MatCnn InstantVision Toolbox for
MatLab User's Guide

Eutecus, Inc.

MatCnn InstantVision Toolbox
Guide: 1.0

Eutecus, Inc.

1936 University Avenue Suite #360
Berkeley, CA, US, 94704

Tel. 1-510-540-9603

Fax 1-510-315-2326
http://www.eutecus.com

info@eutecus.com

Copyright © 2005 Eutecus, Inc.

for

MatLab User's

Table of Contents

I 1 (o Yo [V T3 1T o
A CT= 1T S = =T o SO
2.1. Installation
2.2. Definitions
2.3. RUNNINg @ CNIN SIMUIALIONuuiiiiiiiiicccccccceeeeeee e 4

2.4, EXAQMPIES ..ottt a e e e et e e e e aaa————
2.4.1. Binary edge deteCtionNuuvuueiiiiiiiiiieeeeeeeeeeeeeeeisee e e e e e e e e eeees 5
2.4.2. CNN Simulation with a Linear Templateccccoevrvvivriiiiiiiciieeenn. 6
2.4.3. Sample CNN Simulation with a Nonlinear “AB - type” Template 6
2.4.4. Sample CNN Simulation with a Nonlinear “D - type” Template 7

3. QUICK RETEIENCE ...vuiceieeee ettt e e e e e et e e e e e e ea e e e e s eabaeeeeeeens

3.1. Quick Reference for MatCNN - Analogic CNN Simulation Toolbox for MAT-
LAB

1. Introduction

The MatCnn IV Toolbox for MatLab is an easy and flexible test environment for
single-layer Cellular Neural/Nonlinear Network (CNN) based simulations.

2. Getting Started

2.1. Installation

Adding MatCnn to the Matlab environment requires to easy steps:

1. unpack the files in an arbitrary directory

2. add this directory with subfolders to the Matlab Path (File menu \ Set Path on

the Matlab interface.)

The MatCnn Toolbox has been developed and tested only on MATLAB 4.2 and up-

per Matlab releases.

It uses the Image Processing Toolbox. Without this toolbox some functions will not

work.

2.2. Definitions

The MatCnn IV Toolbox for Matlab builds on top of Matlab using the numerical
and visualization environment to provide functions specialized to Cellular Neural
Network (CNN) simulations.This subsection gives a short list of the basic CNN ter-

minology:

CNN

base cell

output characteristics

CNN layers and images

Cellular Neural (nonlinear) Network is a regular
(rectangular, hexagonal etc.) array of mainly
identical dynamical systems, called cells which
satisfies two properties: (i) most interactions are
local within a finite radius r, and (ii) all state
values are continuous valued signals

The general processing unit of the CNN array :
an N-th order dynamical system. In circuit the-
ory and modeling in most cases a first order cell
is used consisting of a linear capacitor, a linear
resistor, a constant current source and additional
voltage controlled current sources (i.e. the inter-
connections from the neighboring cells). The
voltage measured on the linear capacitor is the
state value of the base cell. Each cell has its
own input and output (the latter is calculated
through the output characteristics from the state
value, see later).

A general nonlinear (in most cases: sigmoid-
type) function defining the output - state con-
nection of a single cell.

In its most general form a CNN array is three

2

Getting Started

template

analogic algorithm

CNN Universal Machine

dimensional, but can also be interpreted as a
multi-layer two dimensional processing array. If
the CNN array is rectangular then all CNN base
processing units can be assigned to an image
pixel. In this interpretation 5 different “images”
can describe a CNN layer, namely the input,
state, output, bias, and mask images. The input,
state and output image consist of the input, state
and output values of all cells in space at a given
time. The bias image (also referred to as the bi-
as map) is a space variant description of the
constant cell current that can vary from cell to
cell in space. The mask image is binary and
defines whether a certain cell should operate or
not in an analog or logical CNN operation.

A template specifies the interaction between
each cell and all its neighboring cells in terms

of their input, state, and output variables. The

inter-cell interaction could be linear, nonlinear

or delay type.

Analogic is a contraction for analog and logic
computation. An analogic algorithm stands for a
sequence of analog and logical operations solv-
ing a defined (image) processing task.

The first algorithmically programmable analog
array computer having a real time and super-
computing power on a single chip [3]. Ina CNN
Universal Chip the CNN nucleus contains the
analog and logic elements. In addition, five oth-
er peripheral units convert this cell nucleus to a
universal cell. The base cell is completed with a
local analog memory (LAM), a local logical
memory (LLM), a local analog output unit
(LAOU), a local logical unit (LLU) and a local
communication and control unit (LCC). The
LLC receives the switch configuration
(functionality of the universal cell) from the
global switch control register (SCR) and con-
trols the switches in the cell. The LAM and
LLM memories facilitate the implementation of
several algorithmic steps on signal arrays
without global input/output. LAOU and LLM
make possible to combine these values. The
templates (the analog instructions) are stored in
the global analog program register (APR) and
local logic functions are available from global
logic program register (LPR). Each cell is con-
trolled by the global analogic programming unit
(GAPU) consisting of the SCR, APR, LPR and

3

Getting Started

ACU (analogic control unit).

2.3. Running a CNN simulation

To run a CNN simulation and visualize the result in MATCNN the following steps
should be followed:

set the CNN environment and template library

e.g:

SetEnv; % set the CNN environment
TemGroup = ‘MyTemLib’; % the template library is stored in file 'mytemlib.m’

The environment always has to be set. If the template library is not specified the
default library of the MatCnn is 'temlib.m’

initialize the input and state images assigned to the CNN model

e.g:

INPUT1 = LBmp2CNN(‘Road’); % road.bmp is loaded to the input
STATE = zeros(size(INPUT1)); % all initial state values are set to zero

The input initialization is optional (depends on the template), but the state layer
should always be initialized. In this phase noise can also be added to the images
for test purposes (see CImNoise).

specify whether the bias and mask image will be used

e.g:
UseBiasMap = 1; % use the bias image
UseMask = O; % do not use the mask image

If the UseBiasMap global is set to 1 the BIAS image should be initialized, sim-
ilarly when the UseMask global is set to 1 the MASK image should also be ini-
tialized. The SetEnv MatCnn script sets these global variables to zero.

specify CNN boundary condition

e.g.

Boundary = -1; % the boundary is set to a constant value (-1)

The boundary condition specified can be constant (-1 <= Boundary <= 1), zero
flux (Boundary = 2) and torus (Boundary = 3).

Set the simulation parameters (time step and number of iteration steps)

e.g:
TimeStep = 0.1; % the time step of the simulation is 0.1
IterNum = 100; % the number of iteration steps is 100

4

Getting Started

The default values for TimeStep = 0.2 and IterNum = 25, that correspond ap-
proximately to 5t (when R = 1 and C = 1) analog transient length, guarantee
that in a non-propagating CNN transient all cells will reach the steady state
value. However, for a number of templates different settings should be used.

* load the template that completely determines the CNN model

e.g:

LoadTem(‘EDGE’); % load the EDGE template from the specified library

All templates of a project or algorithm can be stored in a common library
(M-file). The LoadTem function activates the given one from the specified lib-
rary that will determine the CNN model of the simulation.

* run the simulation with the specified template

e.g.

RunTem; % run the CNN simulation with the specified template

The ODE of the CNN model is simulated using the forward Euler formula.

* visualize the result

e.g:

CNNShow(OUTPUT); % show the output of the CNN simulation

Since the CNN is primarily referred to as a visual microprocessor, and the in-
puts and outputs are images, in most cases it might be helpful to visualize these
images using different magnification rates, palettes etc. The user can exploit the
capabilities of MATLAB'’s graphical interface and the Image Processing Tool-
box when evaluating the CNN performance.

2.4. Examples

2.4.1. Binary edge detection

A simple example using the EDGE template from the default template library to
perform edge detection on a black and white image (road.bmp) stored in user’s dir-
ectory. The output is visualized and saved as roadout.omp

SetEnv;

INPUT1 = LBmp2CNN(‘Road’);
STATE = INPUTZ;

Boundary = -1,

TimeStep = 0.1;

IlterNum = 50;

LoadTem(‘EDGE’);

RunTem;

CNNShow(OUTPUT);
SCNN2Bmp(‘RoadOut’, OUTPUT);

Getting Started

2.4.2. CNN Simulation with a Linear Template

This example performs diffusion:

% set CNN environment

SetEnv; % default environment
TemGroup="TemLib'; % default template library

% load images, initialize layers

load pic2; % loads the image from pic2.mat to the INPUT1
STATE = INPUTZ,

% set boundary condition

Boundary = 2; % zero flux boundary condition

% run linear template

LoadTem(DIFFUS'); % loads the DIFFUS template (linear)
TimeStep = 0.2;

IlterNum = 50;

RunTem; % runs the CNN simulation

% show result

subplot(121); CNNShow(INPUT1); % displays the input
xlabel(‘Input’);

subplot(122); CNNShow(OUTPUT); % displays the output
xlabel(‘O: Diffus’);

FORCE . X

Impt 2 Diffuz

2.4.3. Sample CNN Simulation with a Nonlinear “AB - type” Tem-
plate

This example performs gradient detection:

% set CNN environment

SetEnv % default environment

TemGroup = 'TemLib’; % default template library

% load images, initialize layers

load pic2; % loads the image from pic2.mat to the INPUT1

STATE = INPUTZ,
% set boundary condition

Boundary = 2; % zero flux boundary condition

% run nonlinear AB template

LoadTem('GRADT"); % loads the GRADT template (nonlinear “AB-type”)
TimeStep = 0.4;

IterNum = 15;

RunTem; % runs the CNN simulation

% show result

subplot(211); cnnshow(INPUT1); % displays the input
xlabel(‘Input’);

subplot(212); cnnshow(OUTPUT); % displays the output
xlabel("O: Grad’);

Getting Started

| FORCE v |

[l § 2 Grad

2.4.4. Sample CNN Simulation with a Nonlinear “D - type” Template

This example performs median filtering:

% set CNN environment

SetEnv % default environment

TemGroup = 'TemLib’; % default template library

% load images, initialize layers

load pic2; % loads the image from pic2.mat to the INPUT1

STATE = INPUTL;
% put noise in the image
STATE1 = cimnoise(STATE1, 'salt & pepper',0.05);

INPUT1 = STATE]L; % 1st input

INPUT2 = STATEL; % 2nd input

% set boundary condition

Boundary = 2; % zero flux boundary condition

% run nonlinear D template

LoadTem('MEDIAN'); % loads the MEDIAN template (nonlinear “D-type”)
TimeStep = 0.02;

IlterNum = 50;

RunTem; % runs the CNN simulation

% show result

subplot(211); cnnshow(INPUT1); % displays the input
xlabel(‘Input’);

subplot(212); cnnshow(OUTPUT1); % displays the output

xlabel(‘O: Median’);

| |
ImpLt 2 Median

3. Quick Reference

3.1. Quick Reference for MatCNN - Analogic CNN Simula-

tion Toolbox for MATLAB
Version: 1.6, last modified on 2005/06/14 03:06:00 by histvan

Basic scripts and functions

setenv set CNN environment and initialize global variables (script)
showenv show global variables of the CNN environment (script)

loadtem load the specified CNN template (function)

showtem show the actual template loaded into the CNN environment (script)
runtem run the specified CNN template (function)

temexec execute template operation (script)

temexecf execute template operation (function)

logexec execute logical function (function)

cnnshow show a CNN-type intensity image (function)
cnnmshow show multiple CNN-type intensity images (function)
temlib default CNN template library (script)

transfer transfer in between two CNN-type image memories (function)

CNN based image processing functions

f_bmorph binary morphology

f_breconstr binary object reconstruction

f_dfilt linear and nonlinear diffusion based filtering
f edge edge detection

f fuzzy fuzzy decomposition

f_histmod histgoram modification

f mean mean filtering

Quick Reference

f segment gray-scale image segmentation
f sfilt statistic filtering

f skele skeletonization

f sort sized based binary object sorting
f thres thresholding

f var variance filtering

Miscellaneous functions

cnn2gray convert a CNN-type image to a gray-scale intensity image
gray2cnn convert a gray-scale intensity image to a CNN-type image
cbound add a specified boundary to a CNN-type image

cimnoise put noise in a CNN-type image

scnn2bmp save a CNN-type image to disk in BMP format

Ibmp2cnn load a BMP file from disk and convert it to a CNN-type image
scnn2avi save a CNN-type image into an avi stream

lavi2cnn load an avi frame and convert it to a CNN-type image

Basic MEX-files

tlinear linear CNN template simulation (1st nbr)

tlinear2 linear CNN template simulation (2nd nbr)

tnlinab nonlinear AB-type CNN template simulation (1st nbr)
tnlind nonlinear D-type CNN template simulation (2nd nbr)

Special MEX-files implementing nonlinear filters

histmod histogram modification (CNN t.s. and digital)

tmedian median (ranked order) CNN template simulation

Quick Reference

tmedianh median (ranked order) CNN t.s. (for switch analysis)

tanisod single layer models

tanisod2 multi-layer models

ordstat order statistic (OS) filters (digital)
modfilt mode filters (digital)

Notes:

* There is no upper level support from the MATCNN environment for this func-
tions.

MATCNN demos

d_lin linear CNN template demo

d_nlinab nonlinear AB-type template demo

d_nlind nonlinear D-type template demo

d_algo analogic CNN algorithm demo (combining linear and nonlinear
templates)

d_algo_ftol analogic CNN algorithm demo (fault tolerance test)

d_func demo of all functions in the toolbox

d_matcnn runs all MATCNN demos

showdpic show demo pictures of MATCNN (see MAT-files)

10

	MatCnn InstantVision Toolbox for MatLab User's Guide
	Table of Contents
	1. Introduction
	2. Getting Started
	2.1. Installation
	2.2. Definitions
	2.3. Running a CNN simulation
	2.4. Examples
	2.4.1. Binary edge detection
	2.4.2. CNN Simulation with a Linear Template
	2.4.3. Sample CNN Simulation with a Nonlinear “AB - type” Template
	2.4.4. Sample CNN Simulation with a Nonlinear “D - type” Template

	3. Quick Reference
	3.1. Quick Reference for MatCNN - Analogic CNN Simulation Toolbox for MATLAB

