A diffazié—egyenlet kétféle levezetése és néhany tulajdonsaga:

A MAKROFIZIKAI LEVEZETES: EGYENSULYI ELVEKBOL — A HOVEZETESI INTERPRETACIOBAN  Jel6lje
u(t,z) az x € Q C R? (d = 1,2,3) pont hémérsekletét a ¢t > 0 idépontban. A masik alapvets fogalom
a héaramlas id6t6l és helytdl is fliggd vektormezdje, az F(t,x). A harmadik a belss héforrasok f(t,z)
sdridségfiiggvénye.

Egy G C Q térrészen belilli Q(t) = / cpu(t, z) dz héenergia Q(t) megvéltozasa
G

= a O0G peremen ataramlo — /

F ds héenergia + a bels6 héforrasok /f(t,:c) dr munkija ,
oG G

azZaz

/cput(t,a:) dr = — Fds—i—/ f(t,z) dx
G oG G

tetszoleges korlatos G C € (nyilt) tartoményon, ahol p az anyagsiirtiség és ¢ a fajh6. Az [, div(v) dz =
/. s U ds divergenciatétel valamint a diffizio! F = —k grad u toérvényének segitségével

/ cpur(t,x) doe = / div(k grad u) dz + / f(t,z) dz,
G G G

amibdl a
cpur(t,x) = div(k grad u) + f(t, x) (1)

végeredmény mar kozvetleniil adodik.? Amennyiben a k difftzios egyiitthaté dllandé (és nem k = k(z) alaku
fiiggveny), a k allando kihozhaté a divergencia operétora elé, és a végeredmény a cpu; = kAu + f(t,x)

alakra egyszertisodik. Ha nincsenek belsé héforrasok — azaz ha f(t,z) = 0 —, akkor az a? = % >0

jeloléssel az (1) egyenlet az u; = a®Awu alakot 6lti, amely egy elére megadott Q C R? (d = 1,2,3) kor-
latos tartomany pontjaiban érvényes. A tovabbiakban azt is feltessziik, hogy mind a ¢ fajhé, mind a p

o

anyagstriség, és akkor veliik egyiitt az a > 0 paraméter is térben-idében allandok.

A w; = a®Au parcialis egyenlethez perem— és kezdeti-érték feltételek is tartoznak. A kezdeti felté-
tel u(0,2) = g(x), * € Q alakt. Peremfeltétel tobbféle is lehet: a két legfontosabb tipus a Dirichlet—
fele u(t,z) = h(t,x), (t,x) € [0,00) x 02 peremfeltétel, illetve a (Carl) Neumann-féle % = h(t,x),
(t,z) € [0,00) x OQ peremfeltétel. Magatol ertetédik, hogy itt g és h elére megadott fiiggvények, mig

'a diffiziés torvényt a hétanban Fourier, a kémidban Fick, az elektromossagtanban Ohm nevéhez kotik — hat nem
csodalatos, hogy ugyanaz a matematikai modell képes leirni a kiillénb6z6 természettudomanyok ‘sajat’ jelenségeit? — A
diffazio—egyenlet u valtozdja csak a hétanban jelent hémérsékletet: a kémidban egy folyadékban oldott anyag 0 < v < 1
koncentraci¢jat jelenti

2egy matematikus még az Jo(epus(t, x) — div(k grad u) — f(t,x)) de = 0 képletet is kozbeiktatja, majd a “ha egy fiiggvény
integralja minden G' C Q tartoményon nulla, akkor a fiiggvény azonosan nulla” tételre hivatkozik. (Ez a tétel csak folytonos
fiiggvényekre igaz! Es kiilonben is, mar a divergenciatétel is csak olyan G tartomanyokra teljesiil, amelyek hatéara ... raadasul a
t szerinti derivalast sem lehetett volna csak Ggy bevinni az = szerinti integralas jele mogé ... de nem akarom tovabb karikirozni
a dolgot. Elég az hozza, nem baj, ha egy mérnéknek idénként eszébe jut, hogy minden szamolas érvényességének megvannak
a maga feltételeli — még akkor is, ha ezek a feltételek a szamara relevans esetekben automatikusan teljesiilnek).




tetszGleges © € 0N esetén v(z) a kifelé mutaté normalis egységvektort, %Z = (grad u(t, x),v(x)) pedig a
v(x) mentén vett irdnymenti derivaltat jelenti. A h = 0 valasztas a legfontosabb, a Dirichlet—féle esetben
ez egyenletes hiitést, a Neumann—féle esetben pedig teljes hészigetelést jelent.

Megjegyzés: Homogén Neumann peremfeltétel esetén a divergencia—tételt felhasznalva

Q(t):/ﬂcput(t,a:)dac:/div(kgradu)da::/émkgraduds:/aszOds:O = Q) =Q(0)

Q

adodik (hiszen (grad u(¢,z),v(x)) = 0 minden ¢ > 0 esetén), ami a hétani interpretacioban héenergia—
megmaradést, a kémiai interpretacioban pedig a folyadékban oldott (és a diffazioval terjed) anyag meny-
nyiségének /tomegének megmaradésat jelenti.

Megjegyzés: egy dimenzidéban linedris valtozo—transzformacidokkal — “skalazassal” — elérhets, hogy
a=1ésx € [0,n] legyen. Valoban, ha eredetileg x € [0, L], akkor

a T=at , y=px , u(t,r) =U(at,fzr) =U(T,y) linearis helyettesitésekkel

ez utobbi formulat (a jobb oldalon mint Gsszetett fiiggvényt) ¢ szerint egyszer, valamint x szerint kétszer
derivalva uy = Uy - o, gy = Uy, - B2 adodik, igy az a és a 3 paraméterek optimalis megvalasztasaval

up = a*ugy , (t,x) €[0,00)x[0,L] = U;-a= azuyy-BQ , azaz Ur = Uy, ha BL=m és o= a’p2.
Magatoél értetédik, hogy a linearis helyettesitések a perem— és a kezdeti feltételekre is vonatkoznak.

Megjegyzés: Az up = ugy, u(t,0) = u(t,7) = 0, u(0,z) = g(x) homogén Dirichlet feladat megoldhato
Fourier—sor alakjaban:

2 ™
ch Psin(nr) ahol ¢, = / g(x)sin(nx)dx, n=1,2,.... (2)
0

™

Maga az egyenlet homogén linearis, és a peremfeltétel is homogén. Igy az u(t,z) (t > 0, = € [0,7])
megoldéas az e_”ztsin(n:v) alapmegoldésok linearis kombinacidja. A linearis kombinacié egyiitthatoit a
t = 0 kezdeti allapotot leir6 g € Lo[0,n] fiiggvény Fourier sorfejtése szolgaltatja. Hasonloképpen, az
Ut = Ugg, Uz(t,0) = uy(t,m) =0, u(0,2) = g(x) homogén Neumann feladat megoldasa

0 2 (7
—5 z_: “cos(nz) ahol cn:/O g(x)cos(nx)dxr, n=0,1,2,.... (3)

™

Fontos megjegyezniink, hogy — még akkor is, ha a g fiiggvény folytonos, s6t ha még a g(0) = g(7) = 0
kompatibilitasi feltételek is teljesiilnek — a megoldas “déccenve” indul: a t = 0 id6pontban a Fourier—sorok
konvergencidja altaldban csak az Lo[0, 7] térben garantalt. Szerencsére ha t > 0, akkor a sordsszeg végte-
lenszer derivalhato a t és az x hibrid valtozokban. A t — oo hatdratmenetben a homogén Dirichlet feladat
megoldasanak képlete egyenletes u(t, ) — 0 kihiilést, a homogén Neumann feladat megoldéasédnak képlete



pedig az integral-atlaghoz tart6 u(t,z) — ¢ = %fgr g(z) dx teljes homérséklet—kiegyenlitGdést mutat.

(Ha az = € [0, L] intervallumon maradtunk volna egy &altalanos a > 0 paraméter mellett, akkor a
homogén Dirichlet feladat megoldésa ez lett volna:

= m™\2 4 7'(' 2 (L T
u(t,x) = nz_:lgn exp <— (az> n t> sin (znw> ahol a g, = L/o g(z) sin (znw> de, n=1,2,...

[e o]

allandok éppen a g : [0,L] — R fiiggvény {sin (¥nz)} x € [0, L] trigonometrikus rendszer szerinti

Fourier sorfejtésének egyiitthatoi.)

n=1’

MAXIMUM—ELV AZ uy = Au EGYENLETRE: Most az eddigiekben targyalt diffazié—egyenlet — amely-
ben tehat az ismeretlen fiiggvény u : [0,00) x 2 — R alaku, egydimenzios ¢ > 0 id6— valamint tetsz6leges,
d-dimenzios € Q C R? térvaltozoval — egy nagyon altalanos, roppant szemléletes és matematikailag
kénnyen bizonyithaté kvalitativ tulajdonsagardl lesz sz6. Ez a maximum-—elv, amelynek érvényesiilését
szinte naponta tapasztalhatjuk: Hidegzugok, melegzugok, csaktgy mint a koncentracié Osszestirtisodé-
sei vagy ritkuldsai egydimenzids linedris diffazié révén nem johetnek létre. A maximum—elv alapvetéen
egyetlen valos fiiggvényre teljesiil és mar a linearisan csatolt u; = o&?ugz, + au + bv, vy = B2V + cu + dv
egyenletrendszerre sem érvényes — itt u és v egy—egy oldott anyagfajta téridébeli koncentracidjat jelenti,
két olyan anyagét egyazon oldatban, amelynek o? és (B2 diffaziés egyethatdja egyméssal nem egyenls.
Okolszabalyként annyit mondhatunk, hogy a diffizio—egyenlet stabilizal és homogenizal, de a difftizio—
egyenletrendszer mar nem rendelkezik ezekkel a tulajdonsigokkal.

Kovetkezzék a szigorti matematika:

Legyen Q C R? korlatos (nyilt) tartomany, és legyen T' > 0 tetsz6leges. Vezessiik be az

Qr =(0,7)xQ , 9"Qr = ({0} x Q) U ((0,T] x 00

jeloléseket?. Ekkor
max{u(t,z) | (t,7) € Qr} = max{u(t,z) | (t,x) € " Qr}. (4)

Bizonyitds: A bizonyitdas — jollehet annak két részre bontésa ugyancsak szellemes — nem hasznal fel
mést, mint az egyviltozos fiiggvények vizsgalatanak szokasos 1épéseit.

1.) Tegyiik fel el6szor, hogy ur < ug,z, + Ugyz,- Megmutatjuk, hogy (4) még ekkor is teljesiil. Az
indirekt feltevés azt mondja, van olyan (¢*,2*) € (0,7] x Q pont, hogy

w(t®, ) = max{u(t,z) | (t,x) € Qr} > max{u(t,z) | (t,z) € 0*Qr}.
Ekkor ug, (t*, 2%) = 0 68 Uy, 2, (t*, %) < 0 valamint ug, (t*, 7%) = 0 &S Ug,u, (t*,2%) < 0. Igy

w(t*, 2") < Au(t™, ") = Ug o, (87, 27) + Ugys, (5, 27) <0,

3A d = 2 valasztas miatt konnyt a szemléltetés. Itt Qr egy, az R x R? téridében fekvs korlatos nyilt henger, 9*Qr az
Qr henger “csillagos pereme” (azaz kezdélapjanak és palastja lezarasanak az unidja — a “tényleges toltényhiively”). Annak
rendje-modja szerint feltessziik, hogy az u fiiggvény folytonos a [0,00) x Q zart halmazon, a t id6valtozo szerint egyszer, az
x = (w1, w2) helyvaltozo6 szerint kétszer folytonosan derivalhaté annak (0, 00) X © belsejében, tovabbéa ugyanott eleget tesz az
Ut = Au(= Uzy 2y + Usyay) egyenletnek.



amib6l u(t* — §,2%) > u(t*,2*) ha 0 < § < 1 (azaz ha 0 > 0 elegend@en kicsi). Tehat olyan ponto(ka)t
sikeriilt megkonstrualni a (0,7] x © halmazban, ahol az u fiiggvény értéke nagyobb a maximumnal, ami
ellentmondas.

2.)  Most visszatériink az eredeti u fliggvényhez. Az e > 0 paraméter segitségével definialjuk a
ve(t, @) = u(t, x) — et segédfiiggvényeket. Mivel

(ve)(t,x) = we(t, @) —e = Au(t,x) —e < Au(t,x) = Av(t, x),
a bizonyitas elsd része szerint
max{v.(t,z) | (t,7) € Qr} = max{v.(t,z) | (t,7) € *Qr}

tetsz6leges € > 0 esetén. A kivant (4) tulajdonsag az € — 07 hataratmenettel adodik. O

A maximum—elvet a — u fliggvényre atfogalmazva a
min{u(t,z) | (t,z) € Qr} = min{u(t,z) | (t,z) € 9*Qr} (5)

minimum—elvet kapjuk. A mazimum—elv és a minimum—elv egyittes kovetkezménye — ha azokat a két
hipotetikus megoldas kiilonbségére alkalmazzuk — AZ w, = Au + f(t,x), u(0, )’Q =g, u’(o’m)xag =h
KEZDETI- ES PEREMERTEK-FELADAT KLASSZIKUS (az el6z6 labjegyzetben felsorolt simasagi feltételeket
kielégitG) MEGOLDASANAK UNICITASA. Ez utobbi kijelentés fiiggetlen a kérdéses megoldés létezésétol.
Vegyiik észre, hogy a bizonyitas lokalis jellegti és tetsz6leges (t1,t2) X G C (0,00) x € nyilt henger
“toltényhiively”™-t alkotd “csillagos perem”—ére megismételhetd, akkor is ha az x térvaltoz6 nem d = 2, hanem
d = 1,3 vagy éppen d > 4 dimenziés. A bizonyitas els6 része azt is mutatja, hogy maga a maximum—elv
igaz az uy = Au—u? nemlinearis reakcio—diffizio egyenletre is, ahol a —u? “forrastag” soha nem lehet pozitiv.

A MIKROFIZIKAI PONTOSABBAN A STATISZTIKUS FIZIKAI LEVEZETES: A DIFFUZIO BROWN—MOZGAS
SZERINTI INTERPRETACIOJABAN Egyetlen pontszert részecske bolyong a szamegyenesen. Mozgasarol
csak annyit tudunk, hogy adott helyzetbdl §t id6 alatt % valdszintiséggel jobbra, % valészintiséggel balra
megy, éspedig dx tavolsagot.

Jelolje P(t,z) annak a valoszintiségét, hogy a részecske a ¢ idgpillanatban a szdmegyenes x pontjatol
balra helyezkedik el. A t és a t + dt id6pillanat kozotti lehetséges elmozdulasokat figyelembe véve, a
P(t+dt, z) valoszintiséget kifejezziik a t idépillanathoz tartozo kiilonb6z6 valoszintségekkel. Az az allapot,
hogy a t + dt idépontban a részecske az = ponttol balra helyezkedik el, kétféleképpen alakulhat ki: ha a
t idgpillanatban balra volt az x — dz ponttdl, vagy ha benne volt az (x — dx,z + dz) intervalumban. Az
el6z6 esetben tovabbra is balra marad az x ponttél, az utébbi esetben pedig a jobbra vagy balra lépések
egyikével az x ponttél jobbra, méasikaval az x ponttél balra keriil. A valészintségét figyelembe véve azt
kapjuk, hogy a kétvaltozos P fliggvény eleget tesz a

P(t+dt,x) = P(t,x — 0x) + %(P(t,:v +dx) — P(t,z — x))

algebrai Osszefiiggésnek. Ezutédn mindkét oldalbol kivonjuk a P(t, z) valoszintiséget és osztunk a d0t, a jobb
oldalon pedig bévitiink a (dx)? kifejezéssel. Igy
P(t+dt,x) = P(t,z) 1 P(t,x —dx) —2P(t,x) + P(t,x + dz) (62)2
St 2 (6x)2 5t




2
majd a (522 = 1 skalazassal és a dt,0x — O hataratmenettel a remélt Pi(t,z) = Py(t,x) parcialis

differencidlegyenlet adodik.
Ha a ¢t = 0 kezdeti id6pontban a részecske biztosan az z = 0 pontban volt (azaz P(0,z) = H(z) ahol
H a Heaviside fiiggvény), akkor a hémaggal (lasd a 10-ik oldalon) vett konvolucids integral a

Plta) = —— [ HEe e 5 e = 2 [T e g 3 d <I>< > )
, L) = = e z = -
2/ 7t 2v/mt Jo 2\/ V2t
2
végeredménnyé egyszeriisodik. Ttt ®(z) \ﬁ f =7 ds, a standard normalis eloszlas eloszlasfiiggvénye.

A fizikusok ezt ugy mondjék, hogy a diffuzié a Dirac deltat (vagy maés nézépontbol a Heaviside fiiggvény

altalanositott derivaltjat és ha tgy tetszik, Brown vizbe dobott pollen—csomagocskajat) ¢ > 0 id6 alatt az
22

N(0,0) = N(0,+/2t) normélis eloszlas ﬁe “207 stirtiségfiiggvényéve keni szét.
Nemnegativ matrixok hatvanyozasasra vezets feladatok:

PERRON-FROBENIUS TETEL: Legyen A = {aij}ijl nemnegativ, primitiv matrix. (Azaz ha az A
mdiriznak alkalmas ko—adik hatvdnya csupa pozitiv elemet tartalmaz — vagy ami ezzel ekvivalens, ha az
irdnyitott dtmenetgrdf dsszefiiggd és kiorei hosszanak LNKO—ja egy. Konwvencié: ({i} — {j}) € E(G) <
aji > 0.) Ekkor \y =7 > A2 > |A3] > ... > |\,]. Az r > 0 dominéns sajatértékhez tartoz6 dominans
sajatvektor jobbrol v > 0, balrol w! > 07, a w!'v = 1 normalassal. Tovabba

1

—kAk — VW
r

1
T ha k— oo és akonvergencia rendje lényegében — |AolF .
r
Tanulsdgos gyakorls feladat: Legyen A = {aij}?j:1 0-1 matrix. A.) Igazolja, hogy (Ak)m az
atmenetgraf j—edik csacsabol az i—edik csicsba vezets k hosszuségu irdnyitott utak szama. B.) Hatarozza
meg a ko értékét 1.) az A matrix els§ néhany hatvanya révén illetve 2.) az A maéatrixhoz rendelt
atmenetgraf kozvetlen vizsgalataval — ha n =4 és a1 = a14 = a1 = az2 = as3 = 1 és a tobbi a;; nulla.

PELDA 1. — FIBONACCI REKURZIO: Az fo = fi = 1, foy1 = fu + fuo1 (n =1,2,...) mésodrendd

linearis rekurziét felbontva az n—edik év ifju és 6reg nyulparjainak szama szerinti két els6rendt, egyméshoz
csatolt in41 = Op, Ont1 = iy + 0y linedris rekurziora, amelyek egyiitt matrixos alakban is felirhatok:

tntl =F on ) ahol F = 0 1 ‘0 == L tk :Fk ‘0 ; k2071727"'
On+1 On, 1 1 o] 0 Of o]

1++5
<)\’f“—>\’§+1> , ahol A= V5

= fe=iptop= az F matrix sajatértékei .

1
V5
PELDA 2. — STABIL KORFA AZ L LESLIE-MATRIXBOL négy korosztdly esetén, a by, ba, by > 0 sziiletési/birth
és az sy, Sa, 53 > 0 tulélési/survival ratdkkal (amikor szintén teljesiilnek a Perron—Frobenius tétel feltételei)

0 b1 by b3 ok
_ s 000 L = I TNeO _ (T 0
L= 0 so 0 0 = rk | ok —TkLX—>(VW )x' =(w'x")v ha k— 0.
0 0 s3 0 ok



A karakterisztikus polinom pg(\) = A — b1s1A2 — basyso) — bgsysas3. Mivel 1 < r és 1 < R (ahol is
R = b1s1 + bas182 + b3s1s2s3 az egyedenkénti utodok atlagos szama) jelentése egyarant a végtelenhez tarto
tulnépesedés, pusztan a bioldgiai tartalom alapjan 1 < r < 1 < R. Hasonl6képpen, mivel mind az r < 1,
mind az R < 1 egyenlGtlenség az aszimptotikus kihalas bioldgiai tényét fogalmazza meg: r <1 & R < 1.
Ugye a matematikai bizonyitds — amelyet szintén csak a 4 x 4 Leslie matrixokra mutatunk be* — is men-
nyire szép? (Es legalabb utolag: mennyire egyszerti?)

PELDA 3. — AMIKOR KEVESEBB IGAZ: silyozott permutdcié—mdtriz, avagy a cserebogarak/pajorok
négy korosztdlya. Itt by = by = 0 valamint bgsises3 = 1, és a psy(A\) = A* — 1 polinom gydkei +1, +i.

PELDA 4. — NEUMANN JANOS — AZ up = ul, (t >0, 0 < 2 < L) DIFFUZIO-EGYENLET: numerikus
megoldds az (N) ul,(t,0) = ul(t,L) = 0 (Carl Neumann) valamint a (P) u(t,0) = u(t,L) & ul(t,0) =
uly(t, L) (periodikus) peremfeltétel és az u(0,x) = g(x) kezdeti feltétel esetén.

A numerikus u;; ~ u(it, jh) megoldast a véges differencidk modszerével hatarozzuk meg, amely egy
téglalap tipusa racsszerkezetet jeldl ki és olyan linearis egyenletrendszerhez vezet, amelynek ismeretlenei
a pontos megoldas racspontokban vett w(it,jh) értékeinek u;; kozelitései. A bels racspontokban (i =
1,2,...,j=1,2..., N —1) vett parcialis derivaltakat az u; j ismeretlenekbdl képzett (els6— és masodrendii)
kiilonbségi hanyadosokkal potolva® az alabbi egyenletrendszert nyerjiik:

Uitl,j = Wij _ Ui+l — 2Uij + Uij—1
T h?

S Uity = puiger + (1= 20w + pug - (6)

ahol 0 < p = 75 pozitiv paraméter. Amint arra részletesen is kitériink majd, alapvetd fontossagd, hogy
teljesiiljon a p < % egyenl6tlenség. Az atrendezett egyenletrendszer explicit mdédon, id6rétegenként oldhato

YAzr>1 o R>1(ésazr <1 < R<1,valamint azr =1 < R = 1) dsszefiiggések bizonyitdsa: A NI — L matrix
determinansanak az elsd sor szerinti kifejtésével kapjuk, hogy az L matrix ps karakterisztikus polinomja

p4()\) = /\4 — blsl)\2 — b28182)\ — b3818283

alakd, amelybdl a A = 1 valasztéassal p4(1) = 1 — R adodik.

Ha most R > 1, akkor ps(1) < 0. De ps(A) — oo ha A — oo miatt ps(2) > 0 ha Q € R elegendGen nagy. Igy a Bolzano
tétel alkalmazhato az [1,Q] intervallumon (vagy ha tgy tetszik, az [1, 00) félegyenesen). Tehéat van olyan r > 1 valés szam,
hogy pa(r) = 0. Megforditva, ha r > 1, akkor a ps(r) = 0 képletet atrendezve, majd a jobb oldalt okosan ndvelve, a végén
atoszthatunk r*—el:

7"4 = b1517"2 + bas1s21 + basiS2s3 < b1517"4 + b251827"4 + b38152537"4 = 1 < bys1 +bas1sa + bzsisess = R.

Tehat R > 1 < r > 1. A még hianyz6 R <1 < r < 1 eset kezelése sem nehezebb. (Ha ez sikeriil, r =1 < R =1 igazolasa
mar csak formalis logika dolga.) Amennyiben tehat R < 1, akkor az 1 > bisi + b2s152 + bssis2s3 egyenlGtlenséget a A > 1
paraméter negyedik hatvanyaval beszorozva

)\4 > blsl)\4 + 625182)\4 + b3818283)\4 > 6181)\2 + bas182\ + b3s15283

adodik. Méasképpen fogalmazva azt kaptuk, hogy ps(A\) > 0 minden A > 1 esetén. Ilymédon a ps polinom dominans r > 0
gyoke a (0,1) intervallumba kell, hogy essék. Ha pedig r < 1, akkor minden A € (r,00) esetén ps(A) > 0, specidlisan a A = 1
valasztéassal is p4(1) > 0. De p4(1) =1 — R és kész.

Vegyiik észre, hogy a bizonyitas mind a négy része explicit vagy implicit médon épitett a Perron—Frobenius tételre.

Saz id6 szerinti % elsérendii parcialis derivalt 7 lépéskozi explicit Euler és a tér szerinti 8671 masodrendd parcialis derivalt
h = % lépéskozii (masodrendii) centralis kozelitése alapjan



meg, kiindulva a nulladik id6réteg racspontjaiban ismert ugj = g(jh) >0(j =1,2,...,N—-1) & uy=g
numerikus kezdeti feltételekbsl. Igy a kozelits megoldas kiszadmitasa — az (N) és a (P) feladatokban — az

1—p I 0 0
7 1—2u I 0o ... 0
0 " 1—-2pu w0 : .
Ay = : , ahol 0<u§§
- 0
0 0 u 1-2u n
0 0 7 1—p
illetve az
L=2p p 0 1
I 1-2u W 0 0
0 poo 1=2p p '
A — . . . ahol 0<u<% ha N —1 paros
P ’ O<u<% ha N — 1 péaratlan
. . . . 0
0 0 wpu 1-2u 7
n .. 0 n 1—2p

(N—1)x(N—1) méreti szimmetrikus métrixok hatvanyozasara egyszertisodik: a kozelits megoldas a k—adik
id6rétegen az ug = Aﬂ“vg illetve az ug = A]]%g vektoros alakot 6lti, &k € N. A numerikus peremfeltételeket®
tugymond “beolvasztottuk” az Ay és az Ap méatrixok sarokelemeibe. A Perron—Frobenius Tétel feltételei
itt és most a pp = 75 < % ésapu=q5 < % egyenlGtlenségekre fogalmazhatok at.

Az (N) ¢és a (P) feladatokat a & fOL u(t,z) de = OL uy(t,x) de = OL ul (t,x) de = ul(t,L)—ul(t,0) =0
megmaradési tétel — energia—megmaradds a hétani, anyag/tomeg—megmaradds a kémiai interpretdcidban
— kapcsolja ossze. Jollehet az (N) és a (P) feladatokban a Fourier—sorfejtés két kiilonbozo teljes ortonormalt
rendszer szerint torténik, az (N) és a (P) feladatok megoldasai ¢ — oo mellett (az z € [0, L] valtozéban
egyenletesen) egyardnt az % fOL g(z) dx integralatlaghoz tartanak.

A Zévz_ll Upp = Zévz_ll g(fh) (ha k =0,1,2,...) numerikus megmaraddsi tétel azon mulik, hogy az Ay
és az Ap matrixok barmely sordban allo szamok Osszege egy. (A métrixok szimmetridja miatt ugyanez
igaz az oszlopOsszegekre is.) A k — oo aszimptotikdban a numerikus megoldds is homogenizdlodik, és a
k—adik idéréteg (k7,¢h), £ = 1,...,N — 1 racspontjaiban limy_,oc ug ¢ — ﬁ z;\;lg(jh), ami hN = L
miatt az % fOL g(z) dx integralatlag téglanyosszeges kozelitése. Mivel az Ay és az A p matrixokra egyarant

1
r=1 és v:icol(l,l,...,l)E]RN*1 , valamint w’ =

1
vN -1 vN -1

Gamelyek rendre (N) Us,0 = Uqg,1 & Ui, N = Ui,N—1 illetve (P) Us,0 = Ui, N—1 & Us,1 = Ui, N (’L = 1,2, .. )

row(1,1,...,1) e RV-1




a homogenizalodas ténye maga a Perron-Frobenius Tétel” : up — (vw!)g = v(w’g) = (wlg)v.

Megjegyzés: Amint az a (6) képletsor jobb oldalan all6 lineéris egyenletrendszerbdl konnyen kiolvashato,
a mazimum-elv numerikus vdltozata is teljesiil. A “vigszafelé vett” atlagok a nemnegativ silyokkal vett —
Gjabb érv Neumann Janos 0 < p = ;5 < % feltétele mellett !! — konvex linearis kombinaciok
Uir1,j < max{u; i1, ij, HUij-1}

Ui1,y = P g1 + (1= 2p)u; 5 + pui 1 = .
Y ! ( Juis ! i1 = min{uijir, wig, g1}

tulajdonsagaira utalnak. Az atlagképzés most megfogalmazott és szinte magatol értet6dd szabalyanak
ereje abban van, hogy balra (nyugat) tovabba balra—fel (északnyugat) és balra—le (délnyugat) egymas utan
ameddig csak lehet (tehat amig ki nem jutunk a térbeli és az id6beli perem Osszes visszafelé elérhetd réac-
spontjaba) alkalmazhat6. A kozelits megoldds nem vehet fel nagyobb értéket az ((i 4+ 1)7,jh) pontban,
mint amekkora a kezdeti, valamint a “csillagos” numerikus perem racspontjaiban felvett értékek maximuma.
Ugyanez a szabaly érvényes a megfelel§ minimumokra is. A nem—negativ silyokkal képzett 4tlag nem lehet
nagyobb, mint a maximum, és nem lehet kisebb, mint a minimum. Hidegzugok, melegzugok, csaktigy mint
a koncentracio sszestrtisodései vagy ritkuldsai az egydimenzids linedris diffuzio révén nem johetnek létre
a numerikus, kozelit6 megoldasok sordn sem.

Megjegyzés: Amint azt részletesen is kifejtettiik, a pontos megoldés harom jellegzetes tulajdonsiga is
igaz marad az (N) és a (P) feladatokra alkalmazott (6) diszkretizacios eljarasra: 1.) energia—megmaradds a
hétani, anyag/tomeg—megmaradds a kémiai interpreticidban 2.) az idében aszimptotikus homogenizdlddds
tulajdonsdga 3.) a “mazimum-elv” és a “minimum-elv”. Mindez Neumann Jénos 0 < pu = ;5 < %
egyenl6tlenségén mulik, amely a 3.) tulajdonségot kozvetleniil, az 1.) és a 2.) tulajdonsdgokat pedig
kozvetett modon, esetiinkben a Perron—Frobenius Tétel alkalmaz(hatosag/as)an at implikalja.

A0<p=4 < % egyenldtlenség legfontosabb haszna azonban az, hogy mind az (N), mind a (P),
mind a késébb ismertetends (D) feladatban garantalja a (6) numerikus eljaras belsd stabilitasat. FEzt kicsit
nehezebb megérteni, de végss soron arrél van szo6, hogy u = 75 > % esetén a numerikus szamitasok (annak
megfelelen, hogy az eddigi » = 1 dominéns sajatérték helyébe egy vagy akar tobb olyan sajatérték lép,
amely[nek abszolut értéke] 1-nél nagyobb) teljesen “szétrazddnak™ érdemes kiprobalni®!

A fenti megfontoliasok vilagosan mutatjak, mit kell elvarnunk egy jol megvalasztott nu-
merikus (diszkretizaciés avagy iterativ) kozelité modszertdl:

e Elvarjuk, hogy a szamitégépes megoldas a pontos megoldés jo kvantitativ kozelitését adja — ami azt
jelenti, hogy a kozelité és a pontos megoldéas kiilonbsége alkalmas norméaban nulldhoz tartson, ha a
diszkretizécios 1épéskoz(6k) nullahoz tart(anak)illetve az iteracios lépések szédma végtelenhez tart. (A

Tahol is vw” egy (N — 1) x (N — 1) méreti négyzetes matrix, melyneknek minden eleme egyarant > wlg pedig egy
nemnegativ valos szam. (Tetsz6leges négyzetes matrix oo és ¢1 normaja az abszolut értékkel vett maximalis sor— illetve
oszlopssszeg, amely az Ay esetében egyarant 1, s ez az 1 az col(1,1,...,1) sajatvektorhoz tartozé sajatérték is [s mert
barmely norma legalabb akkora, mint az abszolit értékkel vett barmely sajatérték|: hat ezért lettek r, v, w” azok, amelyek.)

8A Los Alamos—i programozok a (linearis skalazassal elérhet6) a = 1 esettel foglalkoztak, az id6 szerinti T és a tér szerinti
h 1épéskozt pedig egyformanak vették. Valasztasuk tehat pu = % > % volt ... amig Neumann Janost meg nem kérdezték, mi
okozza a szamitogép szamukra érthetetlen, exponencidlisan névekvs amplitidéji oszcillaciokat produkalé viselkedését.



szamitogépi szamabrazolas és a kerekitési hibak miatt ez a nulldhoz tartas soha nem valésulhat meg
ténylegesen. Numerikus szempontbdl a nagyon kis 1épéskoz is veszélyes; a nagyon sokadik iteracid
pedig mar nem javit semmit.)

e Elvarjuk, hogy a szamitégépes megoldas a pontos megoldés jo kvalititativ kozelitését adja — ami azt
jelenti, hogy a valasztott kizelits eljaras respektalja a feladat fizikajat.

Vajon elégedettek lennénk egy numerikus eljarassal, amely negativ tomeghez vagy negativ illetve egynél
nagyobb koncentraciohoz vezetne? Vagy ha kovetkezetesen és markansan csokkentené/novelné az dsszener-
giat vagy az Ossztomeget, jollehet olyan feladattal van dolgunk, amelyikben ezek megmarad6 mennyiségek?
Nyilvan nem.

A térids henger alakid tartoméanyain a maximum is, és a minimum is a térbeli vagy az idébeli “tdltény-
hiively” peremen (is) felvétetik. Képletekkel kifejezve:

min{u(t,z) |t =t1,21 <z < w9 vagy t; <t <ty,r =m1,22}
<min{u(t,z) | t1 <t <ty, z1 <z <wzo} <max{u(t,x) | t; <t <t2, z; <z < 22}
<max{u(t,z) |t =t1,21 <z <mx9 vagy t; <t <tg,r=1x1,22},

ahol 0 < t] < t9 < 00 és 0 < 21 < 29 < L tetszélegesek. Az u, = Awu parciélis differencidlegyenletre
érvényes maximum— és minimum—elvet mér targyaltuk, s6t annak bizonyitasat is bemutattuk. (Az egydi-
menzios esetben teljesiil a Polya—Sturm tulajdonsag is: az egyidejileg zérus (vagy barmely mas) Celsius
hémérsékletd pontok

N({t)=#{z € [0,L] | u(t,z) =0}, t>0

szdma véges és az id6ben monoton csokken. A “pupli’—k szdma tehat soha nem néhet az id6 elérehaladtaval.)

Megjegyzés: Az Apn matrix sajatértékei—sajatvektorai explicit alakban is megadhatok. Nemnegativ,
primitiv matrixrol lévén szo, a Perron—Frobenius tétel szerinti dominéans sajatérték \y = 1,83 = col(1,1,...,1) €
RN dominans sajatvektorral. A sajatértékek és a sajatvektorok sorszédmozésa k = 1,2,...,N — 1 lesz,
hiszen Ay (N — 1) x (N — 1)—es métrix:

cos(z(l]“v__ll)w)
E—1 cos(g’((jlffill)) )
AV =1 — 4y sin? ) , s = ., k=1,2,..., N—1.
2N :
2N —3)(k—1
cos(( 2(N)£1) ) )
Vegyiik észre, hogy k = 1 esetén a dominans A\ = 1, si¥ = col(1,1,...,1) € RV~ sajatérték-sajatvektor

part kapjuk vissza, tovabba azt is, hogy

1
N — 0o esetén W()\]]g] — ].) =—4 71_7 sin



minden fix k > 1 egész esetén. Mindez vildgosan mutatja az Ay diszkretizaciés matrix, valamint az
egydimenzios Ay operatorok? kozotti szoros sajatértékek-sajatvektor/sajatfiiggvény egyszoval spektralis
kapcsolatokat. A megfelelgen skilazott sajatértékek egyméshoz tartanak, és a cos(kz) sajatfliggvények is
(az s,iv—ra kapott K =1,2,..., N — 1 képlet szerint) mintegy "diszkretizalodnak".

PELDA 5. — A PELDA 4. FOLYTATASA: numerikus megoldds a (D) u(t,0) = u(t,L) = 0 (Dirichlet)
peremfeltétel és az u(0,x) = g(x) kezdeti feltétel esetén.
A feladat most!? — az

1—2u W 0 .. 0
L 1—2p o 0o ... 0
0 U 1—-2u pu 0 : .
Ap=| ;ahol 0<p< s
0 .. 0 w1 =2pu W
0 ... 0 W 1—2u
(N —1) x (N — 1) méretd szimmetrikus métrix hatvinyozasara egyszertisodik. — Egyszerid indirekt

okoskodassal 1 > [\,| (n=1,2,..., N—1)ha0< p < %, kévetkezésképpen A% — 0 ha k — oo.!!

PELDA 6. — MARKOV EGER A CELLAK LABIRINTUSABAN awvagy véletlen bolyongds hdromosziati, a
kettes és a hdrmas cella kozott kétkapus labirintusban. Jeldlje &, = i azt az eseményt, hogy az egér az

n—edik idépontban éppen az i-edik celliban van, ahol n = 0,1,2,... ési = 1,2,3. Igy a P atmenetmatrix
— melynek elemei a p;; = P41 = j | &, = i) valoszintiségek'?:
0 1/2 1/2 1
P=1[1/3 0 2/3|] = wkT:ﬂng%wg(va):g(Q,B,?)) ha k — oo,
1/3 2/3 0

9a homogén Neumann peremfeltételt mind az egydimenziés A Laplace-operatorba, mind a diszkretizacié Ay matrixaba
beépitettiilk. Amint az a (3) sorfejtésbél is latszik, a [0,7] intervallumhoz tartozé Ay operator sajatértékei {—n®} ),
sajatvektorai pontosabban sajatfiiggvényei — hiszen olyan vektortérben dolgozunk, amelynek elemei fiiggvények — pedig
{cos(nz)}>°, C L2[0,7]. Az & = Az homogén linearis kozonséges differencialegyenlet x(0) = zo € R? pontbol induls
z(t) = eMzy € R t € (—00,00) megoldasanak mintajara szabad azt is irnunk, hogy az u; = Ax homogén Neumann—
feladat w(0) = g € L2[0,n] pontbol indulé megoldasa u(t) = T(t)g = e*Ntg € Lo[0,7], t € [0,00). Itt T(t) = e2Nt :
L3[0, 7] — L2[0,7] minden fix ¢ € [0, 00) esetén korlatos linearis operator, melynek sajatértékei {e~ ”2t}zo:0, sajatfiggvényei
pedig valtozatlanul {cos(nx)} >, C L2[0,7].

19A numerikus peremfeltételek (D) uio = 0 & usn =0 (i = 1,2,...), a numerikus kezdeti feltételek pedig a korabbiakkal
egyez6en ug ; = g(jh) (j =1,2,...,N —1).

11tt jegyezziik meg, hogy az Ap, Ap matrixok teljes sajatérték—sajatvektor rendszere is explicit médon szamolhato.

1280r-sztochasstikus konvencio, ahol az Atmenetgrafban ({i} — {j}) € E(G) < p;; > 0: az egér az egymas utani idépon-
tokban mindig egyforma valdszintséggel valaszt az aktudlis cella kapui kozott — a cellalabirintusokbdl szdrmazoé ilyetén
bolyongasok G grafjai és P Markov méatrixai mind speciélis szerkezettiek: tekinthetjiik t6bbszords élekkel rendelkezs iranyitas
(és kiilon stlyozas) nélkiili grafoknak is ket, a hozzajuk tartozo P = Pg = Dg_lAg matrixoknak pedig minden sajatértéke
valos. Itt Dg = diag(2,3,3) az a diagonalis matrix, amelynek elemei az iranyitas nélkiili G graf cstcspontjainak fokszamai,
Ag pedig a G graf szomszédsagi matrixa (ahol is a12 = a21 = a13 = as1 = 1 és az3 = as2 = 2 [a t6bbi elem pedig nullal).
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mert 7 =1, v = col(1,1,1) € R® és w’ = £(2,3,3) (barmely 7{ € & = {(z,y,2) € row(R?) |z +y+ 2 =
1, 2,y,2 > 0} kezdeti eloszlasra). Felismerjiik w? koordinatéiban az dtmenetgraf cstcsainak fokszamat?

Most visszatériink a Példa 4. Ay matrixahoz: Vizsgaljuk a

=) ahol 0<t<T,0<z<L
(t,0) =ul(t,L) =0 ahol 0 <t <T , feladat (7)
0,2) = g(z) ahol 0 <2 <L

diffuzio—egyenlet: = ul,
homogeén (N) peremfeltétel: =
(

kezdeti feltétel: U

kozelits és pontos megoldasanak eltérését a [0, T]x [0, L] téglalap (iT, jh) racspontjaiban, ahol ¢ = 0,1,2,..., M
J=0,1,2,...,Nés M7 =T, Nh = L, valamint y = ;5 < % Célunk tehidt HIBABECSLES LEVEZETESE
a (6) egyenletrendszerbdl kiszamolt u; ; ~ u(i, jh) kozelité megoldas és a mostantol w;; = wu(it, jh) altal
jelolt pontos megoldés kézott.

Feltessziik, hogy az u(t,z) pontos megoldas folytonos az [0,7] x [0, L] halmazon, és azt is (ami a
“d6ccenve” indulds miatt mar nem jelenti az altalanossag megszoritasat), hogy a (0,77 x (0, L) halmazon
t szerint kétszer, = szerint négyszer folytonosan derivalhaté.!3 A belsé rdcspontokban tehat

1 Wig41 — 2Us 5 + Ui 2

Uit1,j — Ui _ _ _ _
——+m T My = Uil = P41+ (1= 2u)Ws 5 + pitty j—1 + Tmy 5

T % h2

ahol m; ; = mzj — mllj Bevezetve a rdcspontokban vett lokdlis hibdkat jelold e; j = u; j — u; ; valtozokat, a

legutobbi valamint a (6) sorszamu egyenlet kiilonbsége

€it1,j = peij+1+ (1 —2p)e; j + pe; j—1 +7m;; , legalabbis a belsé racspontokban . (8)

Idézziik fel az Ay matrix bal fels6 és jobb alsé sarokeleméhez vezeté numerikus (N) w0 = ;1 & win =
u; n—1 peremfeltételeket. A pontos megoldasra érvényes u.,(t,0) = ul(t,L) = 0 peremfeltétel alapjan
Uio = U1 + O(h?) és U n = Wi n—1 + O(h?) adodik. Tehdt a kozelits megoldas értékeit az egymés uténi
idérétegeken kiszamold

W =Ayu (i=0,1,2,....M—1), uy=geR¥! o w=ALg (i=0,1,2,...,M) (9)
matrixhatvanyozéas valamint az idérétegrél idérétegre halado hibaterjedés mechanizmusdt leiro

eiy1=Anye;i+m; (i=01,2,... M—1), eg=0ecRV"! (10)

13 A megfelel6 Taylor polinomok alapjan

Uit1,j — Uiy

= (i, jh) + mi
-

i

u(t+7) = u(t) + 7 u(t) + (’)(7'2) =

és

u(z 4+ h) = u(x) + h ug(z) + h—;uw(x) + %Suwl(m) + 0O N Wijp1 — Uiy + Wij—1 _ oo (i7, jh) +m2,
u(zx — h) = u(x) — huz(z) + h—;um(x) — %Sulm(ﬂc) + O(h%) h? rEAD I

ahol |m} ;| < Cr és |mi,| < Ch® és igy |mi;| < C(7 + h*) minden bels§ racspontban, azaz ha i = 1,2,...,M és j =
1,2,...,N — 1. (Itt C alkalmas allando.)
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inhomogén matrix—rekurzié alapszerkezete megegyezik egymassal. Ez egy roppant lényeges és nagy &l-
talanossigban is érvényes megallapitds. HA VAN MODSZERUNK A KOZELITO MEGOLDAS KISZAMITASARA,
AKKOR ENNEK A MODSZERNEK EQY VALTOZATA A HIBABECSLESHEZ IS ELVEZET.

Tanulsdgos gyakorls feladat: Idézziik fel a numerikus sorok konvergencidjat biztositd kritériumok

egyikét — mondjuk az integrélkritériumot — és alkalmazzuk azt a sor maradékosszegére. Mi mast
kaphatnank, mint egy becslést a konvergencia gyorsaségérﬁ Konkrétan: legyen s = > 7, 13 és legyen

sy =30, L, amikor is |sy — | < fN+1 =5 dx = 2(N+1) Hogyan kaphatunk alsé becslést?
Visszatérve a (7) feladat (9) numerikus megoldasahoz tartozo (10) hibaterjedési rekurziora, ez utébbit

kifejezetten konnyd explicit hibabecsléssé alakitani. Val6ban, az
n; = max{le;;| | j=1,2,...,N—-1}, i=0,1,2,...,M —1 ahol 79=0,

a (8) formula és az m; ;—re adott becslés alapjan az i szerinti rekurzioval — és most kell nagyon a p < %
feltevés (de a végeredménybdl is latszik, hogy 7 és h? legalabbis azonos nagysagrend kell hogy legyen) —

Niv1 < 2u+ |1 —2u)n; +7C( +h%) =n; +7C(T + h*) = mj\gxm < mAgXZTC(T—l-hQ) TC(T + h?).

=0 =0

OsszEFOGLALAS: A (7) perem—és kezdetiérték problémat megoldé numerikus eljaras hibdja tehét a
lépéskozok minden hatéron tul valo cstkkentésével — természetesen a p = 75 < % feltételre mindvégig
vigydznunk kell — nullahoz tart, éspedig legalabb T'(7 4+ h?) rendben. Mar korabban kifejtettiik, hogy a

pontos megoldés kvalitativ tulajdonsagai is megérzédnek:

fO t ZL' dl’ = fO dl‘ Vt > 0 Zjvz_ll Ui41,5 = Z;V:_llxujl Vi=0,1
hmt_>C>o u(t,z) — %0 =1 0 g(z) dz illetve T >i—1 9(h)
max— és min—elv a “csillagos” peremeken max— és min—elv a “visszafelé vett” atlagokra

A megadott hatarértékek x € [0, L|-ben és j = 1,2,..., N — 1-ben egyenletesek.

A diffuzié—egyenlet a szamegyenesen — Poisson megolddképlete és a normalis eloszlas

Tétel: Tetsz6leges g : R — R folytonos és korlatos fiiggvény esetén

BT e @ e (— S8 de bat >0 Y

megoldasa, éspedig egyetlen megoldasa az uy = g, (t,x) € [0,00) X R egyenletnek, az u(0,x) = g(x)
kezdeti feltétel mellett. A konvolucios integral magfiiggvénye az tgynevezett “hémag”.

Kozvetlen behelyettesités mutatja, hogy a megadott formula t > 0 esetén valoban megoldja a a parcidlis
egyenletet. (A formula levezetése joval keményebb di6.) Azt sem konnyt igazolni, hogy u(t,z) — g(x) ha
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t — 07. Amennyiben az ¢ fiiggvénynek véges sok éspedig csupa elséfaju szakadasa van, akkor is igaz a
(11) megoldokeéplet, de ekkor a szakadasi pontokban u(t, z*) — MQ‘WD—O) hat— 0F.

Most visszatériink a diffuzié—egyenlet statisztikus fizikai vizsgdlatdhoz, amelyet a 3—-ik oldal aljan
kezdtiink el. Eloljaroban attekintjiik a normalis eloszlasok kétparaméteres N (i, o) csaladjat, ahol u € R a

varhat6 érték, o > 0 pedig a szoras (és 02 a szorasnégyzet).

Elgszor az altalanos N (u, o), majd a standard normalis A(0,1) eloszlast irjuk le:

1 _ew?
N(p,0) strtdségfiiggvénye f, ,(x) = —==¢ W 6s eloszlasfiiggvénye @, o (x / fuo( ,
oV 2w
1 22
N (0, 1) stirtiségfiiggvénye f(z) = fo1(x) = \/76_ 2 &s eloszlasfiiggvénye ®(x) = Do ( / f(s
T

A ketts kapcsolata:

fﬂ,g(g;):ifc_“) s @W,(x):CI)(m_M) |

g g

A 3-ik oldal aljan 1évs szamolasok tehét a (11) formula g = H (egységugras mas néven Heaviside fiiggvény:
H(z) =0haz <0, H(z) = 3 hax =0, H(z) = 1 ha x > 0) specialis esetébdl indulnak és semmi mést
nem igényelnek mint linearis valtozo—helyettesitéseket az integralban. Az els6 helyettesités az ¢ — £ = 2
(és igy “£ fut 0-tol co-ig” alapjan “z fut x—t6l — co-ig” ahol a “— d & = d 2” formula szerint a “z hatarai
megfordulnak”), a masodik helyettesités — a ¢ > 0 esetben — pedig a ﬁ = 5 valasztassal'*:

22 ]. ﬁ 52 X
P(t,x) “Tdy = ——— e 2ds=P(—== )= T) .
( 2\/ Nor /oo <\/2t) 0.vai(®)

Normalis eloszlasok idében valtozé csalddjanak eloszlasfiiggvényeit kaptuk, a = 0 és o = v/ 2t paraméterekkel.
Az z valtozo szerinti derivalassal stiriiségfiiggvényekre is attérhetiink:

Py(t,x) = ¢, jz(z) mar amennyiben t>0 (és z €R). (12)

A P, = P, egyenletet x szerint derivalva, (P,), = (Py),, adodik. Mar tudjuk, hogy ez utobbi egyenletet
— ismét csak a t > 0 értékekre — a (12) formula oldja meg. De hogyan valasszuk meg a kezdeti feltételt?
Mihez vezet a t — 07 hataratmenet? Ha az x € R értékét rogzitjiik, akkor

. 2> [0 ha x#0
tl_lfélpm(ta )_llmwof() t—>0+2\/7 4t_{oo ha z=0.

Milyen értelemben lesz ez a szokatlan hatarérték fliggvény, plane eloszlasfiiggveny (mert hogy eloszlasfiigg-
vények egy csalddja “indul el” belsle ha ¢t > 0)?7 Ezen a ponton szokas a Dirac deltét, mint disztribuacio—

11 ehetett volna érvelniink kozvetleniil a 4t = 202 < 2+v/7t = 0+/27 észrevétel alapjan is.
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értelemben'® altalanositott fiiggvényt bevezetni. A § = §y Dirac delta az az 4ltalanositott fiiggvény, amely
minden x € R\ {0} esetén zérus, az alatta 1évs teriilet azonban egy. A diffuzi6 a Dirac deltat (vagy
més nézépontbodl a Heaviside fiiggvény disztribicié értelemben dltalanositott derivaltjat és ha gy tetszik,
Brown vizbe dobott pollen—csomagocskajat — amely azonnal szdmtalan kicsiny pollen—szemcsére esik szét)

(L’2
t > 0id6 alatt az N'(0,0) = N(0,1/2t) normélis eloszlas 0\}%6_? striségfiiggvényéve keni szét.
Az eddigiek alapjan az u; = a?ug., (t,2) € [0,00) x R difftziés egyenletet is kénnyen megoldhatjuk.

Az u(t,x) =U(T,x), T = ct linearis helyettesitéssel

d
up = £u(t,x) == (ct,x) = d—L{(T,x)-c =U.(T,z)C &S Upy = Uy, alapjan wuy = gy o Urc = a’Uyy,
T

adodik, tehat a ¢ = a? valasztassal az eddig vizsgalt “vegyiik a diffazios egyiitthatot a® = 1-nek” esethez

5Digztribtcionak az u : C§°(R,R) — R folytonos linearis funkcionalokat nevezziik. Ezek egyike a 6(¢) = (0) képlettel
definialt Dirac delta disztribtcié. Itt

Co°(R,R) = {p:R — R | ¢ végtelenszer derivalhato6 és egy —t6l fiiggs, korlatos intervallumon kiviil azonosan zérus } .

A lokalisan (Lebesgue szerint) integralhaté f : R — R fiiggvényt azzal az uy disztribiiciéval szokas azonositani, amelyet a
(minden ¢ € C§°(R,R) esetén érvényes) us(p) = [ f(2)¢(x) dz formula definidl. Ha v disztribicio, akkor a (du)(¢) =
— u(p’) képlettel definialt derivaltja is az. Tehat barmely disztribticié disztribtcié értelemben véve akarhanyszor derivalhato.

Fontos észrevétel az is, hogy C* fiiggvényekre a hagyomanyos derivalt és a disztribicié értelemben vett derivalt azonosnak
tekinthetd, hiszen barmely ¢ € C5°(R,R) esetén

@u)e) =—u@) = [ @@ de = @@+ [ F@e@ = [T f @) do= ).
Ami a H Heaviside fiiggvény disztribiicio értelemben vett derivaltjat illeti, arra
@uie) =~ un(e) =~ [ HE@ @ do =~ [ @) do = @l =00 =3e) & dun=5

adodik. A Dirac deltat ugy is lehet értelmezni, mint a 0 € R szdmhoz tartozé egy—pont—mértéket. Ezt a 6(A) =1ha0€ A
és 0 ha 0 ¢ A valamint az [ f(z)dé = f(0) képletek fejezik ki (ahol A C R tetszéleges halmaz, illetve f tetszGleges, az
2o = 0 pontban folytonos valés fiiggvény).
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jutunk. Ha a kezdeti feltétel valtozatlanul u(0,x) = U(0,x) = H(z), akkor!®
Utz) =By por(x) = ult,z) =P (@) =Py, 5(2) , (£,2) € (0,00) XR.

Az Uy = Ugg — bug, u(0,z) = H(z) feladat u(l, z) = @ 5;(z — bt) megoldasahoz az u(t, z) = eePry(t, x)
helyettesités vezet el: a paraméterek optimélis, o = — % és B = % megvalasztasa révén a feladat a mér
ismert z; = 2z, 2(0,7) = e u(0, x) alakra egyszertisodik. A szokasos diffizio—egyenlet és az u; = —buy,
transzport—egyenlet fenti kombinacidja azt a kisérletet modellezi, amikor a pollen—csomagocskat alloviz
helyett patakvizbe dobjuk: a patak folyasiranya az x irdny, sebessége pedig a b > 0 dllando.

OSSZEFOGLALAS: Az uy = — div(F) + f egyenlet valtozatai alapvetéen F és f véilasztésatol valamint
— rendszerek esetében — a csatolasoktol fiiggenek:

o difftzi6: F = Ediff = —kygradu
e advekcito: F = F 4, = kouv, ahol v az dramlé kozeg ismert sebessége

o advekcio—diftuzio: F = F 4, g4i5¢ = — k1 grad u + kauy

o reakcio—diffuzio: u; = a?Au+ f(u,v), vi = B2Av + g(u,v) — ahol u = f(u,v), ¥ = g(u,v) egy, az
Q) tartomany minden pontjaban azonos moédon lejatsz6dé kémiai reakcié egyenletrendszere

chemotaxis—diffuzio: F = F pq0i5—difr = — tugrad ¢ — 3% grad u, ahol a szaporodni is képes bak-
térium (koncentracidja u) menekiil egy kiils6 kémiai folyamatban képz6ds méreg (koncentréacidja c)
elsl — igy a csatolt rendszer: ¢; = a?Ac + f(c), uy = B2Au — £ div(u grad ¢) + g(c, v)

Mindezek a parcidlis differencidlegyenletek perem— és kezdeti feltételekkel egyiitt értendék.

Az els6 harom példa mindegyike — mar amennyiben az f forrastag sem fiigg az u ismeretlentél — az
advekcio—diffizio egyenlettel bezarolag linedris feladat. A ky diffuziés egyiitthato a legegyszertibb esetben
valodi, az z € R? (d = 1,2,3) térvaltozotol fiiggetlen allando: a div(k; grad u) = kjAu azonossag ekkor
érvényes. A diffuzids ky és az advekcios ko egylitthatok helytsl és id6tdl valo fiiggetlensége az alkalmazasok

16 A talalékony Olvasé a linearis helyettesitést a (11) formuldban is bizton el tudja végezni. Brown viragpor-kisérletét
az u(0,-,-) = §(0,0) Dirac delta kezdeti stirségfiiggvénnyel ellatott kétdimenzios u¢ = a*(uzs + uyy) egyenlet természetesen
jobban modellezi. Mivel az x és az y irdnyd Brown—mozgasok fiiggetlenek egymastdl, a megoldas a két egydimenziés formula

u(t,z,y) = e~ daZ (t,z,y) € (0,00) x R xR

szorzataként adodik. A megoldas korszimmetrikus és nem fiigg az egymasra mergleges x és y iranyok konkrét megvalasztasatol.
Ezek a szimmetridk természetesen a kezdetiérték—feladatban is jelen vannak és a(z attérés polarkoordinatékra)

1 1
ha wu(t,z,y) = u(t,rcos(¢),rsin(¢)) =U(t,r,¢) , akkor Ues + Uyy = Urr + - Ur + ) Usy és U nem fiigg a ¢-t6l,
illetve a(z attérés az origo koriil elforgatott koordinatakra)

ha  u(t, z,y) = u(t,§ cos(¢) — nsin(¢), £ sin(p) +ncos(¢)) =U(t,&,m) ,  akkor  uey + uyy = Use + Uy

valtozo—transzformaciokkal fejezhet6k ki. — A mogottes szamolasokat konnyd elrontani. Senki ne szomorodjon el, ha a
levezetések csak a masodik vagy a harmadik probalkozasra sikeriilnek.
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tobbségében jogosult feltételezés. Az inhomogenitas megjelenésének diffizidegyenletben szokasos maédja
az f forrastag f = f(t,x) alaka valasztasa. Az aramlo kozeg v sebessége az advekcidegyenletben szinte
mindig v = v(t, z) alaka'”. Inhomogenitéast a peremfeltételek inhomogenitasa is okozhat!8.

Amennyiben az f forrastag f = f(t,z,u) vagy akar csak f = f(u) alaka, mar nemlinedris feladat—tal
allunk szemben: tipikusan ez a helyzet a reakcio—diffizio egyenletek esetében. A nemlinearis feladatok
mindségileg masok, és a linearis feladatoknél sokkal de sokkal nehezebbek.

A félév folyamén targyalni fogjuk

e a kedvez§ gének térbeli (egyenes menti) terjedését leir6 uy = gy + u(1l —u) Fisher—egyenlet valamint

e az idegi ingeriiletvezetés Hodgkin—Huxley modelljének (ez harom kozonséges és egy parcialis differen-
cidlegyenletbdl allo rendszer) utazdé hullémdt, tovabba

o az u; = &’ Uyy + au + bv, vy = 204, + cu + dv alaka rendszerekben meghigyelhetd mintdzatképzddés
Turing féle alapmechanizmusat.

A félév nagyobb részében egyébként kozonséges differencidlegyenletekkel foglalkozunk. A zart alakban
megoldhaté parciélis differencidlegyenletek tipikusan azok, amelyek kozonséges differencidlegyenletekre re-
dukalhatok: ilyenkor probafiiggvények “bevetésével” specidlis alakt megoldasokat keresiink. '

A dinamikus rendszer és a diszkretizacios/kozelité modszer fogalma I.: ElGkészités

Amint azt a fenti fejezetcim is egyértelmtien kifejezi, a kiillonbozs tipusu feladatokat:
e algebrai egyenletek,
o kizonséges differencidlegyenletek,
o difftzié tipusi, més szdéval parabolikus parcialis differencidlegyenletek,
s6t
e azok megoldasanak elméleti és numerikus vonatkozésait

egyiittesen fogjuk targyalni, a hangsilyt a kozonséges differencialegyenletek autoném valtozataira téve.
Ezt a targyalasi modszert nemcsak a matematika, hanem a biolégiai modell-alkotas bels6 természete is

indokoltta teszi. UGYANAZT A BIOLOGIAI JELENSEGET — attol fiiggSen, hogy a konkrét helyzetben mi-

lyen tényezbket kell figyelembe venniink és melyeket lehet elhanyagolnunk — A MATEMATIKA KULONBOZO

756t a valodi alkalmazasok jo részében v maga is (a Navier-Stokes egyenletekkel kapcsolatos) ismeretlen
18 A Dirichlet peremfeltétel u|89 = h(t,z) alakt inhomogenitasa (legalabbis a hétani alkalmazasokban) kdnnyen meg-

valdsithato. A Neumann peremfeltétel — amigy g— h(t,x) alaktt — inhomogenitasa a gyakorlatban csak ritkan fordul

Z|asz =
el. (A h fiiggvény mindkét esetben a ¢t > 0, = € 9 valtozokra értelmezett. )

19Ha egy linearis parcialis egyenlet bels§ szimmetriai és értelmezési tartomanyanak szimmetriai azonos szerkezetiek, akkor
az altalanos megoldas is gyakorta el6allithato specialis fiiggvények szerinti (nem feltétleniil trigonometrikus Fourier—)sorfejtés
avagy kiilonféle integraltranszformaciok révén. LegerGsebb eszkoziink azonban a szamitogép, pontosabban a feladat ter-

mészetének leginkabb megfelel szamitégépes eljarés.
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AGAZATAIN BELUL EGYARANT LEHET MODELLEZNI.

Kiilonféle egyfaj— és kétfaj/tobbfaj-modellek a populaciédinamikaban. Sok példa
A populdciodinamika torténetileg elsé matematikai modellje Malthus
t=rz, z(0)=20>0 = x(t) =20 (13)

nevéehez flizédik. Itt az » > 0 4llando interpretélhato6 tgy, mint a b sziletési rdta és a d haldlozdsi rdta (birth
rate illetve death rate) kiilonbsége. A b > 0 és a d > 0 konstansnak vétele egyfajta atlagolast fejez ki (és
nem azt, hogy minden egyed egyforman képes a szaporodésra, sem azt, hogy a halal minden korosztalyban
egyforman arathat). Ami a (13) egyenletben a leginkébb kritizalhato, az az ercforras—korlatok figyelmen
kiviil hagyasa. Verhulst modellje ebbdl a szempontbél sokkal realisztikusabb:

i=rz (1—%) S () = Kz _
r(0)=m9, 0<2g < K xo+ (K —xg)e Tt

(14)

Itt 7 > 0 a novekedési rdta, K > 0 pedig a kérnyezet eltartoképessége. Verhulst differencidlegyenlete
is finomitésra szorul: figyelmen kiviil hagyja példaul azt a tényt, hogy csak az ivarérett kord egyedek
szaporodhatnak. Egy faj egyedeinek a szaporodas szempontjabol két korosztalyra bontasara mar Fibonacci
is tigyelt — jollehet csak egyetlen konkrét szampélda kapcsan?? — vagy hatszéz évvel korabban. Leslie
modellje a huszadik szdzadi matematika absztrakcios erejével ismétli meg Fibonacci gondolatmenetét. A
modellalkotas szempontjabol Leslie egyetlen tjitasa az egyes korosztalyok kézotti tulélési rdta (survival rate)
s ezen keresztiil a maximaéalisan lehetséges életkor szerepeltetése — amint ezt a 4-ik oldal els§ két példajanak
Osszehasonlitdsa azonnal mutatja.

Az eddigi négy modell kozil egyediil Verhulst (14) modellje nemlinedris. Természetesen ennek is van
diszkrét idejd valtozata, az

Rz,
Tnt1 = 7R, ,n=0,1,2,... Ko

K <n = X = s N:O’1,27.__ 15
0<zg <K N= 2o+ (K —20) RN (15)

Beverton—Holt féle nemlinearis rekurzio?!. Itt R > 1 jelenti a ndvekedési ratat, s a logisztikus (14) differ-
encidlegyenlethez hasonléan most is K > 0 a kornyezet eltartoképessége. A K — oo hataratmenettel (14)

20Fibonacci példajaban az egyetlen faj egyedeinek évenkénti szama magatol értetGdGen csak egész szam lehetett. Ha az
idévaltozo nem diszkrét, avagy ha (a diszkrét id6valtozoé mellett) térvaltozonk is van, és a térvaltozo nem diszkrét, akkor az
illets faj egyedszama helyett mindig a biomassza tomege a kérdéses. Ugyanez természetesen a populaciodinamika tébbfaj—
modelljeire is érvenyes.

2L A zart alakd megoldas azért lehetséges, mert az a, = z% 4j valtozo és az a = %, 6= % 4j paraméterek bevezetése
utdn a mértani sorozat rekurziv definiciojanal csak kicsivel bonyolultabb

N OCN—l
an+1 =aan +5, n=0,1,2,... = an=a a+p 1
o —

N=0,1,2,...

R—-1
T

formulékat kapjuk. A folytonos ideji Verhulst (14) modellt és a diszkrét idejd Beverton—Holt modellt a lépéskoz h =
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illetve (15) Malthus sokat kritizalt, de nagy torténeti fontossagn (13) modelljébe, illetve ennek diszkrét ideji
Tnt1 = Rx, valtozataba megy at. A legfontosabb matematikai észrevétel azonban az, hogy a 4-ik oldalon
targyalt PELDA 1 és PELDA 2 méatrix—hatvanyozéasai a Beverton-Holt féle nemlineéris f : [0, K| — [0, K],
x— f(z) = 1+}£x fliggvény iterdlasanak felelnek meg.

A tényt, hogy szaporodéds csak az ivarérettség elérése utan lehetséges, folytonos idejii modellekben
1dbkésleltetés bevezetésével szokas kifejezésre juttatni. Késleltetett egyenletek esetében a jov6t nemcsak
at = to jelen, hanem az s € [to — 7,to] kozelmult hatarozza meg. Itt a 7 > 0 allandé a kesleltetés
mértéke, az annal régebbi allapotok mér nincsenek hatassal a jové alakulasara. Kézenfekvd, hogy Malthus
(13) differencialegyenletének az &(t) = bx(t — 7) — dx(t) késleltetett egyenlet felel meg: szaporodni csak a
7 > 0-nél idGsebb egyedek képesek. Verhulst (14) modelljét Hutchinson az

i(t) = ra(t) (1 - WK‘T)>

alaku késleltetett differencidlegyenletre moédositotta. Elsérendd parcialis valamint integro—differencialegyenlet
modellek is lehetségesek, amelyek az egyes populaciok folytonos koreloszlasasat is figyelembe tudjék venni.

A térbeliség figyelembe vétele a populaciodinamikaban tobbféle modon is lehetséges. Az idévaltozohoz
hasonléan a térvaltozo is lehet folytonos vagy diszkrét. Diszkrét térvaltozora a legegyszertibb példakat az
RY (d = 1,2,3) egy korlatos részhalmazanak racs—, illetve cellafelbontésai szolgaltatjak. Cellafelbontas
alatt szabalyos, minél t6bb szimmetriaval rendelkezd racsfelbontisokat értiink. Lehetséges az is, hogy a tér
pontjait egy adott véges graf csticspontjaival reprezentaljuk. A numerikus médszerek szinte mindegyike a
tér— és az id6valtozo diszkretizalasat igényli. A diszkretizacidval, illetve a szamitogépes kozelits eljarasokkal
kapcsolatos altalanos szempontok a két részletben targyalt PELDA 4 révén mar nem ismeretlenek elttiink.
Erdemes visszalapozni az 5-7 valamint a 9-10 oldalakhoz.

A folytonos térvaltozo Verhulst (14) modelljébe legegyszertibben a diffazié—operator hozzaadasaval
épithets be. A térvaltozo koordinatai a dimenziotol fiiggéen x € Q C R, (z, y)T € Q C R?, vagy
(z,y,2)7 € Q C R3. A t id6valtozo mellett ezek lesznek az ismeretlen u : [0,00) X © — R fiiggvény
valtozoi az

Uy = ru (1 - %) + a®Au

alakt reakcio—diffizio egyenletben. Az Q C R? (d = 1,2, 3) tartomany Q = Q U 99 lezartjanak pontjaihoz
kezdeti, 0 hatarahoz pedig peremfeltételt is kell rendelniink.

A diszkrét tér a dinamikaban 6nallo — ugyanakkor a dinamikus rendszerek altalanos elméletével t6bb
ponton is érintkez6 — diszciplindkat képez. Ezek egyike a celluldris automatdk, mésika a neurdlis hdlok
vildga, a maga peremfeltételeivel, input—outputjaival és visszacsatolasaival.

valasztasa melletti

xn+1:mn+hr$n(1—$?1)7 n:O,l,Q,...

semitmplicit Euler diszkretizdcid is Osszekapcsolja. Valoban,

R—-1 Tn R—1
T4l = Tn + 7 " Tn (1 — [;rl) & xpg1 = Rxy, — T$n$n+1 = (15) .
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A populaciédinamika egyfaj—modelljeinél maradva, mindenképpen meg kell emliteni, hogy az r,b,d, K
parameéterek szezondlis, az évszakok valtozasatol fiiggs ingadozésokat — &ltaldban éves periodicitast —
mutatnak. Igy nem-autoném méatrix— és/vagy differencidlegyenlet-modellekhez jutunk.

Sajnos az egyenletekben szerepld paraméterek mérése, meghatarozasa nem koénnyi feladat. Fz a tény
onmagaban indokolja sztochasztikus modellek bevezetését. Ami a sztochasztikit illeti, a félév folyaméan
egyedill a véletlen grdfok harom legfontosabb tipusanak — Erd&s—Rényi, Albert—Barabési és Strogatz—
Watts (més néven Bernoulli, skalafiiggetlen illetve kis—vilag grafok) — konstrukeioit fogjuk megismerni,
illetve a rajtuk értelmezett sztochasztikus dinamikak egyikét—masikat szamitégéppel szimulalni.

Ez eddig elmondottak mind-mind kiterjeszthet6k arra az esetre, amikor t6bb, egymas élet—lehet&ségeire
a legkiilonfélébb modokon hatoé fajokbdl allé Skoszisztémékat vizsgalunk. Fz a tobbfaj—modellek vilaga. Két
faj egyiittélésének (kozos erdforrasokért) versengd, szimbiotikus, avagy éppen ragadozd—zsikmdny eseteinek
szokasos

T =x(c1 + a1 + bry)

. ahol c¢1,c9,a1,as,b1,b2 € R adott konstansok és z,y >0 16
y—y(02+azx+bzy)} bre i O T Y (16)

kvadratikus differencidlegyenlet—-modellje Lotka és Volterra nevéhez fliz6dik. Az esetszétvasztasokat a
1,2, a1, a2, b1, be € R paraméterek elGjelei hatarozzak meg. A hat paraméter koziil harom (de nem barme-
lyik harom) linearis valtozo—helyettesitésekkel +1-re kiskdlazhato. A Kolmogorov féle altalanositas

x'k::ckfk(xl,xg,...,xd) ahol xkzo, k:1,2,...,d (17)

alaka. Ttt fy : Ri — R (k = 1,2,...,d) adott folytonosan differencialhato fiiggvények. A biolégiailag
relevans fazistér — amint az a (16) és a (17) egyenletrendszerekben is megjelenik — R? illetve R? nemnegativ
(és az indukalt dinamikara invarians) ortansa. Magatol értetédik, hogy az ortdnsok végtelen tavoli pontja
egyetlen trajektoriat sem vonzhat: minden trajektoridnak ¢ — oo mellett a biolégia okin egyenletesen
korlatosnak kell maradnia. Ez azt is jelenti, hogy szimbiotikus 6koszisztémakat kvadratikus Lotka—Volterra
rendszerekkel csak az R? korlatos részhalmazain lehet modellezni.

A kétdimenzids Lotka—Volterra (16) rendszerek konkrét példakon és altalanositdsokon at térténs — nem
minden részletében egyformén olvasmanyos, de reményeim szerint mégiscsak jol kovethet6 — bemutatasa
a Nemlinedris Dinamika jegyzet?? 3.8 fejezetében talalhaté. A dinamika jellege az egyenstlyi helyzetek
kis kornyezetében a linearizdlas modszerével, a ‘nyom-determinans” dbra szerinti esetszétvalasztasokkal
allapithatoé meg. Az x > 0, y > 0 siknegyeden kiviili pontokkal nem kell térédniink, mivel azok semmilyen
biolégiai jelentést sem hordoznak. Az origé mindig egyensilyi helyzet, a vizszintes y = 0, x > 0 és a
fliggdleges x = 0, y > 0 féltengelyek pedig egyenként is mindig invaridnsak: a dinamika rajtuk kénnyen
megrajzolhato.

Mind az x, mind az y tengelyen tipikusan egy—egy, az orig6tol kiilonbozé egyensulyi helyzet van, ezek
az y = 0, ¢c1 + a1x + bry = 0 illetve az x = 0, co + agx + boy = 0 linearis egyenletrendszerek megoldasai.
A nemnegativ z,y > 0 ortdns x,y > 0 belsejében — ismétcsak a tipikus esetben — legfeljebb egyetlen
egyensulyi helyzet van, éspedig az a pont, ahol a ¢; + a1z + b1y = 0 és a co + asx + boy = 0 egyenesek
metszik egymast. A vektormezs a ¢; +ayx + b1y = 0 egyenes pontjaiban fliggleges (és az y derivalt ottani
elgjelétdl fiiggGen felfele vagy lefelé mutat), az co + asz + boy = 0 egyenes pontjaiban vizszintes (és az &

22http: //digitus.itk.ppke.hu/~garay /NDS_jegyzet/
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derivalt ottani el§jelétsl fiiggden jobbra vagy balra mutat). Az egyenstlyi helyzetek kornyezetében az is
eligazit, ha egy-keét kozeli pontra rarajzoljuk a vektormezd ottani elemét??.

A globalis dinamika megrajzolasdhoz fontos a kovetkez6t tudni: egy kétdimenzids Lotka—Volterra (16)
rendszernek pontosan akkor létezik periodikus megolddsa, ha a belsd egyensilyi helyzetéhez tartozo sajdtériékek
A2 = Fiw, w # 0. Ez esetben a belsd egyensilyi helyzet centrum, de az egymasba skatulyazott periodikus
megoldasok nem sziikségképpen toltik ki az x,y > 0 pozitiv ortdns egészét. Ennek a ténynek az ismeretében
(ha még a végtelen tavoli pont koriili dinamikat is “feltérképezziik”: ez roppant nehéz tud lenni!!) az egyen-
stulyi helyzetek koriili lokalis dbrak Osszekottetései, mas széval a kdzottiik 1évs trajektoria—kapcesoldédéasok
is egyértelmivé valnak és igy a teljes, globalis fazisportré is megrajzolhato.

A kétdimenzios Lotka—Volterra (16) rendszerek a sikbeli autonom differencidlegyenletek fazisportré—
analizisének legjobb gyakorlé terepe. A globalis dinamikat bemutaté dbra részenként, mindig ugyanazokon
a lépéseken keresztiil, fokozatosan készitendd el. S ekdzben a biologiai és a matematikai/geometriai intuicié
végig “parhuzamosan”, egymast erdsitve miikodik.

A dinamikus rendszer és a diszkretizacios/kozelité modszer fogalma. II.: A részletek

A dinamikus rendszer fogalma egy X allapottér valtozésait irja le az id6 figgvényében. Ez a fogalom
csak olyan valtozasokat enged meg, amelyeket egy 4llando, a mald idével nem valtozé, mindig ugyanigy
haté torvény kényszerit ki és amikor a jovébeli allapot csak a jelenlegi allapottol és a kozben eltelt idd
hosszusagatol fiigg.

Az X allapottértsl csak azt koveteljiik meg, hogy metrikus tér legyen, a d tavolsaggal. FElGszor a
folytonos ideji dinamikus rendszer fogalmat definialjuk, ami a (T mint ¢ime) T = R vélasztasnak felel meg.

A TANTARGY NEVET ADO SZUKEBB DEFINICIO: Legyen (X,d) metrikus téer. A @ : R x X — X
leképezés folytonos ideji dinamikus rendszer X —en, ha igazak ré az alabbi axiémék:

(i) @ (mindkét valtozojaban egyszerre) folytonos
(i) ®(0,z)=2 VeeX
(i) (¢, P(s,z)) =P(t+s,2) Vi, seR Ve e X

Az (ii) és (iii) axiomak egyszerten az id6 mulasat fejezik ki az aktudlis allapot megvaltozasanak
tiilkrében. Zérus id6 alatt nem valtozik semmi, ¢ + s id§ pedig ugy telik el, hogy eldszor az s, utana
pedig a t id6. Az s = —t, t > 0 valasztassal x = ®(0,2) = ®(t — t,z) = ®(¢t, P(¢t,z)) Vo € X, tehat a
D(t, ) : X — X t-idéleképezés (angolul t—time map) az X metrikus térnek 6nmagara torténd, kolesénosen
egyértelmt, oda—vissza folytonos leképezése, roviden az X—et onmagara vivé homeomorfizmus. (Folytonos
ideji dinamikai rendszerekben a jov6 és a milt szerepe tehat matematikailag felcserélhets. A jelen allapot
ebben az absztrakcidban a jovot is és a multat is egyértelmien meghatarozza.)

23%kiilonosen hasznos ez, ha a forgasiranyt szeretnénk megallapitani egy (stabil vagy instabil) fokuszpont esetében; de akkor
is segit, ha a kétdimenzios Lotka—Volterra (16) rendszer P = (IOU), xo > 0 egyensilyi helyzetének tipusara vagyunk kivancsiak:
ez esetben az ¢ derivélt elgjelét kell csak megéllapitanunk az (“°), 0 < ¢ < 1 pontban (hiszen a dinamikat mér ismerjiik a

teljes y = 0, > 0 féltengelyen)
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Rogzitett x esetén a @ dinamikus rendszer x € X ponton dimend trajektoridja a
V() ={®(t,z) C X [t € R}

halmaz, amelyet az X térbeli ¢ — ®(t,x) paraméteres gorbeként szemléltethetiink. Az X allapottér
tehdt a trajektdridk tnidja, amelyek az X egyréti fedését alkotjak. Ez az dbrézolasmoéd a fdzisportré.
Termeészetesen elegendd csak a legjellemzgbb, legjellegzetesebb trajektoridkat feltlintetniink: egyensulyi
helyzetek, periodikus megoldasok — a tobbi trajektoria koziil csak annyit kell megrajzolni, amelyek az
el6bb kiemelt trajektoridk vonzasi-taszitasi tulajdonsagait mar egyértelmivé teszik.

ALAPVETO PELDANK — amely egyittal minden késébbi altalanositast is meghataroz — AZ

i=f(z), =zeR? (18)

KOZONSEGES, AUTONOM DIFFERENCIALEGYENLET MEGOLDO—OPERATORA. Természetesen feltessziik,
hogy az (18) egyenletnek minden x(0) = xo € R? kezdeti feltétel esetén pontosan egy megoldésa van
(egzisztencia és unicitds), éspedig a teljes szdmegyenesen értelmezett 9., : R — R? fiiggvény, amely
folytonosan fiigg az 2o € RY kezdeti feltételtsl (folytonos fiiggés)?*.?> Az xq kezdeti érték egyfelsl a megoldas
paramétere, masfel6l — ha egyszerre vetiink szdmot az dsszes megoldéssal, a megoldast meghatarozé kétval-
tozods fiiggvény masodik valtozoja is a t € R idgvaltozé mellett. Ez indokolja, hogy zg helyett xz—et irjunk,

a (t,zo) = moz, jelolést pediga (t,z) — ®(t,x) alakra cseréljik .

Kozonséges differencidegyenleteket szamitogép segitségével oldunk meg, minden egyes kezdetiérték prob-
lémat egyenként. A fazisportré aszimptotikusan stabil alakzatait a szamitogép — ha elegend&en sok ideig
futtatjuk, mindig Gjabb és tjabb x¢ kezdépontbol inditva — automatikusan megrajzolja. Ha ugyanazt a
numerikus eljarast az © = — f(x) egyenletre alkalmazzuk, akkor ugyancsak az & = f(z) egyenlet trajek-
toridit kapjuk, de az id6ben negativ iranyitassal: igy a fazisportré repulziv, dnmagétol elloks, a t — — oo
hataratmenetben attraktiv alakzataihoz jutunk. A szamitogép alkalmas nyeregpont szeparatrixainak (ez
két dimenzidban a két “bemend” és a két “kimend” trajektoriat jelenti, amelyek t — oo illetve ¢ — — o0
esetén tartanak oda) abréazolasara is, de ehhez a szokésos programot egy extra ciklussal kell kiegésziteniink.

Aty € R kezdeti id6pontot, mivel az (18) differencislegyenlet jobb oldalan allo f fiiggveny nem fiigg a t valtozotol (és
ebben az értelemben autondm), batran vehetjiik to = 0—nak. A matematikai analizis egy feladata korrekt kitGzésd, ha pontosan
egy megoldasa van és ez az egyetlen megoldas folytonos médon fiigg a feladatban szerepls Gsszes paramétertSl — egzisztencia,
unicitds, folytonos fiiggés. A jelen esetben egyetlen paraméter van, az zo € R? kezdeti allapot, amelyt6] a megoldas folytonosan
fiigg — akkor pedig az xo maga is valtozo, a megoldé—operator egyik valtozoja: ez az a nézG6pont, ami az xo <> = betiicserét
indokolja. (Az absztrakcié egy magasabb szintjén maga az f fiiggvény is paraméter ... de ebbe most ne menjiink bele.)

25Mindehhez elegend§ feltenni az f : RY — R? globalis Lipschitz—folytonossagat, azaz a

[f(z) = f@| < Lle — & Vz,7€X =R (19)
egyenlStlenség teljesiilését, alkalmasan valasztott L > 0 Lipschitz—konstanssal, ahol | - | az R? tér normajat jelsli. (Az
x = (x1,T2,...,24) € R? jelolés mintajara hasznalhattuk volna az

i:k:fk(xl,xg,...,xd) és xk(O):(xo)k, k:1727~~~,d

koordinatas irdasmodot is. A d = 1,2,3 esetben — az erGsebb hagyomény kedvéért — indexek nélkiil, a szokéasos z,y, z
valtozokkal koordinatdzunk. Ha nem kifejezetten masként specifikiljuk, akkor a | - | norma az euklideszi normat jelenti.)
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Legyen p > 0 egész szam és legyen a maximalis megengedett 1épéskdz hg > 0. A ¢ : [0, ho] x RY —
RY leképezés p-EDRENDU EGYLEPESES DISZKRETIZACIOS OPERATOR AZ & = f(r) EGYENLETRE?®, ha
alkalmas K = K(f) > 0 konstanssal

|®(h,z) — ¢(h, )| < KhPTY Vh € [0,hg] Vo € R?. (20)
A diszkretizacios operator iteraldsa a diszkretizacios,/kozelitd modszer magaZ”
a:k:d)k(h,xo) & xpeq =o(hyag), K=0,1,2,....

Rogzitett T > 0 esetén a hPTl-vendi (20) lokalis hibabecslés a [0,7] intervallumon hP-rendt globalis
hibabecslést indukal, amely a T fliggvényében exponencialisan gyorsan novekszik. Valoban, ha a (19)
egyenlGtlenségben L > 0, akkor a lépéskoz h = % < hg valasztésa mellett

K K .
|®(kh,z) — xi| = |®(kh, z) — ¢*(h, z)| < T eFhpp < T e!"Th? Vk=0,NVzeR?. (21)

A tényleges hiba a mindig érvényes (21) becslésnél dltaldban jobb szokott lenni, kiilondsen akkor, ha Az
ALKALMAZOTT NUMERIKUS MODSZERT A FELADAT BELSO TERMESZETENEK MEGFELELOEN VALASZTJUK:
Tekintsiik a Newton masodik torvényét potenciélis er6térben leird

i+V'(z)=0,zeR < (PN) {;:gv,(x) ,<;:)ER2

differencialegyenletek csaladjat. A (PN) differencialegyenletek két kiilonleges tulajdonsaggal rendelkeznek:

e pontos megoldasok mentén az F(x,y) = 3’2—2 + V(z) 6sszenergia megdrzédik

26Természetesen azzal a feltevéssel éliink, hogy az f fiiggvény és a h lépeéskdz ismeretében ¢(h, ) ténylegesen és hatékonyan
kiszamithat6. Magasabb rendd modszerek esetén mind a ¢ leképezés, mind a (18) differencidlegyenlet jobb oldalan allo f
fiiggvény magasabb rendi simaséagat is fel kell tenniink. Ez utébbi feltevés maga utan vonja a ® megoldo—operator ugyanolyan
rendi simasagat. Ennél sokkal fontosabb tudnunk, hogy az ebben a fejezetben leirtak érvényességét érdemben nem korlatozza,
ha a (18) differencidlegyenletben — és ennek kovetkeztében a (19)-(21) egyenlétlenségek mindegyikében — az értelmezési
tartomanyokat szikiteniink kell.

2Ta szamitogép képerny6jén altalaban nem az x pontsorozat jelenik meg, hanem egy, az egymasutani z;, pontokat osszekots
gorbe vonal, leggyakrabban spline-gorbe. A p = 1 esetben — erre legjobb példa az xx41 =z +hf(zx) & X =z +hf(z) &
X = ¢g(h,z) erplicit Euler mddszer — tOréttvonalat kapunk. Az explicit Euler modszer ikertestvére az X =z + hf(X) <
X = ¢1(h,x) implicit Euler mdédszer. (Mint a szamitogépnek adott utasitas, az implicit Euler modszer is explicit képletté valik:
jollehet az X = = + hf(X) egyenlet pontos megoldasa csak ritkan irhaté fel zart alakban, a pontos X = ¢;(h, z)megoldast
— elegendG@en kicsiny, mondjuk a h = i lepéskoz—valasztas esetén — az X° = x kezd6pontbol inditott X = z + hf(X?),
¢=0,1,...sorozat mar néhany lépés utan is roppant jol kozeliti. Valoban, a (19) becslés okan az X = z+hf(X) egyenlet jobb
oldala, mint F . : RY - RY X — Fi o (X) = 2+ hf(X) leképezés a ¢ = % allandéval kontrakciot hatéroz meg.) A MATLAB
kezdetiérték problémak megoldasara leggyakrabban hasznalt ODE45 eljarasa egy negyed— és egy 6todrendd Runge-Kutta
modszer enyhén heurisztikus kombinacidja, adaptiv, “kanyarban lassits, jol belathato egyenes szakaszon gyorsits” 1épéskoz—
szabalyozéassal. A MATLAB ODEs15 eljarasrol annyit mindenképpen érdemes tudni, hogy nemcsak a lépéskozt valtoztatja
adaptiv médon, hanem az aktualisan hasznalt alapmodszer 1 < p < 5 rendjét is. Az s betd a stiff (magyarul merev) sz
kezdgbettjére utal. Az ODEsl5 eljarast akkor szokas hasznalni, ha a feladatban kdlénbozd léptékd iddskdldk egyszerre jelennek
meg. Egy & = Az alaka allandé egyiitthatos linearis egyenlet is lehet merev — ha példaul 10° és 1075 (plane ha 10 és
10719) egyarant az A matrix sajatérteke.
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e az id6 mulésa a fazisportrén /fazissikon megérzi a teriiletet

Az E = E(x,y) Osszenergia megmaradasa a pontos megoldasok dinamikijanak jol ismert tulajdonsaga,
amelyet matematikailag az Osszetett fliggvény derivaléasi szabalya igazol:

d

S B(0),y(0)| (py) = (B + By i) () = V(@) -y +y- (V' (@) = 0. (22)

Ennél nehezebb igazolni, hogy a pontos megoldasok dinamikiajaban a teriilet is valtozatlan marad: ez
Liouville aldbbi tételének specidlis esete és a div(_vy/(x)) divergencia azonosan nulla voltaval egyenértékd.
LioUVILLE TETEL: Tekintsiik az ¢ = f(z), € R? egyenletet. Legyen Vi C R? korlatos tartomany,

dVp peremmel és v kifelé mutatoé normalis egységvektorral. Legyen tovabba V (t) = ®(t, Vo), t > 0. Ekkor

d .
amesh(V(t)) = /V(t) divf(z)de Vt>0. (23)

Bizonyitas: A bizonyitas amennyire varatlan és szellemes, annyira egyszerd és rovid is. Megérteniink
akkor konnyt, ha elGszor arra a specidlis esetre gondolunk, amikor az f “4ramlas” a folyton névekvd
V(t) tartomany OV (t) peremét minden pontban és minden ¢ > 0 idében kifele metszi. A OV (t) peremre
raépiilé vékony hatarréteg térfogatat 0 < h < 1 esetén az intergralkdzelits Osszegek lokalis, “alapteriilet x
magassag” elve szerint (mesh mint measure) felirva, majd az utolso lepésben Gauss integralatalakito tételét
hasznélva:

mesh(V (¢t 4+ h)) — mesh(V(t)) = /(W( ) f(x)-hrdS = h/av( | f(z)dS = h/v(t) div f(z) dx .

Atosztva a h > 0 paraméterrel, a h — 01 hataratmenetb6l Liouville nevezetes (23) formuldjat kapjuk. O

A diszkrét idejii eset kezelése joval egyszertibb és nem igényel mést, mint annak ismeretét, hogy a
determindns geometriai jelentése térfogat, a matrix oszlopvektorai altal kifeszitett parallelepipedon tér-
fogata. (Ez a geometriai jelentés az 1j koordinatarendszerre vald attérés alapvets integraltranszformécios
képletének magyarazata is egyben.) Egy I : R? — R? C leképezés pontosan akkor 6rzi meg a d-dimenzios
elGjeles térfogatot, ha a J(x) = f/(x) Jacobi matrix determinansanak értéke azonosan egy: det(J) = 1.

A semiimplicit Euler mddszert a (PN) feladatok osztdlydn gy szokas definialni, mint a

. 2 2 TV z + hy
¢s:[0,ho] x R* = R* | ¢g (h, <y>> = <th’(l’+hy)>

leképezést, amely mogott természetesen most is a derivaltak kiilonbségi hanyadosokkal torténs kozelitése
all:
X-z =y X=z+hy
Y- / < !
You — _y'(X) Y =y—hV'(z+ hy)

A Verlet (mds néven Stormer—Verlet) modszert a (PN) feladatok osztdlydn tgy szokas definialni, mint a

(0 6= (v e i)
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leképezést. Mindkét esetben direkt szamolas igazolja, hogy det(J) = 1. A semiimplicit Euler modszer

esetén
L aXY) 1 h B
T = Gy (—hV”(x—l—hy) 1—hV”(x—|—hy)-h> = det(/)=1 Vh>0,

s méar készen is vagyunk. A Verlet modszer esetében a szdmolas bonyolultabb. A ¢g modszer rendje p = 1,
a ¢y modszer rendje p = 2. Az igazi kérdés egy matematikus szdmara az, hogyan lehetett rajonni a Verlet
modszer képletére. Egy informatikus és egy bionikus mérndk els§ kérdése az, mire lehet a ¢g és a ¢y
mddszereket haszndini? Es miért elényds, ha haszndlja éket? Erre kicsiny és nagy valasz egyarant kénnyen
adhato.?®

A Fkicsiny vdlasz egy konkrét numerikus példa, vagy ha gy tetszik, az aldbbi tablazat:

A gravitaciés inga/hajohinta & + sin(z) = 0 egyenletét oldjuk meg, az x(0) = 7, #(0) = 0 kezdeti
feltétellel. Maga az egyenlet természetesen (PN) tipusa és V(z) = 1 — cos(z). (Elvben lehetne akar
V(x) = — cos(x) is, de a szabad konstansot érdemes ugy valasztani, hogy az E(x,y) = §+V(m) Osszenergia
lehetséges minimuma — az inga alsé egyenstlyi helyzetében — zérus legyen.) A kezdeti feltételt/allapotot
ugy vélasztottuk, hogy az onnan indulé pontos megoldas energidja egységnyi legyen. Hat MATLAB
kisérletet végeztiink, az energiat mindig a megfelels numerikus megoldas mentén vizsgalva a [0,T] id6—
intervallumon. A lépéskoz h (és a lépések N szamaval T' = Nh). Emlékeztetiink arra, hogy ég, ¢1, ¢g
és ¢y rendre az explicit Euler médszert, az implicit Euler médszert, a semiimplicit Euler médszert és a
Verlet modszert jelentik. Ime a numerikus eredmények:

# || modszer | h T a numerikus energia t = 0 és t = T kozott
1 || ¢ 0.001 | 100 monoton ng 1 és 1.068... kozott

2 || ¢ 0.001 | 1000 monoton n§ 1 és 1,70... kdzott

3 | &1 0.001 | 100 monoton fogy 1 és 0.934 ... kozott

4 | o1 0.001 | 1000 | monoton fogy 1 és 0.46... kozott

5 || ¢s 0.1 10000 || oszcillal 0.957 és 1.045 kozott

6 | v 0.1 10000 || oszcillal 0.998 és az 1.000. .. kozdtt

Az utolsoelstti kisérletben az oszcillaciok Gsszessége sinus—hulldm, az utolso kisérlethen ciklois—hullam
jellegd volt. (Az oszcillaciok szama mindkét esetben jo kozelitéssel ezer volt.) A numerikus energia az
%y,% + V(xg) kifejezés értékeinek k = 0,1,..., N sorozata, amikor is a kozelit6 megoldas egyméas uténi
pontjait behelyettesitjiik a tényleges energia F(z,y) = %y2 + V(z) képletébe. Lehet csodalkozni, jollehet a
tablazat sokkolo jellegét részben a fazistér kétdimenzios volta okozza.?

CELFELADATHOZ TEHAT CELPROGRAM TARTOZIK. De ahhoz, hogy a szamitogépet a valéban éles
esetekben is jol tudjuk hasznalni, tudnunk kell, mi van a célprogramok "fekete doboza"-ban: a konkrét
feladat—osztaly fizikajatol fliggs hibrid, gondosan konstrudlt, &m ugyanakkor heurisztikus elemeket is joc-
skan tartalmazo6 algoritmusok.

28Kifejezetten ajanlom a http://digitus.itk.ppke.hu/~garay/ tarhely abrakkal gazdagon illusztralt Numerikus Dinamika cimi
vetithetd el6adasat.

29Ge és Marsden egy tétele szerint nem létezik olyan diszkretizacios eljaras, amely egyszerre lenne képes az energia és a
teriilet mindegyikének pontos megérzésére egy, a (PN) tipusba tartozo altalanos feladat esetén.
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A nagy vdlasz pedig az, hogy az dltalanos, d + d = 2d dimenziés, Hamilton tipusa & = %—ZI, y=— %—g
differencidlegyenletek hatékony szamitégépes kezelését a Verlet modszer és az annak nyoman felfedezett
tovabbi szimplektikus algoritmusok tették lehetéve.3’ A hagyomanyosan, tobbtest—problémaként felfogott
molekuldris dinamika .

.. T=M""y
Mi+Vi(z)=0 <& MD { .
(2) oy § TN
alapegyenlete is Hamilton tipusa.®! A pontos megoldasok (22) mint4jira a H szintfeliiletein haladnak.

Lattuk tehat, hogy a kozonséges, autonom differencidlegyenletek elmélete a T = R, a megoldasok
szamitogépes, diszkretizacioval torténd meghatarozasa viszont a T = AN (itt A > 0 a lépéskoz) ido—
valasztast igényli. A tantargy nevét ado6 sziikebb definicié (i)—(ii)—(iii) axiémainak mindegyike értelmes
marad akkor, ha a benniik szereplé R helyére hN keriil. Ez utébbi esetben az idé csak elére mehet32. A T
megvalasztasara osszesen hat lehetGségiink van, R mellett Z és hZ, hN mellett RT = [0,00) ¢s N (h > 0
rogzitett, a h = 1 vélasztast kiilon esetekként kezeljiik): a felsoroltakon kiviil az R additiv csoportnak és
az Rt = [0, 00) additiv félcsoportnak nincsenek més zart részcsoportjai illetve zart rész—félcsoportjai (az
{0} € R egyelemt additiv csoporttol most tekintsiink el).

A TANTARGY NEVET ADO TAGABB DEFINICIO: Legyen (X, d) metrikus tér és legyen T az R, RT, Z,
N, hZ, hN halmazok barmelyike. A ¢ : T x X — X leképezés T ideji dinamikus rendszer X —en, ha igazak
ra az alabbi axiémék:

(i) ® folytonos,
(ii) ®(0,z) =2 Vze X,
(iii) ®(¢, ®(s,2)) =P(t+s,2) Vt,seT Ve X.
A hatféle id6valasztast parokba csoportositva
o T =R (illetve T = R") esetén @ folytonos ideji (semsi)dinamikus rendszer,
o T =7 (illetve T = N) esetén ® diszkrét ideji (semi)dinamikus rendszer,

o T = hZ (illetve T = hN) esetén ® h > 0 lépéskozi (semi)dinamikus rendszer.

Ko6zonséges differencialegyenlet alappéldak a természettudomanyokban

30Ezek olyan diszkretizacios eljarasok, amelyek egy sor fizikailag relevans megmarado mennyiséget (kbztiik a 2d-dimenzios
térfogatot) pontosan megérzik, és a H = E Osszenergiat csak nagyon lassan és kicsit torzitjak.

81 A Hamilton—fiiggvény H(z,y) = (M 'y, y)+V(z). Itt M = M" dx d méreti és pozitiv definit métrix (az altalanositott
témegmatrix), V : R* — R a potencidlis energia (V'(z) = grad V(z) gradiens—vektorral), =,y € R? pedig az atomi sokasag
helyzetre és momentumra vonatkozo kanonikus koordinatai, (-,-) pedig az R? euklideszi téren értelmezett skalaris szorzas.

3FEzen a megallapitason mit sem valtoztat, hogy az # = f(z) egyenletet az id6ben visszafelé is meg tudjuk oldani (ha
ugyanazt a diszkretizaciés modszert az © = — f(z) egyenletre alkalmazzuk), és az sem, hogy az (19) egyenl6tlenség maga utan
vonja, hogy minden elegendGen kicsiny h > 0 rogzitett lépéskoz esetén az RY — R? & — ¢(h, x) leképezés homeomorfizmus.
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Két példa a villamossdgtanbol>3:

RLC-kér van der Pol oszcillator
Vi+Ve+Ve=v(t) & Ip=1c=1Igr Ic+Ip+Ip=1i(t) & Vo=Vr=V]
V,=LI, & Ip=1[" _Vi(s)ds

Vi = ((I) = RIp Ip=n(VR) =—n(Ve = 3V§i) , n>0
Vo = % ffoo Io(s) ds s Io=C0Ve

A t idgvaltozd szerint derivalva, majd az azonos oszlopban 1évs egyenleteket Gsszeadva:

RLC-kor van der Pol oszcillator
LI+ RI+ 1= 40t CV—pl-=VHV + 1V =49it), pn>0
Két példa a mechanikdbolP*:
linearis rugo gravitacios inga/hajohinta
mi + bi + kx = F(t) ml + b + mgsin(f) = F(0) , b>0
Egyetlen fontos példa a kémidbol >

33 Az LRC-kér sorosan kapcsolt aramkéri elemekbél all, v(t) kiilss vezérls fesziiltséggel. Az LRC—kér ellenallasaa Vi = £(Ig)
képlet szerint ohmikus/linearis ellenallas. Mivel Ic a kondenzatoron tarolt Q = Q¢ toltésmennyiség Ic = Qc derivaltja,
az LRC—kér egyenlete az LQ + RQ + %Q = o(t) alakban is felirhat6. A van der Pol oszcillator parhuzamosan kapcsolt
aramkori elemekbdl all, i(t) kiilsé vezérls aramerdsséggel. A van der Pol oszcillator “ellenallasa” alagit—dioda, az Ir = n(Vg)
nemlinearis karakterisztikaval. Mindkét aramkorben egy C kapacitasa kondenzator, és egy L indukcios egyiitthatoji tekercs
is van. A kiilsG gerjesztés nélkiili van der Pol egyenletnek tobbféle normalalakja is van, koziiliik az & — u(l — z?)z +z = 0
egyenlet, valamint az ¢ = y, § = pu(l — 2}y —z és az & = ,u(m - %m3 - y), y = ix egyenletrendszerek a leggyakrabban
hasznalatosak. A p > 0 paraméter tetszéleges értéke mellett a van der Pol egyenletrendszernek létezik aszimptotikusan stabil
periodikus T' C R? megoldasa, amely az origo kivételével az R? fazissik minden pontjat magahoz vonzza. Eza T =T,, u >0
periodikus megoldas a p = 0 valasztasnak megfelels & +x = 0 < 7 = 0, ¢ = —1 polarkordinatas alakba atirt rendszer
r = 2 korpalyajabol bifurkalodik. Id6ben periodikus kiils§ (példaul sinus—os) gerjesztés esetén kaosz is lehetséges. Utobbi a
periodikusan gerjesztett, strlodasos gravitacios ingara/hajohintéara is igaz.

34 Mindket példa az ma = F Newton torvény alkalmazasa vizszintes rugo (m tomeg, b surlodasi egyiitthato, k rugoallando, és
F(t) kiils erd) illetve gravitacios inga/hajohinta (m tomeg, ¢ kotélhossz/rudhossz, b kozegellenallasi egyiitthato, g gravitacios
egyiitthato, és F(t) kiils6 er6) esetén: az x a nyugalmi allapottol mért vizszintes kitérés, a 6 a lefelé mutato fiiggsleges
vektorral bezart szog mér6szama az inga felfiiggesztési pontjaban. (A stlytalan rugd végére rogzitett tomeg egyenes mentén,
a stlytalan kotél/rad végére rogzitett tomeg egy fiiggbleges sikbeli korén mozog.)

35a Nemlinearis Dinamika jegyzet — http://digitus.itk.ppke.hu/~garay/NDS_jegyzet/ — 2.12 fejezetében 6t autokatali-
tikus, oszcilldlé reakcid szerepel, egyikiik (az u = % —u+u?v, ¥ = p — u?v Schnakenberg modell a 0 < u < 1 paraméter-
tartomanyban) részletes targyalasaval: az aszimptotikusan stabil periodikus palya a p paramétert névelve Hopf-bifurkacioval
sziiletik, és ugyancsak Hopf bifurkacioval hal meg.
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Két?S példa a bioldgidboP:

Lotka—Volterra Hodgkin-Huxley

CnV = =ga(V = Vo) — gram®h(V = Viva) — grn*(V = Vi)
Tm(V) - =me(V) —m

(V) h=he(V) = h

(V) - n=no(V)—n

T1 = Tr1T1 (1 + a2+ ...+ aqxy
To = ?”2962(1 + a1 + ... + agqxy
T3 = ?”33]3(1 +az1x1 + ...+ a34x4

T4 = 14241 + ag1x1 + ...+ aguaxy

Vegyiik észre, hogy az RLC—kor és a linearis inga differencidlegyenlete matematika szempontbél teljesen
azonos. Az is vilagos kell legyen, hogy a linearis rugé egyenlete nem mas mint a gravitacios inga/hajohinta
0 = 0 alsé egyensulyi helyzet koriili linearizaltja.

A kiils6 gerjesztés nélkiili RLC—kor, linearis inga és gravitacios inga/hajohinta pontosan akkor 6rzi meg
az E(1,Q) = %L[2 + %.Cy (a tekercs méagneses mezdjének energidja plus a kondenzéatoron tarolt energia —
>
tarolt energia), E(0,6) = %m(€0)2 +mgl(1—cos(f)) (a mozgési plus a helyzeti energia) dsszenergiat, ha az
R > 0 ellenallas, illetve a b > 0 surlodasi/kozegellenallasi egyiitthato értéke 0. Az ezzel ellenkezd esetekben
az energia a megoldasok mentén végig csokkenve Ljapunov-fiiggvényként hasznalhato.38

itt az I = I = Q¢ = Q osszefiiggésre is tigyelni kell), E(z,z) = +mi? + %k:nQ (a mozgasi plus a rugdban

Linearitas és lokilis, egyensiilyi helyzet koriili linearizalas

Linearitds alatt itt és most algebrai, kozonséges és parcidlis egyenletek linearitasat értjiik, amely lin-
earitas az altalanos megoldas szerkezetében is megjelenik. Az absztrakci6 magasabb szintjén a linearitds
az egyenletet, illetve az egyenlet megolddsdt meghatdrozo operdtor tulajdonsdga.

36természetesen csak mutatoba, az egyik a populaciodinamikabol és a masik az idegélettanbol

3TAz N fajbol allo x; > 0 Skoszisztémat modellezé Lotka—Volterra differencialegyenlet az N = 4 speciélis esetben szerepel.
Ha N > 4, akkor az egyiitthatok r; > 0, ai;; < 0, a;; < 0,4, =1,2,..., N valasztasa mellett (az egyiitthatok ilyetén valasztasa
— versengl noévényevSk — garantalja, hogy a végtelen tavoli pont taszit és hogy az x; > 0 féltengelyek mindegyikén pontosan
egy, az origotol kiilonboz6 P; egyensilyi helyzet van) is sikeriilt kimutatni a kdosz létezését. Kaosz amtgy mar az N = 3 esetben
(egy ragadozo, két novényevs) is létezik, de az N = 3 valasztas mellett el6fordulo legfurcsabb jelenség mégis inkabb egy, a
P,—P>—P; pontokat a nemnegativ ortans peremén sszekotd, és igy a “ké—papir—olld” jatékot modellezd aszimptotikusan stabil
heteroklinikus kor. Az N = 2 eset legfontosabb tipusait lattuk a félév folyaman, az r;, a;; < 0 valasztasokat is megengedve. Ez
azonban messze nem a teljes karakterizacio — az ¢ = z(—1+ 2z —vy), ¥ = y(—4+ 7x — 3y) Cressman rendszer fazisportréjanak
felrajzolasa még szamitogép segitségével is nehéz feladat. A méasik példa szintén négy egyenletbdl all és az eziistdrottal
preparalt tintahal-idegrost Hodgkin—-Huxley kisérlet ekvivalens dramkori modelljét mutatja be. A tényleges Hodgkin—Huxley
modell az m, h,n kapuvaltozok egyenleteit megtartja, de az els egyenlet parabolikus parciélis, az = helyvaltozo6tol is fiiggd
egyenletté modosul, amelynek utazé hullama a V' akcios potencial idegrost mentén térténs haladasat irja le. A kapuvaltozokra
vonatkozo egyenletek mindegyike atfogalmazhato a 7, (V)1 = moo (V) —m < m = an(V)-(1—m)—Fm(V)-m minta szerint.
A Hodgkin—Huxley modell altalanositott/kiterjesztett és egyszeridsitett valtozatai ma is lépten—nyomon hasznélatosak.

38Erdemes felemliteni, hogy mind az & = z(—142x—y), § = y(—4+7x—3y) Cressman rendszer, mind az &—pu(1—z?)i+z = 0
van der Pol oszcillator (a g > 1 esetben), mind az @ = é —u+u?v, © = p—u?v, 0 < p < 1 Schnakenberg modell
esetében a szokatlan viselkedés 6 oka a POZITIV VISSZACSATOLAS. A van der Pol oszcillatorban (ha p > 1), csaktgy mint a
Hodgkin-Huxley modellben és ez ut6bbi szamos altalanositott/kiterjesztett és egyszerisitett valtozatadban KETFELE IDOSKALA
is megjelenik.
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Mindezt jol ismerjik a linedris kozinséges differencidlegyenletek elméletébdl, legyen az homogén vagy
inhomogén, 4lland6 vagy (az id6ben) valtozo egyiitthatos. Ime két konkrét példa

e a homogén linedris eqyenlet megolddsai vektorteret alkotnak valamint az
e “inhomogén dltaldnos” = “homogén dltaldnos” + “inhomogén partikuldris”
szabalyok teljesiilésére3?:
i+2i+mx=2cos(t) < x(t)=cre i +cote " +sin(t), e1,c2 €R,
& = —3z + 2y + 6 cos(t) — 4sin(?) x(t) _or (2 a1 2 cos(t)
. . = R.
Yy = 2x — 6y — 3cos(t) + 6sin(t) < y(t) ae 1 +eze -2 * sin(t) )’ 1,02 €

Mindkét szabaly valtoztatas nélkiil érvényes a linedris algebrai egyenletek kdrében is:

1 2 3 4 x 5 x 1 0 0
5 6 7 s8|[y|_[13 y| |2 1 1
9 10 11 12|z la] T |z]|7af 1| T2 T]|1] weER
13 14 15 16/ \w 29 w 0 1 0

Vegyiik észre, hogy a 0 kétszeres sajatértéke a linearis egyenletrendszer méatrixanak, és hogy a c; és a ca
mellett all6 két vektor a 0-hoz tartozé kétdimenzios sajataltér bazisat alkotja.

A (homogén Dirichlet peremfeltétellel és az f(t,x) = 2 inhomogenitdssal elldtott) (t > 0, x € [0,7])
diffiizidegyenlet altalanos megoldasa’® (amint azt lényegében mar a 2-ik oldalon lattuk):

Mot b e e =Y i) 4 st ) R D

Ha a kezdeti feltétel u(0,z) = g( ) = sin®(x) + z(m — ), akkor (24) és a sin(3z) = 3sin(z) — 4sin®(x)
azonossag miatt c; = 2, c3 = — L és¢,, = 0han # 1,3. Azigy kapott u(t,z) = 3e'sin(z)— te % sin(3z)+
x(m — x) megoldas a t < 0 esetén is értelmes. Azt, hogy a diffizid—egyenletben az idd csak eldre mehet, a

kezdeti feltétel egy maésik, keveésbé specidlis valasztasa mutatja*!

39 A megoldasokat probafiiggvények segitségével szamoltuk ki. Az els§ példaban az i + 2& + x = 0 homogén egyenlet
megoldasait z(t) = e alakban, az inhomogén egyenlet egy partikularis megoldasat z(t) = A cos(t)+ B sin(t) alakban kerestiik.

A masodik példdban ugyanezeknek a probafiiggvényeknek a vektoros, z(t) = e*'s illetve z(t) = () cos(t) + () sin(t) alakjait
hasznaltuk. Az els6 példa homogén részében tapasztalt N4222A+1=0 < A1,2 = —1 bels6 rezonanciaval konnyen elbantunk:

a homogén egyenlet két alapmegoldasanak szokasos valasztasa e ! és te”*. Mivel a masodik példa homogén részének matrixa

a szimmetrikus A = (53726) matrix, az esetleges A1 = A2 belsd rezonancia ott semmiféle gondot nem okozott volna: minden
dx d méreti szimmetrikus valds mdtrizhoz létezik sajdatvektorainak olyan csalddja, amely az R® tér ortonormdlt (azaz egymasra
paronként meréleges egységvektorokbol allo) bdzisdt alkotja. A c1,c2 € R egyelére még szabad konstansokat a kezdeti feltételek
megadasa teszi egyértelmitivé.

404 tovabbra is linearis egyenlet inhomogenitasanak roppant kényelmes, f(t,x) = 2 valasztasa mellett a partikularis megoldas
legegyszertibb alakja u(t,z) = z(m — z) — a Dirichlet peremfeltétel inhomogenitasa azt jelentené, hogy w(t,0) = A(t) és
u(t, m) = B(t) volna (amikor is a v(t,z) = u(t,x) — A(t) — £(B(t) — A(t)) valtozé-transzformaciot hivnank segitségiil)

“'Ha a (24) képletben ¢, = 1, akkor a t = 0 kezdeti id6pontban u(0,-) = g € L2[0,n] hiszen Yonor = %2 < 00, de
limy, - 00 %e_”zt = oo miatt u(t,-) € L2[0,7] ha t < 0 (a Fourier egyiitthatok soha nem tarthatnak vegtelenhez Négy-
zetOsszegiik korlatossaga akkor és csak akkor tipusi jellemzése az L2[0, w] — s6t barmely mas — Hilbert tér elemeinek).
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DINAMIKUS RENDSZER LINEARITASANAK DEFINICIOJA: Legyen (X, | - ||) Banach (azaz teljes normaélt)
tér és legyen T az R, RT, Z, N, hZ, hN halmazok barmelyike. A ® : T x X — X dinamikus rendszer
linedris, ha az (1)—(ii)—(iii) axiomak mellett az is igaz ra, hogy

e minden rogzitett ¢t € T esetén ®(t,c1z1 + coxa) = a1 P(t, x1) + c2P(t,x2) Ver,c0 € R Vg, xe € X.

A (18) nemlinearis T = R, X = R? alappélda linearis valtozata az d x d mérett, valos szamokbol
felépitett A méatrix altal meghatérozott & = Az kozonséges, autoném linedris differencidlegyenlet

P RxRY SR | (t2) = Bt x) = e

alak megoldé—operatora.
Ha a (18) képletben szereplé nemlinearis differencialegyenletben f € C'(R?, R?) és f(0) = 0, akkor az
f fiiggvenyt a 0 € R egyensilyi helyzet kiril linearizdlva f(x) = Ax+a(z) adodik, ahol A = f/(0) a 0-ban
vett Jacobi métrix és az a € C*(R?, RY) fiiggvényre a(0) = 0 és a/(0) = 0 (az azonosan nulla d x d matrix).
Jelolje A\, Ao, . .., A\g az A matrix sajatétértékeit. A 0 € RY mint az & = Az differencidlegyenlet egyensi-
lyi helyzete nem—elfajult, ha minden k = 1,2,...,d esetén Re A\p # 0. A nem—elfajultsdgnak ez a definicidja
az © = f(x) differencidlegyenlet barmely més egyenstlyi helyzetére is automatikusan kiterjeszthets.

A LOKALIS FAZISPORTREK LENYEGI AZONOSSAGA NEM—ELFAJULT EGYENSULYI HELYZETEK ESETEBEN:
A nemlinearis # = f(z) differencidlegyenlet fazisportréja kiilon—kiilon, minden nem—elfajult egyensulyi
helyzet kis kornyezetében kvalitativ szempontbol azonos az ottani linearizalt egyenlet fazisportréjaval
(és kvantitative is csak alig kiilonbozik t6le). A lokalis fazisportréknak ez az azonosithatosdga — ha a
0 < h < hg lépéskozt megfelelGen kicsinynek valasztjuk — kiterjed a ¢(h,-) : R — R? diszkretizacios
operatorra is.42

Itt és most legyen elegend6 szamunkra a kivetkezs példa, ahol egy sikbeli nyeregpont kimend és bemend
trajektoriait egészen konkrét képletekkel is meg tudjuk adni, mind az eredeti (N) nemlineéris, mind az (L)
linearizélt, mind a(z explicit Euler modszerrel) (D) diszkretizalt esetben:

- - Y=y+h
LIRS SR SO SR el S A Y

A kimend trajektoridkat hordozéd instabil sokasagok az alabbi, a teljes R = ) szdmegyenesen értelmezett
Y — Z fiiggvények grafikonjai:

2 2

s=uly) & u) =5 ), 2=0(0). z=w(y) & w@) =357 (D).

A bemend trajektoridkat hordozo stabil sokasédgok mindegyike a(z y =0 < Y =0 egyenletd) z tengely.
Vegyiik észre egy édltalanos szabaly megjelenését is: mind az (N), mind a (D) dinamikihoz tartozo6 instabil

42 Arrol van sz6 tehat, hogy barmely nem-—elfajult egyensulyi helyzet kis kérnyezetében mind a linearizalas, mind a dis-

zkretizalas trajektoriat trajektoriaba vivs, s6t (a trajektoridk mentén) az id6t is meg6rz6, és az identitashoz nagyon kozeli
koordinata—transzformaciéo. A mogottes matematikai tétel a Grobman-Hartman Lemma, amelyet a a Nemlinearis Dinamika
jegyzet — http://digitus.itk.ppke.hu/~garay /NDS_jegyzet/ — tobb szempontbol is részletesen targyal. A lényeget legjob-
ban az ottani 2.4 sorszamu abra fejezi ki. A sikbeli, nem—elfajult egyensilyi helyzetek osztalyozasat leiré nyom—determindns
diagram egytuttal a Grobman-Hartman Lemma kétdimenzios aleseteit is szemlélteti.
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sokasag az origoban érinti az (L) dinamika instabil alterét. Képletekkel kifejezve: u(0) = up(0) = 0 és
d%u(yﬂyzo = %“h(y)’y:o = 0. A most észlelt szabalyszertiség természetesen érvényes a stabil sokasagok,

illetve a stabil altér vonatkozasaban is. Es az is mindig igaz, hogy a h — 0% hataratmenetben uy, (y) — u(y)
(legalabbis a z = 0 instabil altér origohoz kozeli, ||y|| < 1 részén).

Amint azt a két részletben targyalt PELDA 4 kapcsan mér lathattuk — érdemes visszalapozni az 5-7
valamint a 9-10 oldalakhoz —, a gyakorlatban haszndlt diszkretizdcids eljdrdsok szinte mindegyike megdrzi
a diszkretizdlt egyenlet linedris strukturdjdt. Hogy masik, egyszeribb példat is mondjunk, tekintsiik az
implicit Euler modszer alkalmazaséat az @ = Ax lineéris egyenletre, amikor is az dltalanos X = x + hf(X)
szabély az alabbi alakot 6lti:

X=z+hAX & (I-hA)X=z <& X=(I-hA)""

A masodik atalakitas természetesen csak akkor jogos, ha 0 € R nem sajatértéke az (I —hA) métrixnak, azaz
ha az A matrix minden Ay sajatértékére 1 — hAp £ 0, k =1,2,...,d. Ez a # 0 feltétel minden A matrixra
teljesiil, ha 0 < h < 1. Ha azonban az & = Ax linearis egyenlet aszimptotikusan stabil — ami a Re A\p <0
Vk feltétellel ekvivalens —, akkor a h > 0 lépéskozt tetszGlegesen nagynak is valasztva, 1 — h)\k #£0
(k =1,2,...,d) automatikusan igaz lesz, s6t (a spektralsugarrél tanultak értelmében) ||(I —hA) ™| = 0
ha h — co. Ez itt és most feketén—fehéren azt jelenti, hogy az implicit Fuler moédszer altal meghatarozott
Zny1 = (I — hA) ', sorozat barmely zo € RY esetén a 0 € R origéhoz tart.

A fenti okoskodéssal szokés az implicit modszerek jogosultsagat alatamasztani. Jollehet az egyes
lépésekkel tobb munka van, a lépéskéz — kiilondsen a mérndkdk altal annyira favorizalt aszimptotikusan
stabil egyensulyi helyzetekhez egyre kozeledve — nagynak, st egyre nagyobbnak valaszthat6. A dinamika
aszimptotikus stabilitdsa — még akkor is, ha az L nagy (!!) — alaposan feliilirja—feliilirhatja a (20) és a
(21) egyenldtlenségeket, ugyanakkor az explicit Euler modszer és mas explicit modszerek hasznéalatdban
kikényszeriti— kikényszeritheti a 1épéskoz 0 < h < 1 véilasztasat, ami ugyancsak lassitja a szamitégépet és
jocskan noveli a kerekitési—szamabrazolasi hibak 6sszhatasat.

Az egydimenzids u; = u,, diffizib—egyenlet megoldasai tobbféle médon is kapcsolatba hozhatok linedris
dinamikus rendszerekkel. Ehhez a (2) és a (11) képleteket kell ajra—fogalmaznunk a linearis funkcionalanalizis
nyelvén, a Fourier sorfejtés és a konvoliciés integral alaptulajdonsagainak felhasznaldsaval.

A [0, 7] intervallumon értelmezett uy = ugy, u(t,0) = u(t,7) =0 (t > 0, x € [0,7]) homogén Dirichlet
feladat (2) megoldasai linearis dinamikus rendszert hataroznak meg az X = L]0, 7] Hilbert téren. Az
u(0,-) = g € L2[0, 7] kezdeti feltételhez tartozo ®(t¢,g) megoldés minden rogzitett ¢ > 0 esetén a g val-
tozoban folytonos és linearis. Jogos tehat a ®(t, g) = T'(t)g jelolés, ahol T'(t) € L(L2[0, x|, L2[0, 7)), az X =
Lo [0, ] teret dnmagéba vive folytonos linearis operator (melynek norméja [|T'(¢)[| = | T()|| (1, [0,5), L2[0,4]) =
e™"). At =0 kezdeti id6ponthoz a T'(0) = Idrr,(0,x],1,[0,x)) identitas-operator tartozik. A t > 0 esetben
a T'(t) operétort a

(®(t,9))(z) = Z Ysin(nx) ahol ¢, = 2 /Owg(fv) sin(nx)dr, n=12...

s
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képlet definialja.*3 A linearit4s ténye és a (ii) axioma teljesiilése is rendben; a (iii) axioma a T(t + s) =
T(t)T(s) azonossag formajat olti (és a minden a € R paraméter esetén érvenyes e®(+s) = e formula
kovetkezmeénye). Igazabol csak az (i) axioma teljesiilése szorul bizonyitésra, és az is csak a

1T (te)ge — g”LQ[oﬂr} —0 ha g — 9||L2[0,7r} =0 & tp— 0" (25)

specidlis esetben. A [|T'(to)ge — gll,, < [IT'(te)ge — T(te)gllp, +IIT(t)g — 9l 1, < llge — 9l 1, HIT(te)g — gl .,
egyenlétlenség miatt feltehetjiik, hogy gr = g (¢ = 1,2,...). Ami még hatra van, az (25) bizonyitasa a
gr =g (£ =1,2,...) specialis esetben: egy teljesen elemi, de nagyon szép és jellegzetes szamolas**
A kapott eredményt gy is meg lehet fogalmazni, hogy az u; = ugy, u(t,0) = u(t,7) = 0 (¢ > 0,
€ [0,7]) homogén Dirichlet feladat (2) megoldésai az X = L[0, 7] Hilbert téren a {T'(t)},~, linearis
operator—félcsoportot definialjik, amely az id6 ¢ > 0 és a kezdeti értékek g € Lo[0, 7] valtozojaban egyszerre
folytonos. Ez igaz az us = Uy, ug(t,0) = ug(t,7m) =0 (¢t > 0, x € [0, 7]) homogén Neumann feladatra is.
A teljes szamegyenesen értelmezett uy = ug, diffizidegyenlet kezdeti értékeit nemcsak a

(BCR), [l powy ={9: R =R | g folytonos és korlatos a [|g[| go(r) = sup|g(x)| normaval}
zeR

Banach térbél vehetjiik, hanem az L1 (R) vagy az Lo(R) terekbol is. A (11) formula minden esetben a teljes
szamegyenesen értelmezett u; = uy, diffuzidegyenlet egy—egy megoldasat definidlja a (¢,z) € (0,00) x R
halmazon, s6t a kezdetiérték feltételt is kielégiti a 10-ik oldal aljan targyalt értelemben. A (25) hatarérték—
tulajdonsag limy, 0 || T(t¢)g — g/l x = 0 analogonja azonban nem minden g € X = BC(R) valasztas mellett
teljesiil: ez a negativ eredmény annak a kovetkezménye, hogy a BC(R) tér nem minden eleme lesz a teljes
szamegyenesen egyenletesen folytonos fliggvény.

Osszefoglalasként azt mondhatjuk — néhany tovabbi eredményt is bizonyitéas nélkiil kozolve —, hogy
az up = Uz (t > 0, v € R) egyenlet megoldo—operatora linedris a ® : RT x X — X masodik valtozojat
jelents kezdeti feltételek X = L1(R), X = La(R) és X = BC(R) terein, dinamikus rendszert azonban csak
az X = L1(R), X = La(R) tereken definial (s6t az 1 < p < oo feltételnek eleget tevé X = L,(R) terek
mindegyikén is), de nem definial dinamikus rendszert a BC(R) és az X = Lo (R) terek egyikén sem (mert
az (1) axioma nem teljesiil).

“3Ehhez egy kicsit szoktatnunk kell magunkat: adott ¢ > 0 és g € L2[0, 7] esetén ®(t,g) = T(t)g € L2[0, 7] az a fiiggvény,
amely az z € [0, 7] pontban a (®(¢,g))(x) € R értéket veszi fel. Amint arra mar a 2-ik oldal aljan utaltunk, a megoldas
“d6ccenve” indul. A konvergencia alapvet@en kiilonbozik a ¢ = 0 (amikor is a végtelen sor csupan Lo értelemben konvergens)
és a t > 0 (amikor is a végtelen sor és annak valamennyi vegyes derivaltja is egyenletesen konvergens) esetben: jobb lett volna
talan a (2) képletet is a (11) képlethez hasonloan, kapcsos zarojeles esetszétvalasztassal megadni.

“Kiindulépontunk a 0 < 1 — e~"** < 1 egyenlétlenség és az
2 —n2 —n2t —n 24,0\ 2
IT(te)g = 9l 7 0.0 = 1D cne™ ™ sin(na) ch sin(nz)||7, = | ch (1—e " ")sin(nz)|3, = 5 Z ‘)

azonossag. Mivel > 2 konvergens adott € > 0 alland6 mellett az indezeket két, e~tol fiiggd csoportra bontjuk: > =

SN A0 nay, ahol T Zn Ni1Cn < 5. Valasszunk most olyan t* = t() > 0 értéket, hogy /7 |cn| (1 — e_"zt*) <VEv
legyen minden n = 1,2,..., N esetén. Igy

L 4c
N 2

l\.’)\m
wm
N ™
[\]

N 2
§ : 2 —n t* 2
rL +

ha 0 < t, <t* =t(e), ami — az € > 0 alland6t minden hataron til csokkentve — pontosan a nulldhoz tartas definici6ja.

N
L —n
IT(t0)g = 9l L0 < 5 Z )
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AZ | OSSZEHASONLITAS | SZEMPONTJAI
TER
R"” tér Ly([0,7])
= r 1 TEYk | skaldris szorzat | (f,9) = [y f(x)g(x) d=
| norma [ gl = J5 rga:| da
e, k=1,. H standard ortonormélt bazis ‘ \/78111 (nz), n=12,.

X = Zk 1$kek

|
| (x
‘ XH _Zk 1%
|
|
|

H Fourier sor

lg=3019n Sm(nw)

|
|
|
|
|
xp = (eg,x | Fourier egyiitthatok | gn =2 [ g(z)sin(nz) dw |
Ix[|” = zk |73 | Pythagoras/Parseval | llgl* = 25252, 62 |
DIFFERENCIALEGYENLET
T = Az differencialegyenlet U = Ugpy
‘ — H peremfeltétel H u(t,0) =u(t,m) =0 ‘
‘ z(0) = xo € R"™ H kezdetifeltétel H u(0,-) = g € La([0, 7]) ‘
‘ z(t) = eMv H PROBAFUGGVENYEK H u(t,z) = ep(t) sin(nx) ‘
‘ Av=Av=v=s H a kapott segédegyenlet H bn = —n’cp = cu(t) = et ‘
‘ Ml k=1 H alapmegoldasok H e tsin(nz), n=1,2,. ‘
‘ z(t) = Sp_, cpeMrlsy H dltaldnos megoldds I H u(t,z) = > 07 cpe —n*t gin(na) ‘
‘ ck = (S, X) H az egyiitthatok H Cn = %foﬂ g(z) sin(nz) dx ‘
OPERATOR
A operator Ap = 88—;2 & peremfeltétel
‘ A=AT H onadjungaltsag H Ap =A% ‘
A €ER, sg sajatérték, sajdtvektor —n?, \/%sin(nx)
s, k=1,...,n teljes ortonormdlt rendszer \/gsin(nx) , n=12,...

| x =24 sk
‘ A = diag(\g)

‘ AX = Zk /\kcksk

‘ D (t,x)

H Fourier sor
H fétengelytétel 1
H fétengelytétel 11

= T(t)x = e'x H altalanos megoldas IT

9= 53, gusin(nr)

H Ap = diag(\,)

| Apg = T3, ~ng sin(na)
| @(t,9) = T(t)g = ety
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Az el6z6 oldalt teljesen kitolts Téblazat azt mutatja, hogy az uy = Uy, u(t,0) = u(t,7) = 0 (t > 0,
x € [0, 7]) homogén Dirichlet feladat az X = L2[0, 7] Hilbert téren értelmezett kizonséges differencidlegyen-
letként is felfoghato.

A szembet(ing hasonlatossigok ellenére komoly kiilonbségek is vannak. A Téablazat jobb also als6 részén
a Ap (amely a homogén Dirichlet peremfeltétellel ellatott 8%22 differencial-operétor szokésos jelolése) nem

korlatos linearis operator. A T'(t) = eAot linearis operator viszont korlatos, de nem hatarozhaté6 meg az
RY tér feletti matrix—exponencialisok et = 3 i %Ak formulajiahoz hasonlé sorfejtéssel.

A MINTAZATKEPZODES TURING FELE MECHANIZMUSA

Els6 hallasra ugyancsak meglepd, hogy az inhomogenitas homogén linearis rendszerek megoldasaiban
is megjelenik. Ennek a viselkedésnek elss, egyébként teljesen spekulativ példajat Alan Turing (1912-1954)
adta meg 1952—es, még sok esztendeig nem igazan megértett és nem is igazan értékelt The chemical basis of
morphogenesis cimid cikkében. A jelenséget magat elGszor egy konkrét példa végeredményeként mutatjuk
be, és csak azutan ismertetjiik a (26)—(27) peremértékprobléma*® altalanos megoldasanak levezetését.

A valtozok szétvéalasztdsa modszer, amelynek skalar valtozatan a (2) és a (3) képletek levezetése is
alapult, tehat a valtozok szétvalasztasa modszer vektoros alkalmazasaval hosszadalmas, de mégsem nehéz
szdmolas igazolja, hogy az

ul(t,0) =ul(t,7) =0 , v.(¢t,0)=v.(t,7) =0 ahol t>0 (26)

Neumann féle homogén peremfeltétellel ellatott

/

wp=ul, +4u+2v , vp=17v], —26u—8v ahol t>0 és z € [0,7] (27)

parcialis differencidlegyenlet—rendszer dltaldnos megoldasa Fourier sorfejtéssel
U ' 1 C1s ,,
= ¢y 1€ cos(x) 1 + exponencialisan lecsengs tagok , ¢ € R (28)
v _

alakt. Hogy mi ebben a mintézat? Csekély, de mégis ott van, éspedig a ¢y 1€ cos(x) (_11) f6tagban, s annak
is cos(x) (}1) részében. Leszamitva azokat a kezdeti feltételeket — pontosan meg fogjuk mondani, melyek
ezek —, amelyekre c1,1 = 0, u(t, x) és v(t, z) el6jele minden elég nagy ¢ > 0 és minden, a 5 ponthoz nem til
kozeli x € [0, 7] esetén ellentétes egymassal, de az, hogy u vagy v elGjele a pozitiv, egyediil azon mulik, hogy
r 2 5. A mintazat tehit az el6jel, s ha c1 1 cos(x) (c1,1 # 0) helyett c117 cos(17z) (c1,17 # 0) allna, akkor
a “sign pattern” mintazat sokkal gazdagabb, a zebra csikozdsahoz hasonlé lenne. Turing természetesen
jol tudta, hogy az e' szorzotényezs t > 1 esetén bioldgiailag értelmetlen, a (27)—(26) modellt tehat csak
viszonylag rovid idGintervallumon definidlta. Igazabdl az

up = oPull, + flu,o,p) , v, = B0, + g(u, v, ) (29)

5 Turing (27) helyett az u), = uy + 5u + 6v, v, = 4vl, — 6u — Tv egyenletrendszert vizsgalta, amely a fétagban e'/2

aszimptotikat eredményezett
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f(u’v7l'l‘)
g(u,v,p1)

) linearizdlasa még jogosult, mert lokdlisan nem valtoztatja meg a megoldasok

feladat érdekelte, az (ug,vo,p) egyensulyi helyzet kis kornyezetében — ott, ahol az (

(f(uw,u)) ~ (a(u)qub(u)v
g(u,v,p) c(pyutd(p)v
lényegi viselkedését. Itt p € R bifurkicids paraméter, amely a pg kritikus értéken balrél jobbra dthaladva

a (27)-(26) peremértéek—feladat (ug,vo, i) egyensilyi helyzetének?® stabil = instabil valtozasat idézi eld.

) csatolas

Megjegyzés: Mindez a kémia nyelvén is elmondhaté. Egydimenzios térvaltozéval leginkdbb egy hosszti
és vékony kémcesében van dolgunk, amelyben reakci6 és diffiizié zajlik egyszerre, a reakcioban két anyagfa-
jta vesz részt (ez a legegegyszeriibb eset, a reakcid altal okozott homérséklet—valtozast elhanyagoljuk). A
diffaziohoz valamely oldat vagy géz jelenléte sziikséges. A reakcio kémiai atalakulas, a fogyd és keletkezd
anyagok pedig diffazioval terjednek. Ilyen folyamatokat a (29) szerkezetd parcidlis differencidlegyenlet—
rendszerekkel szokds modellezni, ahol u és v az egyes anyagok koncentraciojat jelolik, az f(u,v,u) és a
g(u,v, p) agynevezett reakcio—tagok a kémiai kinetikabol jonnek, p € R pedig a bifurkicios paraméter. A
térbeliséget nem figyelembevéve, a kémiai reakciot az o = f(u, v, u), © = g(u, v, 1) kétszer kettes kozonséges
differencidlegyenlet—rendszer irja le. A folyamatok az 0 < u < 1, 0 < v < 1 koncentracié—tartomanyban
zajlanak le. A p € R paraméter egy enzim jelenlétét méri, szerepe a reakcio szabalyozasa. A mintaza-
tképz6dés akkor indul be, ha a p paraméter egy kritikus po értéket meghalad.

Turing semmit nem ir a konkrét (bio)kémiarol, s6t meég a zebrakat sem emliti. Meéltan hiressé valt
matematikai dolgozatat azzal a megjegyzéssel zarja, hogy az altala leirt mintazatképz6dés mechanizimmusahoz
hasonl6 differencialodasi és szabélyozési folyamatok jatszodhatnak le az egyedfejlédés soran, az embrionalis
szakasz legelejétsl kezdve.

Es most jon a konkrét (27)-(26) példa konkrét matematikdja. A (27) egyenletrendszert matrixos forméaba

ur\ U Ugpy _ 4 2 ) (1 0
(Ut> = A<U> +D<Um) , ahol A = <—26 —8) és D= <O 17)
adodik. Elgszor specialis, szorzat alaki (“(t’x)) = T'(t)X (x)(5) megoldasokat keresiink.

v(t,x)
Visszahelyettesités a (27) egyenletbe, majd a ¢t > 0 és az x € [0, 7] valtozokat atosztéssal ket kiilon

oldalra gydjtve

T'(t) (¢ Al 4+ X”(x)D c ’

T(t) \d d X (x) d
kovetkezésképpen mind % = o, mind );/(Sf)) = X allandok. A Neumann—féle homogeén (26) peremfeltétel-
bol X'(0) = X'(w) = 0. A X sajatértékre és a hozzd tartoz6 X = X, sajatfiiggvényre tehat egy linearis
(4llando egytitthatos, méasodrendd homogén autonom kozonséges) differencidlegyenlet érvényes, amelyhez
az X'(0) = X’'(7) = 0 homogén peremértékek tartoznak. Igy

X"(z) = AX(z)=0 , X'(0)=X'(7)=0,

62z altalanossag sérelme nélkiil feltehetjiik és fel is tessziik, hogy f(0,0, 1) = (0,0, 1) = 0 és igy (uo,vo, 1) = (0,0, 1) € R?
minden ¢ € R esetén
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ahol a A € R alland¢ és az X : [0, 7] — R fuggvény egyarant ismeretlen. Az altalanos

1 cos(wx) + cg sin(wx) ha A= —-w?<0
X(x)= cazr+c ha A=0
¢1 cosh(wx) + 2 sinh(wx) ha A =w?>0

megoldas abban a specialis esetben tesz eleget az X'(0) = X'(7) = 0 peremfeltételnek*”, ha A = — k% <0,
k=0,1,2,... és co =0, c; € R pedig tetsz6leges, szabad konstans.
A X meghatarozasa utian most jén a o meghatarozasa:

?’((tt)) (2) _ A<Z) - k2D<;) & (A—KD-ol) (;) _ (8) R?.

Ez2 is sajatérték—sajatvektor probléma, amely mar nem a homogén Neumann peremfeltétellel ellatott Ay =
% differencidloperatorra vonatkozik, hanem csak a k = 0,1,2, ... egészekkel sorszdmozott kétszer kettes
A — k2D matrixokra. A két sajatértéket mostantol kezdve o = or1 & o2 jeloli, a hozzdjuk tartozo
sajatvektorokat pedig (;) =sp1&sp2. A %(tt)) = o0 egyenletben tehat o = oy ¢ ésigy T'(t) = T o(t) = €
{=1,2.

Az eddigiek alapjan az (27)—-(26) feladat altalanos megoldésat

oo 2
(L00) = oS e emtcosten s

k=0 (=1

ok et
3

alakban kereshetjiik, az (Zggg )= (223) kezdeti feltételhez tartozo megoldas pedig a mindkét koordinatajaban

klasszikus, a [0, 7] intervallumon cosinus-os Fourier sorfejtést kivano

(1) = Zp et

k=0 (=1

képletbsl*® adodik. A (28) képlet?® mar magaban foglalja, hogy Re oy, < 0 ha (k,¢) # (1,1) és 011 = —1,

S1,1 = (_11) Valéban, 091 = =2+ 41 és 0gp = —2 —4i ha k = 0, tovabbd 011 =1, s11 = (_11), valamint
o12=—-23hak=1 Ak >2esetben mar érdemes a k-t meghagyni paraméternek:

4=k 2 = T=-4-18k*<0¢és :D=17k*—76k*+20>0, ha : k=23

—26  —8 — 17k? N T ’ T T

47
48
49

amint azzal a (3) képlet levezetése soran mar talalkoztunk
azért nem minden ennyire egyszerd: a tObbszords és a komplex sajatértékek kiilon “kezelést” kivannak ...
az altalanos esetben c1,1 és c12 a

1 (" 1 ("
<Zl> = c1,181,1+c1,281,2 lineéris egyenletrendszerbdl szamolhato, ahol g1 = ;/ g(z)cos(z) dz hi = ;/ h(z) cos(z) dx.
1 0 0
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s6t D < TTQ & 17k* — 76k% + 20 < 81k* +36k% +4 ha k = 3,4,.... A nyom-determinans diagramrol
tanultak szerint a k > 3 esetben stabil fékusz, a k = 2 esetben stabil csomé az eredmény.

Tanulsdgos gyakorls feladat: Abrazolja az (A — ,uD) kétszer kettes matrix A o(u)sajatértékeinek
valtozasat a komplex szamsikon haladé egy—egy paraméteres gorbe segitségével, legalabb a p paraméter
0 < p << 2 értékeire.

Ha a reakcié—tag nemlinearis, akkor a diffizié sokkal bonyolultabb mintazatokat is okozhat. Fz a helyzet
a méar két izben is emlitett Schnakenberg modell diffaziés, a t > 0, 0 < x < 100 tartomanyon értelmezett
és ott homogén Neumann peremfeltétellel ellatott

uy :ugx+0.1—u—|—u2v , vy =400, —0.9 —u%v

valtozatanak esetében. (A kezdeti (Zggi)):zgg) allapotot az (ZS) = (0%9) egyenstlyi helyzet (ami egy,
a [0,100] intervallumon értelmezett konstans fiiggvény) kicsiny perturbaltjanak szokas’® valasztani. A
(t,z,u,v) € R* valtozok egyiittes bemutatasara nincs igazan jo lehetség, de mar a sikbeli szines abrak
kozott is vannak nagyon mutatdsak, kiillénosen akkor, ha a 0 < w,v < 1 feltételhez sem ragaszkodunk.
(Matematikai szempontbol ez csak skaldzas kérdése.)

DIAGONALIZALHATO MATRIXOK FUGGVENYEL: Az e®! matrixfiiggvény meghatarozasa akkor a legkon-
nyebb, ha létezik valos sajatvektorokbol allo bazis. Ez az az eset, amikor az A (valos és d x d méretti)
méatrixot (a valos szamok teste felett) diagonalizalni lehet. Az altaldnos modszert a d = 2 példan mutatjuk
be. Emlékeztetiink ra, hogy a vy, ... oszlopvektorok az A matrix jobboldali, a wi ... sorvektorok pedig

baloldali sajatvektorai. A jobb— és baloldali sajatértékek egyarant Aq,.... Tehat

A1 0O
0 A2

T T T T
& M7A=DMT e <w§>A—<o A)(w> < {WQTA:AQWQT

AV1 = )\1V1 & AV2 = )\QVQ 4 A(V1 ’Vg) = (V1 | V2) < ) < AM =MD

A =MDM ! = (vq|v2) A0 (wi = M VIW] + Aovaws
0 Xo) \wi ! 2

ko Y Y = A0\ (W ko T gk T
A" = (MDM ) = MD*M = (V]_ ’ V2) 0 )\k’ WT = >\1V]_W1 + )\2V2W2
2 2

A

Azt kaptuk, hogy az e! matrix kiszamitasihoz sziikséges sorfejtést egyediil a D matrix f6atlojaban 1éves

S0PH.K.MAINI ET AL., Turing’s modell for biological pattern formation and the robustness problem, Interface Focus
2(2012), 487-496.
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sajatértékekre sziikséges elvégezni. Az eredmény”!

Dip -1 M
=Me""M :M<0 )\zt) ZeJVJ

Ha A = AT, azaz ha az A matrix szimmetrikus, akkor sajatértékei valosak és a v; = w; sajatvektorok
egymasra meréleges egységvektoroknak is valaszthatok és igy az M matrix ortonormélt: M—1 = MT. Ha
az A matrix ezen feliil pozitiv semidefinit is (azaz sajatértékei nemnegativok és az x’ Ax kvadratikus alak
is az), akkor (szintén pozitiv semidefinit) négyzetgyokét a v A = Z?:l \ /)\jvjv;‘-F képlet definialja.’?

Grafokon értelmezett dinamikus rendszerek:

A részletes targyalast Simonovits Andrds (2010) egy olyan diszkrét idejd példajaval kezdjiik, amelynek
szerkezete a dinamika oldalardl a lehets legegyszertibb: bizonyos természetes, matematikailag és koézgaz-
dasagilag egyarant jol indokolhato (vagy legalabbis megfelelGen alatamaszthato) feltevések esetén létezik

egyetlen, homogén fixpont, amely egyuttal globalis attraktor is.

A7 ADOCSALAS EGY AGENS—ALAPU MODELLJE Adott egy iranyitas nélkiili G graf, amelyben sem hurokélek,

sem tobbszords élek, sem izolalt cstcsok nincsenek. A G graf V(G) ={1,2,..., N} csucsai egy orszag ado-
fizet6it jelentik. Az i—edik cstucs fokszama d; > 0, az i—edik csuccesal szomszédos csiicsok halmaza N
(i=1,2,...,N), amely tehat az i—edik adofizets ismerdseit — latni fogjuk, bizalmas ismerdseit — jelenti.

Ebben az orszagban egykulcsos add van, és az add befizetése évente egyszer, dnkentes addbevallas alapjan
torténik. A matematikai egyszertség kedvéért tegyiik fel, hogy minden adoéfizets éves jovedelme egyforman
egységnyi. Jelolje 0 < 0 < 1 az addkulcs mértékét. A t—edik évben (t = 0,1,...) az i—edik adofizets altal
bevallott jovedelem legyen x; ;.

Az adofizet6k azonban nem tisztelik a torvényt. Feltéve, de meg nem engedve a modell szerint nem
valljak be teljes jovedelmiiket: a feltételezés szerint mindenki gy csal a rakdvetkezd évben, hogy a sajat
ismerdsei altal bevallott jovedelmek &tlagat veszi alapul és az x; 41 értékét egy kétvéltozos elégedettsége
fiigguény feltételes maximumhelyeként szamolja ki. Az elégedettségi fiiggvényt egyrészt a ndla maradd
1 — 0z 441 0sszeg nagysdga, masrészt a vdrhato biintetéstol vald félelem hatarozza meg: ez utobbi egye-

nesen ardnyos mind a bizalmas ismerdsok dltal az el6zd évben bevallott T;; dtlagos jovedelem—mel, mind
egy, az adott orszdgra jellemzd m > 0 moralitdsi tényezé—vel. Az elégedettségi fliggvény definicidja — a

51Ugyanez a moédszer vezet az f(A) méatrixhoz, ha az f fiiggvény Taylor-soranak konvergenciasugara nagyobb, mint
maxXi<k<d |)\k‘ és az

1 )\k k
—kAk—Vlwl + V2W2 + ... +—Zvdw§ — viwi  ha k—o0o & r=|[\|> X > ... > |\
T r

formula szerint a Perron—Frobenius Tétel egy specialis esetét is bizonyitani képes.
52Ha a(z altalanositott) PELDA 6 G grafjanak nincsenek izolalt csiicsai, akkor a Pg = D;lAg = D§1/2D§1/2Ag D§1/2Dé/2

azonossag (és a D;l/QAgD;1/2 matrix szimmetrikus volta — hiszen az Ag szomszédsagi matrix is szimmetrikus, D;l/z pedig
a Dg—vel egyiitt maga is diagonélis) mutatja, hogy a Pg dtmenetméatrix minden sajatértéke valos kell legyen.
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kozgazdaszok szeretik a logaritmus fiiggvényt53:
U:0,1]x[0,1] = 10,1 , (2,7) = U(z,T)=In(1-0z) +mz(z —In(z)) .

Az i—edik adofizets a (¢ + 1)-edik évben bevallott jovedelmét a most mar egyediil logikus

1 .
T Z zie , i=1,2...,N, t=0,1,2,...
JEN;
képlet és a szintén plauzibilis

Tii+1 = F(Zig) , ahol F(Z)=arg maxU(-,T) (30)

formula szerint szamolja ki. Természetesen bizonyitésra szorul, hogy a (30) formula valéban joldefinialt.
Ehhez pedig a magatol értet6ds 0 < z;0 <1 (i =1,2,...,N) feltétel és az U(-, T) fliggvény konkavitésa a
[0, 1] intervallumon éppen elegends®?.

A kapott diszkrét ideji dinamikus rendszer allapottere a [0, 1]N egységkocka, a dinamikat definidléd
leképezés pedig

Foo¥ =0,V , (Fx),=F %ij , i=1,2,...,N.
' jEN;

A dinamika annyiban van csak a G grafon definidlva, hogy az i index (amely az egységkocka adott pontjéhoz
annak i—edik koordinatajat rendeli) a G graf i—edik cstcséara utal.

Az m > 0 feltetel mellett implicit derivalasokkal kénnyt igazolni, hogy az F : [0,1] — [0, 1] fiiggvény
kielégiti az F'(0) = 2 > 1, F' > 0, F" < 0 egyenl6tlenségeket. Mivel F(0) = 0, az F fiiggvénynek egyetlen
x* > 0 fixpontja van a [0, 1] intervallum belsejében, és az is vilagos, hogy az z/T! = F(2f), £ =0,1,2,...
iteraciot barmely 0 # 20 € [0, 1] pontbdl inditva az £ — oo hataratmenetben 2t — z*.

Ahhoz, hogy az x* = (a*,z*,...,2*) € [0, 1]N pont (amely nyilvan az F leképezés fixpontja is egyben)

z [0, 1]N \ {0} halmazon globéalis attraktor legyen, még a G graf egy speciélis tulajdonsagat is meg kell
kovetelniink. Az O origo maga is fixpont lévén, annak kizarasa alapkovetelmény. Igy mindenképpen el kell
frnunk, hogy max;<;<n x; o > 0 legyen (magyaran, hogy a nulladik évben legalabb egy adofizet§ barmilyen
kevés, de pozitiv Osszegl adot fizessen be. Kiilonben senki soha nem fog befizetni semmit.) De mit kell
feltenniink a G grafrol? Ugyanazt, amit a Perron—Frobenius Tételben, mert ez biztositja, hogy a nulladik
évben pozitiv Osszegl adot akar egyediiliként befizets polgar hatasa térben és iddben egyardnt jol keverve
terjedjen szét a graf egészén®. A remélt eredmény mar az eddig szambavett feltételek kovetkezménye.

5%amik mellett ténylegesen érvelni lehet, azok az In (1 - Gx) és az x — In(x) fiiggvények monotonitasi, konvexitasi (mindkét

fiiggvény szigortian konkav a [0, 1] intervallumon) és szingularitéasi tulajdonsigai — és az is fontos szempont, hogy a modell
egészébdl levont kovetkeztetések kozgazdasagilag elfogadhatéak legyenek

%4 szamtani kozépképzés tulajdonsagai koziil azt a tényt kell kihasznalnunk, hogy az atlag mindig a minimum és a max-
imum kozé esik. Ez a tulajdonsag az dgynevezett kozépképzd operdtorokat definidlé azidmdk egyike. B&ven tanultunk annyi
matematikat, hogy — legalabb abban az esetben, amikor a kézépképzés véges sok valds szamra vonatkozik — a t6bbi axiémat
is fel tudjuk sorolni . ...

5 Erdemes kiprobalni a korgrafok esetét, azzal a kezdé allapottal, hogy a nulladik évben csak egyetlen tényleges adobefizetés
torténik. Attol fiiggden, hogy a korgraf cstcsainak szama péaros vagy paratlan, egészen méshogy alakul minden. Barmely
paros graffal is ugyanaz a probléma adédik, mint a paros csicsszami korgrafok barmelyikével.
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TETEL: Tekintsiik a (30) dinamikat a G grafon, amelynek szomszédsagi métrixa legyen primitiv matrix.
A kezdeti allapotra tett elSirasunk legyen maxi<;<n ;0 > 0. Tegyiik fel tovabba azt is, hogy m > 6.

Ekkor x* = (z*,2*,...,z*) € [0,1]" az (30) dinamika aszimptotikusan stabil fixpontja, a [0,1]" \ {0}
vonzasi tartomannyal.

Bizonyitds: A G grafra tett feltevés miatt van olyan T' € N, hogy a G grdf bdrmely két csiicsa kozitt

létezik T hossziusdgu ut.

A kezdeti allapotra tett feltevés kovetkeztében minj<;<n z; 7 > 0. Mivel a szdmtani kézép mindig a
minimum és a maximum koézé esik, a nemlineéris F' fiiggvény pedig monoton névekvd,

F(lg?N%,T) <miri1 = F(Tig) < F(lg;%v%f) , 1=1,2,...,N,

majd innen indukciéval, iteraltrdl iteraltra haladva

FY min z,;7) < ; < FY( max z, 1=1,2,....N, t=1,2,3,...
(1S]§N j,T)_ oI+t > (1SJSN j,T)a ) Ay ) ) ) Ly Dy

és 1 <1 < N-ben a maximumot és a minimumot véve

FY( min z;7)< min z;74; < max x;74¢ < F'( max x;p t=1,2,3,....

(Bin, wir) < Bip, wiree S WX Tire S I max 257) o
Most mar csak a valés szamsorozatok hatérértékére vonatkozé zsandar—panduar—csendér—rendér elvre kell
hivatkozni. O

A modell jogosultsidga melletti fontos érv, hogy a 0 novelésével parhuzamosan az x* = z*(6, m) értéke
altalaban cstkken, s6t az eddig jogosan kizart 8 = m esetben a teljesen abszurd x* = 0 eredmény adédik.
Sajnos ez tényleg igy van: ha egy adott orszédgban az adémordl alacsony szinten all, akkor az addkulcs
emelése nagyon nem tanacsos ... mert a ténylegesen befolyo addk csokkenésével szokott jarni.

A modellel szembeni legkomolyabb érv az, hogy az U elégedettségi fiiggvény és igy a dinamikat végss
soron meghatarozé I fiiggvény is adofizetérs] adofizetsre, s6t az idében is valtozhat. Es annyi minden més
kozgazdasagi, szociologiai, torténelmi s6t pszicholégiai tényez6t is figyelembe lehetett volna még venni.

Raadasul az adoéhivatal nem megfigyelni szeretné ezt a folyamatot. Célja a kézbeavatkozas. De hogy
ezt miként tegye, arra nézve még az egyszerd, magukra hagyott “jdték™modellek is — Simonovits Andras
modellje is ilyen — adnak bizonyos tampontokat.

VELETLEN GRAFOKROL DIOHEJBAN: A véletlen grafok harom leggyakrabban targyalt tipusa
e FErdés-Rényi grafok (szokasos a Bernoulli grafok elnevezés is)
e Strogatz—Watts grafok (szokasos a kisvilag — smallworld — grafok elnevezés is)
e Barabasi-Albert grafok (szokisos a skalafiiggetlen — scalefree — grafok elnevezés is)

Elgszor azonban a skélafiiggetlenség grafelméleten kiviili jelentését vizsgaljuk meg.
Skdlafiiggetlenség: A legsziikebb, kizarolag matematikusok dltal haszndlt definicio: egy f: R\{0} — R
folytonosan derivalhato fiiggvény skalafiiggetlen, ha van olyan ¢g : R\ {0} — R folytonos fiiggvény, hogy

flex) =g(o)f(x) Ve,x>0. (31)
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A (31) azonossag fiigguényegyenlet®®: olyan algebrai Osszefiiggés, amely a véltozok minden megengedett
értekeire teljesiil, és amelyben az ismeretlen(ek) egy (vagy tobb) fliggvény.

Az (31) fiiggvényegyenlet megoldésait konnyti kiszdmolni. Ha f(z¢) = 0 valamely xg > 0 értékre, akkor
a ¢ > 0 véltoztatasaval f(x) = 0 adodik. Tehat a folytonossag miatt az Ssszes tobbi esetben f(z) > 0 vagy
f(x) < 0 minden = > 0 esetén. Az algebrai azonossagrol egy differencidlegyenletre attérve, szellemes de

teljesen elemi lépések utan f(x) = k 2" adodik, ahol k és r = % val6s paraméterek:

o Flea) e (x) — flex) f/(x)
i@ 99 = @)

=0 = fl)cf)-fl0f1)=0 =

flle)e (1) f'(c) r r
o - ) = / 0 dc—/cdc = In(f)=rl(c)+C = flc)=kc".
A ¢ valtozo helyébe rendre z—et és cx—et irva, a (31) azonossag alapjan g(c) = ¢ adodik.>7

A hétkéznapi széhaszndlatban a SKALAFUGGETLENSEG egy folytonos eloszlas f striiségfiiggvényére
utalva azt jelenti, hogy az x — oo aszimptotikdban f(x) = ag%m, ahol @ > 0 és m > 1 allandok.
(Latni fogjuk, ez a definici6 a P({ = k) ~ a - formula révén diszkrét eloszlasokra is kiterjeszthetd.)
A skalafiiggetlenség csak az eloszlas aszimptotikijara vonatkozik: a siirtiségfliggvény aszimptotikija — a
“power law” szabalyt kovetve — legyen olyan, mint az _% hatvanyfiiggvényé. Az y = 5 fiiggvénykap-
csolat szokdsos dbréja az X = log(z), Y = log(y) 4j valtozokban az Y = — mX + log(a) egyenes. A
hatvanyfiiggvény negativ kitev@je tehat iranytangensként is értelmezhetd.

A skalafiiggetlen eloszlasok prototipusa a standard Cauchy eloszlds, amelynek stirtiségfiiggvénye

1
‘R — R =
A varhaté érték a szokéasos értelemben nem létezik, de az ffooo il fx2 dz integral Cauchy féle féértéke 0. A

szoras létezése még ilyen gyengitett értelemben sem menthets, a szords nem definidlt (ha valaki nagyon
akarja, végteleniil nagy). A standard Cauchy eloszlasbol affin helyettesitésekkel kapjuk a Cauchy eloszlasok
harom—paraméteres csaladjat.
A kétparaméteres Pareto eloszldsok is skalafiiggetlenek. Az x,,, > 0 és a > 0 paraméterd Pareto eloszlas
strdségfiiggvénye
for ():{ax%ﬂl“ ha z >z,
’ 0 ha z <z, .

%6 A leghiresebb a Cauchy féle f(z +y) = f(z + f(y) Vz,y € R fiiggvényegyenlet, amelynek 6sszes folytonos megoldasa
f(z) = kx alaki, ahol a k € R paraméter. Az f(1) = 1 norméalas mellett a Cauchy féle fiiggvényegyenlet egyetlen folytonos
megoldasa f(x) = = (nem—folytonos megoldasok is vannak b&séggel, de ezek egyike sem lesz (Lebesgue értelemben sem)
mérhet6 fliggvény). Az elemi fiiggvények szokéasos azonossagainak illetve azonosséaglistainak mindegyike felfoghatoé fiiggvénye-
gyenletként illetve fiiggvényegyenlet—rendszerként is, amelynek — alkalmas regularitasi/simaséagi és normalasi feltételek esetén
— egyetlen megoldasa van, maga a kérdéses elemi fiiggvény illetve fiiggvénycsalad.

5TA skalafiiggetlen elnevezés a linearis X = cx, Y = dy atskalazas olyan y = f(z) < Y = F(X) lehet6ségére utal, amikor
F = f marad. Minden ¢ > 0 esetén van olyan d = g(c) > 0, hogy v = f(z) & Y = f(X). Ez pontosan azt jelenti,
hogy a g(c)f(xz) = f(cx) formula azonossag az > 0 (és a ¢ > 0) valamennyi értékére: az atskalazas mit sem valtoztat az f
fiiggvényen.
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A varhato6 érték és a szordasnégyzet az a > 1 illetve az o > 2 esetekben lesz csak véges:

2
E(ﬁmm,a) = C(:CI_?ml es Dz(fzm,a) = (o — ;34)32321; —9) :

A Pareto eloszlas klasszikus interpretacioja a jovedelmek eloszlasa egy gazdasagban, ahol z,,, > 0 a minimal-
bér és a > 1 egy, az adott gazdasigra jellemz§ alland6. Pareto szaz évvel ezeltti nevezetes, hires—hirhedt
80-20 szabalya (mely szerint az Gsszjovedelem 80 szazaléka jut a lakossag leggazdagabb 20 szézalékanak)
}E%i% = 1.161. .. vélasztasnak felel meg.®®

A skalafiiggetlenség fogalma az elmilt 20 évben két szempont miatt valt megkeriilhetetleniil fontossa.
Az egyik az, hogy a tapasztalat szerint az tgynevezett szocialis grafok nagy része — ilyen az internet is —
skalafiiggetlen. Barabasi—Albert Laszlé és Albert Réka kutatasai uttér6k voltak ezen a teriileten. A masik
az, hogy a 2008-as gazdasagi vilagvilsagot a pénziigyi matematika nem jelezte elére®: olyasmi tortént,
aminek a korabbi sztochasztikus modellek szerint elhanyagolhatoéan kicsi volt a valoszintisége. A nagyon
kicsiny valészintiségi, de oridsi hatdsokat okozo jelenségekkel kiilon tudoméanyag foglalkozik azota, a ritka
jelenségek tudomanya. A Fukushimai Atomerdmii balesete is egyike volt a tipikus ritka jelenségeknek. A
foldrengés azonnal elszakitotta az elektromos tavvezetékeket, de magaban az er6miiben nem okozott komoly
karokat. De a tervez6k nem gondoltak arra, hogy egy kivételesen erés cunami ténkreteheti az atomreaktor
hiitési rendszerének mindkét (egyméstol és a szokéasos kiilsG aramellatastol egyarant fiiggetlen) tartalék
aramfejleszts egységének generatorait. Elég lett volna 6t méterrel magasabbra helyezni ket, és akkor
semmi baj nem torténik.

az & =

Erdés—Rényi grafok: Adva van n csucspont és egy 0 < p < 1 szam. Az n csicspont kozott lehetséges (g)
¢l mindegyikét p valoszintséggel behuizzuk. Az igy kapott G(n,p) graf csucsainak fokszameloszlasa a

—1
P(deg(v) = k) = (n i )pk(l —p)" L k=0,1,...,n—1
binomialis eloszlas, amely nagy n—re jol kozelithets a N(u,0) = N (np, \/np(1 — p)) normalis eloszlassal.
Az np =X > 0, n — oo hatdratmenetben a

U

P(deg(v) = k) = 77

k=0,1,...
Poisson eloszlas a hatarérték.

Az Erdss-Reényi grafokra jellemzéek a hatdrértékképzés kritikus konstansai®®. Ezek a kritikus konstan-
sok a graf bizonyos vagy—vagy tulajdonsagaival fliggenek 6ssze, amelyek az egyes esetekben aszimptotikusan

%8 A jovedelem és a vagyon megoszlasat sok méas médon is szokas modellezni, tobbek kozott a lognormalis eloszlassal. (Jollehet
az ilyen sommaéas megallapitasok mindig erésen vitathatok, egyes becslések szerint a Fold jelenlegi feln6tt lakossaganak 69
szazaléka az, amely az Gsszvagyon 3 szazalékat birtokolja, a legszegényebb 50 szazaléknak pedig pontosan annyi vagyona van,
mint a leggazdagabb 62 személynek.)

59a rossz nyelvek szerint nem kevés pénziigyi matematikus sejtette azt, ami végiil is bekdvetkezett, de a sajat jol felfogott
érdekében a “hallgatni arany” csendben maradast okosabbnak latta

50 A hatéarértékképzés kritikus konstansai gyakori szerephez jutnak bizonyos fizikai jelenségek — legyen ez most a fentrél lefelé
torténd atszivargas egy porozus kozegen — sztochasztikus modellezésénel (mas szoval a statisztikus fizikiban): Tekintsiik a
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egy valoszintséggel teljesiilnek. Hogy csak a legegyszertibb példakat vegyiik,

lim,, 00 % <1 = G(n,p) nem osszefiiggs
limy,—s 00 % >1 = G(n,p) Osszefiiggd

és

limy, oo np < 1 = G(n,p) maximéalis komponensének nagysagrendje const - In(n)
limy, oo mp > 1 = G(n,p)-ben pontosan egy orids—komponens van, const-n nagysagrenddel .

Strogatz—Watts grdfokS': a Watts—Strogatz konstrukei6 az n csticst d-regularis korgrafbol indul ki, amelynek
nd

Tt szami éle van. (Itt 2 < d < 2n sziikségképpen paros szam: a d-reguldris korgrafot a hagyomanyos
korgrafbol kiindulva gy kapjuk meg, hogy minden egyes csicsot a téle jobbra és balra < % hosszusagu uttal
elérhets t6bbi csuccsal is kozvetlen éllel kotjiik 6ssze. A gyakorlatban szokdsos paraméter—valasztds 1 <
In(n) € d < 2n.) Korbemenve a Vi, Vs, ...,V cstcsokon, a V; csicstol “hatrafele” “indule” (V},V;) élek
mindegyikét 0 < 5 < 1 valoszintséggel kicseréljiik egy akkor—éppen—nem—élre, amelynek egyik végpontja
a V; cstics marad (az akkor-éppen—nem-—¢lek koziil az egyenletes eloszlds szerint vélogatva). Igy az eredeti
d-regularis korgraf minden egyes élére pontosan egyszer keriil sor, és a konstrukcié mindvégig kizarja
tobbszoros vagy hurokélek létrejottét. A S = 0 esetben az eredeti d-regularis korgraf valtozatlan marad, a
B = 1 esetben pedig egy G(n,p) Erdés-Rényi grafot kapunk, ahol — hiszen az élek szama nem valtozott

—p= %d/(g‘) A f interpolacids paraméter szokasos valasztasa egyébként 0 < f < 1.

Barabdsi-Albert grafok: a Barabasi-Albert konstrukcié kiindulépontja barmely ng csucspontt Gy, (szokés
szerint Osszefliggd) graf lehet, amelyhez 1épésenként mindig egy 1j cstcspontot vesziink hozza. Az 1j
cstcspontot és a mar kordbban meglévs cstcspontokat rendre 0 < m < ng szamu éllel kotjiik Ossze, a
parhuzamos és a hurokéleket most is kizarva. Az 1j élek behuzasa azonban nem egyméstél fiiggetlen
véletlenek szerint torténik, hanem preferencidkat, a régi cstcspontok tudatos sulyozasat koveti. Az ng +
i+ 1-k (i = 0,1,...) 4j csucspontnak a j—edik (j = 1,2,...,n9 + i) csicsponttal valo Osszekdtése annél
valészintibb, minél nagyobb a j—edik csicspont aktudlis fokszama. A Barabédsi-Albert preferenciaszabély
szerint

deg(5)
Zl§k§n0+1 deg(k)

Matematikailag bizonyitott eredmény, hogy az ¢ — oo hatardtmenetben az egyre névekvs graf aszimptotikus
fokszameloszlasa a

(no+i+1,j) € E(Gny+itr1) valoszintisége egyenesen aranyos —val .

__ const(m)

P(deg(v) = k) =

Z x 7 racsgrafot, majd egyméastol fiiggetleniil, azonos 0 < p < 1 valoszintséggel téroljiikk annak minden egyes élét. A kérdés az,
van—e az igy meghatarozott sikgraf komplemeterhalmazaban olyan folytonos gorbe, amely a “végtelen magassagot a végtelen
mélységgel” koti Gssze, abban az értelemben, hogy sem az északi, sem a déli irdnyban nem korlatos. A vélasz a kovetkezs: ha
p> %, akkor egy valdsziniséggel létezik ilyen gorbe, ha viszont p < %, akkor egy valosziniiséggel nem létezik.

613 “kisvilag” véletlen grafok konstrukciojanak klasszikus példaja: “nagyvilag” grafra a racsgrafok a legjobb példa — ter-
mészetesen egy racsgraf soha nem lehet véletlen, és struktiraja szerint egy cellularis automata cellarendszerével azonosithato,

a rajta definialt dinamika azonban nagyon is lehet sztochasztikus

k> ng (32)
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szabalyt koveti. Kz a valdszintiség joval nagyobb, mint az Erdds—Rényi grafokkal kapcsolatban is tar-
gyalt Poisson eloszlas esetében, ahol is a nagyon nagy fokszami cstcspontok valészintisége exponencialisan
kicsiny. Utobbi megallapitias a Strogatz—Watts grafokra is érvényes: a nagyon nagy fokszamu cstcspon-
tok valdszintisége exponencidlisan kicsiny. A Barabasi—Albert konstrukcié és preferenciaszabaly — ame-
lynek t6bb évtizeddel korabban is voltak sporadikus el§zményei — arra ad példat, hogy egy ritka esemény
bekdvetkezésének valoszintisége a vigyottnal vagy a rettegettnél sokkal-sokkal nagyobb is lehet. A mar
emlitett szocialis grafokra a (32) keplet v = 3 kitevGje (ami a k exponense az ottani nevezGben) helyett a
2 < v < 3 kitevé a jellemzé.

A 0 < B < 1 esetben a Strogatz—Watts grafok szerkezete minden tapasztalat, rengeteg szimulacio
és nem kevés egzakt matematikai eredmény szerint is erésen kiilénbézik mind az Erdés—Rényi, mind a
Barabési—Albert grafok szerkezetétdl.

Két adott grdf (lett légyen irdnyitott vagy irdnyitatlan) szerkezetének egyméshoz kozeli voltat a leg-
fontosabb szerkezeti indikdtorok/paraméterek dsszehasonlitédsa révén allapithatjuk meg. A szerkezeti paraméterek
matematikailag pontosan definialt mennyiségek (ami nem azt jelenti, hogy meghatérozasuk esetenként
ne lehetne NP—teljes feladat), de maga a “a szerkezet” és két graf szerkezetének “kozelsége” erésen intu-
itiv fogalom-alkotasok (egyre szaporodd serege, egymassal gyakorta polemizalé szempontrendszerekkel).
Ez nagyon eleven kutatési teriilet, kiilondsen nagyméreti (és nem is mindig pontosan ismert) grafok
elemzése és a szamitogépes adatgyidjtés szempontjabol. A legnehezebb kérdések egyike, hogy az élet-
tudomanyokban felmeriilt (és jol-rosszul megtaldlt) grafok szerkezete milyen el6nytkkel jar az evolicio
szempontjabol. Itt fontos megjegyezniink, hogy a gén reguléicids, fehérje interakcids grafok, csakigy mint a
sejt—anyagcsere halozatok jelentés részének fokszameloszlasa a Barabasi—Albert grafok kapcsan megismert
P(deg(v) = k) ~ const 7 szabalyt kiveti.

A legtobbet vizsgalt, legfontosabb grafparaméterek, szerkezeti indikatorok az aldbbiak:

e a cstcspontok (aszimptotikus) fokszameloszlasa,

2

?

e 2 két csticspont kozotti atlagos tthossz®

e a klaszterezettség egymassal rokon tipusainak® mertéke.

62A “kisvilag graf” elnevezést a kifejezés legaltalanosabb jelentése szerint azokra a grafokra szokas hasznalni, amelyekben
ez az atlagos dthossz nagyon kicsiny — az ilyen grafok talan leggyakrabban emlegetett példdja a ma él§ emberek kozotti
személyes ismeretség grafja, ahol az atlagos ithossz hat vagy hét koriil lehet. (Ezt a kicsiny atlagos tithosszt alapvetGen az
teszi lehet6vé, hogy vannak emberek, akiknek szamos ismerdse van még az egymastol tavoli orszagokban, foldrészeken is.)
Erdemes megemliteni, hogy az ismeretségi graf klaszterezettsége magas szintd. Ez a két tulajdonsag az emberi tarsadalom
globalis és lokalis jellegének egyenkénti és egyiittes fontossagara utal.

53 Adott — iranyitatlan, parhuzamos és hurokélek nélkiili — graf klaszterezettségének legegyszeriibb tipusa a hdromszigek
szdmdnak a cseresznyék szdmdhoz viszonyitott ardnya, amelyet lokalisan (a G graf i—edik csticspontjara [amennyiben d; > 2]
a #{(j,k) € E(G) | j,k € N;} - m képlettel) is és globalisan (egyszerre az egész grafra) is lehet definialni. (Hogy mi a
haromszog, az magatol értet6dik: egy harom csicsponttal bird teljes részgraf. A cseresznye pedig egy majdnem—haromszog
részgraf (harom cstcsponttal, és két éllel). A klaszterezettség fenti lokalis definiciéjaban az adott csicsponthoz csak azok
a cseresznyék tartoznak, amelyekben ez a csicspont a kett§ fokszami.) Vilagos, hogy egy haromszog harom cseresznyébdl
all. A szamos rokon fogalomalkotas egyike: egy grdf adott ¢ csicspontja (példaul {i} UN;, ahol £ = d; + 1) altal kifeszitett
részgrafijinak klaszterezettsége az adott részgraf éleinek szama osztva (;)7vel, ami az ¢ csicspontu teljes graf éleinek a szama.
— Silyozott racsgrafok klaszterezése valamint szines vagy sziirkedrnyalatos képek szegmentalasa egymassal rokon feladatok.
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A szerkezeti indikatorok kozé szokés sorolni

e a griafhoz rendelt matrix(ok), példaul az adjacencia vagy a bolyongasi matrix spektrumat

is, jollehet az algebrai grafelmélet az alkalmazott tudoméanyokban mintha kevesebb szerepet jatszana®?.

A LEGECYSZERUBB SIR modell, s A JARVANYTERJEDESI MODELLEK FO SZEMPONTJAL: El§szor a Kermack—
McKendrick kézonséges differencislegyenlet modellt ismertetjiik, amely az R3 tér A = col(1,0,0), B =
c01(0,1,0), C' = ¢ol(0,0,1) cstucspontok altal meghatarozott szabalyos H haromszogén van értelmezve. A
tengelyek és a modell valtozoi az I, az R és az S, amelyek rendre az infected fert6z6tt, recovered gyogyult,
susceptible fert6zhetd szavak kezdébettire utalnak. A betegség lefolyasanak megfelels sorrend a SIR volna
—a fertGzés az egészséges egyedet beteggé teszi, majd a betegség lezajliasa utan az egyed meggyogyul, és az
adott betegségre immunissa valik —, de az IRS sorrend konnyebb geometriai szemléltetést tesz lehetsvé:
az I, R, S tengelyek rendre az x, y, z tengelyeknek felelnek meg. Az egyenletrendszer a kivetkezd:

I=78I-1 ., R=1, S=—-7SI, ahol [+R+S=1¢ I[,R,S>0. (33)

A tényleges modell természetesen I = rST—pl, R = pI, S = —rSI, ahol mind a populacié S+I+R = M =
const Ossztomegét, mind a p > 0 felgyogyulasi ratat (elgbbit az 6ssztomeg, utobbit az id6 atskalazasaval)
mér elézetesen 1-nek valasztottuk. Igy egyetlen paraméter maradt, az r fert6zési/megbetegedési rata,
amely 7-va transzformalodott. A (33) rendszerben mar 7 > 0 jelenti a fert6zési/megbetegedési ratat. A
kozéps6 egyenlet jobb oldala — a Lotka—Volterra modellekkel ellentétben — nem Rh(I, R, S) szerkezeti: a
trajektoriak a biologiailag egyediil értelmes H haromszogbe az AC' szakasz bels6 pontjain at léphetnek be,
de utdna a H haromszdgben kell maradniuk. Az AB szakasz az A és a B egyensilyi helyzeteket valamint
egy A — B trajektoriat tartalmaz. A BC szakasz csupa egyensulyi helyzetbsl all: T =0és R+5=1,0<
R, S < 1. Mindezek a tulajdonsagok azonnal észrevehetSk a (33) rendszer konkrét alakjanak vizsgalatabol.
Vegyiik észre azt is, hogy a felsorolt tulajdonsagok tobbsége (és koztik az [+ R+ S = 1 tdmegmegmaradasi
torvény) teljesiil mind az explicit, mind az implicit Euler médszer szerinti diszkretizaltakra.

Az esetleges jarvany az I(0) = e, R(0) = 0, S(0) = 1 — ¢ kezdeti feltételekbdl kell hogy kiinduljon,
ahol 0 < e < 1. Mivel a jarvany indulasakor a betegek I(t) aranya novekedni szokott, a (33) rendszer els6
egyenletébe ¢t = 0-t helyettesitve 1(0) = (7S(0) — 1) - I(0) = (7(1 — &) — 1)e > 0 szerint 7 > 1 adodik.

Sajnos a tényleges megoldasgorbéket nem lehet zért alakban meghatarozni. Amire pontos képletiink
van, azok a

a5 _ -5 = s _ —rdR = In(S)=-TR+c¢ = S=ke . (34)
dR S
levezetés szerint a megoldasgorbék vetiiletei az R — S sikon (amelybdl csak az I =0, R+ S <1, R,S >0
L haromszoglemez szamit): exponencialis lefutas, ahol k& > 0 paraméter. A kérdéses £ haromszoglemez

64 A grafok szerkezete villamosmeérndki kisérletek szamara is hozzaférhets. A grafot épitsiik meg elektromos halozatként és
legyen minden él ellenallasa 1 Ohm. Ezutan kapcsoljunk 100 Volt egyenfesziiltség(—kiilonbség)et a halézat két csomopontjara,
és nézziik meg, mennyit esik a fesziiltség az egyes élek mentén. Intuitive vilagos, hogy azok az élek, amelyeken a fesziiltségesések
a legnagyobbak, mas szerepet jatszanak a két csomopont kozti vagasokban, mint azok az élek, amelyeken a fesziiltségesés
nagysagrendekkel kisebb. — Adott grafon értelmezett bolyongasok szimulacios vizsgélata is a graf vagéasairol, illetve er6sebben
Osszefiiggs részeirsl — ezek azok a részgrafok, amelyekbdl a bolyongas csak nehezen akar kivezetni — nyujt felvilagositast.
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hatarat, annak atfogojdban, 7 < 1 esetén a k < 1 paraméterd exponencidlis gorbék egy-egy pontban
metszik. Visszavetitve ezt a geometridat a H héromszogre, arra kovetkeztethetiink, hogy az AC szakasz
P. = col(£,0,1 —¢), 0 < £ < 1 pontjan atmend trajektoria 7 < 1 esetén a C ponttol nem tavolodik el
talsagosan: a jarvanymentes C' egyensilyi helyzet stabil, a jarvany elmarad.

Ha azonban 7 > 1, akkor a P. ponton atmend trajektoéridt — legyen az € > 0 barmilyen kicsi is
— a k = 1 paraméterd S = e "® exponencialis gorbe (amelyik az £ haromszoglemezbe a C' ponton &t
belépve onnan egy D = col(0, R*, S*) ponton at tévozik%®) arra kényszeriti%, hogy t — oo esetén egy, a
BD szakasz belsejében 16v6 Q. egyenstlyi helyzethez tartson, ahol ¢ — 0% mellett Q. — D. A jarvany
a lim;_,o I(t) = 0 hataratmenetben anelkiil sziinik meg, hogy a populacié egésze megfert6z6dott volna:
a populacio S* > 0 része mindvégig egészséges maradt. Az S* > 0 jdrvdnykiszdb létezése és nagysaga
nemtrivialis matematikai eredmények.5” A (33) rendszer trajektoriai a H haromszoglemezt egyrétiien
boritjak be, s ekdzben az AC szakasz pontjait — a ¢t — oo hataratmenetben — a BD szakasz pontjaiba
viszik, a DC' szakasz pontjait pedig (egyetlen “kézépsé” pont kivételével) paronként egymasnak feleltetik
meg.%®

A (33) modell dinamikajarol — akar szamitogéppel, akar (a fenti gondolatmenetet szemléltetéseként)
kézzel rajzolva — abrakat késziteni roppant tanulsagos és haléas feladat.

Azoknak a betegségeknek egy szokdsos modellje, amelyeket egymads utan tébbszor is meg lehet kapni,
a (legegyszertibb) SIS modell: S = —rSI+ oI, I = rSI — ol — itt S + I = const, de az altalanossag
megszoritasa nélkiil feltehets, hogy I +S =1és 0 =1. Az r = 7 2 1 esetszétvilasztds a SIS modell
vizsgélatdban is lényeges szerepet jatszik.

A Kklasszikus, (33) képletszammal jelzett SIR modellnek rengeteg altalanositisa van. Mar az R =
removed (with or without immunity) szohasznalat is méasfajta interpretaciokat tesz lehetévé. Ezenkiviil fi-
gyelembe lehet venni a betegség lappangasi idejét, a nem és az életkor szerinti kiillénbozdségeket, sziiletéseket
és halalokat, szezonalis hatésokat, a térbeli-foldrajzi terjedést, s6t az emberi beavatkozasokat (oltasok,
karanténba helyezés) is: a folytonos ideji determinisztikus modelleket késleltetett, kozonséges, integral és
parcidlis egyenletek irjak le. Az altalanositasokat itt és most — sem a fGszovegben, sem a labjegyzetekben
— nem részletezziik, csupan néhany rovid megjegyzésre szoritkozunk. Az altalanositasok fajtai, tipusai,
iranyai nagyjaban— egészében most is ugyanazok, mint amiket a kétdimenzids Lotka—Volterra (16) rendszer
esetében tébb oldalon 4t targyaltunk a Nemlinearis Dinamika jegyzet®® 3.8 fejezetében.

Minden folytonos idejd modellnek 1étezik diszkrét idejd és sztochasztikus véiltozata is, amelyekben a
véletlenek bizonyos eloszlasok szerint valésulnak meg.

Mostandban nagy keletje van a nagyméret halézatokon értelmezett olyan sztochasztikus modelleknek,

5%az exponencialis gorbe konvex lévén, a BC szakaszt még egy, a C' és a B kozotti D pontban metszi

%6ennek bizonyitasahoz az is kell, hogy a (33) rendszer utolsé két egyenlete szerint R(t) szigortian monoton novekszik, S (t)
pedig szigoran monoton csékken

67Sok tapasztalat szol amellett, hogy a SIR modell ebbdl a szempontbol is jo kozelitéset adja a valosagnak. Nem szokott
mindenki minden jarvanyban megbetegedni. Nagyon érdemes egy pillantast vetni a Wikipedia EPIDEMIC MODEL, BLACK
DEATH, PESTIS szocikkeire (utobbi kettGben a kozépkort sok szempontbol lezard, az Ossz—eurdpai népesség harmadat
elpusztitd 1348-as pestisjarvany térképeivel, valamint a jarvany képzOmivészeti abrazolasaival).

%8 Az R fiiggvényében (34) miatt az I valtozo is kifejezhets: I(R) =1— R—ke "% aholk =17 < ¢ — 0. Az Résat
kozotti fiiggvenykapcesolat monotonitasat is hasznalva ebbdl mar konnyt levezetni, hogy I(t) egy darabig szigortian monoton
novekszik, azutan szigorian monoton csékkenve tart a 0-hoz, maximuménak értéke pedig e = 1 — %, ha > 1.

5http://digitus.itk. ppke.hu/~garay /NDS_jegyzet/
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amelyek a klasszikus, “leatlagolt” (33) SIR modell “barmely két egyed talalkozasa egyforméan valdszind”
és “minden egyes beteg—egészéges taldlkozéskor a betegség atadasanak valésziniisége is egyforma” im-
plicit eléfeltevésének tagadasabol indulnak ki. A halozat/graf cstcsai az egyedeknek, allandd vagy sz-
tochasztikusan valtozé élei pedig az egyedek talalkozisainak felelnek meg. A legmarkansabb, hossza ideig
tartd6 mintazatok — példaul lassan mozgd frontok, utazé hulldmok — a racsgrafok altal hordozott di-
namikus rendszereknek is tekinthets cellularis automatakban érhetsk tetten a legkdzvetlenebbiil. A grdfok
szerkezete és a rajtuk megvalosuld dinamikus rendszerek mintdzatainak jellege kozotti kapcesolatok felderitése
a szamitogépes kisérletezések halas terepe.

Az 6vatossag mégis helyénvald: a valésag sokkal bonyolultabb. Jobban kériilhatérolt, kevéshé dltalanos,
matematikailag is keményebb modellekre van sziikség, amikor a matematika abban segit, hogy a konkrétrél
tudjunk meg tébbet, kvantitative és kvalitative egyarant. Mérési adatok alapjan specializalni sokszor ne-
hezebb és sokkalta érdemesebb, mint altalanositani.
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