
Chapter 5 

Binary CNN Characterization via Boolean Functions 
 

5.1. Binary and universal CNN truth table 
 
 Our objective in this section is to show that every space-invariant binary ( black-
and-white) CNN  belonging to the uncoupled class (A0, B, z)  with a 3x3 neighborhood 
(r=1) which maps any static binary  3x3 input pattern U into a static binary 3x3 output 
pattern Y(∞) can be uniquely defined by a Boolean function  of  9 binary input 
variables1

 
  uij = [u1, u2,  u3,  u4,  u5, u6, u7,  u8,  u9]

T    (5.1) 
 
where ui ∈ {0, 1} denotes one of the 9 pixels within the sphere of influence of cell Cij as 
shown in Fig.1(a). Note that we have opted for a “single” rather than a “double” subscript 
notation to avoid clutter. Note also that uij has a subscript (ij) and is set in a bold face 
type in order to distinguish it from the input uij  (set in light-face type) of cell Cij. 
Although we can code the 9 pixels ukl, kl∈{-1, 0, 1} by any combination of  ui, we have 
chosen the coding  scheme shown in Fig.1(b) for pedagogical reasons that will be 
obvious later. A simple mnemonic to reconstruct this code is to remember the subscript 
“5” always refers to the input u00, corresponding to   the center cell Cij, whereas the 
subscripts {1, 2, 3, 4} refer to the surround cells in the N→E→S→W clockwise compass 
directions, and the remaining subscripts {6, 7, 8, 9} refer to the surround cells in the 
NE→NW→SE→SW clockwise compass directions. 
 

      u-1,-1 u-1,0 u-1,1

u0,-1 u0,0 u0,1

u1,-1 u1,0 u1,1

u9 u8 u7

u6 u5 u4

u3 u2 u1

 ⇒  
 
 

                                 (a)                                           (b)  
Fig.1 Every 3x3 binary pattern from (a) will henceforth be coded by the standard scheme in (b). 

 
 Now given any static binary input pattern U, the color (black or white, since the 
CNN is assumed to be binary) of any output pixel is determined uniquely by only a small 
part of U exposed to a 3x3 transparent window centered at cell Cij, because the sphere of 
influence S1(i,j) is assumed  to be a 3x3 neighborhood. Hence the color {0, 1} of the 
output pixel yij(∞) is uniquely determined by the binary value (0 or 1) of the 9 pixels u1, 

                                                           
1 We have chosen here {0,1} instead of {-1,1} as our binary codes in order to exploit directly the immense 
literature and theory on Boolean functions, which are almost always couched in terms of  “zeros” and 
“ones”. 
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u2, ..., u9 exposed by the 3x3 window. This unique answer is obtained by solving the 
system of MxN ODE having the prescribed CNN templates (A0, B, z), and prescribed 
initial state x(0). Now even though there are infinitely many distinct templates (recall the 
coefficients of A0, B, and z can be any real number, which is uncountable), there will be 
only a finite (albeit very large) number of distinct combinations of 3x3 “checkerboard” 
patterns of black and white cells,  namely, 29 = 512.  
 
Figure 1c shows how a single binary input is represented. 

 
 

Fig. 1c  Representing a single binary input   
  

 Since each such pattern can map to either a “0”, or a “1”, there are exactly2

                                                           
2 In order to appreciate how large the number Ω is, compare it to the following universal benchmarks: 
• Age of the universe = 1030 picoseconds. • Mass of the universe (calculated in units of mass of a hydrogen atom) = 1080 • Volume of the universe  (calculated as a sphere with a diameter of 10 thousand million light-years) 

=1084 cm3 
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  Ω 922 = 2512 ≈ 1.3408x10154 > 10154    (5.2) 

 
distinct Boolean maps of 9 binary variables. This maps can be ordered in a table shown in 
Fig. 1d. Each row shows a different binary 9 input 1 output map.  

 
 

Fig. 1d CNN Program Code of  9 variable binary input 
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Let Ω denote the universe of all such maps. Now since Ω is the maximal set, by 
definition, the Boolean map generated by each member of the standard CNN universe
(A0, B, z) must be a member of  Ω3

.   Hence 
 

  (A0, B, z)⊂ Ω       (5.3) 
We have just proved the following fundamental result: 
 
 Theorem 1 Binary CNN Truth Table  

 Every binary standard CNN with template (A0, B, z) and prescribed initial state 
x(0) is a member of the universe Ω of all Boolean functions of 9 variables and is 
therefore uniquely characterized by the CNN truth table shown in Fig.2, consisting of 
512 rows ( one for each distinct 3x3 checkerboard pattern), 9 input columns ( one for 
each binary input variables ui), and 1 output column whose value (0 or 1) corresponds to 
yij(∞). 

 
binary 
pattern 
number 

input variables 
 

output 
yij(∞) 

 u9 u8 u7 u6 u5 u4 u3 u2 u1  
0           
1           
 
. 
. 
. 
 

          

510           
511           

 
Fig. 2 Truth table for defining any Boolean functions of 9 variables. 

 
 Theorem 1 gives us the most rigorous method for characterizing a space-invariant 
binary CNN, and is therefore of fundamental importance. Since this table will in general 
exceed the length of a typical page, let us divide it into 16 component truth tables each 
one containing 32 rows. For example, the 16 component truth tables which characterize 
the Edge templates are given in Fig.3(a)-3(p). To clarify our notations, in the first 
component table shown in Fig.3(a),  each entry for the input variables is coded by a “0” 
or a “1”, instead of our earlier notation of  “-1” and “1”, in order for us to exploit the 
extensive theory and literature on Boolean functions, which are almost universally 
couched in “zeros” and “ones”. Observe that we have ordered the binary values in the 
truth table in the same order for enumerating the binary number 0, 1, 2, 3, ..., 511, 
consecutively. Since it is usually more pleasing for the eyes to decode a table of black-
                                                           
3 Note that (A0, B, z) may generate non-Boolean maps as well. 
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and-white cells than a table of  “zeros” and “ones”, we will henceforth code our CNN 
truth tables by black-and-white cells. 
 
 To construct the truth table for any binary CNN (A0, B, z) with prescribed initial 
state x(0), simply solve the associate system of differential equations for each input of 
512 distinct binary patterns listed in Fig. 2 and fill in the corresponding calculated output, 
either black (1) or (0). Since the 512 binary patterns are fixed, each corresponding to a 9-
bit binary expression of an integer N, N = 0,1, 2, ..., 511, it is easy to write a computer 
program to generate the truth table automatically, given any templates (A0, B, z) and the 
prescribed initial condition x(0). In particular, simply assume a 3x3 CNN array (M=N=3) 
and find the solution of the center cell C00. 
 
 Example 1  Edge CNN  
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Fig 3(a)-3(p)
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The truth table for the edge CNN calculated by the above procedure is shown in Fig.3, 
decomposed into 16 components, clearly, except for displaying a few of these truth tables 
for analysis and pedagogical purposes, it is impractical to list the truth table of all useful 
CNN’s. They can, however, easily be stored on a diskette, to be retrieved only when 
needed. Displaying the truth table on a computer screen has the advantage of showing a 
continuous table when any part of the table can be scrolled into the entire view. 

 The alert reader will have already realized that the truth table format of  Fig.1 
contains a great deal of redundancy. Indeed,  in each of the 16 components shown in 
Fig.3, the domain of the binary input  variables u1, u2, ..., u9, which constitutes the bulk of 
the space of each table, remains unchanged. Hence, we only need to record the last 
column of each of these 16 component tables. Since each column has 32 cells, we need 
only store 16x32=512 pixel values (0 or 1) for each binary CNN (A0, B, z) with 
prescribed initial conditions and will be able to reconstruct these 16 component tables. 
For maximum space efficiency, we can pack all 16 columns from Fig.2, each with 32 
entries, into 16 rows, next to each other to form a grid containing exactly 16x32=512 
cells, as shown in Fig.4. Since this table contains the same information as those of Fig.2, 
we have achieved an immerse amount of data compression. Indeed, since this table 
contains only 512 entries, one for each input pattern, it is a minimal representation. We 
will henceforth refer to Fig. 4 as minimal CNN truth table.  

 

 
 

Fig. 4 Minimal CNN truth table 
 

Corollary to Theorem 1 
 Every space-invariant binary CNN with a 3x3 neighborhood and specified by 
templates (A0, B, z) and a prescribed initial state X(0) is associated with a  unique 
minimal CNN truth table. 
 Remarks 
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 1. The uniqueness assertion in the above corollary is with respect to a given 
template (A0, B, z) and  initial state X(0). It is not unique with respect to a given “global  
task” since a given task in general can be implemented by many distinct CNN templates ( 
infinitely many indeed ).  
 2. The above corollary only asserts that for every CNN template (A, B, z) and 
initial state, there corresponds, a minimal truth table, or equivalently, a Boolean function 
of 9 variables. However, the converse is not true, i.e., given a Boolean function ∈ Ω,  or 
its associated minimal truth table, there may not exist a CNN template and an initial state 
X(0) which yields this truth table. However, we will prove later that every member of Ω, 
i.e., every Boolean function of 9 variables, can be realized by a CNN universal machine 
to be studied in depth later. We will prove later that there are more than 10154 such 
Boolean functions of 9 variables that can be programmed by a single CNN universal 
machine. This immensely large number  is greater than the volume of the universe (1084 
cm3, calculated as a sphere with a diameter of 10 thousand million light years) ! 
 

5.2.  Boolean and Compressed Local Rules 
 Every CNN with 3x3 neighborhood or its generalization, the CNN universal 
machine, to be presented later which maps a static binary input image into a static binary 
output image has a unique CNN truth table representation consisting of 512 rows, each 
one mapping a Boolean expression involving 9 Boolean variables, into a “0” or a “1” 
digit: 
 

  (d1, d2 ...., d9)→{0,1}       (5.4) 
 
where di∈{0,1}. We can now define rigorously our earlier heuristic notation of a local 
rule: 
 

 Definition 1: Complete Set of CNN Boolean Local Rules 

 Each row of the CNN truth table is called a Boolean CNN local rule. Every CNN 
with 3x3 neighbors is rigorously defined by a complete set of 512 Boolean Local Rules. 

 

 Definition 2: Compressed Boolean Local Rules 

 Any other rule which can be used to derive one or more Boolean local rules is 
called a compressed local rule, or simple local rule if the usage is clear. 

 The motivation for devising compressed local rules is simply to reduce the large 
number (512) of Boolean local rules to a smaller number. They are usually derived by 
heuristic methods and may not be adequate in view of the following reasons: 

 (a) While some local rule may correctly reproduce a large subset of the Boolean 
local rules, it may contradict some others. In this case, we say it is an inconsistent local 
rule. If the inconsistency occurs only for a few rare input patterns, it may still be useful 
for pedagogical purpose especially if the  
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local rule Compression Ratio γLR number of correctly reproduced Boolean local  
        rules divided by 512. 

is sufficiently large, γLR≤ 1. In this case the errors may be acceptable for pedagogical 
reasons especially if this local rule makes it possible to visualize or identify the main 
features of the input image that are to be extracted, modified, or transformed. 

(b) The set of compressed local rules are incomplete in the sense that some 
Boolean local rules can not be deduced from them. 

 

 Definition 3: Complete Set of Compressed Local Rules. 

 A set of compressed local rules is said to be complete if and only if no member of 
this set is inconsistent and if all 512 Boolean local rules can be deduced from this set. 

 

 Definition 4: Minimal Set of Compressed Local Rules. 

 A complete set of compressed local rules is said to be minimal if no member of 
this set can be eliminated and still achieve completeness. 

 

Computer-Aided Method for Proving Local Rules  

 

 Given a CNN template (A0, B, z) and initial state X(0), there is presently no 
systematic algorithm to derive a complete set  
 

  LR = { 1, 2, ..., p }       (5.5) 

 
of local rules which are sufficient to map any binary input patterns into the prescribed 
output patterns obtained by solving the associated system of ODE’s. In most cases, only a 
subset LR ⊂ LR may be found.  On rare occasions, a superset LR ⊃ LR may be found. 

On few occasions, some local rules may be redundant in the sense that for some input 
patterns, they predict the same output. It is also quite possible that two or more local rules 
may contradict each other’s prediction and hence are said to be inconsistent. Finally, 
given a complete set of local rules, does there exist a proper subset which is also 
complete? If so, is it possible to find a complete set of local rules which are minimal in 
the sense that no other complete set exists which contains a fewer number of elementary 
local rules? We will now show that all of these questions, except the last one, can be 
easily resolved with the help of the CNN truth table, or equivalently, its associated 
minimal truth table. We will give a constructive solution to each question (except the last 
one) raised above in the form of an algorithm. 
 
Algorithm 1: Checking whether a local rule candidate i  is consistent 
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1. Use the prescribed template (A0, B, z) and  initial state X(0) to derive the 
associated CNN truth table .  

2. Apply the local rule 1 to each of the 512 input patterns. In general, 1 may 

not be applicable (NA) for some patterns (due to inadequate or overly 
simplistic assumptions).  In this case, the output cell will be denoted by NA, 
or simply coded in gray scale. For those input patterns where 1 is applicable, 

there are 3 possibilities for the output cell:  (i) output is black (coded by 
Boolean number 1) and agrees with the corresponding output in the truth 
table. In this case, the output will be printed “black”. (ii) output is white 
(coded by Boolean number 0) and agrees with the corresponding output in the 
truth table. In this case, the output cell will be printed “white”. (iii) the output 
is black (resp. white) but the corresponding cell in the truth table is white 
(resp., black). In this case, the output cell will be denoted by a cross ,  
thereby indicating 1 is inconsistent and is not a valid local rule.  

1. The local rule 1 is proved to be valid if and only if it is not inconsistent. 

 
Algorithm 2: Checking whether a set = { 1, 2,..., k}  is complete. 
 

1. Derive the CNN truth table , as in  Algorithm 1. 

2. Apply Algorithm 1 to each 1∈ . If any i is inconsistent, stop. Otherwise, go 
to 3. 

3. If each output cell is predicted to be either black or white by at least one local 
rule i ∈ , then   is complete. In this case, we have a rigorous proof of the 
validity and completeness of the set of local rules. 

 
Algorithm 3:  Given a complete set LR of  local rules, find a smallest proper subset 
which is also  complete. 
 

1. Delete 1 from LR  and apply Algorithm 2 to the remaining set. If it is 
complete, delete the first 2 elements 1 and 2 from LR and repeat Algorithm 
2. Continue the same “pruning” procedure until the remaining set is no longer 
complete. In this case, the immediately preceding remaining set of local rules 
constitutes the smallest complete set with respect to the order where the 
elements of LR are deleted. 

2. Repeat step 1 to all permutations of the ordering of the members of LR. 

3. Any complete set resulting from steps 1 and 2 having the smallest number of 
elements is a minimal complete set, relative to LR. 

 
 
 Remarks: 
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 1: The above choice of minimal complete set may not be unique. Since there may 
exist several complete sets all containing the same smallest number of elements. 

 2: The “minimality” derived from Algorithm 3 may not be global in the sense that 
there may exist an entirely different set LR of complete rules in which Algorithm 3 

would yield a minimal complete set having fewer elements than that determined from 

LR. The difficulty in deriving a global minimal complete set is that there is no obvious 

algorithm to guarantee all distinct sets of complete local rules have been exhausted. A 
further difficulty lies in the criterion to be used for certifying which local rule is qualified 
as elementary. For otherwise, one could combine several local rules into a single but 
more complex local rule. Hence it is necessary to define “elementary” in the sense that no 
decomposition into two or more simpler local rules is possible. The algorithms are 
contained in the TEMPO program (Appendix C) 
 

5.2. Optimizing the Truth Table 
 
 Recall that once a CNN template is specified a unique truth table can be easily 
generated by a simple computer program, say by solving a system of 9 ODE’s a total of 
512 times, one for each distinct Boolean pattern of nine input variables, or by some 
explicit formula that applies only to some specific subclass of CNN’s, e.g., the uncoupled 
class. One can examine each of the 512  3x3 binary input patterns and determine whether 
the output (black or white) of this CNN is “correct” from the user’s perspective. The next 
tables (Table 1-11) show Minimal Truth Table, the Truth Tables and the Window Truth 
Tables of the CORNER template. However, for example, among the 32 input patterns 
shown in Table 5 (corresponding to the Boolean local rules no. 96-127) and the 32 input 
patterns shown in Table 6 (corresponding to the Boolean local rules no. 160-191) for the 
CORNER CNN, we found the “black” output of this CNN for input patterns no. 114, 
116, 176, 177, 178, 180, and 184 to be “incorrect” in the sense that the center black pixel 
in each of these 7 input patterns do not look like “corners”, from the perspective of the 
human visual system. Similarly ,we also disagree with this CNN’s classification (white; 
i.e., not corner) of input patterns no.115 and 121 because the black center pixel in this 
two patterns really look like a “corner”. Hence, we would consider these 9 classifications 
made by the CORNER CNN to be “incorrect”. It is important that this does not mean the 
CORNER truth table is incorrect, as every truth table is an exact and hence correct 
representation of the CNN having the prescribed template. Indeed, from the perspective 
of a robot, or some creatures having a different visual system, the above classifications 
may be completely acceptable.  
 

 From the human perspective, however, it would be desirable to reclassify the 
above 9 Boolean local rules to obtain an optimized CNN truth table4. Once this is done, 
our next task is to design a CNN template (which may not exist) having this optimized 

                                                           
4 This reclassification task is a subjective exercise since not everyone may agree on whether a particular 
pixel in fuzzy cases is a corner, or not a corner. 
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truth table. If no such template exists, we will show later that a CNN universal machine 
can always be used to realize this optimized truth table, or any other truth table. 

 As an example, all misclassified input patterns by the CORNER CNN are 
designated in the minimal truth table shown in Table 12 by a light-gray pixel, if this pixel 
should be reclassified as white, and by a dark-gray pixel, if this pixel should be 
reclassified as black. The resulting optimized CORNER CNN is shown in Table 13.  We 
leave this as a challenge to the reader invent a CNN template having this optimized 
CORNER truth table. Tables 14 and 15 show the binary and decimal code for the 
CORNER and optimized CORNER templates, respectively. 
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Minimal Truth Table of CORNER Template 

 
 
 

 
 
 
 
 
 
 

Table 1 
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Table 3
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Tables of Input-Output patterns for CORNER 
template (1, 2) 

 

 
 

 
Table 4 
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Tables of Input-Output patterns for CORNER 
template (3, 4) 

 

 
 

 
Table 5
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Tables of Input-Output patterns for CORNER 
template (5, 6) 

 

 
 

 
Table 6
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Tables of Input-Output patterns for CORNER 
template (7, 8) 

 

 
 

 
Table 7

 5020



Tables of Input-Output patterns for CORNER 
template (9, 10) 

 

 
 

 
Table 8
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Tables of Input-Output patterns for CORNER 
template (11, 12) 

 

 
 

 
Table 9
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Tables of Input-Output patterns for CORNER 
template (13, 14) 

 

 
 

 
Table 10 
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Tables of Input-Output patterns for CORNER 
template (15, 16) 

 

 
 

 
Table 11 
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Corrected Minimal Truth Table of CORNER template 

 

   squares correspond to corner misclassification (they should be white) 
  squares correspond to non-corner misclassification (they should be black) 

 
 
 
 
 
 

 
 
 

Table 12 
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Optimized Minimal Truth Table of CORNER Template 

 
 
 

 
 
 
 

 
 
 

 
Table 13 
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Binary Code for CORNER Template 
(512 bits) 

 
 00000000,00000000,00000000,00000000,00000000,00000001,00000000,00000000 
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000 
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000 
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000 
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000 
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000 
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000 
,00010111,01111111,00000000,00000000,01111111,11111111,00000000,00000000 

 
Decimal Code for CORNER Template 

(140 digits) 
 

47,634,102,646,527,572,675,971 
,460,498,910,645,354,219,674,273,748,634,236,474,670 
,546,006,561,432,941,907,354,541,093,642,727,873,594 
,350,604,011,030,198,552,062,948,695,326,343,495,680 

 
Table 14 
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Binary Code for Optimized CORNER Template 
(512 bits) 

 
,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000 
,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000 
,00000000,00000001,00000000,00000000,00000000,00000101,00000000,00000000 
,00000000,01010101,00000000,00000000,00000001,01010101,00000000,00000000 
,00000000,00000001,00000000,00000000,00000011,00000011,00000000,00000000 
,00000000,00010001,00000000,00000000,00000011,00110011,00000000,00000000 
,00000000,00000111,00000000,00000000,00000111,00001111,00000000,00000000 
,00000000,01011111,00000000,00000000,11111111,11111111,00000000,00000000 

 
Decimal Code for Optimized CORNER Template 

(150 digits) 
 

204,586,913,041,142,969,522,351,928,009,830 
,941,404,290,185,269,210,065,083,499,186,859,428,943 
,804,165,897,630,843,608,945,882,697,576,708,597,045 
,469,082,137,675,717,688,639,024,082,912,326,647,808 

 
Table 15 
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