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Preliminaries:Preliminaries:

Cellular Automata are an alternative to (rather than an 
approximation of) differential equations in modeling 
physics /Toffoli, 1984/

There are cellular structures described by ODEs for 
which a limiting PDE with the same qualitative 
properties does not exist /Keener,1987/

The spectrum of the volume of any physical region is 
discrete /Rovelli-Smolin, 1995/

PDEs are merely idealizations of cellular structures 
described by coupled ODEs or local rules /Chua, 1997/
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Local and Global PDEsLocal and Global PDEs

Local PDE:
- the evolution of the system at any location
depends only on local properties 

Global PDE (Sapiro et. al):
- the evolution of the system at some location
depends also on global properties
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CNN Universal Machine (CNNCNN Universal Machine (CNN--UM)UM)

G A P U

GAPU: Global Analogic
Programming Unit

LAM: Local Analogue Memory
LLM: Local Logic Memory
LCCU: Local Communication and Control Unit
LAOU: Local Analogue Output Unit
LLU: Local Logic Unit

LCCU

L
A
M

L
L
M

APR: Analog Instruction Register
LPR: Logic Program Register
SCR: Switch Configuration Register
GACU:Global Analogic Control Unit

CNN
nucleus

LAOU   LLU

[A1 B1 z1], [A2 B2 z2], . . .[A1 B1 z1], [A2 B2 z2], . . .

“Analogic (analog+logic) algorithm”“Analogic (analog+logic) algorithm”
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Chip design:
IMSE-CNM, Sevilla, Spain

Hardware-software environment:
Analogical and Neural Computing Systems Laboratory
MTA-SZTAKI, Hungary

Chip design:Chip design:
IMSE-CNM, Sevilla, Spain

Hardware-software environment:
Analogical and Neural Computing Systems Laboratory
MTA-SZTAKI, Hungary

The workhorse of the experiments: a 64x64 cell The workhorse of the experiments: a 64x64 cell 
CNNCNN--UM visual microprocessor (ACE4K)UM visual microprocessor (ACE4K)
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PDE formulation of reactionPDE formulation of reaction--diffusion processesdiffusion processes

Reaction-diffusion type nonlinear PDE: 

Sub-classes ( c(.) = c0  ): 
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Deriving coupled ODEs from PDEs I.Deriving coupled ODEs from PDEs I.

Reaction-diffusion type nonlinear ODE: 

Sub-classes:

φφ =∧= )(0 fzijI.

II.

III.

IV.

linear diffusion equation

constrained linear diffusion equation

nonlinear trigger-wave equation

constrained nonlinear
trigger-wave equation
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All implementable on the ACE4K 64x64 CNN-UM chip !
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Deriving coupled ODEs from PDEs II.Deriving coupled ODEs from PDEs II.

Reaction-diffusion type nonlinear ODE: 

Templates (symmetric-isotropic class):
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Computing with diffusion and waves Computing with diffusion and waves -- I.I.
/ derived from reaction/ derived from reaction--diffusion systems /diffusion systems /

    

    

    

    

Examples:

Linear diffusion

Trigger-waves
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Linear Diffusion Scale Space Linear Diffusion Scale Space -- I.I.
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Diffusion (heat equation):

2D spatial Fourier-tr:

since:

Solution in freq. domain:

Solution in time domain:

The output at time t is the convolution
of the input by a Gaussian kernel function
(the width of G is parametrized by time)

t=σ
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Linear Diffusion Scale Space Linear Diffusion Scale Space -- II.II.

Autonomous CNN:

Scale:
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MultiMulti --Scale Representations Scale Representations -- I.I.

Gauss Decomposition
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method:

- to determine the stopping times
for a given K and level p
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MultiMulti --Scale Representations Scale Representations -- II.II.

Laplace Decomposition

)1()()( ~~ +−= ppp GGLp-th level (p=1,2,..P):

- DoG decomposition (by recursion from G decomposition)

- LoG decomposition (by applying the appr. Laplacian
operator to each level of G decomposition)

Peter Pazmany Catholic University, Budapest

MultiMulti --Scale Representations Scale Representations -- III.III.

Wavelet Representation
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v
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- h() satisfies an admissible and regularity condition

CNN wavelets derived from a low-pass - high-pass approach:
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Computing with diffusion and waves Computing with diffusion and waves -- II.II.
/ derived from reaction/ derived from reaction--diffusion systems /diffusion systems /

               

Examples:
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Basic wave properties:

- reversibility        +
- conservation of energy  -
- conservation of 

amplitude and 

wave-front +
- reflection                         -
- interference                      -
- diffraction                        +
- annihilation -

+

Controlling the annihilation property

TriggerTrigger--waves as computing toolswaves as computing tools
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(k-1)-th frame k-th frame(k-1)-th result

k-th result

VII
t

×−∇=∂
∂

)(0 IfIII
t

+=∆−∂
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~30 µsec/fr

~60 µsec/fr

~160 µsec/fr

Σ ~ 250 µsec/fr

PDE formalism:
CNN-UM
chip results
(ACE4K):

0III
t

=∆−∂
∂

Slice analysis based on active contour trackingSlice analysis based on active contour tracking
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Target tracking experiments in a real scene (simulation)Target tracking experiments in a real scene (simulation)

Video flow (in)

k-th result

Video flow (out)

Prediction Spatio-temporal
difference analysis

Spatial analysis

Detection & 
Classification

(k-L)-th results (k-L)-th frames current frame

Task: Track “small” moving objects having “high” contrast
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Histogram Modification with Embedded Histogram Modification with Embedded 
Morphological Processing: MotivationsMorphological Processing: Motivations

Original 
image:

Normalized 
image:

Scales (3t),
8 gray-scale

levels:

Scales (5t),
8 gray-scale

levels:



6

Peter Pazmany Catholic University, Budapest

PDE Formulation of Histogram ModificationPDE Formulation of Histogram Modification
(Contrast Enhancement) with Denoising (Contrast Enhancement) with Denoising -- I.I.
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Sapiro & Caselles: 

where: 

Φ - image intensityκ(.) - diffusion term
H(.) – monotonic control function of histogram modification
A(.) - area (integral)α,N - constants

( (|| ||))div gradκ φ=

(.)A dxdy
Ω
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PDE Formulation of Histogram ModificationPDE Formulation of Histogram Modification
(Contrast Enhancement) with Denoising (Contrast Enhancement) with Denoising -- II.II.
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Global asymptotic stability: 

U(Φ) is a Lyapunov function!

Steady-state solution (with α=0): 

)),(()],(),(:),[( 2 yxHNyxwvwv φφφ −=≥Α
If  H =H0 φ = (N2/M)φ then the result is the
histogram equalized image!
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PDE Formulation of Histogram ModificationPDE Formulation of Histogram Modification
(Contrast Enhancement) with Denoising (Contrast Enhancement) with Denoising -- III.III.

Derivation of nonlinear ODEs: 

Case1 (global histogram equalization):

2 2
0: 0; / ; 1; 1;Let H N M N Mα = = = =

)1()(
)(

ijij
ij At
dt

td −+−=⇒ φφ
Case2 (global histogram equalization with denoising):
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PDE Formulation of Histogram ModificationPDE Formulation of Histogram Modification
(Contrast Enhancement) with Denoising (Contrast Enhancement) with Denoising -- IV.IV.

• The denoising term is a (nonlinear) diffusion equation formulation

• In both casesAij = constduring the evolution, therefore should be 
calculated only once!

• Though Aij is the output of a global transformation it is possible to 
give an approximation based on purely local (analog & logic) 
operations. Exploiting the global dynamics of the local analog
operations results in further desirable properties!

Computational aspects:
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HM Analogic Algorithm HM Analogic Algorithm -- I. I. 

OrigPic

IMapOld

AMap

GMap TLevel TQuant

TMapNew

TMapOld

TLevel

OrigPic

GMap

THRESH

CHARGE

DCHARGE

CDIFFUS

DIFFUS

XOR

ADD

SMap

HMPic

i:=i+1 i=Nq?

TMapOld:=TMapNew

IN

OUT

i:=1

3

4

5

2

6

Nq steps over 2-5

*

**

1

F-map

Ini
***
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HM Analogic Algorithm HM Analogic Algorithm -- II. II. 

OrigPic GMap TLevel TQuantTMapOld

OrigPicCDIFFUSHMPic

i:=i+1 i=Nq?

TMapOld:=TMapNew

IN

OUT

i:=1

3. Detect regions 
within neighboring 
thresholds

4. Calculate area measure

5. Set glob 
bias map 
(Aij)

2. Set threshol level

6. Hist modification

Nq steps over 2-5

*, ***

**

1. Initialization
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HM Analogic Algorithm III. HM Analogic Algorithm III. 
Main processing stages:
1. Initialization (TLevel=1; TQuant=-2/Nq; TMapOld=-1;  GMap=0;)
2. Set threshold level
3. Detect regions above threshold
4. Calculate area measure
5. Set Global Bias Map pixels
6. Modify image histogram with denoising

Alternative solution  for block 2:
• Image read-out (TMapOld)
• Pixel number count (NB)
• Image write-in (Amap := NB /PicNum)

Adaptive processing (at * , ** and *** ):
*   Fuzzy decomposition instead of fixed-threshold decomposition
(results in overlapping SMap images and sub-quantum level adaptation)
** Expand diffusion only to local areas instead of the entire image regions
(over a circular area calculated from TMapNew and TMapOld)
*** Embedded morphology processing the level-set function SMap
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UMF description of the HM AlgorithmUMF description of the HM Algorithm
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Φ = Φ Φ

Algorithm 2:
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Implementation of the HM Algorithm I.Implementation of the HM Algorithm I.

Different hardware-software configurations implemented:

- Version 1:MATCNN MATLAB Toolbox simulating all analog CNN 
dynamics µP: Pentium 1GHerz
- Version 2:Version 1 except for simulating through the CNN fixed-
points with an optimized C-code
- Version 3:Version 2 except for the C-code contains the entire 
algorithm.
- Version 4:Aladdin Professional with an optimized C-code that 
contains the entire algorithm running on a DSP
- Version 5:Version 4 except for the morphology operation is 
optimized at the assembly level
- Version 6:Version 4 except for the morphology operation is 
optimized for the CNN-UM chip
- Version 7: in Aladdin Professional running the entire algorithm on a 
CNN-UM chip (ongoing). µP: Alcatel ACE4k
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Implementation of the HM Algorithm II.Implementation of the HM Algorithm II.

Execution time of Hmod algorithms (q=8) Execution time of binary morphology

E
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 t
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[m
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Morphological steps (num) Morphological steps (num)
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HM HM –– examples I.examples I.
Peter Pazmany Catholic University, Budapest

HM HM -- examples II.examples II.
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HM with Embedded Morphological ProcessingHM with Embedded Morphological Processing
The number of morphological operation performed (0-4)
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Original image:

Low contrast and 
noisy image (input):
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ACE4k chip experimentsACE4k chip experiments

Noisy input
echo image:

The number of equalization levels (2,4,8,16,32)
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Summary:Summary:

• Important classes of local and global PDEsdescribing 
calculations via image flows can be  well approximated 
by local processing (with global dynamics) on a locally 
connected nonlinear net described by nonlinear ODEs

• Diffusion and waves, generated and controlled on 
silicon, can be viewed as flexible computing tools in 
solving various image processing problems

• Analogic CNN algorithms -building on PDE 
formulation - have been designed for contour detection, 
tracking, object classification and global histogram 
equalization with simultaneous denoising not exceeding 
the complexity of the ACE4K CNN-UM chip
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Things to come:Things to come:

• A 2nd order/two layer CNNdescribed by 
nonlinear ODEs

• “Complex cell” CNN-UM chip (CICA1k - 2001)

Is the wave-equation realizable on silicon?

x0

y0

φ(x0,y0,t)
r2

2
( , , ) ( ( , , ) )r

rx y t x y t
t

φ φ∂ = Γ∂
{ ∀ (x0,y0 ,t) | r→0 ⇒ Γ= Γ(x0,y0 ,t ) }

This is not the end of the story!This is not the end of the story!
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The architecture  I.The architecture  I.

Two-layer (or “2nd order” cells) / 
3-layer model

Main requirements:

- core: two mutually coupled 1st order RC cells
- 21 linear synapses on 8-connected square-grid
- nearest neighbor interaction
- double time-scale property
- constant and zero flux boundary condition
- single input (1st L or 2nd L), separate initial states

Layer 1

Layer 2

Input

B1
A11

A22
A12

A21

z1

z2

τ1

τ
2

Layer 3
τ3

+,- +,-
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The architecture  II.The architecture  II.
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MultiMulti --layer templateslayer templates

Tuned parameters

Configurations (determined by fixed A templates)
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Patterns

The Universe of Phenomena in a 2nd Order CNNThe Universe of Phenomena in a 2nd Order CNN

Waves

Trigger~

Travelling~

Auto~

Spiral~

Stripes in Patches

Dots in Patches

Edge enhancement

Edge detection

Skeleton detection

Active Contour Detection

Wave Metric

Halftoning

Spatio-temporal Flow
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The Universe of Phenomena in a 2nd Order CNNThe Universe of Phenomena in a 2nd Order CNN

PatternsWaves

Trigger~

Travelling~

Auto~

Spiral~

Stripes in Patches

Dots in Patches

Edge Enhancement

Edge Detection

Skeleton Detection

Active Contour Detection

Wave Metric

Halftoning

Spatio-temporal Flow
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Wave PhenomenaWave Phenomena

Examples:

- trigger-waves
- travelling-waves
- spiral-waves
- auto-waves

/ combining trigger-waves travelling at different speed /

Peter Pazmany Catholic University, Budapest

TriggerTrigger--waveswaves

A A A A
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TravellingTravelling--waveswaves
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B z z
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SpiralSpiral--waveswaves
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AutoAuto--waves waves (ChY(ChY--model)model)
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Pattern FormationPattern Formation

Examples:

- patches and dots in patches
- patches and stripes in patches

/ combining low-pass, high-pass and band-pass type filters /
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Patches and dots in patchesPatches and dots in patches
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Patches and stripes in patchesPatches and stripes in patches
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Image ProcessingImage Processing

Examples:

- edge enhancement
- halftoning
- active contour detection
- wave-metric
- edge detection
- skeletonization

/ combining diffusion, trigger-waves and various filtering effects /
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Edge enhancement Edge enhancement (outer retina model)(outer retina model)
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HalftoningHalftoning
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Active Contour DetectionActive Contour Detection
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WaveWave--metricmetric
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Edge detectionEdge detection
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SkeletonizationSkeletonization
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SummarySummary
A double time-scale, single-input 2nd order/3-

layer CNN model (with two mutually coupled 1st order 

RC cells and max. 21 synapses)is capable to reproduce a 

number of complex waveand pattern formation

phenomena, and can be used as the core architecture in 

various meaningful image processing operations.

Higher complexity cellular chips could also be built and 
used in PDE approximation, modeling and engineering 
applications.


