a populáció S+I+R = M =
const össztömegét, mind a ρ > 0 felgyógyulási rátát (el®bbit az össztömeg, utóbbit az id® átskálázásával)
már el®zetesen 1�nek választottuk. Így egyetlen paraméter maradt, az r fert®zési/megbetegedési ráta,
amely τ�vá transzformálódott. A (33) rendszerben már τ > 0 jelenti a fert®zési/megbetegedési rátát. A
középs® egyenlet jobb oldala � a Lotka�Volterra modellekkel ellentétben � nem Rh(I,R, S) szerkezet¶: a
trajektóriák a biológiailag egyedül értelmes H háromszögbe az AC szakasz bels® pontjain át léphetnek be,
de utána a H háromszögben kell maradniuk. Az AB szakasz az A és a B egyensúlyi helyzeteket valamint
egy A→ B trajektóriát tartalmaz. A BC szakasz csupa egyensúlyi helyzetb®l áll: I = 0 és R+S = 1, 0 ≤
R,S ≤ 1. Mindezek a tulajdonságok azonnal észrevehet®k a (33) rendszer konkrét alakjának vizsgálatából.
Vegyük észre azt is, hogy a felsorolt tulajdonságok többsége (és köztük az I+R+S = 1 tömegmegmaradási
törvény) teljesül mind az explicit, mind az implicit Euler módszer szerinti diszkretizáltakra.

Az esetleges járvány az I(0) = ε, R(0) = 0, S(0) = 1 − ε kezdeti feltételekb®l kell hogy kiinduljon,
ahol 0 < ε� 1. Mivel a járvány indulásakor a betegek I(t) aránya növekedni szokott, a (33) rendszer els®
egyenletébe t = 0�t helyettesítve İ(0) = (τS(0)− 1) · I(0) = (τ(1− ε)− 1)ε ≥ 0 szerint τ > 1 adódik.

Sajnos a tényleges megoldásgörbéket nem lehet zárt alakban meghatározni. Amire pontos képletünk
van, azok a

dS

dR
= −τS ⇒ dS

S
= −τdR ⇒ ln(S) = −τR+ c ⇒ S = ke−τR . (34)

levezetés szerint a megoldásgörbék vetületei az R− S síkon (amelyb®l csak az I = 0, R+ S ≤ 1, R,S ≥ 0
L háromszöglemez számít): exponenciális lefutás, ahol k ≥ 0 paraméter. A kérdéses L háromszöglemez

64A gráfok szerkezete villamosmérnöki kísérletek számára is hozzáférhet®. A gráfot építsük meg elektromos hálózatként és
legyen minden él ellenállása 1 Ohm. Ezután kapcsoljunk 100 Volt egyenfeszültség(�különbség)et a hálózat két csomópontjára,
és nézzük meg, mennyit esik a feszültség az egyes élek mentén. Intuitíve világos, hogy azok az élek, amelyeken a feszültségesések
a legnagyobbak, más szerepet játszanak a két csomópont közti vágásokban, mint azok az élek, amelyeken a feszültségesés
nagyságrendekkel kisebb. � Adott gráfon értelmezett bolyongások szimulációs vizsgálata is a gráf vágásairól, illetve er®sebben
összefügg® részeir®l � ezek azok a részgráfok, amelyekb®l a bolyongás csak nehezen akar kivezetni � nyújt felvilágosítást.
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határát, annak átfogójában, τ ≤ 1 esetén a k < 1 paraméter¶ exponenciális görbék egy-egy pontban
metszik. Visszavetítve ezt a geometriát a H háromszögre, arra következtethetünk, hogy az AC szakasz
Pε = col(ε, 0, 1 − ε), 0 < ε � 1 pontján átmen® trajektória τ ≤ 1 esetén a C ponttól nem távolodik el
túlságosan: a járványmentes C egyensúlyi helyzet stabil, a járvány elmarad.

Ha azonban τ > 1, akkor a Pε ponton átmen® trajektóriát � legyen az ε > 0 bármilyen kicsi is
� a k = 1 paraméter¶ S = e−τR exponenciális görbe (amelyik az L háromszöglemezbe a C ponton át
belépve onnan egy D = col(0, R∗, S∗) ponton át távozik65) arra kényszeríti66, hogy t → ∞ esetén egy, a
BD szakasz belsejében lév® Qε egyensúlyi helyzethez tartson, ahol ε → 0+ mellett Qε → D. A járvány
a limt→∞ I(t) = 0 határátmenetben anélkül sz¶nik meg, hogy a populáció egésze megfert®z®dött volna:
a populáció S∗ > 0 része mindvégig egészséges maradt. Az S∗ > 0 járványküszöb létezése és nagysága
nemtriviális matematikai eredmények.67 A (33) rendszer trajektóriái a H háromszöglemezt egyrét¶en
borítják be, s eközben az AC szakasz pontjait � a t → ∞ határátmenetben � a BD szakasz pontjaiba
viszik, a DC szakasz pontjait pedig (egyetlen �középs®� pont kivételével) páronként egymásnak feleltetik
meg.68

A (33) modell dinamikájáról � akár számítógéppel, akár (a fenti gondolatmenetet szemléltetéseként)
kézzel rajzolva � ábrákat készíteni roppant tanulságos és hálás feladat.

Azoknak a betegségeknek egy szokásos modellje, amelyeket egymás után többször is meg lehet kapni,
a (legegyszer¶bb) SIS modell: Ṡ = −rSI + σI, İ = rSI − σI � itt S + I = const, de az általánosság
megszorítása nélkül feltehet®, hogy I + S = 1 és σ = 1. Az r = τ ≷ 1 esetszétválasztás a SIS modell
vizsgálatában is lényeges szerepet játszik.

A klasszikus, (33) képletszámmal jelzett SIR modellnek rengeteg általánosítása van. Már az R =
removed (with or without immunity) szóhasználat is másfajta interpretációkat tesz lehet®vé. Ezenkívül �-
gyelembe lehet venni a betegség lappangási idejét, a nem és az életkor szerinti különböz®ségeket, születéseket
és halálokat, szezonális hatásokat, a térbeli�földrajzi terjedést, s®t az emberi beavatkozásokat (oltások,
karanténba helyezés) is: a folytonos idej¶ determinisztikus modelleket késleltetett, közönséges, integrál és
parciális egyenletek írják le. Az általánosításokat itt és most � sem a f®szövegben, sem a lábjegyzetekben
� nem részletezzük, csupán néhány rövid megjegyzésre szorítkozunk. Az általánosítások fajtái, típusai,
irányai nagyjában� egészében most is ugyanazok, mint amiket a kétdimenziós Lotka�Volterra (16) rendszer
esetében több oldalon át tárgyaltunk a Nemlineáris Dinamika jegyzet69 3.8 fejezetében.

Minden folytonos idej¶ modellnek létezik diszkrét idej¶ és sztochasztikus változata is, amelyekben a
véletlenek bizonyos eloszlások szerint valósulnak meg.

Mostanában nagy keletje van a nagyméret¶ hálózatokon értelmezett olyan sztochasztikus modelleknek,

65az exponenciális görbe konvex lévén, a BC szakaszt még egy, a C és a B közötti D pontban metszi
66ennek bizonyításához az is kell, hogy a (33) rendszer utolsó két egyenlete szerint R(t) szigorúan monoton növekszik, S(t)

pedig szigorán monoton csökken
67Sok tapasztalat szól amellett, hogy a SIR modell ebb®l a szempontból is jó közelítését adja a valóságnak. Nem szokott

mindenki minden járványban megbetegedni. Nagyon érdemes egy pillantást vetni a Wikipedia EPIDEMIC MODEL, BLACK
DEATH, PESTIS szócikkeire (utóbbi kett®ben a középkort sok szempontból lezáró, az össz�európai népesség harmadát
elpusztító 1348�as pestisjárvány térképeivel, valamint a járvány képz®m¶vészeti ábrázolásaival).

68Az R függvényében (34) miatt az I változó is kifejezhet®: I(R) = 1−R− ke−τR, ahol k → 1− ⇔ ε→ 0+. Az R és a t
közötti függvénykapcsolat monotonitását is használva ebb®l már könny¶ levezetni, hogy I(t) egy darabig szigorúan monoton
növekszik, azután szigorúan monoton csökkenve tart a 0�hoz, maximumának értéke pedig Imax = 1− ln(τ)+1

τ
, ha τ > 1.

69http://digitus.itk.ppke.hu/∼garay/NDS jegyzet/
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amelyek a klasszikus, �leátlagolt� (33) SIR modell �bármely két egyed találkozása egyformán valószín¶�
és �minden egyes beteg�egészéges találkozáskor a betegség átadásának valószín¶sége is egyforma� im-
plicit el®feltevésének tagadásából indulnak ki. A hálózat/gráf csúcsai az egyedeknek, állandó vagy sz-
tochasztikusan változó élei pedig az egyedek találkozásainak felelnek meg. A legmarkánsabb, hosszú ideig
tartó mintázatok � például lassan mozgó frontok, utazó hullámok � a rácsgráfok által hordozott di-
namikus rendszereknek is tekinthet® celluláris automatákban érhet®k tetten a legközvetlenebbül. A gráfok
szerkezete és a rajtuk megvalósuló dinamikus rendszerek mintázatainak jellege közötti kapcsolatok felderítése
a számítógépes kísérletezések hálás terepe.

Az óvatosság mégis helyénvaló: a valóság sokkal bonyolultabb. Jobban körülhatárolt, kevésbé általános,
matematikailag is keményebb modellekre van szükség, amikor a matematika abban segít, hogy a konkrétról
tudjunk meg többet, kvantitatíve és kvalitatíve egyaránt. Mérési adatok alapján specializálni sokszor ne-
hezebb és sokkalta érdemesebb, mint általánosítani.
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