Nem linearis dinamikai modellek a bioldgiaban
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Nemnegativ matrixok hatvanyozasasra vezets feladatok:

PERRON-FROBENIUS TETEL: Legyen A = {ai]-};l_].zl nemnegativ, primitiv métrix. (Azaz ha az A
mdtriznak alkalmas ko-adik hatvdnya csupa pozitiv elemet tartalmaz — vagy ami ezzel ckvivalens, ha az
irdnyitott dtmenelgrdf dsszefiiggé és kirei hosszinak LNKO—ja egy. Konwvencio: ({i} — {j}) € E(G) <
aj; > 0.) Ekkor Ay =7 > [Xo] > |A3] > ... > |A\;]. Az 7 > 0 dominéns sajatértékhez tartoz6 dominans
sajatvektor jobbrol v > 0, balrol w? > 07 a w’'v = 1 norméléassal. Tovabba
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Tanuls‘d_.qos ._qyakm'lo’ feladaf: L.cgycn A = {aij}i_j:l 0-1 mé?rix. A.) TIgazolja, hogy (Ak)i,j az
atmenetgraf j—edik cstucsabol az i—edik csicsba vezetd k hosszusagu iranyitott utak szama. B.) Hatarozza
meg a ko értékét 1.) az A matrix elsé néhany hatvanya révén illetve 2.) az A métrixhoz rendelt
atmenetgraf kozvetlen vizsgalatdval — ha n =4 és a11 = a14 = ag1 = agz = ag3 = 1 és a t6bbi a;; nulla.
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PELDA 1. — FIBONACCI REKURZIO: Az fo = fi = 1, foy1 = fa + fao1 (n =1,2,...) mésodrendd
linearis rekurziot felbontva az n—edik év ifju és 6reg nyulparjainak szama szerinti két elsérendt, egymashoz
csatolt i¢p41 = Op, Opt1 = in + 0p lineéris rekurziéra, amelyek egyiitt matrixos alakban is felirhatok:
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PELDA 2. — STABIL KORFA AZ L LESLIE-MATRIXBOL négy korosztdly esetén, a by, ba, bs > 0 sziiletési/birth
és az $1, s2, s3 > 0 tulélési/survival ratakkal (amikor szintén teljesiilnek a Perron—-Frobenius tétel feltételei)
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PELDA 2. — STABIL KORFA AZ L LESLIE-MATRIXBOL négy korosztdly esetén, a b, ba, b3 > 0 sziiletési/birth
6s az $1, s2, s3 > 0 tulélési/survival ratakkal (amikor szintén teljesiilnek a Perron—Frobenius tétel feltételei)
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A karakterisztikus polinom ps(A) = A* — b1s1A% — bas1saA — bgsisass. Mivel 1 < r és 1 < R (ahol is
R = by sy + basisa + bzsisess az egyedenkeénti utodok dtlagos szama) jelentése egyarant a végtelenhez tarto
tulnépesedés, pusztan a biologiai tartalom alapjan 1 < r < 1 < R. Hasonloképpen, mivel mind az r < 1,
mind az R < 1 egyenl6tlenség az aszimptotikus kihalas biologiai tényét fogalmazza meg: r <1 & R < 1.
Ugye a matematikai bizonyitds — amelyet szintén csak a 4 x 4 Leslie matrixokra mutatunk be! — is men-
nyire szép? (Es legalabb utélag: mennyire egyszerti?)

PELDA 3. — AMIKOR KEVESEBB IGAZ: stlyozott permutdcio—mdtriz, avagy a cserebogarak/pajorok
négy korosztdlya. Ttt by = by = 0 valamint bzsisesz = 1, és a pa(\) = -1 polinom gyokei £1, +i.
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TA427>1 & R>1 (ésazr <1 & R<1, valamint azr =1 & R = 1) dsszefiiggések bizonyitisa: A AXI — L matrix
determinansanak az els6 sor szerinti kifejtésével kapjuk, hogy az L matrix ps karakterisztikus polinomja

pa(A) = A = b151A% — bas1sa\ — bzsisass

alaki, amelybdl a A = 1 valasztéssal pa(1) = 1 — R ad6dik.

Ha most R > 1, akkor p4(1) < 0. De ps(A) = 0o ha A — oo miatt ps(2) > 0 ha Q € R elegendden nagy. Igy a Bolzano
tétel alkalmazhato az [1, €] intervallumon (vagy ha tgy tetszik, az [1, 00) félegyenesen). Tehat van olyan 7 > 1 valés szam,
hogy pa(r) = 0. Megforditva, ha r > 1, akkor a ps4(r) = 0 képletet atrendezve, majd a jobb oldalt okosan novelve, a végén
atoszthatunk r—el:

1"4 = 171817'2 + basi1s2r + b3si1s283 < 171817'4 + 17231527'4 + 1733152831"4 = 1< bisi +basis2 +bssisass = R.

Tehat R > 1 < r > 1. A még hianyz6 R < 1 < r < 1 eset kezelése sem nehezebb. (Ha ez sikeriil, 7 = 1 < R =1 igazolasa
mar csak formalis logika dolga.) Amennyiben tehat R < 1, akkor az 1 > bisi + basi1s2 + bzsis2ss egyenlStlenséget a A > 1
paraméter negyedik hatvanyéaval beszorozva Pu (1) = A= R Ful(F)=O 1

A S busi At + basysoX® + byssassh? > brsiA + basisa) + by soss e o o B lA ook

adodik. Masképpen fogalmazva azt kaptuk, hogy pa(A) > 0 minden A > 1 esetén. Ilymodon a ps polinom dominéns r > 0
gyoke a (0,1) intervallumba kell, hogy essé¢k. Ha pedig r < 1, akkor minden A € (7, 00) esetén pa(A) > 0, specidlisan a A = 1
véalasztassal is pa(1) > 0. De ps(1) =1 — R és kész.

Vegyiik észre, hogy a bizonyitds mind a négy része explicit vagy implicit moédon épitett a Perron-Frobenius tételre.
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PELDA 6. — MARKOV EGER A CELLAK LABIRINTUSABAN avagy véletlen bolyongds hdromosztati, a
kettes és a hdrmas cella kozott kétkapus labirintusban. Jelolje &, = i azt az eseményt, hogy az egér az
n—edik idépontban éppen az i—edik celldban van, aholn =0,1,2,... ési=1,2,3. igy a P atmenetmétrix
— melynek elemei a p;j = P(&u1 = j | &, = i) valoszintiségek'?:

0 1/2 1/2 1
P=(1/3 0 2/3| = w{ﬂgpk—mg(va):g(z,?,,s) ha k— oo,
1/3 2/3 0

mert 7 =1, v = col(1,1,1) € R3 ¢s wl' = £(2,3,3) (barmely 7§ € £ = {(z,y,2) € row(R®) |z +y+ 2z =
1, 2,9,z > 0} kezdeti eloszlasra). Felismerjiik w? koordinataiban az atmenetgraf csicsainak fokszamat?

rrrrrrrrrrrrrrr 11T 1T 1T T T T 1T 1T 1"

12Sor-sztochasztikus konvencio, ahol az atmenetgrafban ({i} — {j}) € E(G) < pi; > 0: az egér az egymas utéani id6pon-
tokban mindig egyforma valosziniiséggel véalaszt az aktuélis cella kapui kozott — a cellalabirintusokbél széarmazé ilyetén
bolyongasok G grafjai és P Markov matrixai mind specialis szerkezetiiek: tekinthetjiik tobbszoros élekkel rendelkezé iranyitas
(és kiilon siilyozés) nélkiili grafoknak is 6ket, a hozzajuk tartozo6 P = Pg = Dg ! Ag matrixoknak pedig minden sajatértéke
valos. Itt Dg = diag(2,3,3) az a diagonalis matrix, amelynek elemei az iranyitas nélkiili G graf cstcspontjainak fokszamai,
Ag pedig a G graf szomszédségi matrixa (ahol is a12 = a21 = a13 = az1 = 1 és a2z = az2 = 2 [a t6bbi elem pedig nullal).
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A diffazio—egyenlet kétféle levezetése és néhany tulajdonsaga:

A MAKROFIZIKAI LEVEZETES: EGYENSULYI ELVEKBOL A HOVEZETESI INTERPRETACIOBAN  Jelolje
u(t,r) az x € Q C R? (d = 1,2,3) pont hémérsékletét a ¢ > 0 idépontban. A mésik alapvets fogalom
a hGaramlas id6t6l és helytdl is fiiggs vektormezGje, az F(t,z). A harmadik a belsé hoforrasok f(t, x)

stirtiségfiiggvénye.

Egy G C Q térrészen beliili Q(t) :/ cpu(t, ) dr héenergia Q(t) megvéltozasa
G

= a OG peremen ataramlo — / F ds héenergia + a belsé héforrasok / f(t,x) dr munkaja,
IG G

/ cpuy(t,x) do = —/ E@—%/ f(t,z) dx
G IG G
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G

tetszoleges korlatos G C Q (nyilt) tartomanyon, ahol p az anyagstiriiség és ¢ a fajhs. Az fG div(v) dz =
J5c v ds divergenciatétel valamint a diffuzio! F = —k grad u torvényének segitségével

/ cpu(t,z) do = / div(k grad u) dz +/ ft,z) dx
G G - G

cpur(t, x) = div(k grad u) + f(t, z) (1)

azaz

amibdl a

végeredmény mar kozvetleniil adodik.? Amennyiben a k difftizios egyiitthato allando (és nem k = k(x) alaka
fiiggvény), a k allando kihozhato a divergencia operatora elé, ¢és a végeredmeény a cpuy = kAu + f(t,x)
alakra egyszertisodik. Ha nincsenek belsé héforrasok — azaz ha f(t,z) = 0 —, akkor az a® = f‘—p >0
jellessel az (1) egyenlet az u; = a?Awu alakot 6lti, amely egy elére megadott Q c R? (d = 1,2,3) kor-
latos tartomany pontjaiban érvényes. A tovabbiakban azt is feltessziik, hogy mind a ¢ fajhd, mind a p
anyagsiirtiség, és akkor veliik egyiitt az a > 0 paraméter is térben idében éallandok.
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Megjeqyzés: Az uy = Uge, u(t,0) = u(t,7) = 0, u(0,2) = g(x) homogén Dirichlet feladat megoldhato
Fourier sor alakjaban:

oo . us
u(t,z) = cheﬂ’)tsin(nz) ahol ¢, = 2 / g(z)sin(nz)dz, n=1,2,.... (2)
T Jo

n=1

Maga az egyenlet homogén linedris, és a peremfeltétel is homogeén. Igy az u(t,z) (t > 0, z € [0,7])
megoldas az e_"Q‘sin(nI) alapmegoldéasok linearis kombinacioja. A linearis kombindcié egyiitthatoit a
t = 0 kezdeti allapotot leir6 g € Lo[0, 7] fiiggvény Fourier sorfejtése szolgaltatja. Hasonloképpen, az
Ut = Ugg, Uz (t,0) = ugy(t, m) = 0, u(0,2) = g(x) homogén Neumann feladat megolddsa

o > T
u(t,r) = % + Z (’me*"%cos(nz) ahol ¢, = %/ g(x)cos(nz)dr, n=0,1,2,.... (3)

n=1 0
Fontos megjegyezniink, hogy még akkor is, ha a g fiiggvény folytonos, s6t ha még a g(0) = g(x) =0
kompatibilitési feltételek is teljesiilnek — a megoldas “déccenve” indul: a ¢ = 0 id6pontban a Fourier sorok
konvergenciéja altalaban csak az Lo[0, 7] térben garantélt. Szerencsére ha t > 0, akkor a sordsszeg végte-
lenszer derivalhat6 a t és az z hibrid véaltozokban. A t — oo hataratmenetben a homogén Dirichlet feladat
megoldasénak képlete egyenletes u(t,z) — 0 kihtlést, a homogén Neumann feladat megoldasanak képlete

pedig az integral-atlaghoz tarto u(t,z) — § = %f; g(x) dz teljes homeérséklet—kiegyenlitédést mutat.

(Ha az = € [0,L] intervallumon maradtunk volna egy altalanos a > 0 paraméter mellett, akkor a
homogén Dirichlet feladat megoldésa ez lett volna:

u(t,z) = ggn exp <— (a%)2n2t> sin (%nz) ahola g, = %ALg(z) sin (%mv) de, n=12,...

00

et T € [0, L] trigonometrikus rendszer szerinti

allandok éppen a g : [0,L] — R fiiggvény {sin (Fnz)}
Fourier sorfejtésének egytiitthatoi.)
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Megjegyzés: Homogén Neumann peremfeltétel esetén a divergencia—tételt felhasznalva
'
. he Aw
Qt) = / cpug(t,z) doe = / div(k grad u) do = / kgrad uds = / 0ds=0 = Q(t)=Q(0)
Q Q o0 90

adodik (hiszen (grad u(t,z),v(z)) = 0 minden t > 0 esetén), ami a hétani interpretacioban héenergia—
megmaradast, a kémiai interpretacioban pedig a folyadékban oldott (és a diffazioval terjeds) anyag meny-
nyiségének/tomegének megmaradésat jelenti.
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Megjegyzés: egy dimenzidéban lineéris véaltozo—transzforméciokkal — “skalazassal” — elérhets, hogy

a=16sx € (0,7 legyen. Val6ban, ha eredetileg @ € [0, L], akkor

a T=at , y=px , u(t,x)=U(at,Bz) =U(7,y) linedris helyettesitésekkel

ez utobbi formulat (a jobb oldalon mint dsszetett fiiggvényt) ¢ szerint egyszer, valamint @ szerint kétszer
derivilva uy = Uy - o, ugy = Uy, - B2 adodik, igy az o és a B paraméterek optimalis megvalasztasaval

= a*ug, , (t,x) €[0,00)x[0,L] = U -a= tlQUyy'ﬂz , azaz Ur =Uy,, ha BL=7 és a= a’p2.

Magatol értetGdik, hogy a lineéris helyettesitések a perem  és a kezdeti feltételekre is vonatkoznak.
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MAXIMUM-ELV AZ u; = Au EGYENLETRE: Most az eddigiekben targyalt diffuzio—egyenlet — amely-
ben tehdt az ismeretlen fiiggvény u : [0,00) X Q@ — R alakil, egydimenziés ¢ > 0 id6— valamint tetszéleges,
d-dimenzios © € Q C R? térvaltozoval — egy nagyon éltalanos, roppant szemléletes és matematikailag
kénnyen bizonyithat6é kvalitativ tulajdonsagarél lesz sz6. Ez a maximum-—elv, amelynek érvényesiilését
szinte naponta tapasztalhatjuk: Hidegzugok, melegzugok, csakiugy mint a koncentracié Osszestirtisodé-
sel vagy ritkuldsai egydimenzids linedris diffazi6 révén nem johetnek létre. A maximum-elv alapvetGen
egyetlen valos fiiggvényre teljesiil és mér a linearisan csatolt us = 02Uy 4+ au 4+ b, v = fPpe + cu + dv
két olyan anyagét egyazon oldatban, amelynek o és 32 diffuziés egyethatoja egymassal nem egyenld.
Okolszabalyként annyit mondhatunk, hogy a difftizio-egyenlet stabilizal és homogenizal, de a diffuzio—
egyenletrendszer mar nem rendelkezik ezekkel a tulajdonsagokkal.

Kovetkezzék a szigori matematika:

Legyen  C R? korlatos (nyilt) tartomany, és legyen 7' > 0 tetszéleges. Vezessiik be az

Qr=(0,T)xQ , 0°Qr = ({0} x Q) U ((0,7] x 90

jeloleseket®. Ekkor
max{u(t,r) | (t,x) € Qr} = max{u(t,z) | (t,2) € I*Qr}. (4)

Bizonyitds: A bizonyitas — jollehet annak két részre bontasa ugyancsak szellemes — nem hasznal fel
mast, mint az egyvaltozos fiiggvények vizsgalatanak szokasos lépéseit.

1.) Tegyiik fel el6szor, hogy u; < Uz o, + Upyz,. Megmutatjuk, hogy (4) még ekkor is teljesiil. Az
indirekt feltevés azt mondja, van olyan (t*,2*) € (0,7 x Q pont, hogy

w(t*, v*) = max{u(t,x) | (t,r) € Qr} > max{u(t,z) | (t,x) € 9*Qr}.
Ekkor g, (£*, %) = 0 és g, 2, (t*,2%) < 0 valamint ug, (t*, %) = 0 és gy, (t*,2*) < 0. Igy

wp(t*, %) < Au(t*, 2%) = ug 2, (t%, %) + Ugya, (7, 27) <0,

3A d = 2 valasztas miatt konnyi a szemléltetés. Itt Q7 egy, az R x R? téridsben fekvs korlatos nyilt henger, 9*Qr az
Qr henger “csillagos pereme” (azaz kezd6lapjanak és palastja lezarasanak az tini6ja — a “tényleges toltényhiively”). Annak
rendje-modja szerint feltessziik, hogy az u fiiggvény folytonos a [0, 00) x Q zart halmazon, a ¢ idévaltozo szerint egyszer, az
x = (z1,22) helyvaltozo szerint kétszer folytonosan derivalhaté annak (0,00) x € belsejében, tovabba ugyanott eleget tesz az
Ut = Au(= Uzyz; + Usyz,) egyenletnek.
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Bizonyitds: A bizonyitas — jollehet annak két részre bontésa ugyancsak szellemes — nem hasznal fel
mast, mint az egyvaltozos fiiggvények vizsgalatanak szokésos lépéseit.

1.) Tegyiik fel elszor, hogy w; < Uz, + Uzyz,. Megmutatjuk, hogy (4) még ekkor is teljesiil. Az
indirekt feltevés azt mondja, van olyan (t*,2*) € (0,7] x © pont, hogy

w(t*, z*) = max{u(t,z) | (t,z) € Qr} > max{u(t,z) | (t,z) € I*Qr} .
Ekkor ug, (t*, %) = 0 65 Uz, (t*,2%) < 0 valamint ug, (t*, 2%) = 0 65 Ugyq, (t*,2%) < 0. Igy

w(t*,2%) < Au(t, 2%) = taye, (% 27) + tayey (%, 27) < 0,
THL u < Ungxat Uy —> e L Bu
wdick - I (£5x7)€ (0T x L mibye
ul'¥) = j“‘ﬁ“@[‘ﬂ»> gjL (wbx)

1
htor a§4/= O /4O X b #x)0 g ()40

u, £ Ay £0O £=t* yx=%*
ult - fx o< <L d

/,f e (DT Jx (L
oty poutot fiabuar milyul 4 kY iogyok it W‘*‘f

amib6l u(t* — 6, z*) > u(t*,z*) ha 0 < § < 1 (azaz ha § > 0 elegendéen kicsi). Tehat olyan ponto(ka)t
sikeriilt megkonstrudlni a (0,7 x © halmazban, ahol az u fiiggvény értéke nagyobb a maximumnal, ami
ellentmondas.

2.)  Most visszatériink az eredeti u fiiggvényhez. Az e > 0 paraméter segitségével definialjuk a
Ve(t, @) = u(t, x) — et segédfiiggvényeket. Mivel

(ve)(t, ) = we(t,x) — e = Aul(t,x) — e < Au(t,z) = Ave(t, x),
a bizonyités elsé része szerint
max{v.(t,z) | (t,z) € Qr} = max{v.(t,z) | (t,z) € O*Qr}

tetszbleges € > 0 esetén. A kivant (4) tulajdonsag az € — 01 hatardtmenettel adodik. ]

A maximum-elvet a — u fiiggvényre atfogalmazva a
min{u(t,z) | (t,z) € Qr} = min{u(t,z) | (t,z) € 0*Qr} (5)

minimum-elvet kapjuk. A mazimum-—elv és a minimum—elv egyiittes kovetkezménye — ha azokat a két
hipotetikus megoldas kiilonbségére alkalmazzuk — AZ u; = Au + f(t, x), w(0 )|Q =g, u|(0,oo)x09 =h
KEZDETI- ES PEREMERTEK FELADAT KLASSZIKUS (az el6z6 labjegyzetben felsorolt simaségi feltételeket
kielégit6) MEGOLDASANAK UNICITASA. Ez utobbi kijelentés fiiggetlen a kérdéses megoldas létezésetsl.
Vegyiik észre, hogy a bizonyitas lokdlis jellegii és tetszéleges (t1,t2) x G C (0,00) x  nyilt henger
“toltényhiively™t alkoto “csillagos perem”-ére megismételhets, akkor is ha az x térvaltozé nem d = 2, hanem
d = 1,3 vagy éppen d > 4 dimenziés. A bizonyitas els6 része azt is mutatja, hogy maga a maximum-elv
igaz az uy = Au—u? nemlinearis reakcio-diffizié egyenletre is, ahol a —u? “forrastag” soha nem lehet pozitiv.

s (4x)=u - €6 vgle:ut’~6=u,, < Au= A
\/
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A MIKROFIZIKAI PONTOSABBAN A STATISZTIKUS FIZIKAI LEVEZETES: A DIFFUZIO BROWN MOZGAS
SZERINTI INTERPRETACIOJABAN Egyetlen pontszerti részecske bolyong a szdmegyenesen. Mozgasarol
csak annyit tudunk, hogy adott helyzetbdl 6t id6 alatt % valoszintiséggel jobbra, % valoszintiséggel balra
megy, éspedig dz téavolsagot.

Jelolje P(t,z) annak a valoszintségét, hogy a részecske a t id6pillanatban a szamegyenes x pontjatol
balra helyezkedik el. A ¢ és a t + dt id6pillanat kozotti lehetséges elmozduldsokat figyelembe véve, a
P(t+ o0t x) valoszintseget kifejezziik a t idopillanathoz tartozo kiilonbozé valosziniségekkel. Az az allapot,
hogy a t + dt id6pontban a részecske az = ponttol balra helyezkedik el, kétféleképpen alakulhat ki: ha a
t idépillanatban balra volt az & — dz ponttol, vagy ha benne volt az (z — dx,z + dx) intervalumban. Az
el6z6 esetben tovabbra is balra marad az x ponttol, az utobbi esetben pedig a jobbra vagy balra lépések
egyikével az x ponttél jobbra, masikaval az x ponttél balra keriil. A valoszintségét figyelembe véve azt
kapjuk, hogy a kétvaltozos P fliggvény eleget tesz a

P(t+ 6t,x) = P(t,x — 0x) + é(P(t,z +0z) — P(t,x — dz))
algebrai Osszefiiggésnek. Ezutdn mindkét oldalbol kivonjuk a P(t, z) valoszintiséget és osztunk a dt, a jobb
oldalon pedig bévitiink a (dx)? kifejezéssel. Igy

P(t+6t,x) — P(t,x) 1 P(t,x—d6z)—2P(t,x)+ P(t,x +dzx) (6x)*
ot ) (6z)2 ot

4
[

4D bo M%ZV — WWW R )

PCod — wabnluisly, x pol b Jeleledt of
PLet dty) =

Pl

G&}’; X Hl

v, vt dy) —= jotb/lal

?Cé(x {{X) 1 ‘(?C-t[xi%{‘) }C'QIX OFYJ)

O[{ . Ok*> +4 ?é;x 547%)

Ly x-fx /ﬁom%// balvn —— balin wanas!

max @3 ) = wax Crf) o4 E30 exlly E—07 Ja talrari Bl
>

cw)
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2
majd a (‘;ﬁ = 1 skalazassal és a 0t,0r — 0 hataratmenettel a remélt Pi(t,z) = Py,(t,z) parcialis

differencialegyenlet adodik.
Ha a t = 0 kezdeti id6pontban a részecske biztosan az x = 0 pontban volt (azaz P(0,z) = H(z) ahol
H a Heaviside fiiggvény), akkor a h6maggal (lasd a 10 ik oldalon) vett konvolicios integral a

Plo) =y [ m@ e ae= o [Tt ac = I [ cia—e ()
L. L) = e t L = — e t = — e at Z = —_—
' 27t J - 2v/ 7wt Jo 2Vt J - 2t

2
végeredmeénnyé egyszertisodik. Itt ®(x) = \/% f_Too e~ 2 ds, a standard normalis eloszlés eloszlasfiiggvénye.
A fizikusok ezt tgy mondjik, hogy a diffuzié a Dirac deltat (vagy més néz6pontbol a Heaviside fiiggvény
altalanositott derivaltjat és ha ugy tetszik, Brown vizbe dobott pollen csomagocskajat) ¢t > 0 id6 alatt az

2w

t=0 ~bam ?[O/X) #=O pontbont poun ==2 fou reff
ool /'M/Wd@

22
N(0,0) = N(0,+/2t) normalis eloszlas m}_e_ﬁ stirtiségfiiggvényéve keni szét.

A diffazi6—egyenlet a szamegyenesen — Poisson megoldoképlete és a normalis eloszlas

Tétel: Tetszéleges g : R — R folytonos és korlatos fiiggvény esetén

. () hat=0 11
u(t,z) = s [ 9@ exp (- EO0Nde hat>0 .

megoldésa, éspedig egyetlen megolddsa az u; = Uy, (t,2) € [0,00) X R egyenletnek, az u(0,z) = g(z)
kezdeti feltétel mellett. A konvolucios integral magfiiggvénye az ugynevezett “hdmag”.
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OsSZEFOGLALAS: Az uy = — div(F) + f egyenlet valtozatai alapvetGen F és f vélasztasatol valamint
— rendszerek esetében — a csatolasoktol fiiggenek:

o diffiio: F = Fagp=—higadu gl gyl alinlams alntpa

o advekci6: F = F 4, = kauv, ahol v az aramlo kozeg ismert sebessége

]
- WW W/Wﬁ%ﬁ/’&@
T
e reakciodiffizio: uy = a?Au+ f(u,v), v = B2Av + g(u,v) — ahol @ = f(u,v), ¥ = g(u,v) egy, az
) tartomany minden pontjaban azonos modon lejatsz6dé kémiai reakcié egyenletrendszere
(M /) Wﬂll‘?‘” um@M Zmé« d/
e chemotaxis difftizio: F = F pippi5—aify = — fugrad ¢ — 5% grad u, :ﬁol a szaporodni is képes bak-
térium (koncentracioja u) menekiil egy kiils6 kémiai folyamatban képz6ds méreg (koncentracioja c)
elsl — igy a csatolt rendszer: ¢; = a?Ac + f(c), u ﬂzAu —(div(ugrad ¢) + g(c,u) = - dirE
mesty nadealy, et }u,w(li ArYH Gl
Mindezek a parcidlis differencidlegyenletek perem— és kezdeti feltételekkel egyiitt értenddk.

Az els6 harom példa mindegyike — mér amennyiben az f forrastag sem fiigg az u ismeretlent6l — az
advekcio—diffuzio egyenlettel bezardlag linedris feladat. A ki diffuzios egyiitthato a legegyszeriibb esetben
valodi, az € R? (d = 1,2,3) térvaltozotol fiiggetlen allando: a div(k; grad u) = k1 Au azonossag ekkor
érvényes. A diffazios ky és az advekceios k2 egytitthatok helytdl és id6tol \%Fﬁiggctlcnségc az alkalmazasok

o advekei6 difftzio: F = Fq, 455 = — k1 grad u + kauv

—2>  wupb é%ym’y
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2.7. Linearizalas egyensiilyi helyzetek koriil

Az egyszertiség kedvéért tételezziik fel, hogy a kérdéses egyenstilyi helyzet, ami koriil
linearizalni szeretnénk, 2o = 0. Legyen f : R? — R? C? fiiggvény. Igy

f(z)=Az+a(z), ahol A= f(0) é a(x)= f(z)—Azx.

Magétol értetddik, hogy a: R? — R? is C* fiiggvény, melyre a(0) =0 és a’(0) = f'(0) —
—A=0. Itt a(0) = 0 természetesen R%beli vektor, a’(0) =0 pedig a d x d méreti, csupa
nulla elembél matrix. Jéllehet a 0 kiilonbozé terek — jelesen RY, L(RY,R?) (és akkor
a 0 € R kezdeti idépontot még nem is emlitettiik) nulla-elemét jelenti, a kontextus
megakaddlyozza, hogy azokat barmikor is Gsszekeverjitk egymassal.
Tekintsiik tehdt az
(N) & =Azx+a(z)

nemlinedris egyenletet, és annak origd koriili linearizaltjat, az
L) z=Az

linedris egyenletet. Az (L) linedris egyenletrdl lényegében mindent tudunk, ha sajatérté-
keit és sajdtvektorait ismerjiik. Tetsz6leges z(0) = kezdeti feltételhez tartozé megolddsa
Doy (t) =€, 56t ezt a megolddst a t — et matrix-fiiggvénnyel egyiitt ki is tudjuk szd-
molni. Az (N) nemlinedris egyenlet megoldédsait nem lehet zdrt alakban meghatdrozni.
De nem is kell, hiszen azokat az (L) linedris egyenlet megoldésai kvalitative és kvanti-
tative jol kozelitik. Természetesen csak lokdlisan, az origd egy kicsiny kérnyezetében, és
csak akkor, ha az A métrix A\, = \.(A) sajatértékeire teljesiil a

ReX(A)#0, k=12,..., d (2.16)

feltétel. Ekkor a lokdlis fazisportrék is azonosnak tekintheték, s6t ez az azonositds a
numerikus fazisportrékra is kiterjeszthetd.
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' A TANTARGY NEVET AD(j) TAGABB DEFINICIO: ch:‘ycn (X, d) metrikus tér és legyen T az R, R*, Z,
N, hZ, hN halmazok barmelyike. A ® : T x X — X leképezés T ideji dinamikus rendszer X —en, ha igazak
ré az alabbi axi6omak:

(i) @ folytonos,

(ii) ®(0,z) =z Yz e X,

(ii) @(t, (s, z)) =P@(t+s,2) Vt,seT Ve X.
A hatféle id6valasztast parokba csoportositva
o T =R (illetve T = R*) esetén ® folytonos idejii (semi)dinamikus rendszer,
o T =7 (illetve T = N) esetén ® diszkrét ideji (semi)dinamikus rendszer,

o T = hZ (illetve T = hN) esetén ® h > 0 lépéskizi (semi)dinamikus rendszer.

DINAMIKUS RENDSZER LINEARITASANAK DEFINICIOJA: Legyen (X, || - ||) Banach (azaz teljes normalt)
tér és legyen T az R, R*, Z, N, hZ, hN halmazok barmelyike. A ® : T x X — X dinamikus rendszer
linedris, ha az (i)—(ii)—(iii) axiomak mellett az is igaz ra, hogy

e minden rogzitett t € T esetén P(t,cr1z1 + coxa) = c1P(t, 1) + c2®(t,22) Ve, c2 €R Vg, xe € X.

A (18) nemlinearis T = R, X = R? alappélda linedris valtozata az d x d méreti, valos szamokbol
felépitett A matrix altal meghatarozott & = Ax kozonséges, autonom lineéris differencidlegyenlet

b, :RxR 5 RY (t,z) = Pr(t,z) = ety

alakt megold6 operatora.
Ha a (18) képletben szereplé nemlinearis differencidlegyenletben f € C1(R?, R%) és £(0) = 0, akkor az
[ fiiggvényt a 0 € R? egyensiilyi helyzet koriil linearizilva f(x) = Az +a(x) adodik, ahol A = f/(0) a 0 ban
vett Jacobi matrix és az a € C'(R%, RY) fiiggvényre a(0) = 0 és a/(0) = 0 (az azonosan nulla d x d matrix).
Jelolje A1, Mg, . .., Ag az A matrix sajatétértékeit. A 0 € R mint az & = Az differencidlegyenlet egyensi-
lyi helyzete nem elfajult, ha minden k = 1,2,...,d esetén Re A # 0. A nem elfajultsiagnak ez a definicioja
az © = f(z) differencidlegyenlet barmely mas egyensulyi helyzetére is automatikusan kiterjeszthetd.
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AV :R?— R fiiggvény xy € R? ponton dthaladd szintfeliilete — egyelére jobb volna a
szinthalmaz kifejezést haszndlni — az {z € R?|V () = V(x¢)} halmaz. Ha a V fiiggvény
O és V'(xg) # 0, akkor ez a szintfeliilet az xy pont egy kis kornyezetében ténylegesen is
feliilet, amelynek normélvektora az xo—beli

aVv oV 2%
gradV(zo) = <6_zl(x0)’ a—m(-fo), cee 8_zd(%))

gradiens—vektor, amelyet magaval az 1 x d méretit V'(xo) derivaltmétrix-szal azonosit-
hatunk.

Tekinsiik most az & = f(z) autondm differencidlegyenletet az xq pont egy kis kérnye-
zetében. Minden tovabbi megfontolasunk kézpontjdban

a  (gradV(zg), f(xg)) skaldris szorzat elGjele &ll.

Ha ez a skaldris szorzat pozitiv, azaz a gradV (zg) és az f(xo) altal kozrezart szog he-
gyesszog, akkor az @ = f(x) egyenlet xy ponton atmend trajektéridja az xy-hoz kozeli
szintvonalakat azok névekvo sorrendjében metszi, ha negativ, akkor a csokkend sorrend-
ben. Ez az egyszerti észrevétel messzire, nagyon messzire elvezet, ha azt egy szintfeliilet,
vagyis inkabb egy szintfeliilet—csaldd, egy Matrjosa-baba szertien egymasba skatulyazott
szintfeliilet—csaldd Gsszes pontjara egyszerre alkalmazzuk. A skaldris szorzat nem-nulla
el¢jele azt a geometriai kényszert fejezi ki, hogy a trajektéridk vagy befelé, a Matrjosa
baba kozepe felé haladjanak, vagy kifelé, a forditott irdnyba, az egyes szintfeliileteket
beliilrdl kifelé metszve.

2.55. Definicié Legyen N C R? nyilt halmaz és tekintsik az
(E) i=f(x) , zeN
autondm differencidlegyenletet és a V: N —R C* fiigguényt. A V fiiggvény (E) egyenlet

szerinti derivéltja az x € N pontban :

. d
Vi () = V({2 2)] .
ahol ®(t, ) az @ = f(x) differencidlegyenlet lokdlis megoldé—operdtora az N halmazon.

Az & = f(x) differencidlegyenlet megolddsai dltaldban nem az egész szdmegyenesen
vannak értelmezve, hanem csak addig, ameddig el nem érik az N halmaz ON hatarat, te-
hat esetenként csak nagyon rovid idéintervallumokon. Ezen id6intervallumok mindegyike
nyilt intervallum és a kezdeti ¢, =0 idopillanatot tartalmazza. Tehéat a t =0 pontban vett
id6 szerinti parcialis derivalt minden gond nélkiil értelmezett. Raaddsul V( B)(x) kiszami-
tasa az (E) egyenlet megolddsa nélkiil is lehetséges. S6t, kifejezetten konnyii. Mindossze
az Osszetett fliggvény derivélasi szabalyat kell alkalmazni, a

V() = V(@) ( F2(00)) = V(@) (@)
szereposztassal. A t = 0 helyettesitéssel ebbdl
Vig)(z) = [V'(2)] f(x) . azaz Vig)(z) = (gradV (z), f(z)) adédik. (2.22)

AV fiiggvény szigort minimumhelyeinek kornyezetében a V( p(r)<0ésa V( B)(r)<0
egyenl6tlenségek stabilitdshoz illetve aszimptotikus stabilitashoz vezetnek.
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2.57. Definicié Az N C R? halmaz erés Ljapunov felillet az & = f(x) autondm diffe-
rencidlegyenletre nézve, ha van olyan V : R? — R C' fiigguény és olyan ¢ € R dllandd,

hogy
Nc{zeR | V(z)=c} és (gradV (z), f(z)) <0 Vz € N.

Az alternativ széhaszndlat szerint a V erés Ljapunov fiiggvény az N'C R? halmazon, ha
(gradV (z), f(z)) < 0 minden x € N esetén.

e 3V RY>R & LMM/MW al/%/%wv{oﬁ

I  wlhrc
A/CZX/ V) =X o <?ﬂ_0-£[V(x)l/[xJ><O Ue €0

Xa&%'{@ Yeakl | gurimphbudas iabr

2.56. Tétel A.) Legyen az xg € RY pont egyensiilyi helyzete az (E) egyenletnek, azaz
legyen f(xo)=0. Legyen tovdbbd az N'C R? halmaz az xq pont nyilt kérnyezete, és legyen
V:N =R olyan C* fiigguény, amelyre

Vizg) <V(z) VzeN\{z} ¢é Vigla)<0VzeN. (2.23)
x0-lo \ptl UMD Somudee
Ekkor az xq egyensilyi helyzet (lokdlisan) stabil. walnt o mluboualokod
B.) Tegyiik fel, hogy a (2.23) feltétel helyett teljesiil az aldbbi tulajdonsdg:
V(.T()) < V(T) V x EN\{.T()} és ‘/<E)( ) <0Vax (S N\{?O} (224)

Ekkor az xq egyensilyi helyzet (lokdlisan) aszimptotikusan stabil.
Legyen tovdbbd ¢ >V (xqy) olyan dllandé, amelyre

<={r €N | V() <c} korldtos és mint R? részhalmaza, zdrt. (2.25)

Ekkor az M,S halmaz része az xo egyensilyi helyzet attraktivitdsi tartomanyanak,
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Ez eddié elmondottak mind-mind kiterjesztheték arra az esetre, amikor t('ib\t‘),se.gymas élet-lehetdségeire
a legkiilonfélébb modokon hato fajokbol allo 6koszisztémakat vizsgalunk. Ez a tobbfaj—modellek vilaga. Két
faj egyiittélésének (kozos erdforrasokért) versengd, szimbiotikus, avagy éppen ragadozd—zsdkmdny eseteinek
szokasos

= z(c) + a1z + byy)

K ahol ¢q,¢o,aq,a9,b1,bs € R adott konstansok és =,y > 0 16
y=y(02+azx+b2y)} bRt i Y 16)

kvadratikus differencialegyenlet-modellje Lotka és Volterra nevéhez fiizédik. Az esetszétvasztasokat a
c1,¢2,a1,a2,b1,ba € R paraméterek elGjelei hatarozzék meg. A hat paraméter koziil harom (de nem barme-
lyik harom) lineéris valtozo—helyettesitésekkel +1-re kiskaldzhato. A Kolmogorov féle altalanositas

jck:zkfk(zl,z;;,...,zd) ahol IkZO, k:1,2,~~~,d (17)

alaka. Ttt f : R‘i — R (k= 1,2,...,d) adott folytonosan differencialhato fiiggvények. A biologiailag
relevans fazistér — amint az a (16) és a (17) egyenletrendszerekben is megjelenik — R? illetve R nemnegativ
(és az indukalt dinamikara invaridns) ortansa. Magatol értetddik, hogy az ortansok végtelen tavoli pontja
egyetlen trajektoriat sem vonzhat: minden trajektérianak ¢ — oo mellett a biolégia okin egyenletesen
korlatosnak kell maradnia. Ez azt is jelenti, hogy szimbiotikus 6koszisztémakat kvadratikus Lotka—Volterra
rendszerekkel csak az R? korlétos részhalmazain lehet modellezni.

A kétdimenzids Lotka—Volterra (16) rendszerek konkrét példakon és dltalanositasokon dt térténé — nem
minden részletében egyforman olvasményos, de reményeim szerint mégiscsak jol kovethet6 — bemutatasa
a Nemlinearis Dinamika jegyzet?? 3.8 fejezetében talalhaté. A dinamika jellege az egyensilyi helyzetek
kis kornyezetében a linearizalas modszerével, a “nyom—determinans” abra szerinti esetszétvalasztasokkal
allapithato meg. Az x > 0, y > 0 siknegyeden kiviili pontokkal nem kell térédniink, mivel azok semmilyen
biologiai jelentést sem hordoznak. Az orig6 mindig egyensilyi helyzet, a vizszintes y = 0, x > 0 és a
fiiggsleges x = 0, y > 0 féltengelyek pedig egyenként is mindig invaridnsak: a dinamika rajtuk konnyen
megrajzolhato.
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A7 ADOCSALAS EGY AGENS—ALAPU MODELLJE Adott egy iranyitéas nélkiili G graf, amelyben sem hurokélek,
sem tébbszérds élek, sem izolalt csiicsok nincsenek. A G graf V(G) = {1,2,..., N} csiicsai egy orszag ado-
fizetGit jelentik. Az i—edik cstics fokszdma d; > 0, az i—edik csticcsal szomszédos csticsok halmaza N;
(i=1,2,...,N), amely tehat az i—edik adofizets ismerdseit — latni fogjuk, bizalmas ismerdseit — jelenti.
Ebben az orszagban egykulcsos adé van, és az ad6 befizetése évente egyszer, 6nkentes adbébevallas alapjan
torténik. A matematikai egyszertség kedvéért tegyiik fel, hogy minden adéfizets éves jovedelme egyforman
egységnyi. Jelolje 0 < 6 < 1 az addkules mértékét. A t-edik évben (¢ = 0,1,...) az i—edik adofizets altal
bevallott jovedelem legyen z; ;.

Az adofizet6k azonban nem tisztelik a torvényt. Feltéve, de meg nem engedve a modell szerint nem
valljak be teljes jovedelmiiket: a feltételezés szerint mindenki gy csal a rakovetkez6 évben, hogy a sajat
ismerdsei altal bevallott jovedelmek atlagat veszi alapul és az ;441 értékét egy kétvaltozos elégedettségi
fiigguény feltételes maximumhelyeként szamolja ki. Az elégedettségi fliggvényt egyrészt a ndla marado
1 — Ozi41 Osszeg nagysdga, masrészt a vdrhato biintetéstol valo félelem hatérozza meg: ez utobbi egye-
nesen aranyos mind a bizalmas ismerdsok dltal az elézo évben bevallott T;; dtlagos jovedelem-mel, mind
egy, az adott orszagra jellemzé m > 0 moralitasi tényezé—vel. Az elégedettségi fiiggvény definicibja — a

g’ ] /'m’wgf% Wil gm%
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kozgazdaszok szeretik a logaritmus fiiggvényt®3:
U:0,1]x[0,1] »[0,1] , (2,7) >U(x,Z) =In (1 —0z) + mz(z — In(z)) .

Az i-edik adofizets a (¢ + 1)-edik évben bevallott jovedelmét a most mér egyediil logikus

1 .
xi,t=azz]~,t . i=1,2,...,N, t=0,1,2,...
JEN:

képlet és a szintén plauzibilis
Zigp1 = F(Tig) , ahol F(T) = arg maxU(-,7) (30)

formula szerint szamolja ki. Természetesen bizonyitasra szorul, hogy a (30) formula valoban joldefinialt.
Ehhez pedig a magatol értet6ds 0 < z;0 <1 (i = 1,2,...,N) feltétel és az U(-,T) fiiggvény konkavitasa a
[0, 1] intervallumon éppen elegends®.
A kapott diszkrét idejii dinamikus rendszer dllapottere a [0, 1]V egységkocka, a dinamikdt definidlo
leképezés pedig
]_—[0’]-]1\7_)[0’1]1\,7 (]-'(x))L:F diz’lf] , 1=1,2,...,N.
' jEN:
A dinamika annyiban van csak a G grafon definialva, hogy az i index (amely az egységkocka adott pontjahoz
annak i—edik koordinatéjat rendeli) a G graf i—edik csicséra utal.

Az m > 6 feltétel mellett implicit derivaldsokkal kénnyt igazolni, hogy az F : [0,1] — [0,1] fiiggvény
kielegiti az F'(0) = % > 1, F' > 0, F”" < 0 egyenl6tlenségeket. Mivel F(0) = 0, az F fiiggvénynek egyetlen
x* > 0 fixpontja van a [0, 1] intervallum belsejében, és az is viligos, hogy az z'+1 = F(z), £ =0,1,2,. ..
iteraciot barmely 0 # 2% € [0, 1] pontbol inditva az ¢ — oo hataratmenetben z¢ — z*.

%a/xmom'@/f %ﬁ ity o -
/ﬂ(&,i): &(4‘3{) + m-?[&x-x}
F = i U (,)T)
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Erdds-Rényi grifok: Adva van n cstucspont és egy 0 < p < 1 szam. Az n cstcspont kozott lehetséges (’2’)
¢l mindegyikét p valosziniséggel behtizzuk. Az igy kapott G(n,p) graf cstcsainak fokszameloszlasa a

P(deg(v) =k) = (n ; 1>pk(1 —p)"_l_k , k=0,1,....,n—1

binomiélis eloszlds, amely nagy n—re jol kozelithets a N (u, o) = N(np, /np(1 — p)) normalis eloszldssal.
Az np= A > 0, n — oo hataratmenetben a

NG

P(deg(v) =) =5

k=0,1,...

Poisson eloszlas a hatéarérték.
Az Erd6s-Reényi grafokra jellemzéek a hatdrértékképzés kritikus konstansai® . Ezek a kritikus konstan-
sok a graf bizonyos vagy-vagy tulajdonsagaival fiiggenek 6ssze, amelyek az egyes esetekben aszimptotikusan

egy valoszintiséggel teljesiilnek. Hogy csak a legegyszertibb példakat vegyiik,
lim,, 00 ﬁ%’ <1 = G(n,p) nem &sszefiiggd
limy, 500 ﬁ% >1 = G(n,p) Osszefiiggs
és
lim;, oo np < 1 = G(n,p) maximalis komponensének nagységrendje const - In(n)
limy, oo np > 1 = G(n,p)-ben pontosan egy 6rids komponens van, const-n nagysdgrenddel .

Strogatz—Waltls grafok®": a Watts—Strogatz konstrukci6 az n csticst d-regularis kérgrafbol indul ki, amelynek
an szamu éle van. (Itt 2 < d < 2n sziikségképpen paros szam: a d-regularis korgrafot a hagyoményos
korgrafbol kiindulva ugy kapjuk meg, hogy minden egyes csticsot a té6le jobbra és balra < % hossztisagn uttal
elérhetd tobbi esicesal is kozvetlen éllel kotjiik Gssze. A gyakorlatban szokasos paraméter—valasztas 1 <
In(n) < d < 2n.) Korbemenve a V1, Va,...,V, csicsokon, a V; cstcstol “hatrafele” “indule” (Vj, V;) élek
mindegyikét 0 < 5 < 1 valészintiséggel kicseréljiik egy akkor-éppen-nem-élre, amelynek egyik végpontja
a V; cstics marad (az akkor-éppen-nem-élek koziil az egyenletes eloszlas szerint valogatva). Igy az eredeti
d-regularis korgraf minden egyes élére pontosan egyszer keriil sor, és a konstrukcié mindvégig kizarja
tobbszoros vagy hurokélek létrejottét. A 5 = 0 esetben az eredeti d-regularis korgraf véltozatlan marad, a
B =1 esetben pedig egy G(n,p) Erdés-Rényi grafot kapunk, ahol — hiszen az élek szama nem véltozott
—p= an / (g) A B interpolacios parameéter szokasos valasztésa egyébként 0 < 8 < 1.




Barabdsi-Albert grafok: a Barabasi-Albert konstrukcié kiindulopontja barmely ng cstcsponttt Gy, (szokas
szerint Osszefiiggs) graf lehet, amelyhez lépésenként mindig egy 10j cstucspontot vesziink hozza. Az 1j
cstcspontot és a mar kordbban meglévs cstucspontokat rendre 0 < m < ng szamu éllel kotjiik ossze, a
parhuzamos és a hurokéleket most is kizarva. Az 0j élek behtzasa azonban nem egymastdl fiiggetlen
véletlenek szerint torténik, hanem preferencidkat, a régi cstcspontok tudatos sulyozéasat koveti. Az ng +
i+ 1-ik (¢ = 0,1,...) 4j csacspontnak a j—edik (j = 1,2,...,n9 + 7) csucsponttal valo osszekotése anndl
valosziniibb, minél nagyobb a j—edik csucspont aktualis fokszama. A Barabasi-Albert preferenciaszabaly
szerint

deg(j)
215k5n0+1 deg(k)

Matematikailag bizonyitott eredmény, hogy az i — oo hatérdtmenetben az egyre novekvs graf aszimptotikus
fokszédmeloszlasa a

(no+i+1,j) € E(Gnyt+i+1) valoszintisége egyenesen aranyos —val .

const(m)

P(deg(v) = k) = —=

k> no (32)
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