SOME DEFINITIONS AND THEOREMS: — Can You sketch the accompanying Figures?*
Dynamical system: Let (X,d) be a metric space and let T be one of the following subsets of R: the
entire real line R, the set of integer numbers Z, the discrete set of the form hZ where h > 0 is fixed. The
mapping ¢ : T x X — X is a dynamical system on X with time T if a.) ® is continuous (jointly in the
two variables) b.) ®(0,z) =x forallz € X c.) ®(t,P(s,x)) = P(t+ s,z) forallt,s € T and z € X.
Invariant set: Let (X, d) be a metric space . The set S C X is invariant with respect to the dynamical
system @ : T x X — X if ®(t,z) € Sfor allt € T and x € X.?
Trajectory, positive half-trajectory, w—limit set: The trajectory through x € X is the set y(z) =
{®(t,z) |t € T}. The positive half-trajectory through z € X is the set y*(z) = {®(t,z) |t € T and t > 0}.
The w-limit set of the point x € X is the set w(x) = {y € X | there exists a time-sequence {t,},.; C
T such that ¢, — co and ®(t,,z) — y}.
Stability, attractivity, asymptotic stability of a compact invariant set S C X: The compact
invariant set S C X is stable if, given ¢ > 0 arbitrarily, there exists a § > 0 such that d(®(¢,x),5) < ¢
whenever d(z,S8) < d and t € T, t > 0.3 The compact invariant set S C X is attractive if there is an 179 > 0
such that d(z,S) < n implies that d(®(¢,z),S5) — 07 as t — oo and ¢ € T. The compact invariant set
S C X is asymptotically stable if it is both stable and attractive.*
Region of attraction of an asymptotically stable compact invariant set S C X: This is the
(necessarily open) set A(S) = {z € X | d(®(t,z),S) = 0" ast — oo and t € T}. ®
Basic properties of omega—limit sets in R?: Let v () be a bounded, positive half-trajectory of the
continuous-time dynamical system ® : R x R? — R%. Then w(x) is a nonempty, closed, bounded and
connected invariant set in R?. In addition, d(®(t,z),w(x)) — 0" as t — c0.5
Poincaré—Bendixson Theorem: Let 7" (x) be a bounded, positive half-trajectory of the continuous—
time dynamical system ® : R x R? — R? and assume that ® has only a finite number of equilibria. Then
w(x) is either an equilibrium pont xg, or a periodic orbit I, or a heteroclinic cycle H.” In the two latter
cases, the interior of I' and the interior of H contain at least one equilibrium point.
Theorem on asymptotic stability of the origin for a linear system & = Ax: The necessary and
sufficient condition is that the real part of all eigenvalues of matrix A is negative. This is equivalent to the
existence of a pair of positive constants C, a such that ||eAz|| < C e=°*||z|| whenever ¢ > 0 and = € R%.8

!THEY HELP A LOT IN UNDERSTANDING AND REMEMBERING THE BASIC FEATURES OF DYNAMICAL SYSTEMS.

2The most important examples for an invariant set are equilibrium points and periodic orbits. You should be able to
formulate the definitions of stability, attractivity, asymptotic stability, and region of attraction for an equilibrium point
zo € R? as well as for a periodic orbit I' € R?. Please remember the definitions of equilibria and periodic orbits, too.

3The set S C X is compact if, given a sequence {x, }°° | C S arbitrarily, there exist an 2* € S and a subsequence {zn, }5°,
such that ., — «* as k — oco. In short: if S is closed and every sequence in S has a convergent subsequence. A subset of
R? is compact if and only if it is closed and bounded. Note also that the distance between a point & € X and a compact set
S C X is defined as d(z, S) = min{d(z,y) |y € S}.

4If S C X is a compact and asymptotically stable invariant set, then S is an attractor and vice versa. Remember that,
even for equilibria, stability and attractivity are independent notions. Are You able to recall the related counterexamples?

®Attractor S C X is global if A(S) = X.

5The standard example for a continuous—time dynamical system in R? is the solution operator of an autonomous ordinary
differential equation with the properties of global existence (i.e., existence for all ¢ € R), uniqueness, and continuous dependence
on initial conditions.

"You should be able to formulate the definition of a heteroclinic cycle.

8Thus asymptotic stability for a (constant coefficient) linear system is equivalent to ezponential stability.



One-—step p—th order (p € N, p > 1), stepsize h (0 < h < hy]) discretization operator for equa-
tion & = f(x) inducing a CP*! dynamical system ® on R% A CP*! = CP*L([0, ho] x R%, R?) mapping
¢ : [0,ho] x R — R is a one-step p-th order (p € N, p > 1), stepsize h (0 < h < hg) discretization
operator for equation i = f(x) if a.) for constant K > 0 suitably chosen, || ®(h,z) — ¢(h,z)|| < KhPT!
whenever 0 < h < hg and € R? b.) for stepsize h small, ¢(h,x) can be effectively computed on the
basis of knowing the behaviour of function f near z € R%.%

Grobman-Hartman Lemma: Consider the differential equation ¢ = f(z) where f : R? — R? is a
continuously differentiable function, f(0) = 0 € R? and f/(0) = A € L(RYRY), a d x d matrix with
eigenvalues A\, k = 1,2,...,d. Assume that Re Ay # 0 for each k. Then, in a small neighborhood of the
origin 0 € RY, the nonlinear equation (N) # = f(z) with solution operator ®(¢,z), the linearized equation
(L) # = Az with solution operator e/4z, and—for stepsize h sufficiently small—the discretized equation
(D) X = ¢(h,z) with solution operator ¢(h,x) are essentially the same. Loosely speaking, in a small
neighborhood of a nondegenerate equilibrium, both linearization and discretization are almost—identity
coordinate transformations that, preserving time, map trajectory segments into trajectory segments. Sta-
ble and unstable local manifolds/subspaces of the origin are mapped to each other and they are tangent
at the origin to each other.!0

Periodic orbits of Lotka—Volterra systems & = z(c; + a1z +b1y), § = y(ca +ax+boy): There is only
one possibility for a Lotka—Volterra system to have periodic orbits in the positive quadrant: if the positive
quadrant is filled by periodic orbits, encircling about the same equilibrium point (which is a center).
The derivative of C' function V : N/ — R along the trajectories of a local dynamical system
®(t,z) induced by the autonomous differential equation (F) @ = f(r) where f : NV — R? is
a C! (in words: a continuously differentiable) function and the related consequences: The
above-mentioned derivative is simply

. d
Vig)(z) = aV(CI)(t,x))L:O = (gradV (x), f(x)) for each z €N

where ' C R? is open. Inequalities for V( E) (z) imply various consequences on stability properties of z( as
follows: Nested level surfaces around an equilibrium point zo € N which is a local minimum of function
V and the sharp inequality V(g (x) < 0 on the set A"\ {xo} imply that xq is asymptotically stable. If only

Vig)(7) <0 on the set N'\ {0}, then zg is stable. Reformulations on instability properties are at hand.

9You should be able to define at least both the explicit and the implicit Euler method as well as to recall the contraction
mapping principle the definition of the implicit Euler method is based on. In order to define the unstable invariant manifold
of the origin with respect to the discretized dynamics, it should be mentioned that ¢(h,-) is an invertible function of class
crtt

10T he precise technical statement is that there exist a neighborhood ¢ of the origin 0 € R?, a homeomorphism # : I — H(U)
and, for ho sufficiently small, a one—parameter family of homeomorphisms Hp : U — Hp(U), h € (0, ho] with the properties that
#(0) = H,(0) = 0 and, as long as the trajectory segments remain in U, H(®(t, z)) = e**H(z) and Hn(®(h, z)) = ¢(h, Hn(x)).
Moreover, H and Hj, can be chosen in such a way that they are differentiable at 0 and satisfy H'(0) = H,(0) = idga. In
addition, there exists a constant K > 0 such that |Hx(xz) — z|| < KhP for each h € (0,ho], * € U. In the coordinate
system ) x Z = R? near the origin, the local unstable manifolds for ®(t,-) and ¢(h,-) can be represented as the graphs
of the locally defined CP™' functions u,us : Y — Z where u(0y) = ux(0y) = 0z and u'(0y) = u,(0y) = 0 € L(Y, Z)
and |lu(y) — un(y)|| < const h?. Here ) and Z are linear subspaces spanned by the generalized eigenspaces belonging to
eigenvalues A\ with Re A\, > 0 and Re \; < 0, respectively. You should be able to define stable and unstable manifolds near
nondegenerate equilibria of (N), (L), (D).



Deterministic chaos: (an informal definition) Complexity of the discrete-time or continuous—time

dynamical systems from the view—points of topology (sensitive dependence on initial conditions), measure
theory (density functions for the asymptotic behavior of the trajectories, connections between time and
space averages), and combinatorics (an uncountable choice of coding sequences like those with alphabet!!
L, R addressing consecutive points on certain trajectories).
Devaney’s Definition of Chaos for Dynamical Systems with Time T = N: (one of the competing
formal definitions)'?: Let (X,d) be a compact metric space and let f : X — X be a continuous function.
The dynamics generated by the iterates of f is chaotic if properties a.) sensitive dependence on initial
conditions, b.) periodic orbits with long periods are dense, c.) there is a dense orbit hold true:

a.) dnyVeVa IN IZ such that d(z,z) <e and d(fN(gE),f{V(x)) >,
b.) VeVa VN 3% 3N such that d(Z,2) <e, N> N and fN(&) =17,
c) 3z*VeVz IN such that d(fN(z*),7) <e.

Time averages and space averages of the logistic map F : [0,1] — [0,1], * — 4z(1 — z): There
exists an exceptional set E C [0, 1] of measure zero such that the recursion z,,11 = F(z,), n = 0,1,...
satisfies

0<n<N|z,€[ab b
dim # —"—N+’1"" [, b} :/ plx)dz Y ao€[0,1]\E V [a,b] C [0,1]
where p(z) = ﬁ, x € (0,1) is a density function.'?

Period Three Implies Chaos Theorem: Let f : [a,b] — [a,b] be a continuous function and assume f
admits a period-three orbit z3 = f(x2), z2 = f(x1), 1 = f(x3) with minimal period 3. Then, at least on
a closed subset of [a, b], f is chaotic.

More precisely, there exists a pair of disjoint, closed intervals L, R C [a,b] such that F2(L) D LUR
and F2(R) D LU R. Thus the transition graph!* G of ¢ = F? has two vertices L, R, and four directed
edges L - L, L - R, R— L, R — R (both the first and the last edge are loop edges).

Htypically, letters L (“left”) and R (“right”) carry a geometrical meaning

2The formal mathematical definitions contain a number of conditions fulfilled by some standard examples (the logistic
map with a = 4, Lorenz attractor and Chua circuit for the usual parameters) for chaos. Physicists speak about chaos if the
maximum Lyapunov exponent is positive. For C' mappings f : [a,b] — [a,b] there is only one Lyapunov exponent, namely

Aesap(0) = Timsup - In |7/ (F¥ " (wo)) - £/ (F¥ (o)) -+ £'(F(w0)) - /(o). (1)
N—oo

Geometrically, Arjqp (7o) measures the exponential rate at which errors grow. In cases relevant to physics, the limes superior in
(1) is, up to a set of initial points of measure zero, a limit and it does not depend on the initial point xo. For mathematicians,
the positivity of the mazimum Lyapunov exponent is just an indicator for chaos. Mathematicians prefer Devaney’s definition
for chaos (which can be easily modified to the case T O N. For the logistic map F : [0,1] — [0,1], F(z) = az(1l — x) with
a = 4, the Lyapunov exponent is In(2).)

13By definition, p(z) > 0 and fol p(z) dr = 1.

41n general, if I1, I, ..., In are disjoint and closed subintervals of a closed and bounded interval I, and ¢ : I — I is a
continuous mapping, then I; — I; is a directed edge of the transition graph G with vertex set I, Io,...,In if and only if
f(I;) D I;. The sufficient condition for chaos in this generalized setting is that G has two oriented circles with nonempty
intersection.



Let {Q},cz be a doubly-infinite LR sequence. Then there exists a doubly-infinite sequence {3},
of points in L U R such that z; € Q and xp+1 = ¢(zy) for each k € Z. In other words, there exists a
doubly—infinite trajectory of ¢ visiting intervals L and R in the prescribed order. This means that symbolic
itineraries in the transition graph G can be represented by genuine trajectories.
Box dimension of bounded subsets of R?: Let C. be the usual grid partition of R% by d-dimensional
cubes of side length € > 0. Individual cubes are denoted by C. Consider a bounded subset A of R% and
set N(e) = #{C € C. | CNA#D}. The upper and the lower box dimensions of A are defined by

dimp;(A) = lim inf In(N(e)) and dim}(A) = limsup In(NVe)) ,
ot Tn(1/e) S Tn(1/e)

respectively. In case the upper and the lower box dimensions of A coincide, we say that the box dimension
of the set A is defined!® and is denoted by dimpg(A). Property dimg(A4) ¢ N is an important fractal
indicator.'® Sets with noninteger box dimension can be termed fractals but the majority of the competing
definitions requires some type of self-similarity as well. This is definitely the case for the well-known
examples listed in the previous footnote.

Borel’s Normal Number Theorem: There exists an exceptional set F C [0, 1] of measure zero such

that every = € [0,1] \ E is a normal number. Given § = 2,3,... arbitrarily, consider the representation
— Jn(@)
T = ”ﬁn . da(@)e{0,1,...,8-1} (2)
n=1

of x € [0,1]\ E in the number system with base 8. Then for all integer K = 1,2, ..., the relative frequency
of every string sjso...sg (where s € {0,1,...,8 — 1} for each k = 1,2,..., K) of length K in (2) is
independent of the choice of the string and equals to 3~%. Thus finite sequences in every base /3 are
distributed uniformly.'”

5This is in fact a generalization of the classical concept of the dimension. For example, the d dimensional cube A = [0, No}d
of side length Ny € N is covered by (Nok)d cells of the grid Cy/ implying
In((Nok)®) . d(In(No) + In(k))

dimp ([0, Nol*) = Jim = ae= = lim, In(k) =

Observe that the box dimension of a bounded set A C R? with nonempty interior is d.
10For example,

()’ dimp (Koch curve) = n(3) dimp (Cantor set) = n(3)

Explicit formulas for dimpg(Barnsley fern) are not known — hence the last result is due to computer experimentation. Con-
struction and (a somewhat heuristic derivation of the value of the) box dimension in the first three examples are a must.
The standard example for chaos game is based on random iterations of the constitutive affine contractions leading to the
construction of the Sierpinski triange. Convergence of the random iterations is guaranteed by the theorem below.

'"To be a string s1s2...sx of length K in (2) means that sx = j,+4x(2) for some n* € {1,2,...} and each k =1,2,..., K.
In particular,

dim g (Sierpinski triangle) =

, dimp(Barnsley fern) ~ 1.45.. ..

1<n<N/|jn = 1

fim ZHSRSN D@ =0 _ 1 g, go1y.
N—oo N

The same uniformity is valid for all possible pairs, triplets etc. of digits. No digit or string is “favored”. We are facing an

asymptotic statement on time averages and space averages in consecutive finite structures with constant density functions.



