
Chapter 10 

Template design tools 

During the first years after the introduction of the CNN paradigm, many 
templates were designed by cut-and-try techniques, playing with a few nonzero 
template elements, and using a simulator to calculate the CNN dynamics. After a 
while, some systematic design methodologies emerged. Today several methods are 
available for generating CNN templates or algorithms, even for complex tasks. 

10.1. Various design techniques 

The main classes of design techniques are as follows. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

                                                          

systematic methods for binary I/O function via Boolean description and 
decomposition techniques using uncoupled CNN (see Chapters 5, 6, 7) 

systematic methods for binary I/O function using coupled CNN (see also Chapter 
12) 

global optimization techniques as parameter optimization 

genetic algorithms for designing the template elements / synaptic weights1 

matching with the spatially discrete representations of partial differential 
equations (PDEs) 

matching with some neuromorphic models of a living organism, typically the 
nervous system, in particular the visual pathway of vertebrates (see Chapter 16) 

fuzzy design techniques2 

neural network techniques3 

matching with existing 2D or 3D algorithms, including techniques in signal 
processing, telecommunications, adaptive control, nonlinear spatiotemporal 
dynamical systems, etc. 

 

We have to emphasize, however, that in spite of the many design techniques, new 
methods are emerging day by day based on the intuition and skill of the designers. A 
good example for this is a recent method4 using active waves applied for a while and 

 
1 e.g. T. Kozek, T. Roska, and L.O. Chua, Genetic algorithm for CNN template learning, IEEE Trans. 
on Circuits and   Systems I: Fundamental Theory and Applications, (CAS-I), Vol.40, No. 6, pp. 392-
402, 1993 
2 e.g. Cs. Rekeczky,  A. Tahy, Z. Végh and T. Roska, CNN Based Spatio-temporal Nonlinear Filtering 
and Endocardial Boundary Detection in Echocardiography, Int. J. Circuit Theory and Applications - 
Special Issue: Theory, Design and Applications of Cellular Neural Networks: Part II: Design and 
Applications, (CTA Special Issue - II), Vol.27, No.1, pp. 171-207, 1999 
3 e.g. P. Földesy, L. Kék,  Á. Zarándy, T. Roska and G. Bártfai,  Fault Tolerant Design of Analogic 
CNN Templates and Algorithms – Part I: The Binary Output Case, IEEE Trans. on Circuits and 
Systems I: Special  Issue on Bio-Inspired Processors and Cellular Neural Networks for Vision, Vol. 46, 
No. 2,  pp. 312-322, 1999 
4 Cs. Rekeczky and L.O. Chua,  Computing with Front Propagation: Active Contour and Skeleton 
Models in  Continuous-Time CNN , Journal of  VLSI Signal Processing, Special Issue: Spatiotemporal 
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combining / colliding with other waves, as well as a method in which a wave metric is 
used5 for complex pattern recognition tasks. 

In this chapter, referring to the results of Chapters 5, 6, and 7, we will 
demonstrate a systematic method for binary I/O functions. The outline of this design 
process is as follows (Figure 1). This process is supported by the template design and 
optimization program TEMPO (Appendix C). 
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Fig.1. The outline of the binary I/O CNN template or template sequence design 

 

Logic truth tables are given by a {0, 1} code (white and black), however, we can 
code binary data as TRUE(1), FALSE(-1) and DON'T CARE(0) as well.  

When designing CNN templates to implement a given logic function Fk ( . ), we 
are typically using uncoupled templates with the following description and coding: 

 

                                                                                                                                                                      
Signal Processing with  Analogic CNN Visual Microprocessors, Vol.23. No.2/3. pp.373-402,  Kluwer, 
1999 
5 I. Szatmári, Cs. Rekeczky and T. Roska,  A Nonlinear Wave Metric and its CNN Implementation for 
Object  Classification, Journal of  VLSI Signal Processing, Special Issue: Spatiotemporal Signal 
Processing with Analogic  CNN Visual Microprocessors, Vol.23. No.2/3. pp.437-448, Kluwer, 1999. 
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 0 0 0   w-1-1 w-10 w-11    

A = 0 a00≥1 0  Bk= w0-1 w00 w01  z (10.1)

0 0 0   w1-1 w10 w11    

 

In the design process we start with logic Boolean functions of 9 variables  
Fk (u1, u2,…, u9), supposing a zero valued initial state, keeping in mind the convention 
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or with the cloning template (A,B,z) or the truth table, especially in its window 
(code book) form. The outcome of the design is an uncoupled cloning template with 
the parameters 

a00, b1, b2, b3,….b9, z 

keeping in mind the convention 

 
 b9 b8 b7

Bk= b6 b5 b4

 b3 b2 b1

 

or the sequence of templates combined via some local logic functions implemented as 
a program on the CNN Universal Machine. 

10.2. Binary representation, linear separability, and simple decomposition 

The Boolean representation of a local logic function of 9 variables can be given 
in terms of the 9 Boolean input variables F (u1, u2,…, u9).

Given this function as a sum of products, we can directly apply a check to 
determine whether this function is linearly separable or not. If not, we have to 
decompose it into a sequence of linearly separable templates (see Section 10.3). The 
simplest method to generate this sequence, though it does not lead generally to the 
shortest sequence of templates, via the window truth table. In this case, each window 
represents a minterm (or maxterm) related directly to an uncoupled template with the 
coding convention introduced in Chapter 5.  For example, window  #3 

x x

x x

3

 

86542 uuuuu  (x means DON'T CARE). means a minterm 
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This term is implemented by a CNN with x(0) =0  and the template parameters are : 
a00=1, z=-4 and b1, b2….b9 are directly coded by window #3. 

Hence, window #3   

86542 uuuuu  

generates the input values  
0,1,0,1,1,1,0,1,0 987654321 ====−===== bbbbbbbbb  

that is,  the variables not appearing in the minterm (the DON'T CAREs) , will get a 
value of 0 at the  corresponding places. 

Cascading the minterm Boolean functions Fk(.) represented by the appropriate 
templates by AND-ing the consecutive results, the Boolean function F(⋅) will be 
calculated. 

Example 

Suppose we have a binary image with one-pixel-wide lines. Detect those pixels where 
the line crossings are of 45 or 90 degrees. Two examples are shown in Figure 2 with 
few inputs and detected points. Indeed, we started with a blank Window Truth Table 
(all-white output) and "clicked" those windows black which contain the desired 
configurations to be detected. These are the following 6 places (simplest cases): 

#: 124, 186, 214, 313, 341, 403 
 

 

(a)                                       (b) 

Fig.2. Input images (a) and the corresponding detected crossing places (b) 

The selected windows are shown in the next tables 
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To each configuration, we code a cloning template. For example, for the last one 
(#403) 

 
   1 1 -1   

a00=1  B= -1 1 -1  z = -8 

  -1 1 1   

AND-ing the 6 templates all the desired crossings will be detected. Two examples are 
shown in Figure 2. 

10.3. Template optimatization 

Once we get a template like the one just determined we can optimize it for robustness. 
Using the method described in Section 6.7, we can optimize a separable binary 
template to get a separating hyperplane, which is distanced from the two values of 
output (black and white) equally. The template design and optimatization program 
TEMPO (Appendix C) contains this function as well. 

In the next two cases, TEMPLATE1 and TEMPLATE2, we show the starting values 
and the optimized values. In the case of TEMPLATE1, which was designed by a cut-
and-try method, indeed, it turned out that the robustness of the original template was 
zero (the hyperplane just hit one output vertex). 

TEMPLATE 1: EdgeDetector 

Initial template 
   -0.25 -0.25 -0.25   

a00=1  B= -0.25 2 -0.25  z = -1.5 

  -0.25 -0.25 -0.25   

Optimized template 
   -1 -1 -1   

a00=1  B= -1 8 -1  z = -1 

  -1 -1 -1   

TEMPLATE 2: LocalConcavePlaceDetector 

Initial template 
   0 0 0   

a00=1  B= 1 2 1  z = -5.5

  0.5 -1 0.5   

Optimized template 
   0 0 0   

a00=1  B=  2 2 2  z = -7 

  1 -2 1   
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This template optimization is perfect if the CNN implementation is ideal. In a real 
situation with a given VLSI implementation, more complex optimization procedures 
are to be applied. 

10.4. Template decomposition techniques 

If the local Boolean function is not linearly separable then we can apply different 
decomposition techniques. Many of these techniques are based on some assumptions 
on the template values and the logic functions used for combining the consecutive 
templates. A method described in Section 7.6 and another "compact" decomposition 
method6 are used in the TEMPO program (Appendix C). The determination of the 
minimal number of templates for any given F(⋅) is a computationally hard problem. 
For the example given in Section 10.2, the 6 templates of the minterm decomposition 
could not be reduced. At the same time, for the game of life problem both methods 
yielded a decomposition of 2 templates only. The sequences of the 6 templates of our 
example in Section 10.2 are as follows. 

TEMPLATE 1 

0.0 0.0 0.0   -1.0 -1.0 1.0    

A =  0.0 1.0 0.0  B =  1.0 1.0 1.0  z = -8 

0.0 0.0 0.0   1.0 -1.0 -1.0    

XOR 

TEMPLATE 2 

0.0 0.0 0.0   -1.0 1.0 -1.0    

A =  0.0 1.0 0.0  B =  1.0 1.0 1.0  z = -8 

0.0 0.0 0.0   -1.0 1.0 -1.0    

XOR 

TEMPLARE 3 

0.0 0.0 0.0   -1.0 1.0 1.0    

A =  0.0 1.0 0.0  B =  -1.0 1.0 -1.0  z = -8 

0.0 0.0 0.0   1.0 1.0 -1.0    

XOR 

TEMPLATE 4 

0.0 0.0 0.0   1.0 -1.0 -1.0    

A =  0.0 1.0 0.0  B =  1.0 1.0 1.0  z = -8 

0.0 0.0 0.0   -1.0 -1.0 1.0    

XOR 

                                                           
6 L. Nemes, L.O. Chua,  and T. Roska,  Implementation of Arbitrary Boolean Functions on a CNN 
Universal Machine, Int. J. CTA, Vol. 26, pp. 593-610, 1998 
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TEMPLATE 5 

0.0 0.0 0.0   1.0 -1.0 1.0    

A =  0.0 1.0 0.0  B =  -1.0 1.0 -1.0  z = -8 

0.0 0.0 0.0   1.0 -1.0 1.0    

XOR 

TEMPLATE 6 

0.0 0.0 0.0   1.0 1.0 -1.0    

A =  0.0 1.0 0.0  B =  -1.0 1.0 -1.0  z = -8 

0.0 0.0 0.0   -1.0 1.0 1.0    
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