Digitális Számítás Elmélete 2008   -   Elmélet

Digitális Számítás Elmélete
2008
-

Elmélet

összeállította: 

Esztergár-Kiss Domokos
Determinisztikus Véges Automaták (=DVA): 

· M= (Q,Σ,δ,q0,F), ahol: 
· Q..véges, állapotok halmaza, 
· Σ..véges halmaz, abc, 
· δ: QxΣ( Q..állapotátmenet fv, 
· q0 e Q..kezdeti áll, 
· F c Q..végáll;;
· Felismert (=elfogadott) jelsorozat: M= (Q,Σ,δ,q0,F) egy DVA, w= x1x1..xn e Σ jelek sorozata, M felismeri w-t, ha ( r0r1,,rn e Q állapotok sorozata, hogy: r0=q0, δ(ri,xi+1)= ri+1, rn e F;

· M DVA felismeri A nyelvet, ha A= {w| M felismeri w-t}, jele: A= L(M);;
· összes Σ –beli jelekből álló véges sorozatok (=szavak) halmaza, jele: Σ* = {w= a1..an| ai ( Σ, i=1,..n, n>=0}, szó hossza: n, ε..0 hosszú,üres szó; I..bináris abc (0 v 1);;
· L formális nyelv: Σ felett, ha L ( Σ*; 
· nyelv véges módon megadható (nem minden Σ feletti nyelvet lehet végesen reprezentálni): 
· elemek felsorolása (ha számuk véges), 
· L= {w e Σ*| w P tulajdonságú}, 
· L=L(M), ahol: M egy automata, 
· operátorokkal, 
· generáló nyelvtannal;;
· Reguláris operátorok: Σ abc feletti nyelvekben: 
· egyesítés (=unió): A u B= {x| x ( A vagy x ( B};
· szorzat (=illesztés, konkatenáció): A ° B= {xy| x ( A, y ( B}; 
· iterálás(=Kleene csillag): A*= {w1..wk| wi ( A, i=1,..k, k>=0},  ε e A*, ha L= Σ, akkor L*= Σ*; további operátorok: 
· metszet: A n B= {w| w ( A és w ( B}; 
· különbség: A-B= {w| w ( A és w /( B}, AC Σ*-A;
· tükörkép: AR= {xR| x ( A};;
· Reguláris kifejezések: Σ abc felett reg kif: 
· Σ minden eleme, 
· ε,
· üres, 
· ha A és B reguláris, akkor A*, A°B, A u B is;  minden reg kif reprezentál egy nyelvet;;
Nemdeterminisztikus véges automata (=NVA): 

· N= (Q,Σ,δ,q0,F), ahol: 
· Q..véges, állapotok halmaza, 
· Σ..véges halmaz, abc, 
· δ: Qx(Σ u {ε})( P(Q)..állapotátmenet fv, 
· q0 ( Q..kezdeti áll, 
· F ( Q..végáll;;
· Felismert (=elfogadott) jelsorozat: N= (Q,Σ,δ,q0,F) egy NVA, w= x1x1..xn e Σε jelek sorozata, N felismeri w-t, ha ( r0r1,,rn ( Q állapotok sorozata, hogy: r0=q0, ri+1 ( δ(ri,xi+1), rn ( F;

· N NVA felismeri A nyelvet, ha A= {w| N felismeri w-t}, jele: A= L(N);;

· M1 és M2 ekvivalens: ha L(M1)= L(M2), ua nyelvet definiálják; 

· T: Minden NVA-hoz létezik vele ekvivalens DVA; 
· Biz: ha N nem tartalmaz ε-t: megkonstruáljuk M= (Q’,Σ’,δ’,q0’,F’) DVA-t, amivel NVA-t szimuláljuk: 
· Q’= P(Q), 
· δ’(R,a)= {q ( Q| ( r ( R, hogy q ( δ(r,a)}= Ur e R δ(r,a), 
· q0’= {q0}, 
· F’= {R ( Q’| ( r ( R, hogy r ( F}; 
· ha N tartalmaz ε-t: E(R)= {q ( Q| q elérhető R-ből 0 v több ε él mentén}, R c_ Q;
· Q’= P(Q), 
· δ’(R,a)= {q ( Q| ( r ( R, hogy q ( E(δ(r,a))}= Ur e R E(δ(r,a)),
· q0’= E({q0}), 
· F’= {R ( Q’| ( r ( R, hogy r ( F};; 
· T: legyen Ł azon nyelvek halmaza, melyek felismerhetően DVA-val, Ł zárt a reg op-ra nézve, azaz, ha A1 és A2 ( L, akkor: 
· A1 u A2 ( Ł, 
· A1°A2 ( Ł, 
· A1* ( Ł; 
· Biz1: Legyen A1=L(M1), M1= (Q1,Σ1,δ1,q1,F1), A2=L(M2), M2= (Q2,Σ2,δ2,q2,F2), 
· megkonstruáljuk: M= (Q,Σ,δ,q0,F)-t, hogy L(M)= A1 u A2, 
· Σ=Σ1=Σ2, 
· Q= Q1xQ2= {(r1,r2)| r1 ( Q1 és r2 ( Q2}, 
· δ((r1,r2),a)= (δ1(r1,a), δ2(r2,a)), 
· q0= (q1,q2), 
· F= {(r1,r2)| r1 ( F1 vagy r2 ( F2}= (F1xQ2) u (Q1xF2); 
· [image: image1.png]


Biz1 NVA-val: L(N1)= A1, L(N2)= A2, L(N)= A, 2 db ε átmenet köti össze N1 és N2-t, új kezdőáll;
· Biz 2: N1 végállapotaiból ε éllel N2-be;
· Biz3: kezdőáll-ból ε hatására tovább;;;
[image: image2.png]


[image: image3.png]



Általánosított NVA (=ÁNVA): 
· N= (Q,Σ,δ,qk,qv), ahol:
· Q..véges, állapotok halmaza, 

· Σ..véges halmaz, abc, 

· δ: (Q-{qv}) x (Q-{qk})( R..állapotátmenet fv,,ahol R Σ feletti reg kif-ek halmaza,
· qk ( Q..kezdeti áll, 

· qv ( Q..végáll;;

· élek reg kif-el címkézettek; 
· kezdőáll-ból minden más állapotba megy él, de bele nem; 
· egyetlen  a kezdőáll-tól kül végáll; 
· közbülső áll mindegyikéből megy egyetlen él minden közbülső állapotba, saját magába is;;
· Felismert (=elfogadott) jelsorozat: N egy ÁNVA, w= x1x1..xn ( Σ* jelek sorozata, N felismeri w-t, ha ( r0r1,,rn ( Q állapotok sorozata, hogy: r0=qk, xi ( L(Ri). ahol: Ri= δ(ri-1,ri), azokból szavakból áll, amit felismer, rk= qv;

· N ÁNVA felismeri A nyelvet, ha A= {w| N felismeri w-t}, jele: A= L(N);;

· Ekvivalencia: adott Σ feletti nyelvek azonos halmazok: 
· LR..reguláris nyelvek halmaza, 
· LN..NVA által felismert nyelvek, 
· LD..DVA által felismert nyelvek; 
tudjuk: LR c_ LN és LN = LD( LR ( LD; megmutatjuk: LD ( LR;; 
· Biz: megkonstruáljuk ÁNVÁ-kat: 
· M..kiindulási k állapotú DVA, 
· Ak+2..M-el ekv k+2 állapotú ÁNVA, 
· Ak+1..Ak+2-vel ekv k+1 állapotú ÁNVA, …, 
· A2..Am-el ekv 2 állapotú ÁNVA, az A2 egyetlen élén szereplő reg kif-t keressük (ami leírja azt a nyelvet, ami M-et határozza meg); 
· Ak+2-t így kapjuk: hozzáadunk Q-hoz qk/qv-t, melyből/be minden F-beli áll-ból ε címkéjű él vezet, többszörös éleket újjal helyettesítjük, melyre kihagyott éleken szimbólumok unióját írjuk; 
· konvertál(G) nevű rek eljárást Ak+2-re alkalmazva előállítunk reg kif-t: 
· ha k=2 (áll-ok száma), akkor visszaadjuk egyetlen élen lévő reg kif-t; 
· ha k>2: legyen q’ ( Q-{qk,qv} tetsz, G’=(Q’,Σ,δ’,qk,qv), ahol: 
· Q’= Q-{q’} és  δ’(qi,qj)= R1 R2* R3 u R4, ahol: R1= δ(qi,q’), R2= δ(q’,q’), R3= δ(q’,qj), R4= δ(qi,qj); 
· konvertál(G) ekv G-vel: Biz: TI: k= |Q|, 
· k=2-re igaz, 
· tfh k-1-re igaz, megmutatjuk, hogy k-ra is: L(G)= L(G’), ehhez biz:
· 1) L(G) ( L(G’): legyen w ( L(G) és qk,q1,q2..qv felismerhető áll-ok sorozata, 
· ha q’ nem szerepel, akkor ez sorozat Q’-beli is, így w ( L(G’); 
· ha ..,qi,q’,..q’,qj,.. szerepel, akkor: w= ..wi,w1’,..,ws’,wj és  wi ( δ(qi,q’)= R1, wt’ ( δ(q’,q’)= R2, t=1,..,s, wj ( δ(q’,qi)= R3, tehát ..qi,qj,.. elfogadó áll-ok sorozata Q’-ben, mert δ’(qi,qj)= R1 R2* R3 u R4, így w ( L(G’);
· 2) L(G’) ( L(G): legyen w ( L(G’) és qk,q1,q2..qv felismerhető áll-ok sorozata, fentiekhez hasonlóan belátható, hogy: w ( L(G);;;
Véges átalakítók (=fordítók):
· M= (Q,Σ,(,δ,q0), ahol:
· Q..véges, állapotok halmaza, 

· Σ..véges halmaz, abc,

· Γ..véges kimeneti abc, 

· δxΣ( Qx(..állapotátmenet fv, 
· q0 ( Q..kezdeti áll;;
· véges sok bemenő jel bemeneti szalagról- véges sok áll- véges sok kimenő jel kimeneti szalagra;;;
Minimális DVA: 
· x,y ( Σ* L-re nézve ekvivalens: L ( Σ* nyelv, 
· ha minden z ( Σ* esetén: xz ( L csakkor yz ( L, 
· jele: (L (L nyelv szerinti reláció minden stringek halmazán);
·  (L ekvivalencia reláció Σ*-on (refl, szimm, tranz), mely ekv osztályokra bontja Σ*-t (jele: [x], x ( Σ*, különböznek és együtt kiadják Σ*-t);;

· M egy konfigurációja: (r,x) ( QxΣ*;

· (r,x) rákövetkezője (r’,x’): , ha x’=ax, δ(r,a)= r’, ahol: a ( Σ,  jele: (r,x) |-M (r’,x’);

· (r’,x’) elérhető (r,x)-ből: ha (r,x) |-M (r1,y1) |-M … |-M (rk,yk) |-M (r’,x’), k>=0,  jele: (r,x) |-*M (r’,x’);;

· x,y ( Σ* M-re nézve ekvivalens: M DVA, ha ( q e Q, hogy: 
· (q0,x) |-*M (q,ε) és (q0,y) |-*M (q,ε), (ua áll-ba jutnak számítási folyamat során), 
· jele: ~M (2 string egy automatára nézve ekv); 
· ~M ekvivalencia reláció Σ*-on, minden q elérhető állapothoz tartozik ekv osztály (jele: [q]; azon stringek, amik kezdeti áll-ból q-ba jutnak);;
· T: legyen M= (Q,Σ,δ,q0,F) DVA, ekkor: minden x,y ( Σ* esetén x~M y ( x(L(M) y, 
· Biz: x ( Σ* esetén legyen q(x) állapot, melyre: 
· (q0,x)|-*M (q(x),ε), így x,z ( Σ* esetén: xz ( L(M) csakkor (q(x),z)|-*M (q’,ε), ahol: q’ ( F; 
· ha x~M y, akkor q(x)=q(y), tehát: xz ( L(M) csakkor yz ( L(M) minden z ( Σ* esetén, azaz x(L(M) y;; 
· ~M finomítása (L(M)-nek (ha automata szerint ua osztályba esik, akkor nyelv szerint is);;
· T: ha L ( Σ* reg nyelv, akkor ( M= (Q,Σ,δ,q0,F)  DVA, hogy L(M)=L és állapotainak száma n ((L reláció által meghatározott ekv oszt száma), M egyértelmű; 
· Biz: legyen 
· 1) Q= {[x]| x ( Σ*} véges, mivel L reg, ( M’ DVA, hogy L=L(M’), de tudjuk, hogy ~M finomítása (L-nek, így (L-nek max annyi ekv osztálya van, mint ~M-nek, ami pedig véges; 
· 2) δ([x],a)= [xa] jól definiált, azaz ha x’ ( [x], akkor [xa]= [x’a], de tudjuk: xa (L x’a csakkor x (L x’; 
· 3) q0= [ε], F= {[x]| x ( L}; 
· 4) megmutatjuk, hogy L=L(M): y ( Σ* esetén y ( L csakkor ([ε],y)|-*M (q,ε), ahol: q ( F, és igaz: q= [εy]= [y], ezért: y ( L csakkor y ( L(M);
· 5) ([x],y)|-*M ([xy],ε), y hossza szerinti TI:
· y= ε esetén triviális, 
· tfh igaz n hosszú y-ra, ekkor y= y’a, ind feltevést 2x alkalmazva: ([x],y)|-*M ([xa],y’)|-*M ([xy],ε); 
· Köv: L ( Σ* reg csakkor (L rel által meghatározott ekv osztályok száma véges;;
· Pumpáló lemma: ha L ( Σ* reg nyelv, akkor ( p ( N szám, hogy minden s ( L esetén, ha s hossza la p, akkor s felbontható: s=xyz alakra, hogy: 
· xynz ( L minden n>=0 esetén, 
· |y|>0, 
· |xy|<= p; 
· Biz: legyen p= |Q|, s= s1s2..sn ( L, p<=n, 
· az s-et elfogadó állapotok sorozata: r= r1r2..rn+1, ekkor: p< n+1, tehát r tagjai közül kell lennie la 2 azonosnak skatulya elv miatt, ezek: rj és rk; 
· x= s1s2..sj-1, y= sjsj+1..sk-1, z= sksk+1..sn, így: 
· xynz ( L igaz, 

· |y|>0, mert j/=k, 
· |xy|= k-1 <= p; 
· ha pumpálható, attól még nem reguláris;;;
Grammatikák:
· G= (V,Σ,R,S) generatív grammatika, ahol: 
· V..véges, nemterminálisok halmaza, 
· Σ..véges, diszjunkt V-vel, terminálisok halmaza (nyelv abc-je), 
· R..véges, levezetési szabályok halmaza (rek alkalmazva minden szó megkapható, alakja: (((, ahol ( és ( term és nemterm sorozata), 
· S ( V..kezdőszimbólum (kitüntetett nemterminális jel);;
· k ( (VuΣ*) szóból közvetlenül levezethető ( ( (VuΣ*): ha léteznek olyan (,( ( (VuΣ*) szavak és ((( szabály R-ben, hogy: k= (((, (=(((, jele: k=>G (;
· wn-nek w1-ből levezetése: w1..wn ( (VuΣ*) szavak sorozata G grammatika alapján, ha w1=>G w2 =>G … =>G wn, jele: u=>*G v vagy u=>* v;;
· G generálja L nyelvet: L ( Σ*, L= {w ( Σ*| S=>* w} (minden lehetséges szabály alkalmazásával ilyen szavakat tudunk levezetni), jele: L(G);;
· Grammatikák ekvivalenciája: G és G’ ekvivalensek, ha L(G)= L(G’);;
· G rekurzív: ha ( A ( V és (,( ( (VuΣ*) szavak, hogy: A=>* (A(, ekkor A egy rek nemterminálisa grammatikának; (nemrek gr véges nyelvet generálnak);;
· G környezetfüggetlen (CF= Context Free): ha levezetési szabályainak bal oldalán egyetlen nemterm szerepel, azaz A((, ahol: A ( V, ( ( (VuΣ*);;
· T: reg nyelv mindig CF; 
· Biz: ha L reg, akkor ( M: L=L(M), azaz őt felismerő automata, készítünk egy éppen L-et generáló CF grammatikát: 
· M minden qi állapotának megfeleltetünk egy Ri nemterm szimbólumot, kezdőszimb: R0; 
· Ri(aRk szabály, ha δ(ri,a)= rk,  Ri( ε, ha ri végáll M-ben;;
· T: CF grammatika szerinti levezetés nem mindig egyértelmű, mivel a szabályok alkalmazásának sorrendje tetsz;;
· Levezetési fa: CF grammatika szerinti levezetés ábrázolható fával, melynek: 
· gyökere= kezdőszimbólum, 
· levelei= levezetett szó betűi, 
· csomópontjai= nemterm, 
· elágazások= alkalmazott szabályok;;
· CF gr szerinti levezetés baloldali: ha levezetés során mindig legbaloldalibb nemterm-t helyettesítjük be (CF gr szerinti baloldali levezetés sem mindig egyértelmű);

· Egyértelmű: ha minden generált szavának egyetlen baloldali levezetése van (egyetlen levezetési fa létezik hozzá);

· Eredendően többértelmű: ha nem generálható egyértelmű gr-val;;

· Chomsky-féle Normál Alak (=CNF): G= (V,Σ,R,S) CF gr CNF, ha: 
· A(BC, 
· A(a, 
· S(ε, ahol: A,B,C ( V, a ( Σ, B,C nem kezdőszimb;;
· T: tetsz CF nyelvhez megadható őt generáló gr CNF-ben; 
· Biz: 
· 1) S0(S új kezdőszimb;
· 2) A(ε szabályra: 
· töröljük, ha A nem kezdőszimb, 
· B(αAβ-hez A-t törölve hozzáadunk újakat minden lehetséges módon (2k-1 új szabály) , 
· B(A esetén B(ε-t beiktatunk, ha korábban nem töröltünk ilyen szabályt; 
· 3) A(C szabályra: 
· töröljük, 
· de ha van C(α, akkor beiktatjuk A(α-t, kivéve ha töröltük korábban; 
· 4) végül konvertáljuk szabályokat max 2 hosszú jobboldalas alakra: 
· A(α1α2..αk-ből lesz: A(α1A1, A1(α2A2, … Ak-2(αk-1αk; 
· minden αi terminálist(!) Ui nemterm-al helyettesítünk és beiktatjuk: Ui( αi szabályt;;
· Bar-Hillel (pupáló) lemma: ha L ( Σ* CF nyelv, akkor ( p ( N szám, hogy minden s ( L esetén, ha s hossza la p, akkor s felbontható: s= uvxyz alakra, hogy:
· uvnxynz ( L minden n>=0 esetén, 
· |vy|>0, 
· |vxy|<= p; 
· Biz: s jó hosszú L-beli sorozat, így levezetésében 2x szerepel A; 
· legyen G adott L-t generáló CF gr, b..szabályok jobb oldalán szereplő szimb max száma (b>=2), tetsz m mélységű fában max bm levél szerepel; 
· legyen p= b|V|+2, ahol: |V|..G-beli változók száma, p> b|V|+1, (mivel b>=2) ezért ha s (L-beli) la p hosszú sorozat, akkor minden levezetési fája la |V|+2 mély; 
· legyen τ s egy lk csomópontú levezetési fája, τ la |V|+2 mély, így egy út la |V|+1 változót tartalmaz, tehát van olyan, ami 2x szerepel- jelöljük A-val; 
· s= uvxyz, uvnxynz ( L igaz, 
· v és y közül egyik nem ε (különben létezne kevesebb csomópontú levezetési fa s-hez), 
· [image: image4.png]


vxy max p hosszú, mivel A-ból max |V|+2 mélységű fa vezeti le, aminek csak b|V|+2= p levele lehet;;
· Chomsky-féle nyelvosztályok: 
· 3-as (R=reguláris): A(a, A(aB; 
· 2-es (CF): A(α; 
· 1-es (CS): βAγ(β αγ,  α(β, ahol: |α|<=|β|, nem csökkenő; 
· 0-s: tetsz alakú szabályok;;;
Verem automaták:
· M= (Q,Σ,(,δ,q0,F), ahol: 
· Q..véges, állapotok halmaza, 
· Σ..véges halmaz, abc, 
· Γ..véges halmaz, veremabc, 
· δ: QxΣεxΓε( P(QxΓε)..állapotátmenet fv, 
· q0 ( Q..kezdeti áll, 
· F ( Q..végáll; 
· Bemenő jelek bemeneti szalagok- véges sok áll- verem memória (LIFO); CF nyelvek felismeréséhez;; 

· Felismert (=elfogadott) jelsorozat: M= (Q,Σ,(,δ,q0,F) egy VA, w= x1x1..xn ( Σε jelek sorozata, M felismeri w-t, ha ( r0r1,,rn ( Q állapotok sorozata és s0s1..sn ( Γε, hogy: r0=q0 és s0= ε, (ri+1,b) ( δ(ri,xi+1,a), i=0..n-1, ahol: si=at és si+1=bt valamely a,b ( Γε és t ( Γ*, rn ( F;

· M VA felismeri A nyelvet, ha A= {w| M felismeri w-t};;
· T: minden CF nyelvhez létezik őt felismerő veremautomata; 
· Biz: legyen G CF gr, ami L-et generálja, megkonstruáljuk M veremautomatát, amely minden bemeneti jelsorozatról eldönti, hogy levezethető-e G gr szerint; 
· 1) beírjuk verembe egyszerre: q,r állapotok, a ( Σ, s ( ( (automata q-ból r-be megy, ha ’a’ beolvasott jel hatására veremből s-t olvassa ki, verembe beteszi u=u1..uk-t egyszerre); 
· beiktatunk új, közbülső állapotokat: q1, q2,..qk-1, melyekre: δ(q,a,s)= {(q1,uk)}, δ(q1,ε,ε)= {(q2,uk-1)},…, δ(qk-1,ε,ε)= {(r,u1)}; 
· 2) M állapotainak halmaza: Q= {qk,qv,qciklus} u E, ahol: E..új közbülső állapotok; 
· inicializálás: δ(qk,ε,ε)= {(qciklus,S$)}, 
· ha verem legfelső eleme nemterm: δ(qciklus,ε,A)= {(qciklus,w) | A(w szabálya G-nek}, 
· ha verem legfelső eleme term: δ(qciklus,a,a)= {(qciklus,ε)}, 
· verem legfelső eleme $: δ(qciklus,ε,$)= {(qv,ε)};;

· T: minden M VA-hoz létezik G CF grammatika, mely éppen M által felismert nyelvtant generálja; 
· Biz: tfh M-re igaz: egyetlen végállapota van(qv), ezt üres veremmel éri el, minden állátmenet betesz v kivesz szimbólumot verembe/ből; egy adott M módosítható úgy, hogy feltételek teljesüljenek;;
· T: Ł CF nyelvek halmaza, Ł zárt reg op-ra nézve, azaz ha A1 és A2 ( Ł,akkor: 
· A1 u A2 ( Ł, 
· A1°A2 ( Ł, 
· A1* ( Ł; 
· Biz: legyen G1= (V1,Σ1,R1,S1), G2= (V2,Σ2,R2,S2) A1 ill A2 Ł-beli nyelveket generáló gr, tfh V1 ésV2 diszjunktak; 
· 1) G= (V1uV2u{S}, Σ1uΣ2, R, S), ahol: R= R1uR2u{S(S1,S(S2}, ekkor: L(G)= L(G1)uL(G2); 
· 2) G= (V1uV2u{S}, Σ1uΣ2, R, S), ahol: R= R1uR2u{S(S1S2}, ekkor: L(G)= L(G1)°L(G2); 
· 3) G= (V1u{S}, Σ1, R, S), ahol: R= R1u{S(ε,S(SS1}, ekkor: L(G)= L(G1)*;;

· T: Ł CF nyelvek halmaza nem zárt metszetre és komplementerre nézve; 
· Biz: A1= {anbncm| n,m>=0}, A2= {anbmcm|n,m>=0} CF nyelvek, A1nA2= {anbncn| n>=0} nem CF (pumpálási lemmával belátható); 
· A1nA2= (A1C u A2C)C, tfh zárt és CF: unióra zárt és CF, ezért egész zárt és CF, de tudjuk: A1 és A2 nem CF! (maga után vonná metszetre zártságot);;

· T: ha A1 CF nyelv és A2 reg nyelv, akkor A1nA2 CF nyelv; 
· Biz: legyen M1= (Q1,Σ,(,δ1,q1,F1) VA, hogy A1=L(M1) és M2= (Q2,Σ,δ2,q2,F2) DVA, hogy A2=L(M2), M= (Q1xQ2,Σ,(,δ,(q1,q2),F1xF2) VA, ahol: δ: Q1xQ2xΣεx(ε( P(Q1xQ2x(ε); δ(p,q,a,b)= {( δ1(q,a),r,s| (r,s) ( δ2(p,a,b)};;

· M VA determinisztikus: ha δ: QxΣεx(ε( P(Qx(ε) olyan, hogy minden q,a,b esetén δ(q,a,b) max egyelemű halmaz;
· L nyelv determinisztikus CF: L ( Σ*, ha L$ nyelvhez van azt generáló det VA, ahol $ /( Σ (nyelv elemeinek végét jelöli);
· T: Determinisztikus CF nyelvek osztálya zárt reg op-ra, komplementerre, metszetre;
· T: det CF nyelvek osztálya szűkebb, mint CF (van CF, ami nem det CF);;;
[image: image5.png]M

Lo sy Jlieen , igen
igenl azazse Ly,

| l

nem nem
azazwise L, azzse Ly,

_wis





Turing gép:
· M= (Q,Σ,(,δ,q0,qi,qn), ahol: 

· Q..véges, állapotok halmaza, 

· Σ..véges halmaz, abc (nincs benne: _), 

· (..véges halmaz, szalagabc (_ eleme és Σ ( (),

· δ: Qx(( Qx(x{J,B}..állapotátmenet fv, 

· q0 ( Q..kezdeti áll, qi ( Q..elfogadó áll, qn ( Q..elutasító áll;;

· Idealizált szgép, legáltalánosabb számítási modell; minden algoritmikusan megoldható probléma megoldható TG-vel is (de nem minden probléma); író-olvasó fej, véges sok állapot; ír-olvas szalagról/ra, fej J és B mozog, szalag végtelen, gép nem áll meg feltétlenül;;
· Működése: kezdőhelyzet: input a szalag első n mezőjében, többi mezőben: _; a gép megáll elfogadó áll-ban vagy elutasítóban v nem áll meg; 
· rákövetkezője: (ua p bv) ráköv: (u q acv), ha balra lépett, azaz: δ (p,b)= (q,c,B) és (uac q v), ha jobbra, ahol: a,b,c ( ( szalagjelek, u,v ( (*, p,q ( Q állapotok;
· konfiguráció: (u,q,v), ahol: u,v ( (*, q ( Q (szalag tartalma, fej pozíciója, pillnyi áll);
· elfogadó-elutasító konfiguráció: ha q állapot elf-elut;
· kezdeti konfiguráció: (ε,q0,w), ahol: w a szalagra írt bemenő jelsorozat;;
· M TG elfogad w sorozatot: ha ( C1C2..Cn konfigurációk sorozata, hogy: C1..kiindulási konfig, Ci rákövetkezője: Ci+1, i=1..n-1, Cn elfogadó konfig;
· M TG által felismert nyelv: gép által elfogadott sorozatok halmaza, L(M);;
· L nyelv Turing felismerhető (=rekurzíve felsorolható= RE): L ( Σ*, ha van olyan M TG, melyre: L(M)=L (s ( Σ*-L nem nyelvbeli szó esetén nem biztos, hogy megáll);
· L nyelv Turing eldönthető (=rekurzív= R): L ( Σ*, ha van olyan M TG, melyre: L(M)=L és M minden s ( Σ* szóra megáll; minden rek nyelv egyben rek felsorolható is;;
· T: ha L rek, akkor LC is; 
· Biz: ha L(M)=L, akkor M-ben felcseréljük elfogadó és elutasító állapotokat, így M’ TG: L(M’)= LC;;
· M és S TG változatok: ekvivalensek, ha L(M)=L(S),ua nyelveket ismerik fel; 
· Helyben maradó fejjel (=HF TG): M= (Q,Σ,(,δ,q0,qi,qn), ahol: 
· Q..véges, állapotok halmaza, 
· Σ..véges halmaz, abc (nincs benne: _), 
· (..véges halmaz, szalagabc (_ eleme és Σ ( (), 
· δ: Qx(( Qx(x{J,B,H}..állapotátmenet fv, 
· q0 ( Q..kezdeti áll, qi ( Q..elfogadó áll, qn ( Q..elutasító áll;;
· Több szalaggal (=TSZ TG): M, ahol: ua, δ: Qx(k( Qx(k x{J,B}k;

· T: TSZ TG ekv TG-vel; 
· Biz: legyen M egy k szalagú TG és S alap TG, mely szimulálja M-et; 
· 1) (’ tartalmazza minden (-beli elem megjelölt változatát és #..elválasztó jelet; M gép k szalagjának tartalma egymás után #-al elválasztva S-en, k fej pozícióján megjelölt elem; 
· 2) S megkeresi szalagján első és utolsó (k+1.) # jelet, és leolvassa k db megjelölt szimbólumot, majd M állátmenete szerint elvégzi felülírást; 
· 3) ha # jelre kellene lépni, akkor megjelölt üres szimbólum kerül oda, miután szalag tartalma utolsó # jelig eggyel jobbra csúszott;;

· Nemdeterminisztikus (=ND TG): M, ahol: ua, δ: Qx(( P(Qx(x{J,B}); működését fa írja le (ha egy ágon az elért állapot elfogadó, akkor ND TG elfogadta sorozatot); 

· T: M NDTG ekv S TG-vel; 
· Biz: S 3 szalagos TG (input, szimulációs, cím szalag (1,2,..m számokból álló sorozat, ahol: m= M állapotátmeneteinek ln száma), működése: 
· 1) kezdetben input szalagon M-nek adott sorozata, másikak üresek, majd input szalagot szimulációsra másolja; 
· 3) szimulációs szalagon S szimulálja M egy-egy ágának működését- csomópontokat szélességi kereséssel járja be, állapotátmeneteket címszalagról olvassa le, ha nincs több szimbólum vagy nem megengedett vagy elutasít, akkor címszalagon lévő címet felülírja következővel, és vissza: input szalagot szimulációsra másolja, de ha áll elfogad, akkor elfogadja sorozatot;; 

· Felsoroló TG (=enumerator): M, ahol: ua, nincs bemeneti sorozat, csak munkaszalag, δ: Qx(( (Qx(x{J,B}xΣ*), Σ*..felsorolt (=kinyomtatott) sorozatok; összes felsorolt elemek alkotják TG által felsorolt nyelveket;
· T: L nyelvet felsoroló E TG-hez létezik M TG, mely épp L-t ismeri fel, és vissza; 
· Biz E-hez M: legyen N 2 szalagos TG (1: bemeneti sorozat, 2: E által felsorolt új sorozat), N elfogadja w inputot, ha egy 2. szalagra írt sorozattal azonos (véges időn belül megtaláljuk); 
· Biz M-hez E: legyen A S által felismert nyelv, s1s2..sn összes lehetséges Σ*-beli sorozat (lexikografikusan felsorol minden lehetséges Σ-beli sorozatot), működés: i=1,2,3,..-ra ismétli: M fut i. lépésig egymás után s1..si inputtal, ha elfogadó áll-ba ér, akkor kinyomtatja megfelelő sj input sorozatot;; 
· Köv: L nyelv Turing felismerhető csakkor van ND TG, mely felismeri;
· T: L nyelv Turing eldönthető csakkor van ND TG, mely eldönti; (ND TG eldöntő, ha minden ágon megáll);;;
Fvszámítás TG-el:
· Output: x ( Σ* kezdeti bemeneti sorozat M TG outputja y ( Σ* sorozat, ha M megáll x inputra és szalagon éppen w szerepel és fej 1. pozíción áll, jele: y=M(x);;
· M által kiszámított fv: fM: Σ*( Σ* parciálisan értelmezett fv, mely minden x-en értelmezett, melyre van y, hogy: y=M(x);
· fv parciálisan rekurzív: f: Σ*( Σ*, ha van M TG, hogy: f=fM;
· fv rekurzív: fenti és minden Σ*-ra értelmezve;;
· B= 0u1(0u1)*, bin(n)= w, azaz tetsz n term szám egyértelműen felírható; term számon értelmezett fv: f: B(B, minden k dimenziós Nk(N fv tekinthető f: Bk(B fv-nek;
· M kiszámítja f-t: f: Bk(B, ha tetsz w1,..,wk ( B esetén w= w1..wk sorozatra M(w)= u, ahol: u=f(w1,..,wk);;
· Algoritmus: véges sok lépéssel kiszámít fv-t, eldönt egy kérdést;
· Church-Turing tézis: ami algoritmussal kiszámítható/eldönthető, az Turing kiszámítható/eldönthető; 
· f: Σ*( Σ* parciális fv algoritmussal kiszámítható ( f parciálisan rekurzív; 
· f: Σ*( Σ* teljes fv alg kisz ( f rekurzív; 
· L nyelvre nyelvbe való tartozás alg-al eldönthető ( nyelv rekurzív;;
· Hilbert 10. problémája: diofantikus egyenletek általános megoldhatósága: f(x1,..,xn)= 0 egész megoldását keressük, ahol f egészeühatós n változós polinom (nincs algoritmus, de T-felismerhető, azaz ha van mo, akkor véges sok lépésben kiderül, de ha nincs az nem);;
· Dominóprobléma: D= {F ( {0,1,*,#}*| sík lefedhető az F féle dominóval}, F= a1*b1*c1*d1*#a2…dk# féle dominóval lefedhető-e sík, mindegyik fajtából végtelen sok van (nem eldönthető, nem ismerhető fel);;
· Kongruens számok felismerése: m poz szám kongruens, ha van olyan derékszögű háromszög, melynek területe m és oldalai rac számok: p2+q2= r2, pq= 2m (rek felsorolható: rac számok megszámlálhatók- véges sok lépésben kiderül, de nem rek);;
· T: van olyan L’ ( Σ*= {0,1}* nyelv, amely nem T-felismerhető; 
· Biz: TG leírható véges jelsorozattal, összes TG felsorolható, mivel k hosszú jelsorozattal megadott TG véges sok van; 
· legyen M1,M2,..Mn,..egy felsorolásuk; Mi TG egyértelműen meghatározza általa felismert Li nyelvet, így T-felismerhető nyelvek is felsorolhatóak: L1,L2,..,Ln,.., azaz megszámlálhatóan sokan vannak; 
· az összes Σ feletti nyelv számossága {0,1}* lehetséges részhalmazainak számossága, ami több, mint megszámlálható;
· Biz: Cantor-módszer: Σ* elemei kanonikusan felsorolhatóak (üres szó, 1,2,..k hosszú szavak), azonos hosszú szavakat lexikografikusan soroljuk el (0,1,00,01,10,11,000..)- ezt felsorolást w1,w2,..,wn-el jelöljük; megadjuk L’ nyelvet Cantor-féle átlós módszerrel: wi ( L’, ha wi /( Li;;
· TG megadása 0,1 sorozattal: M= (Q,Σ,(,δ,q0,qi,qn), tfh: Q= {0,1,..,q}, 0..kezdő, q..elfogadó, q-1..elutasító áll, Σ= {0,1} bemeneti abc, (= {0,1,..,s} szalag abc, s..üres jel „_”, J=1, B=0, ekkor:   M kódja: M egyértelműen megadható egy {0,1}*-beli w szóval, ill: egy {0,1}*-beli szóhoz legfeljebb egy Mw tartozik; pl: q#s#q0#x0#q0’#x0’#m0’…, helyettesítés: #=11, 1=01, 0=00s;;;
Univerzális TG:
· képes szimulálni tetsz, a w kódjával adott Mw TG-et; 
· T: van olyan U 3 szalagos TG, melyre: ha w,s ( {0,1}* és Mw létezik, akkor U gép pontosan akkor fogadja el/utasítja el a w#s bemenetet amikor Mw elfogadja/elutasítja; 
· Biz: 
· 1.szalag: w#s, nem változik, Mw működését adja meg, 
· 2.szalag: s, szalag tartalma, Mw állapota szerint, 
· 3.szalag: Mw pillanatnyi állapota; 
· működése: 
· 0) ellenőrzi, hogy w TG-t ír-e le, ha nem, akkor elutasít, ha igen, akkor: beírja s-t a 2. és 0-t(kezdőáll kódja) a 3.szalagra; 
· 1) 1.szalag alapján meghatározza, hogy Mw mit lépne, ha 3. szalagon megadott áll-ban lenne és olvasófej 2. szalagon lévő jelet látná; U megteszi Mw lépést és módosítja 2. és 3. szalag tartalmát; U megáll elfogadó ill elutasító áll-ban, ha Mw szerinti új állapot elf vagy elut, ha nem, akkor újra 1) lépés;;
· Diagonális nyelv: azon TG kódja, mely nem fogadja el saját kódját, Ld= {w ( {0,1}*, Mw gép létezik és w /( LMw}; 
· T: Ld nem rekurzíve felsorolható nyelv; 
· Biz: indirekt, van N TG, mely épp Ld szavait ismeri fel, Ld=LN, azaz N felismeri w-t, ha w egy olyan Mw TG-t kódol, mely nem fogadja el saját kódját; N kódja s: 
· tfh N felismeri s-t, azaz s ( Ld, akkor def szerint s /( Ld; 
· tfh s /( Ld, akkor def szerint s ( Ld ( ellentmondás;;
· Univerzális nyelv: Lu= {w#s ( {0,1}*, Mw létezik és s ( LMw}; Lu az U univerzális TG nyelve, azaz Lu=LU, tehát Lu rekurzíve felsorolható;;
· T: Lu nem rekurzív nyelv; 
· Biz: indirekt, ekkor van N TG, mely eldönti Lu-t (minden inputra megáll) és Lu=LN; legyen N’ TG: 
· ha w ( {0,1}* bemenet nem TG kódja, akkor elutasítja, 
· ha w TG kódja, akkor: elindítja N-t w#w bemenettel, ha ez szimuláció elfogadó áll-ban megáll, akkor N’ elutasít és fordítva; N’ elfogadja w-t, ha Mw létezik és w /( LM;  tehát: LN= Ld, amiről tudjuk, hogy nem rek felsorolható- ellentmondás;;
· Megállási probléma: eldönthető-e, hogy adott M TG megáll-e minden bemenetre? Lh= {w#s ( {0,1}*, Mw létezik és s bemenettel elindítva megáll};
· T: Lh rek felsorolható, de nem rekurzív; 
· Biz: legyen U univerzális TG, Lh szavaira megáll; U’ TG, azonos U-val, de U elutasító állapota itt elfogadó, ekkor: Lh= LU’, azaz Lh rek felsorolható; 
· Biz: indirekt, Lh rek, azaz van olyan M TG, mely mindig megáll és Lh=LM; legyen M’ TG, mely M-t futtatja, ha elfogadó állapot, akkor futtatja U-t; M’ mindig megáll és Lu-t ismeri fel, ami nem rek- ellentmondás;;
[image: image6.png]



· Megállási probléma üres inputra: eldönthető-e, hogy adott M TG megáll-e üres bemenetre? Lε= {w ( {0,1}*, Mw létezik és ε bemenettel elindítva megáll};
· T: Lε rek felsorolható, de nem rekurzív; 
· [image: image7.png]Domino




Biz: w ( Lε esetén Lh megállási nyelvet felismerő automatát w#ε= w# inputtal futtatva éppen Lε-t ismeri fel; 
· Biz: megállási probléma visszavezethető erre; (N TG, amely eldönti, M TG s bemenetre való viselkedését szimuláljuk egy Ms TG ε bemenetre való viselkedésével: 
· Ms üres input esetén felírja s-t szalagjára, majd úgy működik, mint M működne s inputra; 
· Futtatjuk N-et Ms TG-en: 
· igen, ha Ms megáll üres stringen ( M megáll s-en, 
· nem, ha Ms nem áll meg üres stringen (s M nem áll meg s-en;
· legyen Ms kódja ws, nyilván: ws ( Lε, így ha Lε eldönthető lenne, akkor ált megállási probléma is az lenne;;
· M TG-hez létezik-e olyan input, amin megáll? Tfh (N TG, amely eldönti M-ről, hogy létezik-e; visszavezetés: el tudnánk dönteni, hogy adott M TG megáll-e s stringen; tetsz M,s bemenet, megkonstruáljuk M’ TG-et, tetsz x bemenetre:
· ha x/=s, akkor kerüljön N végtelen ciklusba;
· ha x=s, akkor szimulálja M-et: N-t lefuttatjuk M’-n: 
· igen, ha M’-höz létezik olyan string, amin megáll ( M megáll s-en,
· nem, ha M’-höz nincs olyan string ( M nem áll meg s-en;;
· L= {w ( {0,1}*| Mw létezik és elfogad minden bemenetet}: legyen M, w tetsz, konstruáljuk meg M’ TG-et: M’ tetsz u bemenetre:
· ha u/=w, akkor M’ elfogadja u-t;
· ha u=w, akkor M’ szimulálja M működését w-n: 
· ha M elfogadja w-t, akkor  M’ is elfogadja, 
· ha M elutasítja w-t, akkor M’ is elutasítja u-t;
· tehát: ha L eldönthető, akkor Lu is – ellentmondás;;
· L= {w ( {0,1}*| Mw létezik és L(Mw)= üres, azaz nem fogad el semmit}: M, w tetsz, megkonstruáljuk M’ TG-et: M’ tetsz u bemenetre:
· ha u/=w, akkor M’ elutasítja u-t;
· ha u=w, akkor M’ szimulálja M működését w-n: 
· ha M elfogadja w-t, akkor M’ is elfogadja, 
· ha M elutasítja, akkor M’ is;;
· L= {w#s| Mw nem áll meg s-en}: megmutatni: L /( RE; L Lh komplementere (Lh= {w#s| Mw megáll s-en}), tudjuk, hogy Lh ( RE; tudjuk, hogy ha egy nyelv és annak komplementere is RE-beli, akkor nyelv R-beli; 
· Biz: M1, M2 párhuzamosan működő, M működteti M1-et 1. szalagján, M2-t 2.szalagján, eldöntő algoritmus van; 
· Biz: indirekt, L ( RE és Lh ( RE, akkor L ( R is teljesül, de akkor Lh is eleme lenne R-nek, de ez ellentmondás;;
· M TG minden x ( Σ* bemenetet elfogadja/elutasítja? Tfh (N TG, amely eldönti problémát, visszavezetés: M’ TG elfogad-e s inputot; definiálunk M” TG-et: 
· ha x/=s, akkor elfogadja/elutasítja inputot;
· ha x=s, akkor szimulálja M’ működését s-en: N-et lefuttatjuk M”-n:
· M” minden inputot elfogad/elutasít ( M’ elfogadja s-et;
· M” nem minden inputot fogad el/utasít el ( M’ nem fogadja el s-t;;
· M TG által felismert nyelv reguláris? Tfh (N TG, mely eldönti, visszavez: M’-ről eldönthető, hogy elfogad-e s inputot; definiálunk M”-t:
· ha x=0n1n alakú szavak, akkor fogadja el;
· ha x/=0n1n, akkor szimulálja M’ működését; N-t lefuttatjuk M”-n:
· M” elfogad reg nyelvet ( M’ elfogadja s-t;
· M” nem reg nyelvet fogad el ( M’ nem fogadja el s-t;;
· L= {w ( {0,1}*|Mw-ben van felesleges állapot}? Tetsz M,S párhoz legyen M’ a köv: M’ egy w bemeneten 
· ha w/=s, akkor M’ elutasítja w-t, 
· ha w=s, akkor M’ futtatja M-et s-en; tfh M’-nek van egy q* állapota, amibe nem lép, 
· ha M elfogadja s-t, akkor M’ először egy ciklusban végigmegy összes állapotán, utána elfogadja bemenetet, 
· ha M elutasítja s-t, akkor M’ elutasítja w-t; 
· M’ kódja e L ( s /( L(M) ( w kódja #s /( Lu;;
· M1 és M2 ua nyelvet fogadják el? Tfh (N TG, amely eldönti, visszavez: M’ TG, ami összes nyelvet elfogadja-e; definiálunk M” TG-et: N-t lefuttatom M’,M” páron: L(M”)= üres;
· ha M’ és M” ua nyelvet fogadják el: L(M’)= üres, akkor L(M”)= üres;
· Ha M’ nem ua nyelvet fogadja el, mint M”, akkor L(M’)/= üres;;
· M1 legalább annyi stringen áll meg, mint M2? Tfh (N TG, amely eldönti, visszavez: Lu/Lh; M1 TG minden bemenetet elutasít, M2 tetsz; N-t lefuttatjuk s inputtal M1,M2-n: N megmondja, hogy az egyik legalább annyi szót ismer-e fel, mint a másik (hiszen M1 mindent elutasít, M2-ről pedig nem tudtuk ezt előre)- futás mindig megáll- M2-ről meg tudja mondani, hogy elfogadja-e s bemenetet/minden bemenetre megáll-e;;
· Li= {w1#w2| L(Mw1) n L(Mw2)= 0} nincs közös szava, megmutatni: L /( RE; 
· Biz: indirekt, tfh Li ( RE, megmutatjuk, hogy akkor Le= {w| L(Mw)=0} ( RE, ami ellentmondás, mivel Le /( RE; 
· legyen Mi TG, amire L(Mi)= Li =ha Li RE, akkor ( hozzá Mi TG); 
· legyen M TG: tetsz w bemenetre futtatja Mi-t w#u bemeneten, ahol: u azon TG kódja, ami elfogad minden bemenetet; 
· ha Mi elfogadja w#u-t, akkor M elfogadja w-t, 
· ha Mi elutasítja, akkor M is; így nem jó(?)(!) cél: L(M)= Le, de Le /( RE;;
· PMP (=Post Megfeleltetési Probléma): PCP =(P Correspondence P): adott véges dominókészlet: {u1/v1,..,un/vn}, lehet-e egymás után rakni készletből dominókat, hogy alul és felül összeolvasva szavakat ua szót kapjuk?  Lu visszavezethető PMP-re: Lu(PMP, tetsz TG-hez dominókészletet megadni (elfogadja ( dominónál létezik mo); def: CF nyelvtan egyértelmű, ha minden u e L(G), azaz pontosan egy baloldali levezetése van; T: nem lehet algoritmikusan eldönteni, hogy egy CF nyelvtan egyértelmű-e;  PMP-t visszavezetjük erre: PMP(egyértelmű; adott dominókészlethez (D) megadunk GD CF nyelvtant úgy, hogy GD pontosan akkor nem egyértelmű, ha D-nek van megoldása; S( A|B, A( u1Aa1| ..|unAan, B(v1Ba1|..|vnBan, ahol: a1..an új terminálisok; két kül bo levezetés így nézne ki: u= ui1ui2..uilail..ai1, v= vi1vi2..vilail..ai1 (ua jobboldalakat kell alkalmazni levezetésben, így ua dominók);;
· Eldönthető-e, hogy reg kif generál-e w stringet? Igen, mert reg nyelvhez automata felírható. TG el tudja dönteni, hogy generál-e w-t;;
· Eldönthető-e, hogy G CF gr generálja-e w szót? Igen, n hosszú w szó: n-1 szabály, n term-ből áll a szó, így összesen 2n-1 lépés, ami véges;;
· Eldönthető-e, hogy DVA elfogad-e egyáltalán bármilyen stringet (= van-e string, amit elfogad)? Igen, elfogad, ha van ir út, ami elfogadó áll-ba vezet;;
· Eldönthető-e, hoyg NVA elfogad-e w szót? Igen, szimulálható DVA-val, n hosszú szót n időben szimulálja;;
· Eldönthető-e, hogy 2 automata ua nyelvet fogadja-e el? L(A)=?L(B), Igen, L(A) ∆ L(B)= 0..szimm differencia, ref nyelvek zártak- op megkonstruálható- szimm diff-t megadja op- eldönthető, hogy mit fogad el;;
· Eldönthető-e, hogy egy P veremautomata elfogad-e w szót? Igen, P-hez van ekvivalens G CF nyelvtan, G-hez ekv CNF-ben lévő G’, minden w ( L(G’)-re az s=> w levezetés hossza: 2n-1, ahol: n= |w|;;
· T: nyelvtannal generálható nyelvek osztálya megegyezik RE nyelvek osztályával, azaz L nyelv csakkor generálható gr-val, ha van nyelvet felismerő TG;
· [image: image8.png]


T: CS nyelvtannal generálható nyelvek osztálya megegyezik lin korlátozott TG-el (szalagnak csak bemeneti által elfoglalt részét használja) felismerhető nyelvek osztályával;
· T: CS nyelvtannal generálható nyelvek osztálya valódi részhalmaza R nyelvek osztályának;;;
Problémák összehasonlítása:
· Milyen fajta problémák vannak? Problémafajták: 
· eldöntendő kérdés- nyelvbe tartozás (pl: prímszám-e, van-e?); 
· hozzárendelés- fv kiszámítás (pl: lnko, rendezések, H-kör keresés); 
· optimalizálás- hozzárendelések sorozata (pl: utazó ügynök);;
· Egy problémára adott algoritmusokat hogyan hasonlítsunk össze? Algoritmusok összehasonlítása: 

· Időigény (=lépésszám), tárigény szerint;

· Feladat nagyságának (megoldás hossza) függvényében, nagy feladatokra koncentrálva (aszimptotikus viselkedés);

· Legrosszabb esetet tekintve (worst case);

· Nagy ordó: fv aszimptotikus viselkedését jelöli; f,g: N(R+, f(n)= O(g(n)), ha vannak c és n0 poz egészek, hogy f(n)<= c*g(n), ha n>= n0; ekkor g(n) aszimptotikus felső korlátja f(n)-nek; pl: f(n)= 6n3+3000n2+10100, g(n)= n3; f(n)= n100+2n, g(n)= 2n; f(n)= log n+n, g(n)= n; f(n)= log2 n+log3 n, g(n)= log n (nem számít az alap);;
· Pl: n2- log n*n2- n3- nlog2 n= 2(log2 n)^2- 2n- nn- 22^n- 22^(n+1); 
· TG időkorlátja: adott M TG esetén TM(n)..M max lépésszáma (számolási ideje) n hosszú bemenetek esetén; SM(n)..M által max elolvasott munkaszalag jelek számát n hosszú bemenetek esetén; ha M nem áll meg bemenetre, akkor TM(n) végtelen, ekkor SM(n) is az;
· Időkorlátos: t: N(N, t(n)>= n, minden n-re; M TG t(n) időkorlátos, ha n hosszú bemenetek esetén lf t(n) lépést tesz meg, azaz TM(n)<= t(n); 
· TIME(t(n))= {L ( Σ*| L felismerhető egy O(t(n)) időkorlátos M TG-el}, ez egy nyelvosztály;;
· Tárkorlátos: s: N(N, s(n)>= log2 n, minden n-re; M TG s(n) tárkorlátos, ha n hosszú bemenetek esetén lf s(n) db cellát használ a munkaszalagon, azaz SM(n)<= s(n); 
· SPACE(s(n))= L ( Σ*| L felismerhető egy O(s(n)) tárkorlátos M TG-el};;;
P osztály:
· P osztály: P= Uk>=1 TIME(nk)..polinom időben egyszalagos TG-vel eldönthető nyelvek osztálya; P invariáns, hogy alap v spec TG-et használunk (ha spec polinom időben szimulálható alap TG-el); praktikusan szgéppel megoldható problémák (ált található gyors algoritmus, pl: négyzetes, köbös);; 
· P-beli problémák: 
· Térfogatszámítás: leszorítani testet egy négyzetbe, rákérdezni pontra, benne van-e, pontokat véletlenszerűen választani, igenek arányából kijön térfogat; 
· path= {<G,s,t>| G ir gráf és van benne ir út s-ből t-be} – szélességi keresés; relprime= {<x,y>|x és y rel prímek} – lnko; 
· graph-2-color={G| G gráf csúcsai kiszínezhetőek 2 színnel} – van-e benne ptlan hosszú kör (nincs- akkor jó) ( páros gráf, szélességi keresés: A0 u A2 u A4, ill A1 u A3 u  A5; 
· euler-cycle= {G| G gráfban van Euler-kör} – minden élen csak egyszer ( minden csúcs fokszáma páros; 
· prime= {x| x prím}; 
· gráf összefüggő-e? tetsz pont- mélységi v szélességi keresés (ha öf, akkor minden pont megvan);; 
· G-ben van-e háromszög? Minden ponthármast végignézni (n alatt 3) ~ n3/6;; 
· elérhetőségi probléma: adott G=(U,E) ir gráf és 1,n e V= {1,..n} csúcsok, van-e ir út 1.csúcsból utolsóba? S0= 0, S1= {1}.. megjelöljük csúcsokat, kiveszünk egy csúcsot, amibe megy él és még nincs benne, akkor belevesszük (ha n benne van, akkor jó); legyen S:= {1}, és jelöljünk meg egy csúcsot, amíg S nem üres: vegyünk ki  egy i csúcsot S-ből, az összes j e V-re (ha j nem megjelölt és (i,j) e E, akkor megjelöljük j-t és felvesszük S-be), ha n megjelölt, akkor kimenet: igen, egyébként: nem (implementálás: FIFO- szélességi, FILO- mélységi), időigénye: ciklus max n-szer fut le, ezen belül max (n-1) összehasonlítás- O(n2);;
· 2SAT: megmutatjuk: 2SAT<=p elérhetőség; legyen Φ egy olyan formula, melyben minden tag pontosan 2 literált tartalmaz, megadunk G gráfot: G csúcsai Φ változói és azok tagadása; ha van Φ-ben egy (AvB) tag, akkor vegyük fel G-ben: ¬A-val ekv csúcsból B-be, valamint ¬B-ből A-ba egy élt; látható, hogy Φ pontosan akkor kielégíthető, ha nincs olyan változó Φ-ben, hogy G-ben elérhető x-ből ¬x és ¬x-ből x – ez összesen polinom*polinom idejű, tehát polinom;; 
· Boole hálózatok: ir, körmentes gráf, csúcsok befoka lehet 0 (bemeneti kapu, igérték és változók), 1 (negált), 2 (és,vagy); kimeneti kapu (belőle nem megy él); 
· hálózatkiértékelés (=HKS): P-teljes! adott változómentes C hálózat, kiértékelve hálózatot igazat kapunk v sem; megmutatjuk: elérhetőség<=p HKS; G-hez megadunk egy változómentes C-t úgy, hogy G-ben pontosan akkor érthető el 1-ből n, amikor C igaz: vagy kapu: gi,j,k- (hi,j,k-1 és hi,k,k, és kapu: hi,j,k- (gi,k,k-1 és gk,j,k-1); leveleken: gij0 kapu, ami igaz, ha i=j v van i-ből j-be él; belátható, hogy C-ben kimeneti kapu értéke pontosan akkor igaz, amikor G-ben elérhető 1-ből n, mivel hálózat mérete polinomiális (n fv-ében), így HKS P-beli;;  
· Monoton hálózatkiértékelés (=MHKS): P-teljes! adott C monoton hálózat, amiben nincs ¬ kapu, igaz-e C értéke; megmutatjuk: HKS<=p MHKS (fordítva?); tetsz C változómentes hálózathoz meg lehet adni ekv monoton C’ hálózatot, ötlet: minden kapunak elkészítjük komplementerét felhasználva De Morgan azonosságokat- ez polinom idejű; 
· nem P-beli problémák: eddig nem sikerült polinomiális algoritmust találni, nem felt nincs benne, pl: 
· hamilton-cycle= {G| G gráfban van Hamilton-kör} – minden csúcson egyszer megy át, zárt út, ami minden pontot végigmegy, (n-1)! sorrend; 
· graph-3-color= {G| G gráf csúcsai kiszínezhetőek 3 színnel} – 3 partícióba szétosztom, n pont esetén 3n kül színezés;;
· T: ha L nyelv nlog n-nél rövidebb időben nem ismerhető fel, akkor L /( P; 
· Biz: indirekt, tfh L ( P, ekkor van olyan k>0, hogy L e TIME(nk), tehát találhatók olyan c és n0 konstansok, hogy T(n)<= cnk, ha n>= n0, ebből  következik, hogy: nlog n<= cnk, ami viszont nem igaz;;
· TG szimulációjának idő és tárigénye: N k-szalagos TG-hez van olyan egyszalagos M TG, hogy L(M)= L(N) és TM(n)<= 2TN(n)2, SM(n)<= SN(n)+n, tehát P invariáns TG-re;; 
· T: N TG-hez van olyan többszalagos M TG, hogy egy alkalmas n0 számon túl: tetsz ε>0 esetén: TM(n)<= n(1+ε), ha TN= O(n) (lin időkorlátos), tetsz c>0 esetén: TM(n)<= cTN(n), ha lim TN(n)/n= Inf (tetsz konstanssal leszoríthatjuk futási időt, ezért tekinthetünk el konstans szorzótól időigény def-nál);;
· Tár-idő tétel: ha L ( SPACE(s(n)), akkor van olyan L-től függő c konstans, hogy: L ( TIME(cs(n)); ((ha L ( TIME(t(n)), akkor L ( SPACE(t(n)) )); 
· Biz: legyen M egy b*s(n) tárkorlátos L-et felismerő TG, mely külön munkaszalagon dolgozik; M egy K konfigurációjára: 
· mi van épp munkaszalagon (max S(n) cella)  és hol áll a fej, 
· mi van input szalagon (összesen n jel) és hol áll a fej,
·  mi a gép pillanatnyi állapota; 
· felső becslés- konfigurációk száma: |Q||Γ|S(n)(n+1)S(n) (áll, ennyi db cellát használunk, ennyiféle string input szalagon, fej ennyi cellán állhat), mivel S(n)>= log2 n, d= 22|Γ| választással: #K<= c1dS(n)= t; ha t-nél több ideig fut M, akkor biztosan végtelen ciklusba kerül; 
· megadunk N gépet: N tartalmazza M 2 példányát (M1,M2), x input; működése: 
· 1) M1-et elindítjuk x inputtal, minden lépés után felfüggesztjük futását (épp k. lépésnél tart), ha elfogadó v elutasító, akkor N megáll és elfogadja ill elutasítja x-et, különben 2-re lépünk; 
· 2) M2-t elindítjuk x inputtal és futtatjuk lf k. lépésig, ha egy j (ahol: j<k) lépés során M2 konfigurációja megegyezik M1 konfigjával, akkor végtelen ciklus áll ell, ekkor N megáll és elutasítja x-et, különben M1-et továbbléptetve 1-re ugrik; – TG 2x belép ua konfig-ba, ekkor nem áll meg soha; N 
· erőforrásának becslése: k<= t, TN(n)<= O(t2)= O((dSn(n))2)= O((db*s(n))2)= O((d2b)s(n)), c= d2b választással teljesül tétel;;
· Nyelvosztályok komplementere: L nyelv esetén komplementere: LC= I*\L; Ł nyelvosztály esetén komplementere: coŁ= {L| LC ( Ł} (nem halmazelméleti kompl);; 
· T: co(coŁ)= Ł, Biz: (LC)C= L alapján;; 
· T: ha A (B nyelvosztályok, akkor coA (coB, Biz: L ( coA – LC ( A – LC ( B – L ( coB;;
· Tár-idő tételek: TIME(t(n))= coTIME(t(n)), azaz L ( TIME(t(n)) csakkor LC ( TIME(t(n)); 
· Biz: L-et eldöntő M TG-ben felcseréljük  elfogadó és elutasító állapotokat, akkor egy azonos futásidejű LC-t eldöntő TG-et kapunk, tehát LC e( TIME(t(n)), azaz coTIME(t(n)) ( TIME(t(n)), másrészt: TIME(t(n))= co(coTIME(t(n))) ( coTIME(t(n)), tehát: TIME(t(n))= coTIME(t(n));; 
· T: SPACE(s(n))= coSPACE(s(n)), azaz L ( SPACE(s(n)) csakkor LC ( SPACE(s(n)); 
· Biz: legyen L ( SPACE(s(n)), tár-idő tételbeli N gép minden inputra megáll O(s(n)) tárkorlátos, felcserélve elfogadó és elutasító állapotokat: LC ( SPACE(s(n)), azaz coSPACE(s(n)) ( SPACE(s(n)), másrészt: SPACE(s(n))= co(coSPACE(s(n)) ( coSPACE(s(n)), így: SPACE(s(n)= coSPACE(s(n));;
· Nevezetes nyelvosztályok: EXPTIME=Uk>=1 TIME(2n^k)..exp időben felismerhető nyelvek osztálya; PSPACE= Uk>=1 SPACE(nk)..polinom tárban felismerhető nyelvek osztálya; 
· T: P ( PSPACE ( EXPTIME (nem tudunk ilyet mondani: L /( P és L ( PSPACE, de olyat tudunk: L /( P és L ( EXPTIME, tehát valahol van valódi tartalmazás); 
· Biz: ha M TG t(n) időkorlátos, akkor s(n) tárkorlátos is, tehát TIME(nk) ( SPACE(nk), és így: P= Uk>=1 TIME(nk) ( Uk>=1 SPACE(nk)= PSPACE; ha L ( PSPACE, akkor valamely k-ra (létezik k) L ( SPACE(nk), tár-idő tétel szerint ekkor van alkalmas c>0, hogy: L ( TIME(cn^k) ( TIME(2lg c*n^k) (lg c konst) ( TIME(2n^(k+1)) ( EXPTIME;;
· T: EXPTIME c R (valódi!); 
· Biz: ( következik EXPTIME időkorlátosságából; valódi tartalmazás: mutatunk L nyelvet, mely rekurzív, de nem EXPTIME-beli: L= {w ( {0,1}*, Mw létezik és lf 22^|w| lépésben elutasítja w-t}; 
· L-nek végtelen sok eleme van (Mw-t kibővíthetünk soha el nem érhető állapotokkal, egy ilyen y leírás esetén My éppen úgy működik, mint Mw (időkorlátjuk azonos);  
· megmutatjuk, hogy L semmilyen n-re nincs benne TIME(22^(n-1))-ben, ez elég is, mivel: EXPTIME ( TIME(22^(n-1)); 
· biz: indirekt, tfh L felismerhető c*22^(n-1) időkorlátos M TG-el, legyen n0 olyan szám, hogy c*22^(n-1)< 22^n, ha n>= n0; 
· legyen w (n0-nál hosszabb szó), melyre Mw létezik és úgy viselkedik, mint M; megmutatjuk: 
· ha w ( L, akkor Mw elfogadja w-t c*22^(n-1)< 22^n lépésben – de ekkor L def szerint w /( L; 
· ha w /( L, akkor Mw nem utasítja el w-t c*22^(n-1)< 22^n lépésben, de megáll, ezért elfogadja w-t, amiből w ( L következne;;;
NP osztály:
· NDTG időkorlátja: legyen t:N(N, t(n)>=n, minden n-re; M NDTG t(n) időkorlátos, ha n hosszú bemenetek esetén M minden számítási út mentén lf t(n) lépést megtéve megáll, azaz lf t(n)+1 mély számítási fa; (dupla max: minden stringre max, és adott stringre is leghosszabb számítási útvonal); nem ismert olyan fizikai megvalósítás, mely t(n)-el arányos időben szimulálná egy t(n) időkorlátos NDTG működését; 
· NTIME(t(n))= {L ( Σ*| L felismerhető egy O(t(n)) időkorlátos M NDTG-el};;
· NP nyelvosztály: NP= Uk>=1 NTIME(nk)..polinom időben egyszalagos NDTG-el eldönthető nyelvek osztálya; P ( NP, mivel egy t(n) időkorlátos TG tekinthető egy spec t(n) időkorlátos NDTG-nek, így TIME(nk) ( NTIME(nk), de vajon: P c NP vagy P=NP, ezt nem tudni;;
· T: P ( (NP n coNP); 
· Biz: P ( NP, ekkor coP ( coNP, tudjuk, hogy: coP= P (ha megcseréljük elfogadó és elutasító állapotokat), így: P ( coNP is teljesül;; 
· NP-be tartozás megmutatása bizonyítékkal: legyen L egy Σ feletti nyelv, L polinomiálisan bizonyítható, ha van olyan V algoritmus, hogy: L= {W|V elfogadja <w,c>-t valamely Σ*-beli c-re} és V polinom idejű w hosszát tekintve; 
· T: NP azokat a nyelveket tartalmazza, amelyek polinomiálisan bizonyíthatóak; 
· Biz1: pol biz( L ( NP; legyen M a bizonyító V algoritmust megvalósító TG, időigénye: nk (alkalmas k-ra), ekkor: c hossza lf nk lehet; 
· tekintsük N NDTG-t, mely w inputra (n hosszú) előállítja összes lehetséges nk hosszú c sorozatot és minden egyes ilyen sorozatra lefuttatja M-et <w,c> inputtal, 
· N elfogadja w-t, ha M elfogadja  <w,c>-t valamely c-re, különben elutasítja; N ( NTIME(nk), mivel M időigénye: nk; 
· Biz2: L ( NP( pol biz; legyen N L-et pol időben felismerő NDTG, ekkor N működését lf m=nk mélységű fa adja meg (ha bemenet n hosszú); 
· fa egy-egy ága N állátmeneteinek egy lehetséges sorozatát adja meg, egyes szinteken állátmenet indexe: i1,i2,..,im sorozat, ahol ij..j.szinten történt állátmenet indexe; minden ij e [1..g], ahol: N állátmenetfv értéke lf g állapotból álló halmaz; 
· tekintsük összes i1,i2,..,im sorozatot és kódoljuk ezeket, mint Σ*-beli sorozatokat- a tanúk ezek a c sorozatok lesznek; 
· a bizonyító M algoritmus így működik: n hosszú w input és nk hosszú c tanú: szimulálja N működését a c-ben kódolt állátmenetekkel, ha N elfogadja w-t ezen az ágon, akkor M elfogadja <w,c>-t, különben elutasítja; M nk időben lefut egy-egy c esetén;;
· állítás: x ( L, tanú,bizonyíték: y (nem hosszú, hatékonyan ellenőrizhető); Merlin azonnal kiszámolja és polinom időben bizonyítja, így meg tudja győzni Arthurt; súgás: milyen számítási útvonal mentén lesz elfogadva szó;;
· NP-beli problémák: 
· lovagok és udvarhölgyek: összeházasíthatóak-e úgy, hogy mindenkinek legyen párja ( van-e teljes párosítás (annyi fglen él, ahány pont bo b jo), tanú: egy párosítás;
· egymillió jegyű szám összetett-e: Merlin: igen, tanú: osztót megadni;  
· gráf kiszínezhető-e 3 színnel? Igen, tanú: kiszínezi; 
· van-e H-kör? I, tanú: egy H-kör (Arthur: egymás utáni pontok között valóban van-e él); 
· gráf síkbarajzolható-e? (élek nem metszik egymást, nem tartalmazza K5 v K3,3 topológiai felbontást) igen, egy síkban lerajzolt gráf; 
· 3SAT? Merlin megmutatja változók olyan értékeit, ami kielégíti; 
· két gráf izomorf-e? (egy-egy értelmű leképezés csúcsok között), Merlin leképezést ad pontok között, Arthur ellenőrzi, hogy tényleg izomorf-e (minden pontpárra: (n alatt 2) ~ n2 lépés); 
· összetett számok? Minden osztóját megmondani (de csak hogy összetett-e, az P-beli!);
· NP-beli nyelv komplementere nem mindig NP-beli: nem ismert, hogy coNP=NP teljesül-e;
· Merlin lovagjai és udvarhölgyei nem házasíthatóak össze ( nincs teljes párosítás, tanú adható: (Hall tétel: G páros gráfban létezik A minden pontját lefedő párosítás ( bármely s ( A, |s| <= |N(s)|, s-ből kevesebb pontba képezünk(?)); 
· nincs H-kör gráfban: tanú nem adható; 
· G gráf nem síkbarajzolható: tanú adható: valamelyik Kuratowski-gráf G részgráfja; 
· 2 gráf nem izomorf? Nem egyértelmű;
· Visszavezethető: A,B Σ* feletti nyelvek, A pol időben visszavezethető B-re, ha van f: Σ*(Σ* pol időben kiszámítható fv, hogy: w ( A ( f(w) (B, jele: A<=p B (ha B NP-beli, akkor A is az, ha A nem NP-beli, akkor B sem az); (A<= B: ha B eldönthető, akkor A is, ha A nem eldönthető, akkor B sem);;
· T: ha A <=p B és B ( P, akkor A ( P; 
· Biz: legyen M TG, mely polinom időben felismeri B-t, ekkor N TG A-t ismeri fel polinom időben: w input esetén kiszámítja f(w)-t, M-et futtatja f(w), és outputként M outputját adja;;
· NP-teljes: L NP-beli nyelv NP-teljes, ha abból a feltételezésből, hogy L P-beli is- következik, hogy összes NP-beli nyelv P-beli, azaz NP=P; másik def: L NP-beli és tetsz A NP-beli probléma pol időben visszavezethető L-re (adható hozzá pol időben tanú);; legnehezebb, ezt használva minden NP problémát polinom időben meg lehetne oldani; nem érdemes rá polinom idejű algoritmust keresni (mivel felt: P c NP);;
· T: NP ( PSPACE; 
· [image: image9.png]


Biz: legyen L ( NP, N L-et t(n) időben felismerő NDTG, tekintsük azt M TG-et, mely N-et szimulálja: M N lehetséges állapotait veszi sorra (mélység szerint), ha N-ben max állátmenet-halmaz g elemű, akkor N fájában k. szinten lf gk áll szerepel, tehát összes állapot megvizsgálásához: g0+ g1+..+gt(n)<= (g+1)t(n) idő kell; így alkalmas m-re: t(n)<= c*2m, tehát L e EXPTIME;
· T: ha B NP-teljes és B ( P, akkor NP=P; 
· T: ha B NP-teljes és C NP-beli és B<=p C, akkor: C is NP-teljes;;
· NP-teljes problémák: SAT= {Φ| Φ kielégíthető Bool-kifejezés} (létezik olyan kombinációja változóknak, hogy 1-et ad) Φ= (¬x n y) v (x n ¬z); 3SAT= {Φ| Φ= (a1 v b1 v c1) n (a2 v b2 v c2) n..n (ak v bk v ck), valamely k-ra, ai,bi,ci tetsz Bool változó v negáltja, Φ kielégíthető Bool kif};
· Cook-Levin T: SAT ( P csakkor NP=P, azaz SAT NP-teljes;;
· ((hálózat-kielégíthetőség (=HKG): adott C hálózat, lehet-e változóknak értéket adni úgy, hogy egyik kitüntetett kimeneti kapu értéke igaz legyen;)) CSAT: adott egy Φ KNF, kielégíthető-e Φ? NP-beli: igen, pol visszavez: HKG<=p CSAT, C hálózathoz megadunk Φ KNF-et úgy, hogy C pontosan akkor kielégíthető, amikor Φ kielégíthető – ez polinom idejű konstrukció;; 
· 3SAT: adott egy Φ KNF, melyben minden tag pontosan 3 literált tartalmaz, kielégíthető-e Φ? SAT pol időben visszavezethető 3SAT-ra (át lehet írni 3 KNF alakra), vegyük HKG<=p CSAT visszavezetést, az ott megkonstruált Φ helyett vegyük Φ’-t: minden olyan Φ-beli tag helyett, ami3-nál kevesebb literált tartalmaz, vegyünk egy olyan tagot,  melyben az eredeti tag egy literálja többször szerepel (pl: g1 v g2 helyett g1 v g2 v g2); látható, hogy kapott Φ’ ekv eredeti Φ-vel, vagyis a konstrukció HKG visszavezetése 3SAT-ra;;
· Nem mind egyenlő SAT (=NMESAT): adott 3SAT egy Φ példánya (=bemenete), kielégíthető-e Φ úgy, hogy tagokban nem minden literál értéke ugyanaz; pol visszavez: vegyük HKG<=p CSAT visszavezetést, az ott megadott Φ helyett vegyük köv Φ’-t: azokhoz Φ-beli tagokhoz, amelyek kevés literált tartalmaznak, vagyoljunk hozzá egy új z változóz (pl: g helyett g v z v z); belátható, hogy C pontosan akkor kielégíthető, ha Φ’ ( NMESAT;;
· vertex cover: lefogható-e G minden éle lf k ponttal;;
· k-colorability: kiszínezhető-e G minden éle lf k színnel (NP-teljes k>=3 esetén);;
· Halmazrendszer lefogható-e k ponttal? A1,..Al , ahol: Ai ( [n], (? X1,..xk ( [n], hogy minden Ai-ben benne van valamelyik xj; NP-beli: k pontú lefogást mutat; visszavezetjük NP-teljes problémát polinomiálisan erre: 3SAT<=p lefogás; 3SAT: (xi v xj v xłk) n… n db változó: x1,..xn, adott 3SAT-hoz definiálunk halmazrendszert: alaphalmaz: {x1,..xn, xł1..xłn}, hozzárendelünk 3 elemű halmazt F: {xi, xj, xłk} és {xi, xłi} (ahány tagja KNF-nek és ahány változó van); B kielégíthető ( F lefogható n db ponttal; 
· Biz1: {xi, xłi} diszjunktak- n db ilyen pár van- úgy lefogni, hogy minden párból egyet veszünk, akkor maradék 3 elemű halmazok is lefoghatók (pl: lefogjuk xj-vel, ekkor: {xi, xj, xłk} is kielégíthető; 
· Biz2: vegyünk egy jó kielégítést, ami kijelöli minden xi értékét (0 v 1), ami benne van megfelelő 3 elemű halmazban, ha xi=1- lefogó halmazrendszerbe belevesszük xi-t- párokat is lefogjuk, mivel xi v xłi mindenképp benne van;; 
· H-path: NP-beli: TG megsejti gráf csúcsainak egy permutációját; 3SAT polinom időben visszavezethető H-path-ra: 3SAT<=p H-path; legyen Φ egy 3SAT alakú formula, minden x Φ-beli változóhoz legyen G-ben az alábbi részgráf (s-t, x1: d1..dk, …xl: d1..dk), ha változó poz-an szerepel klózban, akkor rombuszban él di-hez és vissza él csúcshoz, ha neg, akkor jo-ból indulunk di-hez és baloldaliba térünk vissza; Φ kielégíthető ( G-ben van H-út s-ből t-be (ha x1 hamis, akkor jobbra, ha igaz, akkor balra);;  
· H-pathu,v? gráfban van-e olyan H-út, ami u-ból v-be megy? NP-beli: megmutatjuk H-utat (2 egymás utáni pont valóban össze van-e kötve); ((H-kör<=p H-pathu,v, Biz: u=v, u/=0)) Biz: H-pathu,v<=p H-path (u1, v1 új csúcsok, akkor van H-út, amikor másik gráfban van u és v között út);;
· Gráf 17 színnel kiszínezhető? NP-beli: mutatunk jó színezést; pol visszavez: 3szín<=p 17szín, G gráf és K14 (14 pontú teljes gráf, azaz minden pont minden másikkal össze van kötve, így minden pontot kül színnel kell színezni), tehát G-ben másik 3 színt kell használni;;
· Van-e legalább n/2 hosszú út? Adott n pontú gráf, NP-teljes: mutatunk la n/2 hosszú utat; pol visszavez: H-utat visszavezetjük erre, ugyanennyi üres pontot hozzáveszünk, ha eredeti gráfnak van H-útja, akkor új felének van;;
· G-ben van-e 5 pontú teljes részgráf (5 klikk)? NP-beli: mutatunk 5-t, ahol bármely két pont össze van kötve; pol visszavez: végignézünk minden ötöst (n alatt 5) ~ n5 lépésben ellenőrizni tudni, de n/2 teljes részgráf a kérdés, akkor: (n alatt n/2) ~ exp (NP-tejes);;
· Független csúcshalmaz (=FCS): adott G irlan gráf és k szám, van-e G-ben k elemű fglen csúcshalmaz? (egyik sincs összekötve másikkal); Biz: 3SAT<=p FCS, legyen Φ a 3SAT egy bemenete, konstruáljuk meg G-t: Φ minden tagja meghatároz 3 csúcsot (háromszöget) G-ben, G-ben behúzzuk a háromszögekben az éleket és az ell-es literálpárok közti éleket; minden részgráfból kell 1-1 elemet kiválasztani, hogy ne legyenek összekötve- ezeknek csúcsoknak adhatok egymástól fglenül igaz értéket;  belátható, hogy Φ pontosan akkor kielégíthető, amikor G-ben van k elemű FCS;;
· Klikk: adott G, k, van-e G-ben k elemű klikk (teljes részgráf)? Biz: FCS<=p klikk; egy G gráfban pontosan akkor van k elemű FCS, amikor Gł-ben van k elemű klikk; visszavez pol idejű;;
· Csúcslefedés (=CSF): adott G, k, van-e G-ben k db olyan csúcs, hogy G összes élének legalább egyik végpontja rajta van ezen csúcsok valamelyikén? Biz: FCS<=p CSF; egy n csúcsú G gráfban pontosan akkor van k csúcsú fglen csúcshalmaz, amikor G-ben van n-k csúcsú csúcslefedés;;;








































































































































































- 24 -

