
Chapter 10

Template design tools

During the first years after the introduction of the CNN paradigm, many
templates were designed by cut-and-try techniques, playing with a few nonzero
template elements, and using a simulator to calculate the CNN dynamics. After a
while, some systematic design methodologies emerged. Today several methods are
available for generating CNN templates or algorithms, even for complex tasks.

10.1. Various design techniques

The main classes of design techniques are as follows.

•

•

•

•

•

•

•

•

•

systematic methods for binary I/O function via Boolean description and
decomposition techniques using uncoupled CNN (see Chapters 5, 6, 7)

systematic methods for binary I/O function using coupled CNN (see also Chapter
12)

global optimization techniques as parameter optimization

genetic algorithms for designing the template elements / synaptic weights1

matching with the spatially discrete representations of partial differential
equations (PDEs)

matching with some neuromorphic models of a living organism, typically the
nervous system, in particular the visual pathway of vertebrates (see Chapter 16)

fuzzy design techniques2

neural network techniques3

matching with existing 2D or 3D algorithms, including techniques in signal
processing, telecommunications, adaptive control, nonlinear spatiotemporal
dynamical systems, etc.

We have to emphasize, however, that in spite of the many design techniques, new
methods are emerging day by day based on the intuition and skill of the designers. A
good example for this is a recent method4 using active waves applied for a while and

1 e.g. T. Kozek, T. Roska, and L.O. Chua, Genetic algorithm for CNN template learning, IEEE Trans.
on Circuits and Systems I: Fundamental Theory and Applications, (CAS-I), Vol.40, No. 6, pp. 392-
402, 1993
2 e.g. Cs. Rekeczky, A. Tahy, Z. Végh and T. Roska, CNN Based Spatio-temporal Nonlinear Filtering
and Endocardial Boundary Detection in Echocardiography, Int. J. Circuit Theory and Applications -
Special Issue: Theory, Design and Applications of Cellular Neural Networks: Part II: Design and
Applications, (CTA Special Issue - II), Vol.27, No.1, pp. 171-207, 1999
3 e.g. P. Földesy, L. Kék, Á. Zarándy, T. Roska and G. Bártfai, Fault Tolerant Design of Analogic
CNN Templates and Algorithms – Part I: The Binary Output Case, IEEE Trans. on Circuits and
Systems I: Special Issue on Bio-Inspired Processors and Cellular Neural Networks for Vision, Vol. 46,
No. 2, pp. 312-322, 1999
4 Cs. Rekeczky and L.O. Chua, Computing with Front Propagation: Active Contour and Skeleton
Models in Continuous-Time CNN , Journal of VLSI Signal Processing, Special Issue: Spatiotemporal

 10001

combining / colliding with other waves, as well as a method in which a wave metric is
used5 for complex pattern recognition tasks.

In this chapter, referring to the results of Chapters 5, 6, and 7, we will
demonstrate a systematic method for binary I/O functions. The outline of this design
process is as follows (Figure 1). This process is supported by the template design and
optimization program TEMPO (Appendix C).

Interactive editing and generating
binary I/O and template data

Displaying
truth table

Template
a00 ≥ 1

Logic function

Linear separability
checkWindow

(code book)

Minterm/maxterm
template

sequeance

Determining
quasi minimal

template sequence

binary data

template data

Full

Minimal

?
No

Yes

uncoupled?

separable non-separable

optimal uncoupled
templates

Calculating
optimal uncoupled

template

Fig.1. The outline of the binary I/O CNN template or template sequence design

Logic truth tables are given by a {0, 1} code (white and black), however, we can
code binary data as TRUE(1), FALSE(-1) and DON'T CARE(0) as well.

When designing CNN templates to implement a given logic function Fk (.), we
are typically using uncoupled templates with the following description and coding:

Signal Processing with Analogic CNN Visual Microprocessors, Vol.23. No.2/3. pp.373-402, Kluwer,
1999
5 I. Szatmári, Cs. Rekeczky and T. Roska, A Nonlinear Wave Metric and its CNN Implementation for
Object Classification, Journal of VLSI Signal Processing, Special Issue: Spatiotemporal Signal
Processing with Analogic CNN Visual Microprocessors, Vol.23. No.2/3. pp.437-448, Kluwer, 1999.

 10002

 0 0 0 w-1-1 w-10 w-11

A = 0 a00≥1 0 Bk= w0-1 w00 w01 z (10.1)

0 0 0 w1-1 w10 w11

In the design process we start with logic Boolean functions of 9 variables
Fk (u1, u2,…, u9), supposing a zero valued initial state, keeping in mind the convention

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡

123

456

789

uuu

uuu

uuu

or with the cloning template (A,B,z) or the truth table, especially in its window
(code book) form. The outcome of the design is an uncoupled cloning template with
the parameters

a00, b1, b2, b3,….b9, z

keeping in mind the convention

 b9 b8 b7

Bk= b6 b5 b4

 b3 b2 b1

or the sequence of templates combined via some local logic functions implemented as
a program on the CNN Universal Machine.

10.2. Binary representation, linear separability, and simple decomposition

The Boolean representation of a local logic function of 9 variables can be given
in terms of the 9 Boolean input variables F (u1, u2,…, u9).

Given this function as a sum of products, we can directly apply a check to
determine whether this function is linearly separable or not. If not, we have to
decompose it into a sequence of linearly separable templates (see Section 10.3). The
simplest method to generate this sequence, though it does not lead generally to the
shortest sequence of templates, via the window truth table. In this case, each window
represents a minterm (or maxterm) related directly to an uncoupled template with the
coding convention introduced in Chapter 5. For example, window #3

x x

x x

3

86542 uuuuu (x means DON'T CARE). means a minterm

 10003

This term is implemented by a CNN with x(0) =0 and the template parameters are :
a00=1, z=-4 and b1, b2….b9 are directly coded by window #3.

Hence, window #3

86542 uuuuu

generates the input values
0,1,0,1,1,1,0,1,0 987654321 ====−===== bbbbbbbbb

that is, the variables not appearing in the minterm (the DON'T CAREs) , will get a
value of 0 at the corresponding places.

Cascading the minterm Boolean functions Fk(.) represented by the appropriate
templates by AND-ing the consecutive results, the Boolean function F(⋅) will be
calculated.

Example

Suppose we have a binary image with one-pixel-wide lines. Detect those pixels where
the line crossings are of 45 or 90 degrees. Two examples are shown in Figure 2 with
few inputs and detected points. Indeed, we started with a blank Window Truth Table
(all-white output) and "clicked" those windows black which contain the desired
configurations to be detected. These are the following 6 places (simplest cases):

#: 124, 186, 214, 313, 341, 403

(a) (b)

Fig.2. Input images (a) and the corresponding detected crossing places (b)

The selected windows are shown in the next tables

 10004

 10005

 10006

To each configuration, we code a cloning template. For example, for the last one
(#403)

 1 1 -1

a00=1 B= -1 1 -1 z = -8

 -1 1 1

AND-ing the 6 templates all the desired crossings will be detected. Two examples are
shown in Figure 2.

10.3. Template optimatization

Once we get a template like the one just determined we can optimize it for robustness.
Using the method described in Section 6.7, we can optimize a separable binary
template to get a separating hyperplane, which is distanced from the two values of
output (black and white) equally. The template design and optimatization program
TEMPO (Appendix C) contains this function as well.

In the next two cases, TEMPLATE1 and TEMPLATE2, we show the starting values
and the optimized values. In the case of TEMPLATE1, which was designed by a cut-
and-try method, indeed, it turned out that the robustness of the original template was
zero (the hyperplane just hit one output vertex).

TEMPLATE 1: EdgeDetector

Initial template
 -0.25 -0.25 -0.25

a00=1 B= -0.25 2 -0.25 z = -1.5

 -0.25 -0.25 -0.25

Optimized template
 -1 -1 -1

a00=1 B= -1 8 -1 z = -1

 -1 -1 -1

TEMPLATE 2: LocalConcavePlaceDetector

Initial template
 0 0 0

a00=1 B= 1 2 1 z = -5.5

 0.5 -1 0.5

Optimized template
 0 0 0

a00=1 B= 2 2 2 z = -7

 1 -2 1

 10007

This template optimization is perfect if the CNN implementation is ideal. In a real
situation with a given VLSI implementation, more complex optimization procedures
are to be applied.

10.4. Template decomposition techniques

If the local Boolean function is not linearly separable then we can apply different
decomposition techniques. Many of these techniques are based on some assumptions
on the template values and the logic functions used for combining the consecutive
templates. A method described in Section 7.6 and another "compact" decomposition
method6 are used in the TEMPO program (Appendix C). The determination of the
minimal number of templates for any given F(⋅) is a computationally hard problem.
For the example given in Section 10.2, the 6 templates of the minterm decomposition
could not be reduced. At the same time, for the game of life problem both methods
yielded a decomposition of 2 templates only. The sequences of the 6 templates of our
example in Section 10.2 are as follows.

TEMPLATE 1

0.0 0.0 0.0 -1.0 -1.0 1.0

A = 0.0 1.0 0.0 B = 1.0 1.0 1.0 z = -8

0.0 0.0 0.0 1.0 -1.0 -1.0

XOR

TEMPLATE 2

0.0 0.0 0.0 -1.0 1.0 -1.0

A = 0.0 1.0 0.0 B = 1.0 1.0 1.0 z = -8

0.0 0.0 0.0 -1.0 1.0 -1.0

XOR

TEMPLARE 3

0.0 0.0 0.0 -1.0 1.0 1.0

A = 0.0 1.0 0.0 B = -1.0 1.0 -1.0 z = -8

0.0 0.0 0.0 1.0 1.0 -1.0

XOR

TEMPLATE 4

0.0 0.0 0.0 1.0 -1.0 -1.0

A = 0.0 1.0 0.0 B = 1.0 1.0 1.0 z = -8

0.0 0.0 0.0 -1.0 -1.0 1.0

XOR

6 L. Nemes, L.O. Chua, and T. Roska, Implementation of Arbitrary Boolean Functions on a CNN
Universal Machine, Int. J. CTA, Vol. 26, pp. 593-610, 1998

 10008

TEMPLATE 5

0.0 0.0 0.0 1.0 -1.0 1.0

A = 0.0 1.0 0.0 B = -1.0 1.0 -1.0 z = -8

0.0 0.0 0.0 1.0 -1.0 1.0

XOR

TEMPLATE 6

0.0 0.0 0.0 1.0 1.0 -1.0

A = 0.0 1.0 0.0 B = -1.0 1.0 -1.0 z = -8

0.0 0.0 0.0 -1.0 1.0 1.0

 10009

	Chapter 10
	Template design tools
	Various design techniques
	Binary representation, linear separability, and simple decom
	Template optimatization
	Template decomposition techniques

