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Abstract

Purpose – This paper seeks to develop propose and validate, through a series of presentable examples,
a comprehensive high-precision and ultra-fast computing concept for solving stiff ordinary differential
equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN).

Design/methodology/approach – The core of the concept developed in this paper is a straight-
forward scheme that we call “nonlinear adaptive optimization (NAOP)”, which is used for a precise
template calculation for solving any (stiff) nonlinear ODEs through CNN processors.

Findings – One of the key contributions of this work, this is a real breakthrough is to demonstrate
the possibility of mapping/transforming different types of nonlinearities displayed by various
classical and well-known oscillators (e.g. van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-
oscillators, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy
derivation of corresponding CNN-templates. Furthermore, in case of PDEs solving, the same concept
also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms
of the Taylor’s series expansion generally used in the transformation of a PDEs in a set of coupled
nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation
of CNN as a universal and ultra-fast solver of stiff differential equations (both ODEs and PDEs). This
clearly enables a CNN-based, real-time, ultra-precise, and low-cost Computational Engineering.
As proof of concept a well-known prototype of stiff equations (van der Pol) has been considered; the
corresponding precise CNN-templates are derived to obtain precise solutions of this equation.

Originality/value – This paper contributes to the enrichment of the literature as the relevant
state-of-the-art does not provide a systematic and robust method to solve nonlinear ODEs and/or
nonlinear PDEs using the CNN-paradigm. Further, the “NAOP” concept developed in this paper has
been proven to perform accurate and robust calculations. This concept is not based on trial-and-error
processes as it is the case for various classes of optimization methods/tools (e.g. genetic algorithm,
particle swarm, neural networks, etc.). The “NAOP” concept developed in this frame does significantly
contribute to the consolidation of CNN as a universal and ultra-fast solver of nonlinear differential
equations (both ODEs and PDEs). An implantation of the concept developed is possible even on
embedded digital platforms (e.g. field-programmable gate array (FPGA), digital signal processing
(DSP), graphics processing unit (GPU), etc.); this opens a broad range of applications. On-going works
(as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting
PDE models such as Navier Stokes, Schrödinger, Maxwell, etc.

Keywords Differential equations, Computers

Paper type Research paper

1. Introduction
The last decades have witnessed a tremendous attention on solving nonlinear and stiff
models (ordinary differential equations (ODEs) and/or partial differential equations
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(PDEs)) with the cellular neural networks (CNN) paradigm (Chua and Yang, 1988). The
interest devoted to solving stiff models can be explained by their multiple potential
applications especially in the so-called Computational Engineering context. Indeed,
nonlinear models have been intensively used to understand, predict and describe the
dynamical behavior of various engineering or natural systems. In the field of
transportation and logistics, for example, trafficmodels do take the form of ODEs and/or
PDEs (Uzunova et al., 2008). Still, in the field of transportation, various image processing
tasks which are of high importance for visual sensors in advance driver assistant
systems (e.g. contrast enhancement, segmentation, edge detection, etc.) can be expressed
through solving corresponding stiff ODEs and/or PDEs (Zhu and Mumford, 1998).

Diverse contributions have been made to develop analytical, numerical and even
hardware-based approaches to solve stiff ODEs and/or PDEs. Amongst these
contributions somehave retained our attention namely “the solutions of PDEs andODEs
using the CNN-paradigm”. In fact, the flexibility of the CNN-paradigm and its huge
potential to enable a renaissance of the old “analog computing” through an emulation on
digital platforms (e.g. FPGA or GPU, etc.) to perform ultra-fast and accurate computing
of nonlinear models are some of its strongest points. Nevertheless, the relevant state of
the art does not provide significant information related to a straight-forward method to
calculate the CNN-templates needed for solving stiff ODEs and/or PDEs with the
CNN-paradigm. Despite some intensive works developed in this direction, it is still
unclear how to solve PDEs and/or ODEs with good accuracy or high precision. Only
approximate solutions exist, for example the use of CNNprocessors in an approximation
of numerical solutions of PDEs involving the finite difference method (Roska et al., 1995;
Negro et al., 2005; Krstic et al., 2003; Niu et al., 2001; Kozek et al., 1995; Kozek and Roska,
1994). This late approach does not provide accurate results due to the Taylor series’
expansion,which does consider only up to the first order (i.e. linear expansion). A further
interesting published approach to solve PDEs is the group of learning schemes involved
in an approximated solution of PDEs through CNN processors (Puffer et al., 1995; Aarts
and Veer, 2001; Tsoulos et al., 2009; Chua et al., 1995; Puffer et al., 1996; Nossek, 1998).
This late approach does require some initial solutions along with some critical
parameter settings of the equations under investigation in order to enable the training
process. This is a clearly significant drawback as it is not always possible to provide this
data/information whenever dealing with stiff ODEs and/or PDEs.

Our aim in this paper is therefore to contribute to the enrichment of the relevant state
of the art by proposing/developing a systematic methodology (based on the
CNN-paradigm) which should help to clear some of the problems actually unsolved
by the classical above described approaches. The key challenge thereby is developing a
CNN-based computing concept for performing both ultra-fast and high-precision
computing of stiff differential equations. The proposed method is based on a nonlinear
adaptive optimization (NAOP) scheme towhichwe give the acronym “NAOP”. For proof
of concept, the novel approach developed in this paper is applied to derive solutions of
selected classical andwell-known examples of stiff ODEs. In the following, the flexibility
of the approach developed is extensively discussed andwe then do show/explain an easy
extension of this approach to similarly efficiently solving stiff PDEs.

The rest of the paper is organized as follows. Section 2 presents an in-depth
description of the novel concept. The quintessence of NAOP is explained andwe thereby
describe the scheme for deriving appropriate CNN-templates values for any given
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nonlinear ODEs. Section 3 does then focus on the proof of concept through a selected
nonlinear differential equation that is solved using the new concept developed in this
paper: the van der Pol equation. For this, corresponding “precise” templates are
calculated through NAOP. In Section 4, the possible extension of the novel scheme,
involving NAOP for solving PDEs is discussed. And finally, a series of concluding
remarks are presented in Section 5 along with the presentation of some interesting open
research questions (outlook) that are under investigation in some of our on-goingworks.

2. The concept of “NAOP” for CNN template calculation for solving stiff
ODEs
This section describes the approach based on the NAOP for solving ODEs. The overall
flow diagram of this approach is schematically displayed by the synoptic shown in
Figure 1.

The NAOP is performed by a complex “computing”, “module/entity/procedure”
which does work on two inputs. The first input contains wave-solutions of the models
describing the dynamics of a CNN- network model built from state-control templates
(equation (1)):

dxi

dt
¼ 2xi þ

X

M

j¼1

Âijxj þ AijY
*
j
þ Bijuj

h i

þ I i ð1aÞ

xi is the state of the CNN-processor, Y*
j
is the nonlinear sigmoid function of the

CNN-processor, uj is the input of the CNN-processor, Âij is the state-control template,
Aij is the feedback template, Bij is the feed-forward template, and Ii is the threshold.
The source of nonlinearity in the model described by equation (1a) is expressed by the
sigmoid function Y*

j
which is expressed in the following mathematical form:

Y*
j
¼

xi þ 1j j2 xi 2 1j j

2
ð1bÞ

The vector flow ~Q of the mathematical model representing the dynamics of the state
control CNN (equation (1a)) is defined as follows:

Figure 1.
Synoptic representation of
the key steps involved in
the NAOP approach used
for a precise template
calculations for solving
both linear and nonlinear
differential equations

CNN-
Model

Input-1 Input-2
ODEs

Output CPU
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~Q xi;
dxi

dt
;

d 2xi

dt 2
;

d 3xi

dt 3
; . . .

d nxi

dt n

� �

ð1cÞ

where xi represents the temporal evolution of the state variable of the mathematical
model of the state control CNN and dnxi/dt

n represents the nth derivative of xi.
The second input contains wave-solutions of the model or better the linear/nonlinear

differential equation, under investigation which could be re-written in the following
simplified form as a set/couple of second order ODEs (equation (2)):

dyi

dt
¼ F yi; y

n
i ; _y

m
i ; zi; z

n
i ; _z

m
i ; t

� �

ð2aÞ

dzj

dt
¼ F yj; y

n
j ; _ymj ; zj; z

n
j ; _zmj ; t

� �

ð2bÞ

zj ¼
dyi

dt
ð2cÞ

The ODE under investigation (equations (2a), (2b) and (2c) is represented in the state
space “phase portrait” in terms of the components of the vector flow ~F defined as
follows:

~F yi;
dyi

dt
;

d 2yi

dt 2
;

d 3yi

dt 3
; . . .

d nyi

dt n

� �

ð2dÞ

Where yi are coordinates representing the temporal evolution of the solution of a given
ODE under investigation and dnyi/dt

n represents the nth derivative of yi. The output of
the NAOP system will generate, after extensive iterative computations or “training”
steps, appropriate CNN-templates to solve the corresponding ODEs described in
equation (2) when the convergence of the training process is achieved.

The global process to derive the CNN-templates (i.e. NAOP) can be summarized as
follows. The learning/training process is based on a mapping between the two inputs of
the “NAOP” procedure. A convergence to local minima is the key purpose governing this
template calculation process, the so-called “NAOP”. To achieve this, various basins of
attraction are investigated sequentially, and corresponding CNN-templates are
determined for those various initial conditions. If some local attractors diverge from a
localminimum, new sets of initial conditions are automatically generated to annihilate the
divergence leading to a possible convergence to a local minimum (this is the unique/only
solution of the “mapping based training process” which provides CNN-templates
corresponding to the real solution of the ODEs under investigation (equation (2)). A large
number of randomly generated attractors (either regular or chaotic) are obtained through
various numerical simulations whereby each attractor corresponds to a specific set of
CNN-templates. An attempt to map these attractors to those generated by the model (i.e.
ODEs) under investigation is performed (through the temporal mapping in the nth
dimensional phase space of equation (1c) and (2d) showing the respectivedynamics ofboth
the CNN-model (equation (1a)) and the ODE under investigation (equations (2a), (2b) and
(2c)). This mapping is performed in a sequential process leading to the convergence to a
localminimumwhen themapping is achieved successfully. However, it should beworth a
mentioning that a successful mapping of equations (1) with equation (2) is achieved
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through a correct (or perfect) modeling of the “objective function and related constraints”.
When this condition is achieved it becomes very easy to find the optimal solution (i.e. the
localminimum) using the “NAOP” concept.This is a strong point of the concept developed
in this paper as it iswell-known thatmany optimization concepts presented in the relevant
literature are subjected to a key/main difficulty (i.e. the difficulty to achieve convergence)
due to the well-known inherent local minimum problem of the Hopfield neural network
(Hopfield and Tank, 1985; Smith, 1999). It is further worth a mentioning that the
quintessence of the “NAOP” concept is in the core an adaptive trainingprocess that is very
comparable to the concept developed for the training of Hopfield neural networks towards
an efficient tracking of localminima. Nevertheless, NOAP has been demonstrated capable
of mapping all known nonlinearity of ODEs unto appropriate templates of a first-order
CNNprocessormatrix. Further, the NAOPhas the potentiality to overcome trial-and-error
training processes leading to a flexible and robust convergence of the training processes.

The overall process to derive the CNN-templates can be summarized as follows.
The ODEs under investigation are represented in the state space “phase portrait” in
terms of the components of the vector flow ~F defined in equation (2d). Similarly, the
vector flow ~Q of the mathematical model representing the dynamics of the state control
CNN is defined in equation (1c). The objective function is derived based on the
statement/condition that a good mapping must be achieved between the mathematical
ODE model under investigation and the model of the state control CNN. Equivalently
to this statement, the two vectors flow ~F and ~Q do evolve, at long term, on a common
trajectory in the phase space representation. Therefore, the objective function can be
formulated/expressed in the following mathematical form:

Min
X

1

n¼0

d nxi

dt n
2

d nyi

dt n

� �2
" #

ð3Þ

n is an unknown integer corresponding to the order of the ODE under investigation.
The next step of the modeling process is concerned with the formulation of the related
constraints. Constraints are defined to make sure the statement above (equation (3)) is
fulfilled at long term (i.e. in time domain). This constraint can be formulated
mathematically as follows:

d nxi

dt n
¼

d nyi

dt n
ðfor all tÞ ð4Þ

The Lagrange function L
�

xi; x
ð1Þ
i

; . . .xðnÞ
i

; yi; y
ð1Þ
i

; . . .yi;
ðnÞ li; gi

�

is obtained by
combining the objective function with the related constraints. This function is
formulated mathematically as follows:

L ¼
X

1

i¼0

d nxi

dt n
2

d nyi

dt n

� �2

þ
X

1

i¼0

li
d nxi

dt n
2

d nyi

dt n

� �

ð5Þ

xni represents the nth derivative of xi; y
n
i represents the nth derivative of yi, li

are multiplier-neurons and gi are coefficients of the ODE” under investigation. The
corresponding CNN-templates (which are calculated/determined through the
identification process based on the training/learning method) are expressed in terms
ofgi . Mention that the key steps involved in the complete technique of solving stiff ODEs
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(using the CNN-paradigm) are twofold. The first step is an “offline optimization
process”, the objectives being the minimization of the Lagrange function
L xi; x

ð1Þ
i

; . . .xðnÞ
i

; yi; y
1
i ; . . .y

n
i ; li; gi

� �

in order to derive the appropriate corresponding
CNN-templates. This is achieved using the basic differential multiplier method (BDMM)
(Wang et al., 1993; Platt and Barr, 1998), which is the combination of two gradient
techniques. The first technique is based on gradient decent. Here, the state variables of
the network slide downhill, opposite to the gradient to find theminimum of the function.
The second technique is related to the application of gradient ascent. In this case, the
maximum function is obtained by proceeding in the positive direction of the gradient.
We apply the BDMM to the “Lagrange function” in equation (5) to derive equation (6).
Specifically, gradient descent is applied on decision variables/neurons and gradient
ascent is applied on multiplier variables/neurons of the Lagrange function modeled in
equation (5), leading to equation (6):

dxi

dt
¼ 2a

›L

›xi
ð6aÞ

dli

dt
¼ þb

›L

›li
ð6bÞ

Equation (6) is the characteristic model of the BDMM. This model (from which the
CNN-templates of ODEs are calculated) reveals the coupling between the dynamics of
decision neurons ðxiÞ and the dynamics of multiplier neurons ðliÞ. a and b are step sizes
for updating decision neurons and multiplier neurons, respectively. The second step is
related to the design and implementation of the CNN-computing platform. The
CNN-templates derived through an offline optimization process are exploited to compute
solutions of the stiff ODEs under investigation as it is clearly shown in Figure 3. Indeed,
the values of the CNN-templates are inserted in the CNN-computing platform designed
(Figure 3) to solve ODEs. As proof of concept of the method developed in this paper, the
novel technique is being applied in the next section for solving a specific andwell-known
prototype of ODEs namely the van der Pol oscillator. It is well-known that this is a
well-known prototype of nonlinear and self-sustained oscillator which undergoes stiff
dynamics in its relaxation states. Here, the stiffness (Hairer et al., 1996) is characterized
by the abrupt variation observed in the nonlinear temporal dynamics of the van der Pol
oscillator (this is the relaxation state of the van der Pol oscillator which is observed for
large values of 1 (i.e. 1 .. 10 in equation (7)).

3. Applications to solving nonlinear ODEs
We restrict our analysis to the case of the van der Pol oscillator which is a good
prototype of a well-known self-sustained oscillator having the interesting
characteristic of being able to generate sinusoidal-, quasi-periodic-, and relaxation-
oscillations (i.e. a stiff dynamics) (equation (7)):

d 2y

dt 2
2 1ð12 y 2Þ

dy

dt
þ v 2y ¼ 0 ð7Þ

Twopossible states can be generated by equation (7). The first is the sinusoidal or almost
sinusoidal state ð1 ,, 1Þ. The second one is the quasi-periodic state ð1 ,, 1Þ which
could lead to relaxation oscillations (i.e. stiff dynamics) for large values of 1 ð1 .. 10Þ.
We now want to solve equation (7) using the CNN-paradigm. We first envisage the case
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where 1 ¼ 0.25 and v ¼ 1. For these parameter values the NAOP concept has been
exploited to calculate the corresponding CNN-templates after convergence of the
training process. This convergence is clearly shown by the plots in Figures 2 and 3
showing the temporal evolution of the state-control templates Âij (Figure 2) and the
feedback templates Aij (Figure 3). As it appears in Figure 2, the convergence is achieved
after a long transient phase displayed by the global training network (i.e. NAOP). From
Figure 2, one can easily read the corresponding CNN-templates that are then used to
solve the van der Pol equation.

The template values in Figure 2 have been used/inserted in Figure 3 to obtain the
solution of equation (7) through the CNN-paradigm. Indeed, Figure 3 is a general
representation in SIMULINK of a CNN processor platform to solve second-order
nonlinear ordinary differential equations (ODEs). The key contribution of our approach,
which is a breakthrough, is that we are now capable of transforming/mapping any type
of nonlinearity displayed by nonlinear coupled and uncoupled ODEs unto the type of
nonlinearity displayed by the elementary first-order CNN cell model. As proof of concept
of the approach developed in this paper, we have used the CNN-templates derived by this
scheme to obtain the exact solutions of equation (7). The graphical representation of the
CNN processors for second order ODEs shown in Figure 3 has been used for rapid
prototypingpurposes; thus an implementation of theNAOPconcept on embedded digital
platforms (i.e. DSP or FPGA or GPU platforms) is then straight-forward. A direct

Figure 2.
Convergence of the
corresponding state
control CNN-templates
as achieved by the
NOAP process to solve
equation (7) with 1 ¼ 0:25
and v ¼ 1

C
N

N
- 

te
m

pl
at

e Â
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numerical simulation of the same equation, i.e. equation (7) has also been performed
usingMATLAB and a comparison between these two results is shown in Figure 4. As it
clearly shown inFigure 4, the results inFigure 5 andFigure 7, are solutions of equation (7)
using the approach based on the CNN-paradigmdeveloped in this paper for e ¼ 0.25 and
v ¼ 1 (Figure 5) and e ¼ 1 and v ¼ 1 (Figure 7). Similarly, the results of the same
equation (equation (7)) obtained through a direct numerical simulation with MATLAB
are shown in Figure 6 and Figure 8 for e ¼ 0.25 and v ¼ 1 (Figure 6) and e ¼ 1 and
v ¼ 1 (Figure 8). Comparing the results obtained by the twomethods for different sets of
the parameter settings, a very good agreement (i.e. waves having the same value of the
amplitude of oscillations and same frequency of oscillations) is obtained. The
comparison of (Figure 5 with Figure 6) and (Figure 7 with Figure 8) is a good
benchmarking leading to the validation of the NAOP concept developed in this paper.

The method proposed in this paper exploits an optimization concept based on NAOP
to derive the CNN-templates of stiff ODEs. Here, the optimization of the CNN-templates
is achieved through an offline process. Several strong points of the novel concept
developed in this paper (i.e. the optimization based on NAOP) can be derived which are:

. The flexibility of the concept (NAOP) which offers the possibility of mapping
any type of nonlinear and stiff equation (ODEs and/or PDEs) into the nonlinear
mathematical CNN-model in equation (1a). This offers the possibility of using the
CNN-paradigm as a universal solver of nonlinear and stiff equations.

Figure 3.
Convergence of the

corresponding feedback
CNN-templates as

achieved by the NOAP
process to solve

equation (7) with 1 ¼ 0:25
and v ¼ 1
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. The possibility of deriving the CNN-templates through an offline process and the
exploitation of these templates for the hardware implementation (FPGA, or
emulation onDSP, etc.) of the computing platformbased on CNN in order to achieve
robust and ultra-fast computing (Chua and Yang, 1988; Zarandy et al., 1999).

. The easy and straight-forward convergence to the local minimum (of the NAOP
concept) for any type of nonlinear and stiff ODEs.

. The offline training process is based on the concept of neuron dynamics. This
concept transforms the Langrange function described in equation (5) into sets of
coupled ODEs of the first order (equation (6)). Therefore, the optimization
problem is transformed into solving coupled ODEs of the first order. This allows
the possibility of avoiding trial-and-error processes during optimization since a
systematic analysis of the stability (i.e. both asymptotic and/or global stabilities)
of the coupled ODEs can be performed. The solutions of the coupled models lead
to the determination of the CNN-templates.

Figure 4.
SIMULINK graphical
representation of the
CNN-computing platform
to solve equation (3)
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Figure 5.
Wave-form solution of

equation (7) obtained by
our new approach based
on the CNN-paradigm for

e ¼ 0.25 and v ¼ 1
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Figure 6.
Wave-form solution of
equation (7) obtained

through direct numerical
simulation in MATLAB
for e ¼ 0.25 and v ¼ 1
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portrait obtained by our
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. The convergence of (equation (6)) does not depend on initial conditions as this
convergence leads to the same templates values regardless initial conditions.
Therefore, the NAOP concept is not based on a trial-and-error process as it is the
case of the classical optimization methods such as genetic algorithm,
reinforcement learning, particle swarm, etc. (Puffer et al., 1995; Aarts and Veer,
2001; Tsoulos et al., 2009; Chua et al., 1995; Puffer et al., 1996; Nossek, 1998).

In our previous publications (Fasih et al., 2008, 2009) we have demonstrated that the
hardware implementation is suitable for performing ultra-fast computing and therefore
is necessary for performing real-time computation. The method developed in this paper
can be easily implemented on hardware in order to perform ultra-fast computing. This is
one of the significant advantages (amongstmany others) of themethod developed in this
paper while compared with the computing using Von Neumann architecture
(i.e. MATLAB). It is well-known that this last computing platform is time consuming
(i.e. very slow) when dealing with the computation of complex nonlinear ODEs and/or
PDEs. This limited computing resource/performance is explained by the iterative nature
of the computing on Von Neumann and the inherent accumulation of round-off errors
which could result to the lack of convergence (Higham, 1996; Hairer et al., 1996).

The method proposed in this paper is challenging as it shows/demonstrates a
systematic and straightforward way to solve nonlinear ODEs by the CNN-paradigm.
The key challenge has been the possibility and then the appropriate way/algorithmic
of/for mapping any type of nonlinearity unto the nonlinearity displayed by the
elementary CNN-cell. Therefore, the approach developed in thiswork is veryflexible as it
can be applied to solve different types of nonlinear and stiff ODEs. The template
calculation scheme based on NAOP has also been successfully applied for solving
Rayleigh, Lorenz and Rössler equations and corresponding CNN-templates have been
successfully derived. One interesting issue under investigation is the establishment/
development of a library of CNN template sets to solve the most common nonlinear and
stiff ODEs including the ones already cited above.

The next section is addressing the generalization/extension of the approach
developed in this paper to solving nonlinear and stiff PDEs. In fact, it will be shown
that a discretization process could help to transform PDEs into sets of coupled or
uncoupled nonlinear ODEs in order to make them solvable by the CNN-paradigm while
thereby applying the scheme developed in this paper.

Figure 8.
Wave-form solution of
equation (7) and
corresponding phase
portrait obtained through
direct numerical
simulation in MATLAB
for e ¼ 1 and v ¼ 1
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4. Extension of the NAOP scheme to solving stiff partial differential
equations
This section explains the possibility of extending/applying the approach developed in this
paper to solvingPDEs. Unlike the traditional approach of solving stiff PDEs throughCNN
which takes into consideration only the linear terms of the Taylor’s series expansion, we
include the higher order derivative terms in the Taylor’s series expansion of any given
PDE in order to improve the accuracy of the obtained solutions. We consider, for
illustration, the Burger’s equation (8) which is a well-known prototype of partial
differential equations and which is having multiple potential applications in the field of
transportation:

›u

›t
¼

1

R

›
2u

›x2
2 u

›u

›x
ð8Þ

In order to solve equation (8) by the CNN-paradigm, applying an expansion (at the
first-order) based on the Taylor’s series does lead to the following equivalent form of
equation (8):

dui

dt
¼

1

R

uiþ1 2 2ui þ ui21

h2
2

ui½uiþ1 2 ui21�

2h
ð9Þ

One can see that equation (9) is a well-known prototype of a set of first-order coupled
nonlinear ODEs. As it appears in equation (9), the discretization performed has resulted
into a set of coupled ODEswith quadratic nonlinear terms (i.e of types similar to Lorenz or
Rössler). This type of nonlinearity is solvable by our approach NAOP developed in the
preceding paragraph as we could already solve more complex types of nonlinearity (e.g.
the nonlinearity in the van der Pol equation). As discussed in Section 1, taking the
truncated Taylor’s series (only the linear terms) has been done reluctantly in the many
published works, since there has been no way so far, according to the literature, to deal
with the increased complexity and the nonlinearity that appear otherwise. It is obvious
that the results produced in the case of a linear approximation are de facto less precise.
While considering the higher order (in this case second-order) derivative terms in order to
increase precision, the Taylor’s series expansion could be applied to equation (8) and this
could lead to results presented in equation (10):

dui

dt
¼

1

R

uiþ1 2 2ui þ ui21

h2
2

uiþ1 2 3ui þ 3ui21 2 ui22

2h2
2 . . .

� �

2 ui
uiþ1 2 ui

h
2

uiþ1 2 2ui þ ui21

2h
2 . . .

� � ð10Þ

Therefore, while considering equation (10), it becomes obvious that the NAOP developed
in this paper is a best candidate for a straightforward derivation of the appropriate
CNN-templates to solve equation (10). In Chedjou and Kyamakya (2009), we have
demonstrated the possibility of solving the Burger’s equation using the CNN-paradigm.

5. Concluding remarks
We have proposed and validated a theoretical/concept based on the CNN-paradigm for
ultra-fast, potentially low-cost and high-precision computing of stiff PDEs and ODEs.
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Since we can solve these through CNN independently of the actual nonlinearity, we
have reached a clear breakthrough that has the potential to enable a really “real-time”
Computational Engineering.

The main benefit of solving PDEs and ODEs using CNN is the offered flexibility
throughNAOP to extract the CNNparameters throughwhich CNN can solve any type of
PDEs or ODEs. Another strong point of the CNN-paradigm is the then resulting
ultra-fast processing depending on the CNN implementation: DSP, FPGA, GPU, or
CNN-chip. One key objective of this work has been to advance the relevant
state-of-the-art by proposing a novel framework to solve stiff PDEs andODEswith high
precision. To achieve this goal, we have proposed and demonstrated that the NAOP
technique is a best and efficient scheme to copewith solutions of anyODEs or PDEs. The
NAOP is a learning/training method for mapping the wave solutions of the models
describing the dynamics of a CNN network to that of a given model (ODEs). Taking just
these two inputs, the learning process leads to the convergence to a local minimum
where the complete mapping of the two models is achieved and CNN-templates are
produced.

Using the same technique, we proposed a high-precision computing of stiff PDEs
while accounting even nonlinear terms (i.e. high-order terms) in the Taylor’s series
expansion used while transforming the PDEs unto a set of coupled nonlinear ODEs.
In order to overcome the problem related to the speed of computation, an implementation
either on FPGA or DSP or GPU of the concept developed in this work is possible and
straight-forward.

An ongoing project under consideration is the design and implementation of a
flexible computing platform to be used for real-time Computational Engineering
(i.e. ultra-fast solution of stiff ODEs and/or PDEs). Appendix Figure A1 is an
illustration of the complete architecture under design. The algorithm developed in this
paper (i.e. NAOP) is used at the level of the central server. Indeed, the computing
system in Appendix Figure A1 can process many requests submitted online. These
requests are stiff ODEs and/or PDEs that will be submitted by customers for deriving
their solutions. The requests submitted through the application programming interface
will be processed at the level of the central server. A scheduling is planned at the level
of the central server in order to allow a sequential processing of multiple job-requests.
Appendix Figure A2 shows the basic blocs constituting the central server. Indeed,
upon submission of several job requests, the central server will be able to schedule jobs
and assign them for processing depending upon specific tasks (e.g. task 1: solving
ODEs, task 2: solving PDEs or task 3: solving ODEs and/or PDEs and apply them for
image processing, etc.). To achieve real-time Computational Engineering, the central
server will use one of these emulation techniques (i.e. DSP, FPGA or GPU) for the
processing. The method developed in this paper (i.e. the “NAOP” concept) is therefore
the core of the complete architecture in Appendix Figure A1 as this method is based on
a systematic and flexible principle to derive the corresponding CNN-templates of stiff
ODEs and PDEs. The concept developed (i.e. “NAOP”) exploits the CNN-paradigm as
this latter is flexible for hardware implementation. Indeed, the graphical representation
of the CNN processors for second order ODEs shown in Figure 4 is suitable for rapid
prototyping purposes (a hardware implementation in DSP or FPGA or GPU platforms
is then straight-forward). Such a computing platform is, therefore, a good prototype for
real-time Computational Engineering.
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