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Abstract. The forecasting of lava flow paths is a complex between physical properties of a lava flow and its morpho-
problem in which temperature, rheology and flux-rate all logic parameters such as length or surface structure (Pinker-
vary with space and time. The problem is more difficult to ton and Wilson, 1994; Myamoto and Sasaki, 1998; Gregg
solve when lava runs down a real topography, consideringand Fink, 1996). The forecasting of lava flow paths is a
that the relations between characteristic parameters of flovtypically complex problem, especially when it consists of an
are typically nonlinear. An alternative approach to this prob-unconfined multiphase stream whose temperature, rheologic
lem that does not use standard differential equation methodparameters, and local flow rate all vary with space and time
is Cellular Nonlinear Networks (CNNs). The CNN paradigm (Crown and Baloga, 1999). The complexity is associated
is a natural and flexible framework for describing locally in- with several aspects including, among the others, the pres-
terconnected, simple, dynamic systems that have a latticeence of humerous interacting elements, the nonlinearity of
like structure. They consist of arrays of essentially simple,the interconnections, the appearance of global-level proper-
nonlinearly coupled dynamic circuits containing linear and ties absent at local level, and the ability of self-organization.
non-linear elements able to process large amounts of inforMoreover, a common characteristic of the complex systems
mation in real time. Two different approaches have been im-s the possibility to amplify a small local phenomenon carry-
plemented in simulating some lava flows. Firstly, a typical ing all the system in a new state. The velocity of lava flow-
technique of the CNNs to analyze spatio-temporal phenoming in a channel depends on the physical properties of the
ena (as Autowaves) in 2-D and in 3-D has been utilized. Sectava (density, viscosity, yield strength), environmental fac-
ondly, the CNNs have been used as solvers of partial differtors (gravity, underlying topography), and the channel di-
ential equations of the Navier-Stokes treatment of Newtoniarmensions (Harris and Rowland, 2001). Lava viscosity and
flow. yield strength can, in turn, be related to temperature and crys-
tallization. The problem is more difficult to solve when lava
runs down a real topography, considering that the relations
between characteristic parameters of flow are typically non-
linear. Because it is hard to deal with so many parameters,
simplified models have been proposed using some approx-
imations (Wadge, 1978; Huppert, 1982; Pieri, 1986; Crisp
and Baloga, 1990; Dragoni, 1993). Even if many of these

1 Introduction

An important goal of volcanology is the development of
models to simulate the evolution of high hazard phenom-

ena. In particular, knowledge of the likely path of a lava S .
. ; models have been constructed taking in account various as-
flow is useful for long-term land use planning (Wadge et : .
pects of flow emplacement and cooling, most previous works

al, .1994)' . The advance of Igva flows prpduced by V.OI' seem to be too simplified. Generally, the methods are based
canic eruptions has been studied through field observations

as well as through analytical and numerical modeling. simu-2" empirically obtained equations for very simple cases, and

lations of lava flow emplacement attempt to understand hovvthey are difficult to apply in general conditions. For exam-

. . , . . ple, the method of Ishiara (Ishiara et al., 1990), based on the
the complex interaction between a flow’s physical properties . . . ; .
_ : ; Dragoni model (Dragoni et al., 1986), is valid only if the
and emplacement characteristics lead to the final flow dimen-

X ) ) plane is inclined. These methods don’t consider the case of
sions and morphology observed in the field. Unfortunately,fIOW driven by the pressure gradient (effect of self-gravity)
it is very difficult to establish straightforward relationships y P g 9 .

which was solved by some works including Miyamoto and
Correspondence to: A. Vicari Sasaki (1998), Miyamoto et al. (2004), and Mei and Yuhi
(vicari@ct.ingv.it) (2001). A number of numerical models have also been pro-
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major computational variables in order to guarantee an ad-
equate resolution of the main large-scale processes and to
optimize computer time has also been conducted.

input u, state x, output y;

‘ ' 2 The CNN paradigm

CNNs were introduced by Chua and Yang (1988a, 1988b),
who proposed using an array of essentially simple, nonlin-
Fig. 1. In the left side, a typical CNN structure composed by a early coupled, dynamic circuits to process large amounts of
two-dimensional array d¥xN cells arranged in a rectangular grid- - information in real time. The fundamental building block of
In the right side, the basic cell defined as a nonlinear first orderthe CNN is the cell, a lumped circuit containing linear and

circuit: u, x and y are respectively the input, the state variable an : . . .
the output of the cell. The output s related to the state byanonlinee(}r10n|lnear elements (Fig. 1). Therefore, a CNN (Fig. 1) is

equation. Each cell interacts with its neighbours by means of the?n array of cells c_haracterlzed from an input, a stat_e an(_j an
voltage controlled current sources. output. Every cell is coupled only to the near cells (direct in-
teraction), but more distant cells can however be influenced

indirectly through a propagation process. There are many ap-

duced (e.g. Harris and Rowland, 2001). Some of them aré)licalltion'fields Qf CNNs,' for example solving or simulating
intended mainly as an aid to hazard assessment, rather thé}?rt'al differential equations (PDE) and systems of locally
to analyze flow dynamics (Young and Wadge, 1990). Othergnter_connected ordinary differential equations (ODE). Wher_1
numerical models focus on the effects produced by lava flowss0lVing a system of PDEs, four variables are represented in
on composite channel shapes (Macedonio and Longo, 199953’|ther continuous or discrete form: time, value of tr_le state
neglecting thermo-rheology characteristics of magma. variable, interaction of parameters, and space. This proce-

An alternative approach to standard differential equationdure transforms a PDE into a set of ODE's, and the original

methods in modelling complex phenomena is represented b§patially_ continupus sys_tem is transformed into an array (_)f
novel parallel computing paradigms. A model well suited Small, discrete, interacting systems. The CNN paradigm is

for parallel computing, namely that of Cellular Automata a natural and flexible framework for describing locally inter-

(CA), was introduced by Crisci et al. (1986, 1999) in sim- connected, simple, dynamic systems, which have a lattice-

ulating some lava flows. They designed a three dimensionall'ke structure. The equation that regulates the behavior of a

CA model that has been successively reduced in a two di-CNN structure, is:
mensional model (Barca et al., 1988, 1993, 1994) to shorterd/x (7) :
computation costs(. Moreover, Miyamoto and Sagaki (1997) dt =—xO +Axy(O) + Bxu®) + Bias @
included other expedients to overcome some problems conwhereu(r) is the input of the cellx(s) represents the state
nected with mesh dependence of which CA suffers. Anyariable,y(r) is the output of the cell, and and B are, re-
evolution of CA is represented by Cellular Nonlinear Net- spectively, the feedback template coefficients and the control
works (CNNs) that are solvers of dynamic complex systemsiemplate coefficients. It is important to note that the equation
(Manganaro et al., 1999), whose behavior can be exclusivelyf the CNN structure can be found as an analog circuit model
drawn in terms of local interactions of their simple con- (Fig. 1) in which the values of capacitof) and resistance
stituent parts. In particular, CNNs are peculiarly interesting(R) determine the rate of change of the dynamics of the cir-
either for reasons of absolute performance or for reasons ofuit. When the circuit parameters are scaled or normalized
cost/performance ratio (Chua and Roska, 1993; Roska et alfor convenience, the dimensionless Eq. (1) is obtained.
1995). The feedback and control template represent the coupling

We present two different approaches of CNNs to simulatecoefficients of the cells and they completely define the behav-
lava flows. Firstly, we describe a reaction-diffusion systemior of the network with a given input and initial condition.
(Danieli et al., 2003; Sorbello et al., 2003). These systemsThe template is usually space invariant (the coefficients of
can be considered as an ensemble of a large number of idefae matrix have constant values for entire structure of CNN),
tical subsystems, coupled to each other by diffusion. Tra-or, in some complex cases, the template has the property of
ditionally, the local subsystems are defined through a set ogpace variance. With single-layer representation, only one
nonlinear differential equations. CNNs are a powerful tool state variable can be considered. This can be generalized if
for the modeling of reaction-diffusion systems (Manganarothe system order (the number of the state variables) of the
etal., 1999). Secondly, we used the CNNs as solvers of pareell is increased, introducing a multilayer CNN (MCNN).
tial differential equations (Roska et al., 1995; Kozek et al., A MCNN (Fig. 2) is composed of cells having several state
1995; Vicari et al., 2003). The equations considered are theariables, one for each layer. We can imagine a MCNN ar-
classic Navier-Stokes equations for the motion of a fluid.  ranged in several single-layer arrays, stacked one above the

We apply both these methods to simulate lava flows downother, in which a full layer-to-layer interaction is possible.
on Mt. Etna. We describe the isothermal and rheological evo-Any layer can be used to perform a separate processing and,
lution of a non-channelized flow. A parametric study on the of course, any layer works in parallel to the others.
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z->bias

Fig. 3. Output of the first layer of a CNN processing a spiral wave
iy~ nginput layer With the same time cqnstant for aI.I cells: the Wavefront shape re-
mains unchanged during propagation and no reflection takes place.

Fig. 2. Multilayer CNN (MCNN) composed by cells having several

state variables, one for each layer. The interaction between the state 000 000

variables that belong to different layers can be complete, while the _ 1 . 1

cell-to-cell interaction is restricted to neighbours. A= 8 0 8 ’ A= 8 0 8 ’ )

The choice of template coefficients is not obvious and is
made with technique of “trial and error”. A particular sim-
ulator, implemented using C++ environment, was developed
fhat permits to add:

We have implemented two different approaches of
MCNN, in which two or three layer CNNs have been con-
sidered. In particular, the CNNs have been used to simulat
a typical process of reaction-diffusion in 2-D and in 3-D (to
test the capability of CNNs to solve a 3-D problem in arel- _ Noise on time constants, to modify the RC term (time
atively short time), and to solve the Navier-Stokes equations constant of the system) in the equation of the cell

in which some simplified hypotheses have been made.
— Noise on templates, to test the sensitivity of the param-

eters

3 A CNN as a generator of spatio-temporal phenomena

to simulate lava flows — Space variant templates
In this approach a two layer CNN is used to generate spatio- Space variant time Constants
temporal phenomena known as Autonomous waves or Au- _ Rewiring
towaves. These are a particular class of nonlinear waves,
which propagate without forcing input, in strongly non-linear The term Rewiring refers to the possibility to create a con-
active media. This phenomenon is often encountered in comnection between two distant cells. In Fig. 3 the autowaves
bustion waves or in chemical reactions, as well as in manypropagation is homogeneous because all cells have the same
biological processes, such as propagation in nerve fibers dime constant. Alternatively, it is possible to assign a differ-
heart excitation. Autowaves have two typical characteris-ent time constant to each cell; in this way regular variations
tics: their shape keeps constant during propagation and resf time constant produce paths that autowaves follow with
flection and interference do not take place. An example ofdifferent speeds. Higher time constants correspond to lower
these properties can be observed in the simulation of a spirgbropagation speeds through these routes and vice-versa. This

wave (Fig. 3). could be a way to introduce surface topography and fluid vis-
A reaction-diffusion type PDE can describe the excitablecosity in the simulations. The same thing can be obtained
medium, which gives rise to autowave phenomena: through space-variant template coefficients.
We have analyzed the autowave behavior in presence of a
u(x.y.1) =Vou(x,y,t)+ f (u) 2) simulated topography, including falls, rises, bends and obsta-
ot cles. In Fig. 4 the evolution of the autowave and the values

wherev2u (x, v, 1) is the diffusion term:f («) describes the of the capacitor used to generate the topography are shown.
active local dynamics of the medium. In this way, it is simple to control the speed of the autowave,

The constant template used to generate these phenomeH%FreaSing or dgcrga;ing the acceleration when a fall or rise
are: is met, and maintaining a constant speed on a plane. These
preliminary results highlight the potential of the method for
_ (A A1 _ determining lava flow paths. It is important to note that with
A= , B =0, (3) o RO : .
A21 A22 this kind of approach it is difficult to find a physically mean-
ingful link between the time constant of the system and the

where physical properties of the flow (for example, viscosity) or the
0.05 01 0.05 real topography.
Aj1=A>»=| 01 165 01 |, We have also tried another approach by extending the ap-

0.05 01 0.05 plication of autowaves in 3-D. Generally, autowaves have
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Fig. 5. Output of the first layer of a CNN in which a wavefront
moves in a 2-D labyrinth. The inputs values of the two layers of
the CNN represent the labyrinth (red pixel). The wavefronts of the
first layer propagate throughout the medium with a constant speed,
breaking into different arms at each fork (yellow pixel).

structure has been implemented. The simulations were car-
ried out taking into account the following features:

— the initial condition of the cell to obtain an autowave in
which the starting-point represents the emission point
(source position);

— the 3-D labyrinth as a bias in order to draw the real to-
pography; in particular, the topography has been trans-

Fig. 4. In the left side, it is shown the output of the first layer of formed in a mask, in which only binary states are

the CNN processing a spiral wave with different time constant for
each cell. In the right side, capacitor values, used to represent the
topography, are overlapped to the output of the first layer of CNN
model, opportunely normalized.

present. So, the input of the cells can take only the 1
and 0 values, in which the state “1” describes the vol-

cano surface, and the state “0” the atmosphere. In this
way, using the input mask, it is easy to update the con-

figuration of obstacles deriving from the superimposi-

been used to simulate a traveling wave front in a 2-D  tion of previous lava flows;

labyrinth (Manganaro et al., 1999). It can be seen here that
a wave front propagates throughout the medium with a con-
stant speed, breaking into different arms at each fork (Fig. 5).
These features could be used to find the shortest path (or the ) )

most probable) between two points in the labyrinth (Perez- 1he 3-D labyrinth used for the test consists of a 3-D ar-
Munouzuri et al., 1993; Arena et al., 1997). If we represent ay hgvmg _10& 100x33 cells. Figure 6 shows the result
real topography as a 3-D labyrinth, then it is possible to simu-Cf @ Simulation of a lava flow on the southern flank of Etna
late lava flow over a topography with an autowave that move volcano, during the eruption of 2001. The simulated path is

in a labyrinth, using a two layers CNN. The feedback tem- IN good agreement with the field observations. Every simu-
plate A is reported in the Egs. (3) and (4). The control tem-

lation takes only a few minutes and this permits displaying
plate B is not zero anymore (Perez-Munuzuri et al., 1993):

— the parameters of the interconnections of the cells to
simulate gravity force.

results quickly, enabling rapid assessment and multiple runs.
The results have shown that autowave propagation in a 3-D

B— (Bll 312) (5) labyrinth is a very fast approach for lava flow simulations.
Ba1 B2 )’
where:
000 4 CNN as solvers of PDE for lava flow modelling
Bui = B2 = 8 (1) 8 » Ba=B12=0. ©)  ppEsand CNNs share the property that their dynamic behav-

ior depends only on their local interactions. We have there-
In order to check the ability of the CNN paradigm to solve fore utilized the CNNs to solve the Navier-Stokes equation
a 3-D problem, using autowaves theory, a three dimensionabf fluid motion. The general model describing fluid motion
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in a time-dependent domain for incompressible fluids has the
form:

ow
ot

wherew is a vector of fluid speed (state variablg)is fluid

density,n is fluid viscosity, p is shear stress factor, akdis

an external force. H
In general, such an equation doesn’t have an exact ana-

lytical solution, except in cases where some simplified hy-Fig. 6. Application of the 3-D labyrinth experiment using the real

potheses have been adopted. Therefore, some assumptiot@ography of Etna volcano. The 3-D labyrinth is composed by a

on magma rheology, that make our problem easier from the3-D array of 100x100x33 cells.

numerical point of view, have been made. Lava is treated as

an incompressible, isothermal, homogeneous, and constal

viscosity fluid with Newtonian rheology, even if it is well

known that a lava flow has the typical Bingham characteris-

tic. Moreover, temperature is not included specifically in anyg

calculations. Although more realistic non-Newtonian mod- . o o ) .
: . tial derivatives by finite difference terms with the following
els were adopted in the past (e.g. Dragoni et al., 1986), onl : .
ormulas (only one variable state is reported):

simple geometries have been considered. On the contrary,
we considered the effect of flow on a complex topography. 52, Wis1j — 2uij + Ui1;

The lava flow is represented by a two-dimensional array of 3" 2 = Ax2 (14)
square cells, therefore vertical motion of lava is neglected in
the analytical formulation. The Navier-Stokes equation hasd?u Wij+1 — 2uij +uij-1

p— + p (wgrad)w — pF + grad (p) — nVZw, (7)

l:]Ihe analogies between CNNs and a set of partial differen-
tial equations can be made evident using a discretization pro-
ess. We introduced a 2-D spatial grid (Fig. 1) into the two-

imensional spatial variable, and we approximated the spa-

been considered in a general form, so a three layer CNN ha@? - Ay? (15)
been introduced, in which the first two layers represent the
. . . . 81,{ Ujj — Uj—1]
components of velocity respectively on x and y direction, and 2% ~ %ij J (16)
the third layer represents the term of pressure. In this case théx Ax
pressure field must be computed by another equation. i — w1
Starting from Eq. (7), and considering only two compo- —— = Ay a7
nents of velocity ¢ andv), we obtain (Roska et al., 1995; Y
Kozek et al., 1995): ap P =Py a8)
ou o [0%u 0% ou l1lap 8 dx Ax
ar p\ox2 " 9y2) ”@ C pax + Fx (8) Therefore the model described by Eq. (11) is approximated
by a time-continuous, spatio-discrete model:
v p (0% 2%\ v 1dp du; _ 1 (—piitpiss; Wi j—2ui juis
R e N ST AN 9 _!:__(M)J’_ﬂ(M)_}_
it p <3x2 + dy? v3y o dy + 5y ©) dr L 2h P h?
. e - . ij—1—2ui jtuij
When incompressibility is assumed, the continuity equatlon% (%{HM) + (19)
in rectangular coordinates has the form:

—(ui-1.) "+ (ui11.5)° — (i j-1vi,j-1) + (i 4101, 41)
3_u+3_v=0. (10) —< o +1] _( L) A j+1Yij+ )
dx  dy
Utilizing Eq. (10), we can express the Egs. (8) and (9) in the A simila_r equation hoId; for the component. The Pois-
conservation form: son equation for pressure is approximated by:

2 2 2 2
ou_ o _ 1lop L n %u n u) dut 9 uv) 1) VZp—— —(ui=1,)% =20 )4 (i) 7 _
ot Topax  p\ox2 0 9y? ax dy h?
2 2 2 i1 V220 Nt (vraq )2
8_1) _p - la_p N n 2 n M _ 8L B 0 (uv).(lz) ( (vi-1,j) 2(:51) +(vit1j) >+ (20)
ot pdy p\dx2  93y2 dy dx

tion: )

2.2 2 2,2
V21):_(au+23 (uv)_i_i)v)' 13)

The pressure field can be computed from the Poisson equa-
( 4y

= (i 0= 1) + (i 2041 1) + (-1 j-1viet 1) = (40 o101 jl))

dx2 dxdy dy? In this system the speed vectar)(in the Eq. (7) has been
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x component of velocity

Macis
w3

34

a3

3%

Fig. 7. Distribution of the state variables in a pipeline around an obstacle computed by the CNN model as solver of PDE: velocity distribution
in the (a) x-direction and in th€b) y-direction, andc) the pressure surface for an array ot cells.

decomposed along the two directioms@andv. This choice  With respect to the previous approach with CNNs (as gen-
has been made to obtain a simpler CNN structure and, conerators of spatio-temporal phenomena to represent reaction-
sequently, to improve performance of the simulator. In such aiffusion equations), the computational complexity has been
way, the structure of the CNN will be composed of three lay- increased. However, the CNN approach has some advantages
ers, each of which is associated to one of the variable statewith respect to traditional finite element methods: among
u,vandp. these the time-continuity of the CNN model and natural com-

The feedback and the control template of the model areputing parallelism of this analog architecture.
(only for theu layer):

4.1 Modelling results

vl .

0 hoon +02u” i To test the performance of the simulator, we computed the
h flow pattern in a pipeline around an obstacle by the CNN

model. In particular, the pressure surface and the veloc-

o 1 0-10 ity distributions in the x and y direction for an array of
AT = 0 0 O uivij, 40x 40 cells, obtained with the CNN algorithm, are reported
010 in Fig. 7. The parameters utilized for this simulation are vis-
cosity = 850 Pa/s, density = 2500 kglmand/z = 0.1. In
1 (000 000 this condition, a laminar flow corresponding to a Reynolds
APt = o —202 | py. B“=|[010|F. (21)  Number of 25 has been reproduced (no turbulent flow). To
000 000

check the goodness of the method, a comparison with finite
element method (FEM) solution has been made. In Figs. 8a
wherer is the discrete step of the space (equidistant in bothand 8b the surface plot of components of velocity in the x
directionx andy) andv = n/p. and y directions are reported. Red arrows indicate the resul-
The template coefficients of the model are space-variantant flux. In Fig. 8c the value of the pressure is shown. The

and with variable coefficients. Also, the elements of the ma-space distribution of the state variables is consistent with ex-
trices are functions of the state variables (or of the layers)pected effects. A flow, uniformly distributed, starting from
this means that a nonlinear CNN model has been obtainedan initial condition of velocity and pressure, decreases its x-
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x component of velocity = w.. y component of velocity
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Fig. 8. Distribution of the state variable in a pipeline around an obstacle computed by FEM: surface plot of component of velocfg) in the
x-direction andb) y-direction, andc) value of the pressure for an array ofX440 cells. The red arrows are the resultant flux.

component of velocity when the front side of the obstaclepossible that a branch of the flow begins to start again. This
occurs (null value in the wall of the pipe), while it incre- is an improbable condition, but some adjustments about the
ments in correspondence to the lateral side of the obstacle. Ktructure of the equations (for example removing the hypoth-
is possible to do similar considerations for the y-componentesis of Newtonian fluid and introducing the Bingham fluid
of velocity and pressure. The results of the simulations withones), or considering the cooling effect, could bring more
the CNN model are comparable to those of the FEM one. Asatisfying and realistic results.

different kind of normalization between the two methods has

been applied, and for this reason, different numerical values _

of the output have been obtained. 5 Conclusions

In the second example, a simple geometry representing & different approaches to the use of CNN to simulate lava
channel is shown. In Fig. 9 the geometry of the channel (&6, have been tried. The first approach deals with the CNN

white and black picture) and, superimposed on it, the valugy, jis more classic way, without modifying the condition on
of the state of the system in two different instants of time {he oytput of the cell and choosing constant template coeffi-

(blue scale images) are schematically represented. The fluXjants. The evolution of an autowave, before in 2-D and after

starts from an initial condition of velocity in a specific point 3-D, has been adapted to lava flow simulation. In the 2-D
of the space (Fig. 9a). Successively, the flux goes down .56 the parameters of CNN basic equation (time constant
the channel and follows its shape (Fig. 9b). of the system) have been changed in order to simulate flows
In the third example, we have simulated the lava flow overwith different viscosity values or real topography. In the 3-D

the 2-D topography of the north-east flank of Etna volcanocase, a labyrinth has been replaced with the topography of
during the eruptive crisis of 2001 (Fig. 10). In this case thethe Etna volcano and an input mask has been introduced to
input mask of the simulator represents the topography (as apdate the configuration of new obstacles.

gray scale image), which is taken into account in the CNN In the second approach, the CNNs have been used as
model by the bias term. Indeed, the matrix of the heights issolvers of differential equations, changing the classic struc-
transformed in a matrix of accelerations that represent a forcture of the cell, and using space-varying templates. We
ing input to the system. It is important to note that where theused the Navier-Stokes equations in their more general form,
topography is flat the velocity of the flux tends to a low value. though some restrictions on the rheology of the fluid are nec-
In this case, there isn’t any condition to stop the flux, so it isessary. Obviously, the problem has considerably increased
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Fig. 10. 2-D topography of Etna volcano (bias term of the CNN

(a) (b) model) used in the simulation of the lava flow outpoured on the
north-east flank during the eruptive crisis of 2001: (on the left) the
blue dot indicates the initial condition of the velocity; (in the center)
and (on the right) show two different moments of the simulation.
The values of the velocity are superimposed on the topography.

Fig. 9. Geometry of the channel used in the simulation using a
CNN model as solver of PDE. The value of the state of the sys-
tem is showed in two different instants of tinj@) and (b) of the
simulation.
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