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ODE- Ordinary differential equation

Egy valtozonk van és egy fuggveényt keresunk:

F“. y. yj" U”- ym+ ] — 0

A megoldas y=y(t) fuggveny

A diffegyenlet: y'= ky
A megoldasa: y=Ce”(kt)

A diffegyenlet: y"-y=0
A megoldasa: y=c1 e?(t) +c2e”(-t)
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PDE- Partial differential equation

Tobbvaltozos verzidja az ODE-knek:

¥ ¥ ' +'L} 1'?
i du  Ju Ju J°u  J°u
Flry,r9..0n, — —....0—, —. = ) =10
dry dra drp dry drir

A megoldas y=y(x1,x2...xn) fuggvény

Ju N A _0o
' : r— 4+ y— =
A diffegyenlet: 01 ay
A megoldasa: u(r,y) = 2% + y?

. P i
Adiffegyenlet:  "u  du_

or?  Oy*

A megoldasa: u(r,y) e yi
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Local and GLobal PDEs

Local PDE:
- a rendszer dinamikaja barmely pontban O(X).Voo)
csak lokalis tulajdonsagoktol fiigg - ,A’J\ ..................................... -
b, (x, v,0) = im T(@, (x,y,2)) .~ 257700
r—0 S ~ . :
{V (x0,0) | T=0 = T=1(x,,y,,t) } X,

Global PDE (Sapiro et. al):

- Letezik olyan pont, ahol a rendszer dinamikaja
globalis (tavoli) tulajdonsagoktol fligg

¢r (x,y,t) = lli% I'(op, (x,y,t), A(x, v, 1)) A()

{3 (o, §) | 150 = T= T t, A)) A A)20) }
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Miért fontosak a PDEK?

A fizikai vilagunk nagyon jo és tomor leirai.
Real Space Phase Space

F = —kx, OO

d?x k J
—=—|—
dt? m -

e

o
|
ot 7

iy

—_— Velocity
It

x(t) = 1 cos{wt) + ¢g sin (wt) = Acos (wt — )
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PDE példak

Gradient operator

2 0 0 .
Wave equation Q _ 2 V= —i+—
at2 = c"Au 0x 3y
Heat equation % — 2Ay
Laplacian
o> 0
A=V?= + +
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Wave equation

8211 azy v azy

5o =CAu Gp =g

Wave equation: egy hullam terjedése egy adott kozegben (aramlastan,
elektromagneses hullamok)

Egydimenzios hullam Kétdimenzios hullam
konstans amplitudéval csOkkend amplitudoval
(csillapitas)

AN
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Heat Equation

u=1te-mp {0y
ou
~ = ?Au e
at 0.6

0.4t

Heat equation

0.2r

Egy id6 beli valtozo és két vagy tobb térbeli valtozo.

0.2 0.4 n.e 0.z 1

Ju (agu J%u Sgu) _0

E_ﬂ @_I_Sy?_i_é‘zz

H? 52
A=V2— _~ 4+ 7 ...
v 8x2+8y2
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PDE megoldasa

Egy megoldas ellenbrzése konnyl, ugyanugy mint ODE esetén. Ki tudjuk szamolni a
flggvény és a derivalt értékét minden pontban.

A megoldas megkeresése azonban rendkivul bonyolult. ,
ODE-k esetében tobb modszer is létezik (probafuggvény, SE SV...).

Nem létezik altalanos eljaras PDE megoldasara
Kulonbozb osztalyokra vannak analitikus megoldasi modszerek.

PDE-ket altalaban hagyomanyos szamitégépen numerikusan kozelitjuk
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Diszkretizacio

Térben és idében folytonos, diszkretizalni kell

Térbeli diszkretizacio:
Mintavételezés adott pontokban (pixelek)

>

. -
s  XOsi LCD 4

! Cases A and C Case B
2D: 969 nodes 2D: 71 nodes
_-i""" _ 1836 elements 108 elements
' > 3D: 23256 nodes 3D: 1704 nodes

Elevation 0 50 100 200 m
- 630 ma.s.l O

- 590 m a.s.l.
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Numerikus kozelités

FEuler's Method

Id6beli diszkretizacio: -
Eluer modszer

|
|
| | | |
| | | | | | |
v
L I A N R A B
| | | | | | |
| | | | | | |
| | | | | | |
B | | | | | | |
| | | | | | |
| | | | | T
| | | | | | |
| | | | | | . .
[[] l-1 tE t.]- tl tn l-n+l
dy |
dt f(ty) This is Euler's formula to
approximate the solutions.
y(t,) =y,

Yot1 =¥, T hi(t ,¥)
v(t) is the solution of this
differential equation



Numerikus kozelités

|d&beli diszkretizacio:

Eluer modszer
Sajnos nem stabil, az idébeli
diszkretizacioé sok gondot okozhat.

Divergal — numerikusan instabil (energiat
teremt)

Implicit/explicit Euler modszer,
Backward euler

U1_-‘ .

10

15

20

30
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Numerikus kozelités

|d&beli diszkretizacio:

Runge-kutta

dl']. — ﬂt Uy n
dv,l = At ag(zn,yn,t)
dv, 1
dl'2 — ﬂt {E'?J",'i'l + T)
drl dyl At
dv,2 = Atay(Zn+—,n+ :i:t + _)
2 2 2
dv...
dr3 = At (v, + ':sz)
dr2 iy?2 At
dv,3 = Atay(z,+ T’yﬂ' + %,t ¥ T}

drd = ﬂt {EPJ",H 'I'dﬂ:g]

dv,d = Atay(z, +ded, y, +dyd, t + At)
drl dr2 dr3 drd

L I:1 In+1=yr1+ﬂ+3+3+ﬁ

dv,l  dv,2  dv,3 dvd
ux1n-|-] — 3-';;:11 + g - ; + ; + ;
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Diszkretizacido CNN-en

Egy diszkretizaciot el tudunk kerulni —a CNN folytonos idében mikodik, igy csupan a
tobbi parcialis derivalt alapjan (altalaban térben) kell diszkretizalnunk.

Kozelitenunk kell a masodik derivaltat:

u:ltemp 03
1 T f(I+h)_2f(I)+f(I_h) o.2f
f(z) = lim 73
0.6
: - . 0.4}
flx+h) = 2f(2) + fa—h) _ fleth)-fle) _ fe)-flz—h)
hz h" 0.2 0.4 0.& n.s 1 *

Térben diszkretizalnunk kell
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Folytonos idoben

Template héterjedés szimulacidjahoz:?

Kétdimenzids eset Egydimenzios eset
05 1 0.5
A= 1 -6 1 A=[1-2 1]
05 1 0.5

Természetesen mindkét template-et beszorozhatjuk egy konstans-sal, ami terjedés
sebességeét hatarozza meg.

igy a parcdiff-ek egy jelentds csoportjat tudjuk kdzeliteni:
-linear diffusion equation: ahol a derivalt a maximum masodrend( derivaltak linerais
kombinacidja

i 0 u 9*u

= 00— T

ot ort oyt
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Heat equation - gyakorlati alkalmazas

A B template-et nem hasznaltuk fel, ezaltal idében valtozé bemenettel akar
melegités soran is vizsgalhatjuk a hoterjedest

Nem egyenletes hbterjedés: heterogén CNN, kulonbozé A
template-ek kilonb6z6 pontokban

—

v TN

>= -90.00 dBm (B.0%) 1085002 sq. feet (1008.0 5q. meters)

‘-.gﬂl
i

&
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Nemlinerais diffusion equation?

A PDE-k egy jelentbs osztalyat egyszerien szimulalhatjuk, azonban szamos olyan
egyenlet van, ahol a parcialis derivaltak nemlinearis kombinaciojara lenne szukseg.

d
Sy (= v (0F S A v, (O+ S By v, (0+1;
df ! ' kieN, kleN,

+ ZD,-J-__M{,M)

keN,

Az extra tag esetében D template elemei fuggvények az agrumentuma pedig a
bemenet a state és a kimenet
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Nemlinerais Diffuzio

A PDE-k egy jelentbs osztalyat egyszerien szimulalhatjuk, azonban szamos olyan
egyenlet van, ahol a parcialis derivaltak nemlinearis kombinaciojara lenne szukseg.

Példa: Gradient

0/ 0 @g%%m
%% GRADT %% _

GRADT A=1[000;
020;
000];

GRADT Bb=[111:
101:
111];

GRADT_b=[13 -33 00 3 3],

GRADT_I| = -1.8;
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Nemlinerais Diffuzio

A PDE-k egy jelentbs osztalyat egyszerien szimulalhatjuk, azonban szamos olyan
egyenlet van, ahol a parcialis derivaltak nemlinearis kombinaciojara lenne szukseg.

Példa: Median
%% MEDIAN %%

MEDIAN_A =[00 0; A= 0| 1]o pY-|d |0 |d 7= 0
010; 0]l 0]o0 d | d
00 0j;

MEDIAN_Dd = 0.5*[1 1 1;
101;
111];
MEDIAN_d =[02 0-1 251 12];

MEDIAN_I =0;
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Nemlinerais Diffuzio

A PDE-k egy jelentbs osztalyat egyszerien szimulalhatjuk, azonban szamos olyan
egyenlet van, ahol a parcialis derivaltak nemlinearis kombinaciojara lenne szukseg.

Példa: Gradient, Gradient based diffusion

%% MEDIAN %%
11 - Av=v

ulil — Vuljf
MEDIAN_A =[00 0 2 - Av=v, v
O 1 07 13 - Av = v“.H — V..
00 0j; -
21 - Av=v, — Vuy,
MEDIAN Dd = 0.5*[11 1; 22 - AV=V, g~ Ve,
101, 23 - Av=v,  —v,
111];
31 — Av=v,6 —v,
Vil i
MEDIAN_d =[02 0-1 2.51 12]; 20 - Av=v, v,
33 — ﬂm:v_], -V,

MEDIAN_I = 0;
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Nemlinerais Diffuzio

A PDE-k egy jelentbs osztalyat egyszerien szimulalhatjuk, azonban szamos olyan
egyenlet van, ahol a parcialis derivaltak nemlinearis kombinaciojara lenne szukseg.

Példa: Gradient J 1 ﬁ[ I(x, y,r).(l—k+‘ grad(G(s)=1(x, }1,;))\)]

I,
%% ANISO %% ’

ANISO A =[00 0;
010;
000];

ANISO_Dd =[0.51.00.5;
1.0 0.0 1.0;
0.51.0 0.5];

ANISO d =[15 -20 -0.30 01 0.30 20 122];
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Nemlinerais diffusion equation

A PDE-k egy jelentds osztalyat
egyszerlen szimulalhatjuk.

Minden nemlinearis template
megvalosithato linearis template-ek
sorozatakeént

A nemlinearis template-ek
hasznalataval azonban az algoritmus
A template-ek tervezeése is
egyszertbb

Ténylegesn architekturakon (ugyan
nem mindegyiken) is van lehetdség
nemlinearis template-ek
megvalositasara: pl Ace16k

The flow-chart of the algorithm:

=

GEEY-SCALE IMAGE

'

diffusion template (s1)

'

'

diffusion template (s)

Y

gradient template

- 3 - ———————
subject

EDGE MAP

%

multiply

HIGH-PASSED IMAGE

- add -

UNSHARP MASKED IMAGE

¢

diffusion template
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Flow simulation

11.21
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Diffuzidé és hullam alapu szamitas

Linearis diffuzio

Nemlinearis diffuzio:
Trigger-waves

Pattern formation
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Twin wave principle illustration

clclciclclcl N
ol il chelel ol
SOOOOD0S
Inhibition wave 220000 E®

(large lateral inhibition) /

All sad

\
Concave curves
from the bottom
(sad mouth)
+«— No,
He 1s laughing!

Combination
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Trigger-waves as computing tools

25

)

P
2
e

, ; , Hullamfrontok kioltasa: tavolsag szamitas
Hullamtulajdonsagok: 8

- megfordithatdsag
- conservation of energy
- Amplitédé és hullamfront
megmaradasa
- visszaverddeés
- interferencia
- Torés (diffrakcio)
Kiloltas




3-rétegu prototipus

‘mutually coupled 1st order
»RC” cells, space constants
*double time-scale property
*separate inputs and initial

states
| al
l T\X, ==X, +klZN Ay Vi T a0,y by, + 2,
S
Output 7. x, = Xy T Z Ayy Vo T a1

kle N,

i = f1(x1y) Voii = fZ(‘x2,ij)9y3,ij fs(a13y1,ij+a23J’2,y’)

1<i<M,1<j<M,0<u, <],
Chua —Yang:0 < x..(0) |_1Full range0 < x,. (1 20) <1



3-rétegu prototipus

*Nemlinearis template-ekkel
haromvaltozos (x1,x2,t) PDE-
ket tudunk megvalositani egy
ilyen architekturan

| al
l T\X, ==X, +klZN Ay Vi T a0,y by, + 2,
S
Output 7. x, = Xy T ZN Ayy Vo T a1
E

i = f1(x1y) Voii = fz(xz,y) Vi = fs(a13y1,ij+a23J’2,y’)

1<i<M,1<j<M,0<u, <],
Chua —Yang:0 < x..(0) |_1Full range0 < x,. (1 20) <1
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Model elements

parameters |
Time constant NSz
Spatial coupling

Output function 'w"!lw le!!

] ‘111 T TTOTU T Uiy,
S

— Gain
— Delay
— Desensitization

S




Ill{lll'.“!l”!

l!!!!m

30




Pazmany Péter Catholic University, Department of Informat

Parameter tuning - M&S

E@(étaSCiOn

R ;

=

. . B
measurement  simulation
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Moving gradient square in
noise

Input Bipolar MD ganglion

Noise filtering
Motion detection (on, off, speed)
Gradient phenomenon
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Retinaeffects - On stimulus

Stimulus - effects measurement simulation
=i - -

s 2 e —

initiation of motion
detection

space- and time-based
edge detection

object corner detection

|
1 Il ||'|'l‘i|':|l:':MII i;-l: :l|-ll:
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Retinaeffects - Size

measurement simulation

~_
~
o

0 1000 2000 3000 4000 5000 6000

response

size (um)
size selectivity with %\
local interaction %
size-, speed- and S \’X
intensity-selective & \i— =
, *

video processin ' ' '
P g 0 1000 2000 3000 4000 5000 6000

size (um)
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Retinaeffects - Speed

measurement simulation
o
2z
@)
= 1] =
O I 4
—

0 200 400 600 800 1000
speed (um/sec)

direction dependent
object level
motion detection

speed- and intensity-
selective video
processing

response
-

\‘«\k »

0 200 400 600 800 1000
speed (um/sec)
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Hullamszamitas alkalmazasa
ultrahangos képeken

Echokardiografias kéiek szegmentacioja

Cel:

Endocardial (belsé kontir)
detekcioja a val kamra koriil

LV - left ventricle
LA - left atrium
RYV - right ventricle

RA - right atrium

Apikalis, 2 kamra, 2 pitvar szerinti nézet az
emberi szivrol
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Active contour

"' 'T'l'"'\';'i'i'i'i'|'|'|ﬁ!|'|'|'|’|'| I

'l\”ll,_.

2 2

dv d*v
26| +86) || )72

Einterna = (a(8) [Vo(s)[* + B(s) [ves(5)[") /2= (D-’(S)

E’émﬂgs = IUHHEEHHE + u’edge Eedge + u’temEterm

00 PC[Pny _ CyyC2 =20, C.C,y + CuuCh
on,  9C/on (C2+ C2)P2

_ 2 .
E{«me = I(I, y} EEdHE - |?I{I, y}| Etﬂrm =
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(k-1)-th result (k-1)-th frame k-th frame

CNN-UM
PDE formalism: chip results
(ACE4K):
0
51 —Al=1 ~30 pusec/fr
iI =-VIXV
ot
~60 usec/fr
o I-Al=1 1 F
ol A=/ D) ~160 psec/fr
X ~ 250 psec/fr

k-th result
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