Chapter 7
I ntroduction to the CNN Universal Machine

We have seen in Chapter 6 that ribtasks can be implemented by a single CNN
template, the XOR function is a typical example.

There are many tasks which are solN®d applying several templates, or by
applying one template several times. If we considéznaplate as an instructiowith
well defined input and output, we can defin€MN subroutineor function(as in C like
languages)when applying several templates. We can build up processes and complete
programs from functions and other instructions.

We define a subroutine by specifying the following items:
the input/output parameters,
the global task,
the informal description of the algorithm,
the CNN implementation.

In this chapter the CNN implementation is given by 3 equivalent ways:

--the hardware schemati¢csupposing each CNN template (placed in the
CNN Software Library) is implemented bysagparate device containing discrete hard
wired cells and additional local (cell by cell) and global devices.

- aflow diagram of the CNN algorithnand

- alist of consecutive instructionsienceforth called program written in
a simple vocabulary involving the CN&halog andlogic operations, henceforth called
an analogic CNNanguagepr simply“ &’ language
An Alpha Compilelis supposed to exist to transléte code into executable programs un
CNN chips. We will describe this process later in Chapter 9.

Indeed, we follow the theory and practimiedigital computers. According to the
classic Turing-Church thesis, each algorithnfirg®l on integers or on a finite set of
symbols (e.g., “yes’ or “n0”) can be equivalently expressed by
e a Turingmachine
e a recursive function (amlgorithmic descriptionusing a finite set of elementary

operators), and
e a program defined on a computer usirgrguage

As to thea languagethe key instruction is the CNN template operation defined as
TemplateName(Inputimage,InitialStatelge, Outputimage, Timelnterval,BoundaryCond)

for example
EDGE (LLM1, LLM2, LLM3, 10, -1)

7001

means that an edge detector template c8[@GE is applied with input, initial state, and
output images denoted/stored by/in LLM1M2, LLM3 images, the output is taken at

time t=10 (measured in the time constant of the CNN tgll,), and the fixed boundary
value is -1.

7.1 Global clock and global wire
Definition: a component is calleglobal if its output depends on all cells of the array or
its output effects all cells of the array.

Like in any programmable system we need a clock. To emphasize that within one
CNN template operation there is dlock, we will call our clock as global clock(GCL).
This means that during one clock cycle entire array of cells implements the same
template instruction.

The global clock is used to control & séswitches (enabling, disabling, latching
functions) which provide that at a given dtocycle only the prescribed signal route is
open.

In many cases we have to decideettier any black pixel remains in the
processed image, i.e. whether it is comyetenite or not. We call the operation GW(.)
which tests this property (it is called “global i, “global wire”, or “global line” in the
literature).

GW(.) is defined as follows:
Given a binary image P containing MxN pixels.
1(Yes) if all the pixels of P are whife-1)
GW(P)=
No if atleast one pixelin Pis bla¢k)

in some implementations “NO” is represented by 0.

7.2 Set inclusion

We want to detect whether

Sc S

S; and $ are represented by pictures &d B, respectively. A pixel is black if the
corresponding element is included in the given set. B if and only if all black pixels
defining R are elements of the black pixels representing P

Now we following define the subroutine or function SUBSET 1(,, ., .).

| SUBSET 1(P1, P2, Y) |

P1, P2: binary images of size MxN, thiack pixels are representing the relevant
sets.

Y: logical value, Yes or No, represented by 1 and -1 , respectively.

7002

Global task: determine whether a set S2 definedaonEuclidean plane is a subset of
another set S1.

Algorithm
GivenP; and B. The algorithm consists of 3 steps:
P3:=NOT(P1)
P1:=P3AND P2

IF P1 contains only white pixels THEN
Y:=1(Yes) ELSE Y:=-1 (No)

Remark:The NOT and AND operations are acting pixel by pixel.

Examplel:

set P2 set P1 R1 P2

(

NOT P1 (NOT P1) AND P2

s | @ @

set P2 set P1 R1P2=P1

Example2:

7003

NOT P1 (NOT P1) AND P2
CNN implementation

A: Hardwired components

To implement this algorithm via CNN we need some additional components in
each cells and 2 global components Suppoaé e hard-wire the components. An
extended cell (type 1) is shown in Fig.1@)ntaining a (local) logic memory LLM with
3 storage places, the GW, and a clock. Hiter two are global elements operating on
the whole cell array.

We suppose that we have 2 different CNN arrays (cells and interconnections), one
for implementing the NOT operation (LOGNGINN) and one for the AND operation
(LOGAND CNN). These templates are showrCinapter 3. The hard-wired solutions are
shown in Fig.1(b).

B: Flow diagram and program

If we place the extended cell in an Nbarray, the following flow diagram will

implement the function SUBSET 1(., ., .). In addition, in Fig.2, we showatpeogram
as well.

Like in a digital programming language, oot languageis using a few
elementary instructions. Here, in additionth@ template activation instruction, we use
an instruction for the GW() test and memory copying instructions. We declare the
templates to be used in the function by listing them between the brackets of the USE
declaration.

7004

LLHkA TEWMA
P—] I, 200 Pop. 2
I i) |
RN WU,
SoL I
(a)
] TEWA
LLK s Ye
- []
u
F"1—-- Iy
L)
i 3
I3
TE M2
iy Ll Y-

-)
. { ()]

(b)
Fig. 1 (a) The extended cell 1. In addition to the CNN cell we have three new

components: a local logic memory (LLM)gkbal white tester (GW) and a global clock
(GCL); (b) the hard wired solution for SUBSET 1 (.).

7005

FUNCTION SUBSET 1

USELOGNOT.LOGAND);

— LLM1:= P1:
|1$P1 12:=p2 o b
TEM 1 LOGNOT(LLML,LLML,LLM3,5,-1);
13:= NOT I1
TEM 2 LOGAND(LLM2,LLM3,LLM1, 5,-1);
13:=12 AND 13

GW(13) Y:=GW(LLM1);

@ ENDFUNCT;

Figure 2 The SUBSET subroutine as a function. TEM1 is LOGNOT, TEM2 is LOGAND

7.3 Trandation of setsand binary images

We want to translate two-dimensiorsdts and binary images by a prescribed
vector. This vector is given by its haoiztal and vertical coordinates, m and n,
respectively. The set S is represented by thekbpixels of an image P. The translated
image PT is given by its black pixelswsll. Subroutine TRANSLATE(., ., ., .) performs
this task

| TRANSLATE (P, PT, m, n)|

P, PT: binary images of size MxN
m, n: integers

Global task:

Translate image P by vector (m,n)
(we suppose m, n >0 if not, simple modifications can be applied).

7006

Algorithm

Given P, m, and n. The algorithm is performed in an iteration (a program loop):
PT:=P
FOR i=1 STEP 1 TO m
PT:=SHIFT(PTEAST)
FORj=1STEP 1TOn
PT:=SHIFT(PTNORTH)

Here, SHIFT(PT, EAST) and SHIFT(PWEST) are the translating operators
with one unit length to the EAST and NORTH directions, respectively.

Example:

=l Elil

B

Input SHIFT(4,5) SHIFT(-4,-5)
CNN Implementation
A: hardware components

For the implementation of this algonithwe do not need more components than
we used in the preceding subroutine (SBBS). The controlling mechanism, however,
is more sophisticated. We have to checlewlo stop the iteration after m and n steps.
This means we need a global control unit which controls the switches and stops/starts the
iteration.

Again, we suppose that we have two défg CNN cells (and arrays), one for the
SHIFT to north, one for the SHIFT to eadbwever, now we need m and n samples of
each CNN component, or we use these two components with a sophisticated control unit.

B: Flow diagram and program

7007

FUNCTION TRANSLATE
USE(SHIFTE.SHIFTN):
1:=pPT LLM1:=PT;
N IFM>0 THEN DO
>0 [
Y

=1 REPEAT I:=1 TO M BY1

[—
TEM 1

SHIFTE(LLM1.LLM1.LLM1.10.-1):
I11:=SHIFT E(I1)

li=1+1
/I\
Tom o— 1 ENDREPEAT:
Y/l\(
< Ns>o ——GT0pP> IF N>0 THEN DO
\I/Y
Ji=1 REPEAT J:=1TO N BY 1
|-
TEM 2 SHIFTN(LLM 1.LLM1.LLM1.10.-1):

I11:=SHIFT N(I1)

IsN ENDREPEAT;
N O

ENDFUNCT:

Fig 3.The function TRANSLATE

7.4 Opening and Closing and implementing any mor phological oper ator

Two frequently used morphological operators are the opening and closing.
Opening is defined as: first erosion then dilation.
Closing is defined as: first dilation then erosion.
The difference is in the sequence of the two elementary templates.
We will show here the subroutine CLE®, S, PC) where P is the original
image, S is the structuring element, and PC is the result.

| CLOSE (P, B, PC) |

P, PC: Binary images of size MxN

S: 3x3 structuring element represented in a B template for erosion
the 3x3 feedforward template B defined by the structuring element with 1(black) and
O(white)for dilation, reflect B(centrally) to get B1 as the feedforward template

Global task

7008

Given P, first apply a dilation, thean erosion with structuring element
represented by B, defined above.

Algorithm
Given P and S (B). The algorithm has four steps:
P1:=P

P2:=DILATION(P1,B1)
P3:=EROSION(P2,B)

PC:=P3
Examples
Example 1
input output of DILATION operation
Example 2
input = output of DILATION operation output of EROSION operation

7009

CNN implementation
A: hardwired components

The hardwired schematics is very simple. Figure 4 shows it, we have two CNN
components.

LLK .
H
P o— 4
S
I 2
- —

200- Poo- 2

]

ol

Figure 4

B: Flow diagram and program
FUNCTION CLOSE;
I1:= P USE(EROSIONB,DILATIONB1);
LLM1:=P;
xFill(0,ISTATE);

12:= DILATION (11, B1)

DILATIONB1(LLM1,ISTATE,

LLM2,10,-1);
L3 = EROSION (12, B) EROSIONB(LLM2,ISTATE,LLMS,
10,-1);
C -3 PC::=LLM3;
ENDFUNCT;

Fig.5 The flow diagram and program of CLOSE.

7010

Mathematical morphology has a calculus. Its deep mathematical foundations are
well documented in textbooks
Opening of an image A by structuring element B is denoted by
A-B=(AQB)®B
where erosion is denoted by and dilation by®, respectively.

Closing, denoted by is, defined by

AeB=(A®B)OB
opening and closing are dual operators.

AeB=(A°cBY)
where® means complement. Hence, replacing A 5yaAd complementing the result we
get

AoB=(AeB)°

We can implement this calculus by using a seqaef templates. The next Tables show
an example. An image P is modified by a structuring element

! Daugherty, Introduction to mathematical morphology, SPIE, 1995

7011

EROSION

Table 1

DILATION

P 2OV
Table 2

7012

OPEN

Table 3

CLOSE

Tabled

7013

OPEN

H
P* (Peb)°
Table 5
CLOSE
b=
P P 8)°
Table 6

7014

A fundamental theorem of mathematical morphojodlye so called Matheron
representation, asserts that a very large class of morphological operators can be
decomposed into a union of erosions with a basis set of structuring elements. The art is to
find the basis.

7.5. Implementing any prescribed Boolean transition function by not more than 256
templates

We have seen in section 6.6 that the XOR Boolean function cannot be realized by
a simple CNN template, it is not linearly segdale. On the other hand, we can realize it
by applying several templates. The truth table is shown below:

input output
term u Uz y
1 -1 -1 -1
2 1 1 -1
3 1 -1 1
4 -1 1 1

-1: false; 1: true

Using the minterm/maxterm notion, wean group the last two rows for
generating the minterms by selecting thagaut combinations which yield outputs of
logic 1:

m(u):uit: +

i.e., if one of the (now 2) minterms is true, the output yzkg will be true. Similarly,
for the terms with output of logic 0 , the maxterms (M(u)) are given by the first two rows:

M(u): T U2 - Lip
i.e., if one of the maxterms is false, the output yzfkg) will be false.

Hence, we can generate the XOR truthi@aby the sequential applications of two
minterms, combining them with an OBRnction. Since the minterms contain AND and
NOT functions, what we need, altogethare the building blocks for AND, OR, and
NOT functions. We have shown alreatlye CNN templates for these 3 Boolean
functions. Therefore, applying CNN operationsth different templates, iteratively, we
can generate the XOR function.

Thereis a systematic general procedufer implementing any local Boolean

function by the iterative application of fiirent templates. For the CNN logic
representation, we will use the convention: TRUE=1, FALSE =-1.

7015

Having 9 inputs (U U, ..., b) and one output we havé 2 512 output values (1,-
1) for all the 512 input combinations. This means that we can geaanrgdizcal Boolean
function of 9 input/ 1 output variables, binaryth table by at moat 512 applications of
different minterms, each one implementedab€NN template. Next, we show a single,
extended CNN cell which can be used to iempént this procedure. Before, however, let
us describe this procedure in an elementary flow diagram.

Suppose we want to calculate the outgubfy9 input Boolean function Y=F(u
Uz, ..., W), W, W, ..., b are the nine binary values tbfe cells in the neighborhood of cell

C(ij).

F is given by the minterm,gbby,..., by (M<512). In our single XOR example:
M=2, by and b are the termsy,t, andT,u, respectively. These minterms can be coded

as [1, -1] and [-1,1] and the procedure is shown in Fig.6.

=
=

Figure 6

Y = F(u)

7016

In words, it means that we calculate tesults of all the minterms at the given u
(phasea) and make the ORing (phag¢ To implement this flow diagram using our
CNN templates we need the following building blocks.

e alogical storage for the given cell’s inpyt u

e the CNN templates (A,B,z) for the minterms,

e an OR logic unit, and

e another 2-place logical storage (memory) with a shift (shift register)

This means that we need an extended CNN cell with the above units, in addition
to the core CNN cell.

The extended CNN cell ij with its neighbors is shown below:

Hist j-1 Mi1 Hict jt

wi-1.-1) w{-1.0) e
wi—1.1)

™ LLM
i WE’D} |
.

Hij-1) 1 Ui et
*—> . + <9
w(0,—1) , | wi(0.1)
—< |I»

;e
3
OR *
wi1.-1) w(1.0) wi1.1)
Uit j—1 it | Uis jet

Figure 7

In the CNN cell we have an additional local logic unit (LLU): the OR gate.
Suppose the 9 Boolean variableg, (4, ..., W) are placed on the inputs of all cells in the
sphere of influence,{). We have to find the templaf@, B, z) for a given minterm then
we can solve the problem. Next we will show this process.

7017

A minterm is a linearly separable Boolean function. Referring to our earlier
analysis, it can be shown (as an exercise) that the value of a miptatra given (y W,
..., p) combination, pue{-1, 1} can be calculated by the following CNN template:

0 0 0 Wi, 1| W-1,0| W11
A= 0 1 0 Bm = |Wo,-1{ Wo,0 | Wo,1 z=-8
0 0 0 W 1| Wi0| W11
Us Us U7
Us Us U4
us Uz W

where the B template is coded using the mintegrmtihe following way. If in minterm
b, a variable is presented with its UE value, then the corresponding terg(IBl)=1, if
it is FALSE By(k,)=-1, if a variable does not existg,|)=0.

This unit can be called restricted-weigihiteshold unit since the weights can take
values from a finite limited set of values.

For example, minternui; U, U3 Uy Ug is coded by a template

0 0 O
Bn={0 -1 -1
1 -1 1

Observe that one extended CNN cell can geeenot only any minterm but, using the
local logic unit and local logic memory, thedil result of a given Boolean function of 9
variables as well. It is supposed that all input variables have their buffers.

If the number of zero outputs in theirfput one-output Boolean truth table are
less than 256, then there are less maxtermsrthaterms. Hence it is practical to code
the maxterms. This can be done usingghme extended CNN cell except the local cell
logic contains a NOT and an AND gate.

There are more efficient ways, of ceer in implementing given binary Boolean
function using CNN, the above procedure, however, is simple and works in Gse of
local Boolean functionHence, the extended CNN cell is universal for implementing any
cellular automaton specified by any local Boolean transition rules.

A more complex, more efficient procedure is shown next.

7018

7.6 Minimizing the number of templates when implementing any possible Boolean
transition function

The next procedure shows a more effitj slightly more complex procedure.
The number of templates to be used areegaly much smaller than the brute force
method described in the previous section.

We use again a restricted-weight 8ireld unit, however, with more possible
weight variableSin the bias/threshold term z (indeed z=-8, -7, ..., -1, 0, 1, 2, ..., 8) and
use any specified two-input logic functi@n instead of a single one (OR or AND).

Suppose again the state transition rule to be implemented is the neighborhood
Boolean function Y.

Y = F(u1, W, U, ..., W)

i.e., F is a Boolean functioof 9 variables, it can be defined by the 512 bits (as we
shown).

We are looking for the solution as a sequence of “ballterfls’kb0, 1, 2, ..., M,
implemented with restricted-weight thresthologic (i.e., equivalent templates) and
corresponding two-input logic operatio® which will generate F in M steps. All the
Boolean functions can be defined by "at@ple as a response (TRUE or FALSE) to all
possible N-tuple input. In owrase N = 9. Hence, F is defined as a 512-tuple (there are
2°1%210"* such 512-tuple, hence, different Boolean functions F).

F is generated as follows:
{0 .= HO

0= £0 g KO
2= {0 g@ @

(M) . fM-2) (M) (M)
where®® < L (one of the 16 two-input, one output logic functions).

To calculate the consecutive termt8@ ® (and here f9) we needa distance
calculation unitof two N-tuples (u and v) where the distance is calculated as follows

N-=
distuv)= > udv

i=0

iy

where @ denotes the XOR operation.

Clearly, using an XOR local logical urahd a few local logic memory units in a
cell, this distance (dist (u, v)) calculation can be computed in about N steps.

2 a function b defined by weights,yw,, ..., W and is denoted by bgywvi, ..., W), .

7019

The distance of two Boolean functionsarfd g, of N variables can be calculated
similarly
2"
dste(f, @)= >, f(u)®g(u); f,geF

u=0

where 2 XOR operations (N = 9> 2" = 512) are needed.

F desredfunction
|

ki=0
|
b = £° = arg min dist (b, F)
for allbe B o
|
ki= k+1

|
o(k) , b (k) + arg min dist (f (k-1 , b,
forall @ L,beB

|
(00 kD 00 0

ﬁ)

\ 4

0%, e e " p®

Figure 8

The greedy algorithm defined by thibow chart in Fig.8 calculates the
consecutive § ®® functions. K are chosen from the set B. Set B contains all the
Boolean functions which can be implementeithwhe restricted weight values. If N=9,
there are 1180982 elements of B (we choose six z values between -8 and +8).

A ballterm b is represented by the 9 feedfarsv template element values and the z
value, denoted by

7020

b (b b b by bs be b7 bg by), z

where the last value is the bias value areldrder is the same as shown before (the A
template has a central nonzero element of 1).

The reasoning behind the algorithm is as follows (search algorithms are denoted
by vin Fig.8.)

e in the first search algorithm, we fintof minimum distance from the prescribed F.

e in the next iterative search algorithm, we test all the possible combinations of the
restricted weight functions=B) and the two-input one-output logic functioal() to
find the best combination, it will modify the previously composed funcfdhté &
which will be of minimal distance to F.

It is possible to proof #t this algorithm converges and, in the worst case, will not
result in more terms than the minterm (oaxterm) algorithm shown in the previous
sectior.

Example-game of life

This famous problem, with a single Boolean output value, is a linearly non-
separable problem. Hence, it cannot be en@nted by a single template. The algorithm
in Fig.8 results in just 2 terms:

b9 =b(-1, -1, -1, -1, 0, -1, -1, -1, -1), +1
b = b(+1, +1, +1, +1, +1, +1, +1, +1, +1), -4
oY = AND

Hence, we can implement the game of Vifich a cell of Fig.7 containing an AND local
logical unit, and the two templates which implement the “ballterfabd K" are

0 00 -1 -1 -1
A=|0 1 0;B9=|-1 0 -1f;z=%1
0 00 -1 -1 -1
and
[0 0 O] (41 +1 +1]
A=|0 1 0o;BY=|+1 +1 +1|; z=-4
0 0 0O +1 +1 +1]

respectively.

®K. R. Crounse, E.L.Fungand L. O. Chua, , Efficient implementation of neighborhood logic for cellular
automata via the cellular neural network univensathine, IEEE Trans. CAS-I, Vol. 44, pp. 355-361,
1997

7021

7.7 Analog-to-digital array converter

SUBROUTINE ADARRAY(,, ., .)

ADARRAY(P, n, B[0, n-1])

P: positiveimageO<p;<1

n: integer, number of bits

B[O, n-1]: B;[K]: The value of the k-th bi&{0, 1},
k=0,1,2,..,n-1.

Global taskArray-type analog to digital converter.
Given a signal array P at a given time instgntd., P=P(t}o.
P=[n], i=1,2,..., M; j=1,2, ..., N. 8p;<1.
Compute the representation of the real (analog) values

pi: Bilkl, k=0, 1, 2,, n-1.

The algorithm

The algorithm (a well known method) ggven for a single cell, all cells are
computing fully parallel, without interaction.

Given: p, &p;<1 real and n, integer, r: real, b: binary,

let:r(-1):=p and b(-1):=1
FOR i:=0 step 1 untili<n DO

begin
r(i):=2r(i-1) - b(i-1)
b(i):=sgn(r(i))
B(i):=bconvert(b(i))
end

where “bconvert” (binary converter) isfanction with input{-1, +1} and output {0,1}

which represent logic LOW and HIGH. B(i) are the sequence of the output bits.

Example

7022

Convert the value p:0.687%=+0.%+ %+%3 (i.e., the code B() is: 1011). The

consecutive steps of the algorithm are as follows
r(-1)=0.6875; b(-1) =1

i=0

begin r(0) = 2x0.6875-1=0.375

b(0) =sgn(0.375) =1

B(0)=bconvert(1)=
1

end

i=1

begin r(1) = 2x0.375-1=-0.25
b(1) = sgn(-0.25) = -1
B(1)=bconvert(-1)= @

end

i=2

begin r(2) =2x(-0.25) + 1= 0.5

b(2) =sgn(0.5) =1

B(2)=bconvert(1)=
1

end

=3

begin r(3) =2x0.5-1=0

b(3) =sgn(0) =1

B(3)=bconvert(1)=
1

end
CNN implementation
A: hardwired components

To implement this algorithm via CNN we need some additional components in
each cell. For the time being, we suppose #aah template is implemented by a single

CNN standard cell, as a component, ahé whole array is hardwired form the
components. An extended cell (type 2) is shown below.

Extended cell 2

7023

TE
LAM
o0 bog.2
L S———
3-.1 il w U ¥
b BI.U fr——
(: 1, f—e——————e P
"
i 4
Lo e
I e
|
CL

Fig.8 The extended cell 2. In addition to the CNN cell which may have a switch, we have
2 new components: an analog storage device, a local analog memory (LAM) and a
bipolar to unipolar converter (B/U).

The new component in the Extended Cell 2 are:

e in some CNN standard cells (type 2), for the time being we consider them as
separate components, there iswatch SW1 which, if it is OFF, set the value
of the standard nonlinearity of the cellzero, i.e., if SWI: OFF then f(.)=0;
we suppose that if SW1=0OFF then tinput and output of the cell can be
specified and the value at the state will be the outcome,

e an analog memory unit LAMIdcal analog memody in this case with 3
storage places,

e a binary converter B/U (denoted by dowert(.)), converting a bipolar {-
1,1} analog signal into a unipolar {0, 1}-{LOW, HIGH} logic bit.

Suppose we place the Extended Cell 2 in a CNN array, then we can design the
flow diagram of the A/D algoritim. This flow diagram is shown in Figure 9. On the same
figure we show parallel, the programtbk algorithm implementing our A/DARRAY(.)
subroutine, for a single cell.

Here we suppose that this program idiaared, i.e., the clock signals activate the
subsequent units according to a predefined sequence.

7024

FUNCTION ADARRAY;
as:=p USE(TEMO);
[N=4;
al:=1
LAM3:= p;
| LAML:=1;
n:=4
|
i:=0 REPEATii=0TOnBY 1
w |
| |
ii=i+1
u:=al;y:=a3
|
f(.):=0 SW1:=OFF;
TEM1 z:=0
TEMO(LAM1,LAM2,LAM3, 5, -1);
80 =2; byy=-1 ()
\ 4 a3:=x LAM3:=LAM2;
x(=r())
a2:=x
|
x(0):=a2
[
f(.):=f(.) SW1 := ON;
al=y TEM2 z:=0;
B0y =2; hyy=-1 TEMO(LAM1,LAM2,LAML, 5, -1);
=h(i
N % o)
DD
Y .
B/U conv erter B[i] := bconvert (LAM1);
END REPEAT;
< v END
Figure 9

7025

	Chapter 7
	Introduction to the CNN Universal Machine
	7.1 Global clock and global wire
	7.2 Set inclusion
	7.3 Translation of sets and binary images
	7.4 Opening and Closing and implementing any morphological o
	7.5. Implementing any prescribed Boolean transition function
	7.6 Minimizing the number of templates when implementing any
	7.7 Analog-to-digital array converter

