
Chapter 5

Binary CNN Characterization via Boolean Functions

5.1. Binary and universal CNN truth table

 Our objective in this section is to show that every space-invariant binary (black-
and-white) CNN belonging to the uncoupled class (A0, B, z) with a 3x3 neighborhood
(r=1) which maps any static binary 3x3 input pattern U into a static binary 3x3 output
pattern Y(∞) can be uniquely defined by a Boolean function of 9 binary input
variables1

 uij = [u1, u2, u3, u4, u5, u6, u7, u8, u9]

T (5.1)

where ui ∈ {0, 1} denotes one of the 9 pixels within the sphere of influence of cell Cij as
shown in Fig.1(a). Note that we have opted for a “single” rather than a “double” subscript
notation to avoid clutter. Note also that uij has a subscript (ij) and is set in a bold face
type in order to distinguish it from the input uij (set in light-face type) of cell Cij.
Although we can code the 9 pixels ukl, kl∈{-1, 0, 1} by any combination of ui, we have
chosen the coding scheme shown in Fig.1(b) for pedagogical reasons that will be
obvious later. A simple mnemonic to reconstruct this code is to remember the subscript
“5” always refers to the input u00, corresponding to the center cell Cij, whereas the
subscripts {1, 2, 3, 4} refer to the surround cells in the N→E→S→W clockwise compass
directions, and the remaining subscripts {6, 7, 8, 9} refer to the surround cells in the
NE→NW→SE→SW clockwise compass directions.

 u-1,-1 u-1,0 u-1,1

u0,-1 u0,0 u0,1

u1,-1 u1,0 u1,1

u9 u8 u7

u6 u5 u4

u3 u2 u1

 ⇒

 (a) (b)
Fig.1 Every 3x3 binary pattern from (a) will henceforth be coded by the standard scheme in (b).

 Now given any static binary input pattern U, the color (black or white, since the
CNN is assumed to be binary) of any output pixel is determined uniquely by only a small
part of U exposed to a 3x3 transparent window centered at cell Cij, because the sphere of
influence S1(i,j) is assumed to be a 3x3 neighborhood. Hence the color {0, 1} of the
output pixel yij(∞) is uniquely determined by the binary value (0 or 1) of the 9 pixels u1,

1 We have chosen here {0,1} instead of {-1,1} as our binary codes in order to exploit directly the immense
literature and theory on Boolean functions, which are almost always couched in terms of “zeros” and
“ones”.

 5001

u2, ..., u9 exposed by the 3x3 window. This unique answer is obtained by solving the
system of MxN ODE having the prescribed CNN templates (A0, B, z), and prescribed
initial state x(0). Now even though there are infinitely many distinct templates (recall the
coefficients of A0, B, and z can be any real number, which is uncountable), there will be
only a finite (albeit very large) number of distinct combinations of 3x3 “checkerboard”
patterns of black and white cells, namely, 29 = 512.

Figure 1c shows how a single binary input is represented.

Fig. 1c Representing a single binary input

 Since each such pattern can map to either a “0”, or a “1”, there are exactly2

2 In order to appreciate how large the number Ω is, compare it to the following universal benchmarks:
• Age of the universe = 1030 picoseconds. • Mass of the universe (calculated in units of mass of a hydrogen atom) = 1080 • Volume of the universe (calculated as a sphere with a diameter of 10 thousand million light-years)

=1084 cm3

 5002

 Ω 922 = 2512 ≈ 1.3408x10154 > 10154 (5.2)

distinct Boolean maps of 9 binary variables. This maps can be ordered in a table shown in
Fig. 1d. Each row shows a different binary 9 input 1 output map.

Fig. 1d CNN Program Code of 9 variable binary input

 5003

Let Ω denote the universe of all such maps. Now since Ω is the maximal set, by
definition, the Boolean map generated by each member of the standard CNN universe
(A0, B, z) must be a member of Ω3

. Hence

 (A0, B, z)⊂ Ω (5.3)
We have just proved the following fundamental result:

 Theorem 1 Binary CNN Truth Table

 Every binary standard CNN with template (A0, B, z) and prescribed initial state
x(0) is a member of the universe Ω of all Boolean functions of 9 variables and is
therefore uniquely characterized by the CNN truth table shown in Fig.2, consisting of
512 rows (one for each distinct 3x3 checkerboard pattern), 9 input columns (one for
each binary input variables ui), and 1 output column whose value (0 or 1) corresponds to
yij(∞).

binary
pattern
number

input variables

output
yij(∞)

 u9 u8 u7 u6 u5 u4 u3 u2 u1
0
1

.
.
.

510
511

Fig. 2 Truth table for defining any Boolean functions of 9 variables.

 Theorem 1 gives us the most rigorous method for characterizing a space-invariant
binary CNN, and is therefore of fundamental importance. Since this table will in general
exceed the length of a typical page, let us divide it into 16 component truth tables each
one containing 32 rows. For example, the 16 component truth tables which characterize
the Edge templates are given in Fig.3(a)-3(p). To clarify our notations, in the first
component table shown in Fig.3(a), each entry for the input variables is coded by a “0”
or a “1”, instead of our earlier notation of “-1” and “1”, in order for us to exploit the
extensive theory and literature on Boolean functions, which are almost universally
couched in “zeros” and “ones”. Observe that we have ordered the binary values in the
truth table in the same order for enumerating the binary number 0, 1, 2, 3, ..., 511,
consecutively. Since it is usually more pleasing for the eyes to decode a table of black-

3 Note that (A0, B, z) may generate non-Boolean maps as well.

 5004

and-white cells than a table of “zeros” and “ones”, we will henceforth code our CNN
truth tables by black-and-white cells.

 To construct the truth table for any binary CNN (A0, B, z) with prescribed initial
state x(0), simply solve the associate system of differential equations for each input of
512 distinct binary patterns listed in Fig. 2 and fill in the corresponding calculated output,
either black (1) or (0). Since the 512 binary patterns are fixed, each corresponding to a 9-
bit binary expression of an integer N, N = 0,1, 2, ..., 511, it is easy to write a computer
program to generate the truth table automatically, given any templates (A0, B, z) and the
prescribed initial condition x(0). In particular, simply assume a 3x3 CNN array (M=N=3)
and find the solution of the center cell C00.

 Example 1 Edge CNN

 5005

1

3

5

7

2

4

6

8

 5006

9

11

13

15

10

12

14

16

Fig 3(a)-3(p)

 5007

The truth table for the edge CNN calculated by the above procedure is shown in Fig.3,
decomposed into 16 components, clearly, except for displaying a few of these truth tables
for analysis and pedagogical purposes, it is impractical to list the truth table of all useful
CNN’s. They can, however, easily be stored on a diskette, to be retrieved only when
needed. Displaying the truth table on a computer screen has the advantage of showing a
continuous table when any part of the table can be scrolled into the entire view.

 The alert reader will have already realized that the truth table format of Fig.1
contains a great deal of redundancy. Indeed, in each of the 16 components shown in
Fig.3, the domain of the binary input variables u1, u2, ..., u9, which constitutes the bulk of
the space of each table, remains unchanged. Hence, we only need to record the last
column of each of these 16 component tables. Since each column has 32 cells, we need
only store 16x32=512 pixel values (0 or 1) for each binary CNN (A0, B, z) with
prescribed initial conditions and will be able to reconstruct these 16 component tables.
For maximum space efficiency, we can pack all 16 columns from Fig.2, each with 32
entries, into 16 rows, next to each other to form a grid containing exactly 16x32=512
cells, as shown in Fig.4. Since this table contains the same information as those of Fig.2,
we have achieved an immerse amount of data compression. Indeed, since this table
contains only 512 entries, one for each input pattern, it is a minimal representation. We
will henceforth refer to Fig. 4 as minimal CNN truth table.

Fig. 4 Minimal CNN truth table

Corollary to Theorem 1
 Every space-invariant binary CNN with a 3x3 neighborhood and specified by
templates (A0, B, z) and a prescribed initial state X(0) is associated with a unique
minimal CNN truth table.
 Remarks

 5008

 1. The uniqueness assertion in the above corollary is with respect to a given
template (A0, B, z) and initial state X(0). It is not unique with respect to a given “global
task” since a given task in general can be implemented by many distinct CNN templates (
infinitely many indeed).
 2. The above corollary only asserts that for every CNN template (A, B, z) and
initial state, there corresponds, a minimal truth table, or equivalently, a Boolean function
of 9 variables. However, the converse is not true, i.e., given a Boolean function ∈ Ω, or
its associated minimal truth table, there may not exist a CNN template and an initial state
X(0) which yields this truth table. However, we will prove later that every member of Ω,
i.e., every Boolean function of 9 variables, can be realized by a CNN universal machine
to be studied in depth later. We will prove later that there are more than 10154 such
Boolean functions of 9 variables that can be programmed by a single CNN universal
machine. This immensely large number is greater than the volume of the universe (1084
cm3, calculated as a sphere with a diameter of 10 thousand million light years) !

5.2. Boolean and Compressed Local Rules
 Every CNN with 3x3 neighborhood or its generalization, the CNN universal
machine, to be presented later which maps a static binary input image into a static binary
output image has a unique CNN truth table representation consisting of 512 rows, each
one mapping a Boolean expression involving 9 Boolean variables, into a “0” or a “1”
digit:

 (d1, d2, d9)→{0,1} (5.4)

where di∈{0,1}. We can now define rigorously our earlier heuristic notation of a local
rule:

 Definition 1: Complete Set of CNN Boolean Local Rules

 Each row of the CNN truth table is called a Boolean CNN local rule. Every CNN
with 3x3 neighbors is rigorously defined by a complete set of 512 Boolean Local Rules.

 Definition 2: Compressed Boolean Local Rules

 Any other rule which can be used to derive one or more Boolean local rules is
called a compressed local rule, or simple local rule if the usage is clear.

 The motivation for devising compressed local rules is simply to reduce the large
number (512) of Boolean local rules to a smaller number. They are usually derived by
heuristic methods and may not be adequate in view of the following reasons:

 (a) While some local rule may correctly reproduce a large subset of the Boolean
local rules, it may contradict some others. In this case, we say it is an inconsistent local
rule. If the inconsistency occurs only for a few rare input patterns, it may still be useful
for pedagogical purpose especially if the

 5009

local rule Compression Ratio γLR number of correctly reproduced Boolean local
 rules divided by 512.

is sufficiently large, γLR≤ 1. In this case the errors may be acceptable for pedagogical
reasons especially if this local rule makes it possible to visualize or identify the main
features of the input image that are to be extracted, modified, or transformed.

(b) The set of compressed local rules are incomplete in the sense that some
Boolean local rules can not be deduced from them.

 Definition 3: Complete Set of Compressed Local Rules.

 A set of compressed local rules is said to be complete if and only if no member of
this set is inconsistent and if all 512 Boolean local rules can be deduced from this set.

 Definition 4: Minimal Set of Compressed Local Rules.

 A complete set of compressed local rules is said to be minimal if no member of
this set can be eliminated and still achieve completeness.

Computer-Aided Method for Proving Local Rules

 Given a CNN template (A0, B, z) and initial state X(0), there is presently no
systematic algorithm to derive a complete set

 LR = { 1, 2, ..., p } (5.5)

of local rules which are sufficient to map any binary input patterns into the prescribed
output patterns obtained by solving the associated system of ODE’s. In most cases, only a
subset LR ⊂ LR may be found. On rare occasions, a superset LR ⊃ LR may be found.

On few occasions, some local rules may be redundant in the sense that for some input
patterns, they predict the same output. It is also quite possible that two or more local rules
may contradict each other’s prediction and hence are said to be inconsistent. Finally,
given a complete set of local rules, does there exist a proper subset which is also
complete? If so, is it possible to find a complete set of local rules which are minimal in
the sense that no other complete set exists which contains a fewer number of elementary
local rules? We will now show that all of these questions, except the last one, can be
easily resolved with the help of the CNN truth table, or equivalently, its associated
minimal truth table. We will give a constructive solution to each question (except the last
one) raised above in the form of an algorithm.

Algorithm 1: Checking whether a local rule candidate i is consistent

 5010

1. Use the prescribed template (A0, B, z) and initial state X(0) to derive the
associated CNN truth table .

2. Apply the local rule 1 to each of the 512 input patterns. In general, 1 may

not be applicable (NA) for some patterns (due to inadequate or overly
simplistic assumptions). In this case, the output cell will be denoted by NA,
or simply coded in gray scale. For those input patterns where 1 is applicable,

there are 3 possibilities for the output cell: (i) output is black (coded by
Boolean number 1) and agrees with the corresponding output in the truth
table. In this case, the output will be printed “black”. (ii) output is white
(coded by Boolean number 0) and agrees with the corresponding output in the
truth table. In this case, the output cell will be printed “white”. (iii) the output
is black (resp. white) but the corresponding cell in the truth table is white
(resp., black). In this case, the output cell will be denoted by a cross ,
thereby indicating 1 is inconsistent and is not a valid local rule.

1. The local rule 1 is proved to be valid if and only if it is not inconsistent.

Algorithm 2: Checking whether a set = { 1, 2,..., k} is complete.

1. Derive the CNN truth table , as in Algorithm 1.

2. Apply Algorithm 1 to each 1∈ . If any i is inconsistent, stop. Otherwise, go
to 3.

3. If each output cell is predicted to be either black or white by at least one local
rule i ∈ , then is complete. In this case, we have a rigorous proof of the
validity and completeness of the set of local rules.

Algorithm 3: Given a complete set LR of local rules, find a smallest proper subset
which is also complete.

1. Delete 1 from LR and apply Algorithm 2 to the remaining set. If it is
complete, delete the first 2 elements 1 and 2 from LR and repeat Algorithm
2. Continue the same “pruning” procedure until the remaining set is no longer
complete. In this case, the immediately preceding remaining set of local rules
constitutes the smallest complete set with respect to the order where the
elements of LR are deleted.

2. Repeat step 1 to all permutations of the ordering of the members of LR.

3. Any complete set resulting from steps 1 and 2 having the smallest number of
elements is a minimal complete set, relative to LR.

 Remarks:

 5011

 1: The above choice of minimal complete set may not be unique. Since there may
exist several complete sets all containing the same smallest number of elements.

 2: The “minimality” derived from Algorithm 3 may not be global in the sense that
there may exist an entirely different set LR of complete rules in which Algorithm 3

would yield a minimal complete set having fewer elements than that determined from

LR. The difficulty in deriving a global minimal complete set is that there is no obvious

algorithm to guarantee all distinct sets of complete local rules have been exhausted. A
further difficulty lies in the criterion to be used for certifying which local rule is qualified
as elementary. For otherwise, one could combine several local rules into a single but
more complex local rule. Hence it is necessary to define “elementary” in the sense that no
decomposition into two or more simpler local rules is possible. The algorithms are
contained in the TEMPO program (Appendix C)

5.2. Optimizing the Truth Table

 Recall that once a CNN template is specified a unique truth table can be easily
generated by a simple computer program, say by solving a system of 9 ODE’s a total of
512 times, one for each distinct Boolean pattern of nine input variables, or by some
explicit formula that applies only to some specific subclass of CNN’s, e.g., the uncoupled
class. One can examine each of the 512 3x3 binary input patterns and determine whether
the output (black or white) of this CNN is “correct” from the user’s perspective. The next
tables (Table 1-11) show Minimal Truth Table, the Truth Tables and the Window Truth
Tables of the CORNER template. However, for example, among the 32 input patterns
shown in Table 5 (corresponding to the Boolean local rules no. 96-127) and the 32 input
patterns shown in Table 6 (corresponding to the Boolean local rules no. 160-191) for the
CORNER CNN, we found the “black” output of this CNN for input patterns no. 114,
116, 176, 177, 178, 180, and 184 to be “incorrect” in the sense that the center black pixel
in each of these 7 input patterns do not look like “corners”, from the perspective of the
human visual system. Similarly ,we also disagree with this CNN’s classification (white;
i.e., not corner) of input patterns no.115 and 121 because the black center pixel in this
two patterns really look like a “corner”. Hence, we would consider these 9 classifications
made by the CORNER CNN to be “incorrect”. It is important that this does not mean the
CORNER truth table is incorrect, as every truth table is an exact and hence correct
representation of the CNN having the prescribed template. Indeed, from the perspective
of a robot, or some creatures having a different visual system, the above classifications
may be completely acceptable.

 From the human perspective, however, it would be desirable to reclassify the
above 9 Boolean local rules to obtain an optimized CNN truth table4. Once this is done,
our next task is to design a CNN template (which may not exist) having this optimized

4 This reclassification task is a subjective exercise since not everyone may agree on whether a particular
pixel in fuzzy cases is a corner, or not a corner.

 5012

truth table. If no such template exists, we will show later that a CNN universal machine
can always be used to realize this optimized truth table, or any other truth table.

 As an example, all misclassified input patterns by the CORNER CNN are
designated in the minimal truth table shown in Table 12 by a light-gray pixel, if this pixel
should be reclassified as white, and by a dark-gray pixel, if this pixel should be
reclassified as black. The resulting optimized CORNER CNN is shown in Table 13. We
leave this as a challenge to the reader invent a CNN template having this optimized
CORNER truth table. Tables 14 and 15 show the binary and decimal code for the
CORNER and optimized CORNER templates, respectively.

 5013

Minimal Truth Table of CORNER Template

Table 1

 5014

Table 2

 5015

Table 3

 5016

Tables of Input-Output patterns for CORNER
template (1, 2)

Table 4

 5017

Tables of Input-Output patterns for CORNER
template (3, 4)

Table 5

 5018

Tables of Input-Output patterns for CORNER
template (5, 6)

Table 6

 5019

Tables of Input-Output patterns for CORNER
template (7, 8)

Table 7

 5020

Tables of Input-Output patterns for CORNER
template (9, 10)

Table 8

 5021

Tables of Input-Output patterns for CORNER
template (11, 12)

Table 9

 5022

Tables of Input-Output patterns for CORNER
template (13, 14)

Table 10

 5023

Tables of Input-Output patterns for CORNER
template (15, 16)

Table 11

 5024

Corrected Minimal Truth Table of CORNER template

 squares correspond to corner misclassification (they should be white)
 squares correspond to non-corner misclassification (they should be black)

Table 12

 5025

Optimized Minimal Truth Table of CORNER Template

Table 13

 5026

 5027

Binary Code for CORNER Template
(512 bits)

 00000000,00000000,00000000,00000000,00000000,00000001,00000000,00000000
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000
,00010111,01111111,00000000,00000000,01111111,11111111,00000000,00000000

Decimal Code for CORNER Template

(140 digits)

47,634,102,646,527,572,675,971
,460,498,910,645,354,219,674,273,748,634,236,474,670
,546,006,561,432,941,907,354,541,093,642,727,873,594
,350,604,011,030,198,552,062,948,695,326,343,495,680

Table 14

 5028

Binary Code for Optimized CORNER Template
(512 bits)

,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000
,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000
,00000000,00000001,00000000,00000000,00000000,00000101,00000000,00000000
,00000000,01010101,00000000,00000000,00000001,01010101,00000000,00000000
,00000000,00000001,00000000,00000000,00000011,00000011,00000000,00000000
,00000000,00010001,00000000,00000000,00000011,00110011,00000000,00000000
,00000000,00000111,00000000,00000000,00000111,00001111,00000000,00000000
,00000000,01011111,00000000,00000000,11111111,11111111,00000000,00000000

Decimal Code for Optimized CORNER Template

(150 digits)

204,586,913,041,142,969,522,351,928,009,830
,941,404,290,185,269,210,065,083,499,186,859,428,943
,804,165,897,630,843,608,945,882,697,576,708,597,045
,469,082,137,675,717,688,639,024,082,912,326,647,808

Table 15

	Chapter 5
	Binary CNN Characterization via Boolean Functions
	Binary and universal CNN truth table
	Boolean and Compressed Local Rules
	Optimizing the Truth Table

