
Chapter 7 

Introduction to the CNN Universal Machine 
 
 We have seen in Chapter 6 that not all tasks can be implemented by a single CNN 
template, the XOR function is a typical example. 
 
 There are many tasks which are solved by applying several templates, or by 
applying one template several times. If we consider a template as an instruction with 
well defined input and output, we can define a CNN subroutine or function (as in C like 
languages)when applying several templates. We can build up processes and complete 
programs from functions and other instructions. 
 
 We define a subroutine by specifying the following items: • the input/output parameters, • the global task, • the informal description of the algorithm,  • the CNN implementation. 
 
 In this chapter the CNN implementation is given by 3 equivalent ways: 
  --the hardware schematics, supposing each CNN template (placed in the 
CNN Software Library) is implemented by a separate device containing discrete hard 
wired cells and additional local (cell by cell) and global devices. 
  - a flow diagram of the CNN algorithm, and 
  -  a list of consecutive instructions, henceforth called a program  written in 
a simple vocabulary involving the CNN analog and logic operations, henceforth called 
an analogic CNN language, or simply “ α” language. 
An Alpha Compiler is supposed to exist to translate the code into executable programs un 
CNN chips. We will describe this process later in Chapter 9. 
 
 Indeed, we follow the theory and practice of digital computers. According to the 
classic Turing-Church thesis, each algorithm defined on integers or on a finite set of 
symbols (e.g., “yes’ or “no”) can be equivalently expressed by • a Turing machine, • a recursive function (an algorithmic description using a finite set of elementary 

operators), and • a program defined on a computer using a language. 
 
As to the α language, the key instruction is the CNN template operation defined as 
 
TemplateName(InputImage,InitialStateImage,OutputImage,TimeInterval,BoundaryCond) 
 
 for example  
 EDGE (LLM1, LLM2, LLM3, 10, -1) 
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means that an edge detector template called EDGE is applied with input, initial state, and 
output images denoted/stored by/in  LLM1, LLM2, LLM3 images, the output is taken at 

time t=10 (measured in the time constant of the CNN cell, τNN ), and the fixed boundary 
value is -1. 

7.1 Global clock and global wire 

Definition: a component is called global if its output depends on all cells of the array or 
its output effects all cells of the array. 

 Like in any programmable system we need a clock. To emphasize that within one 
CNN template operation there is no clock, we will call our clock as a global clock (GCL). 
This  means that during one clock cycle entire array of cells implements the same 
template instruction. 

 The global clock is used to control a set of switches (enabling, disabling, latching 
functions) which provide that at a given clock cycle only the prescribed signal route is 
open. 

 In many cases we have to decide whether any  black pixel remains in the 
processed image, i.e. whether it is completely white or not. We call the operation GW(.) 
which tests this property (it is called “global white”, “global wire”, or “global line” in the 
literature). 

 GW(.) is defined as follows: 

Given a binary image P containing MxN pixels. 

  GW(P)=
( ) ( )( ) (1 1

1 1

Yes if all the pixelsof Pare white

No if at least one pixel in P is black

−
−
⎧⎨⎩ )  

in some implementations “NO” is represented by 0. 

7.2 Set inclusion 

 We want to detect whether  

  S1⊂ S2

S1 and S2 are represented by pictures P1 and P2, respectively. A pixel is black if the 
corresponding element is included in the given set. P1⊂ P2 if and only if all black pixels 
defining P1 are elements of the black pixels representing P2. 

 Now we following define the subroutine or function  SUBSET 1(., ., .). 
 
SUBSET 1(P1, P2, Y) 

 
 P1, P2: binary images of size MxN, the black pixels are representing the relevant 
sets. 
 
 Y: logical value, Yes or No, represented by 1 and -1 , respectively. 
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Global task: determine whether a set S2 defined on an Euclidean plane is a subset of 
another set S1. 
 
Algorithm 
 
 Given P1 and P2. The algorithm consists of 3 steps: 
  P3:= NOT(P1) 
  P1:= P3 AND P2 
  IF P1 contains only white pixels THEN  
   Y:= 1 (Yes) ELSE Y:=-1 (No) 
 
 Remark: The NOT and AND operations are acting pixel by pixel.  
 
 Example 1: 
 

   
 set P2 set P1 P1 ∪ P2 

 

  
 NOT P1 ( NOT P1 ) AND P2 
 
 Example 2: 
 

   
 set P2 set P1 P1 ∪ P2 = P1 
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 NOT P1 ( NOT P1 ) AND P2 
CNN implementation 
 
A: Hardwired components 
 
 To implement this algorithm via CNN we need some additional components in 
each cells and 2 global components Suppose that we hard-wire the components. An 
extended cell (type 1) is shown in Fig.1(a), containing a (local) logic memory LLM with 
3 storage places, the GW, and a clock. The latter two are global elements operating on 
the whole cell array. 
 
 We suppose that we have 2 different CNN arrays (cells and interconnections), one 
for implementing the NOT operation (LOGNOT CNN) and one for the AND operation 
(LOGAND CNN). These templates are shown in Chapter 3. The hard-wired solutions are 
shown in Fig.1(b). 
 
B: Flow diagram and program 
 
 If we place the extended cell in an MxN array, the following flow diagram will 
implement the function SUBSET 1(., ., .). In addition, in Fig.2, we show the α program 
as well. 
 

 Like in a digital programming language, our α language is using a few 
elementary instructions. Here, in addition to the template activation instruction, we use 
an instruction for the GW(  ) test and memory copying instructions. We declare the 
templates to be used in the function by listing them between the brackets of the USE 
declaration. 
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( a ) 

 
 

 
( b ) 

 
Fig. 1 (a) The extended cell 1. In addition to the CNN cell we have three new 

components: a local logic memory (LLM), a global white tester (GW) and a global clock 
(GCL); (b) the hard wired solution for SUBSET 1 (.). 
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FUNCTION  SUBSET 1;

USE(LOGNOT,LOGAND);

LLM1:= P1;
LLM2:= P2;

LOGNOT(LLM1,LLM1,LLM3,5,-1);

LOGAND(LLM2,LLM3,LLM1, 5,-1);

Y:=GW(LLM1);

ENDFUNCT;

l1:=P1  l2:=P2

TEM 1
13:= NOT l1

TEM 2
l3:=l2 AND l3

P2

GW(l3)

YN

P1

 
 
Figure 2 The SUBSET subroutine as a function. TEM1 is LOGNOT, TEM2 is LOGAND  

 

7.3 Translation of sets and binary images 

 We want to translate two-dimensional sets and binary images by a prescribed 
vector. This vector is given by its horizontal and vertical coordinates, m and n, 
respectively. The set S is represented by the black pixels of an image P. The translated 
image PT is given by its black pixels as well. Subroutine TRANSLATE(., ., ., .) performs 
this task 
 

TRANSLATE (P, PT, m, n) 
 
 P, PT: binary images of size MxN 
 m, n: integers 
 
Global task: 
 Translate image P by vector (m,n)  
(we suppose m, n >0 if not, simple modifications can be applied). 
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Algorithm 
 
 Given P, m, and n. The algorithm is performed in an iteration (a program loop): 
 PT:=P 
 FOR i=1 STEP 1 TO m 
  PT:=SHIFT(PT, EAST) 
 FOR j=1 STEP 1 TO n 
  PT:=SHIFT(PT, NORTH) 
 
 Here, SHIFT(PT, EAST) and SHIFT(PT, WEST) are the translating operators 
with one unit length to the EAST and NORTH directions, respectively. 
 
 
Example: 
 
 

   
 Input SHIFT( 4, 5 ) SHIFT( -4, -5 ) 
 
CNN Implementation 
 
A: hardware components 
 
 For the implementation of this algorithm we do not need more components than 
we used in the preceding subroutine (SUBSET 1). The controlling mechanism, however, 
is more sophisticated. We have to check when to stop the iteration after m and n steps. 
This means we need a global control unit which controls the switches and stops/starts the 
iteration. 
 Again, we suppose that we have two different CNN cells (and arrays), one for the 
SHIFT to north, one for the SHIFT to east. However, now we need m and n samples of 
each CNN component,  or we use these two components with a sophisticated control unit. 
 
 
B: Flow diagram and program 
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P T : = P

l 1 : = P T

M > O

I : = 1

T E M 1
l 1 : = S H I F T  E ( l 1 )

I : = I + 1

I > M

N > O S T O P

J : = I

T E M 2
l 1 : = S H I F T  N ( l 1 )

J : = J + 1

J > N

S T O P

Y

N
Y

Y

N

F U N C T I O N  T R A N S L A T E ;
U S E ( S H I F T E , S H I F T N ) ;

L L M 1 : = P T ;

I F  M > O  T H E N  D O

R E P E A T  I : = 1  T O  M  B Y 1

S H I F T E ( L L M 1 , L L M 1 , L L M 1 , 1 0 , - 1 ) ;

E N D R E P E A T ;

I F  N > O  T H E N  D O

R E P E A T  J : = 1 T O   N  B Y  1

S H I F T N ( L L M 1 , L L M 1 , L L M 1 , 1 0 , - 1 ) ;

E N D R E P E A T ;

E N D F U N C T ;

N O

 
Fig 3.The function TRANSLATE 

 

7.4 Opening and Closing and implementing any morphological operator 
 
 Two frequently used morphological operators are the opening and closing. 
 Opening is defined as: first erosion then dilation. 
 Closing is defined as: first dilation then erosion. 
The difference is in the sequence of the two elementary templates. 
 We will show here the subroutine CLOSE(P, S, PC) where P is the original 
image, S is the structuring element, and PC is the result. 
 

CLOSE (P, B, PC) 
 
 P, PC: Binary images of size MxN 
 S: 3x3 structuring element represented in a B template for erosion  
the 3x3 feedforward template B defined by the structuring element with 1(black) and 
0(white)for dilation, reflect B(centrally) to get B1 as the feedforward template 
 
 
Global task 
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 Given P, first apply a dilation, then an erosion with structuring element 
represented by B, defined above. 
 
Algorithm 
 
 Given P and S (B). The algorithm has four steps: 
 
  P1:= P 
  P2:=DILATION(P1, B1) 
  P3:=EROSION(P2,B) 
  PC:=P3 
Examples 
 
Example 1 
 

  
 input output of DILATION operation 
 
Example 2 
 

  
 input = output of DILATION operation output of EROSION operation 
 
 
 

 7009



 
CNN implementation 
 
A: hardwired components 
 
 The hardwired schematics is very simple. Figure 4 shows it, we have two CNN 
components. 
 

 
 

Figure 4 
 
B: Flow diagram and program.  

FUNCTION CLOSE; 
USE(EROSIONB,DILATIONB1); 

l2:= DILATION (l1, B1) 

L3 := EROSION (l2, B) 

PC := l3 

l1:= P 
LLM1:=P; 
xFill(0,ISTATE); 
 
DILATIONB1(LLM1,ISTATE, 
LLM2,10,-1); 
EROSIONB(LLM2,ISTATE,LLM3, 
10,-1); 
 

 PC::= LLM3; 
  ENDFUNCT; 
 

Fig.5 The flow diagram and program of CLOSE. 
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Mathematical morphology has a calculus. Its deep mathematical foundations are 
well documented in textbooks1 .  

Opening of an image A by structuring element B is denoted by 
 

 A o B = ( A B ) ⊕ B  
 
where erosion is denoted by  and dilation by ⊕, respectively. 
 
Closing, denoted by • is,  defined by 
 

 A • B =( A ⊕ B) B 
opening and closing are dual operators.  
 

 A • B = (Ac o B )c

 
where c means complement. Hence, replacing A by Ac and complementing the result we 
get 

 A o B = (Ac • B )c  
 
We can implement this calculus by using a sequence of templates. The next Tables show 
an example. An image P is modified by a structuring element  

                                                           
1 Daugherty,  Introduction to mathematical morphology, SPIE, 1995  
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EROSION 

 
 � �

 �  �  
   

 
 =  

 
 

 

   
 

P     P  
Table 1 

 
 

DILATION 
 

 � �

 �  �  
   

 
 =  

 
 

 

   
 

 

P     P⊕  
Table 2 
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OPEN 

 
 � �

 �  �  
   

 
 =  

 
 

 

   
 

 

P     Po  
Table 3 

 
 

CLOSE 
 

 � �

 �  �  
   

 
 =  

 
 

 

   
 
 

P     P•  
  Table 4
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OPEN 

 
 � �

 �  �  
   

 
 =  

 
 

 

   
 

 

Pc     (P• )c

Table 5 
 
 

CLOSE 
 

 � �

 �  �  
   

 
 =  

 
 

 

   
 
 

Pc     (Pco )c

Table 6 
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A fundamental theorem of mathematical morphology, the so called Matheron 
representation, asserts that a very large class of morphological operators can be 
decomposed into a union of erosions with a basis set of structuring elements. The art is to 
find the basis. 

7.5. Implementing any prescribed Boolean transition function by not more than 256 
templates 
 
 We have seen in section 6.6 that the XOR Boolean function cannot be realized by 
a simple CNN template, it is not linearly separable. On the other hand, we can realize it 
by applying several templates. The truth table is shown below: 
 

 input output 
term u1 u2 y 

1 -1 -1 -1 
2 1 1 -1 
3 1 -1 1 
4 -1 1 1 

-1: false; 1: true 
 
 Using the minterm/maxterm notion, we can group the last two rows for  
generating the minterms by selecting those input combinations which yield outputs of 
logic 1: 
 
  m(u): u1 2u  + u2 1u  
 
i.e., if one of the (now 2) minterms is true, the output y=F(u1, u2) will be true. Similarly, 
for the terms with output of logic 0 , the maxterms (M(u)) are given by the first two rows: 
 
  M(u): 1u 2u  . u1u2 

 
i.e., if one of the maxterms is false, the output y=F(u1, u2) will be false.  

 
Hence, we can generate the XOR truth table by the sequential applications of two 

minterms, combining them  with an OR function. Since the minterms contain AND and 
NOT functions, what we need, altogether, are the building blocks for AND, OR, and 
NOT functions. We have shown already the CNN templates for these 3 Boolean 
functions. Therefore, applying CNN operations, with different templates, iteratively, we 
can generate the XOR function.  
 
 There is a systematic general procedure for implementing any local Boolean 
function by the iterative application of different templates. For the CNN logic 
representation, we will use the convention: TRUE=1, FALSE =-1. 
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 Having 9 inputs (u1, u2, ..., u9) and one output we have 29 = 512 output values (1,-
1) for all the 512 input combinations. This means that we can generate any local Boolean 
function of 9 input/ 1 output variables, binary truth table by at moat 512 applications of 
different minterms, each one implemented by a CNN template. Next, we show a single, 
extended CNN cell which can be used to implement this procedure. Before, however, let 
us describe this procedure in an elementary flow diagram. 
 
 Suppose we want to calculate the output yij of 9 input Boolean function Y=F(u1, 
u2, ..., u9), u1, u2, ..., u9 are the nine binary values of the cells in the neighborhood of cell 
C(ij). 
 
 F is given by the minterm, b0, b1,..., bM (M≤512). In our single XOR example: 
M=2, b0 and b1 are the terms, 21uu  and 21uu  respectively. These minterms can be coded 

as [1, -1] and [-1,1] and the procedure is shown in Fig.6. 
 

 
Figure 6 
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 In words, it means that we calculate the results of all the minterms at the given u 
(phase α) and make the ORing (phase β). To implement this flow diagram using our 
CNN templates we need the following building blocks. • a logical storage for the given cell’s input uij,  • the CNN templates (A,B,z) for the minterms, • an OR logic unit, and  • another 2-place logical storage (memory) with a shift (shift register) 
 
 This means that we need an extended CNN cell with the above units, in addition 
to the core CNN cell. 
 
 The extended CNN cell ij with its neighbors is shown below: 
  

 
 

Figure 7 
 
 In the CNN cell we have an additional local logic unit (LLU): the OR gate. 
Suppose the 9 Boolean variables (u1, u2, ..., u9) are placed on the inputs of all cells in the 
sphere of influence Sr(ij). We have to find the template (A, B, z) for a given minterm then 
we can solve the problem. Next we will show this process. 
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 A minterm is a linearly separable Boolean function. Referring to our earlier 
analysis, it can be shown (as an exercise) that the value of a minterm bm at a given (u1, u2, 
..., u9) combination, ui ∈{-1, 1} can be calculated by the following CNN template: 
 

 0 0 0   w-1,-1 w-1,0 w-1,1   

A =  0 1 0  Bm = w0,-1 w0,0 w0,1  z=-8 

0 0 0   w1,-1 w1,0 w1,1   

 
u u u

u u u

u u u

9 8 7

6 5 4

3 2 1

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥
 

 
where  the B template is coded using the minterm bm in the following way. If in minterm 
bm a variable is presented with its TRUE value, then the corresponding term Bm(k,l)=1, if 
it is FALSE Bm(k,l)=-1, if a variable does not exist Bm(k,l)=0.  
 
 This unit can be called restricted-weight threshold unit since the weights can take 
values from a finite limited set of values.  
 
 For example, minterm 54321 uuuuu  is coded by a template 

 

  Bm=  

0 0 0

0 1 1

1 1 1

− −
−

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

 
Observe that one extended CNN cell can generate not only any minterm but, using the 
local logic unit and local logic memory, the final result of a given Boolean function of 9 
variables as well. It is supposed that all input variables have their buffers. 
 
 If the number of zero outputs in the 9-input one-output Boolean truth table are 
less than 256, then there are less maxterms than minterms. Hence it is practical to code 
the maxterms. This can be done using the same extended CNN cell except the local cell 
logic contains a NOT and an AND gate. 
 
 There are more efficient ways, of course, in implementing given binary Boolean 
function using CNN, the above procedure, however, is simple and  works in case of any 
local Boolean function. Hence, the extended CNN cell is universal for implementing any 
cellular automaton specified by any local Boolean transition rules. 
 A more complex, more efficient procedure is shown next. 
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7.6 Minimizing the number of templates when implementing any possible Boolean 
transition function 

 The  next procedure shows a more efficient, slightly more complex procedure. 
The number of templates to be used are generally much smaller than the brute force 
method described in the previous section. 

 We use again a restricted-weight threshold unit, however, with more possible 
weight variables2 in the bias/threshold term z (indeed z=-8, -7, ..., -1, 0, 1, 2, ..., 8) and 
use any specified two-input logic function Θ, instead of a single one (OR or AND). 

 Suppose again the state transition rule to be implemented is the neighborhood 
Boolean function Y. 
 

  Y = F(u1, u1, u3, ..., u9) 

i.e., F is a Boolean function of 9 variables, it can be defined by the 512 bits (as we 
shown). 

 We are looking for the solution as a sequence of  “ballterms” b(k), k=0, 1, 2, ..., M, 
implemented with restricted-weight threshold logic (i.e., equivalent templates) and 
corresponding two-input logic operations Θk which will generate F in M steps. All the 
Boolean functions can be defined by a 2N-tuple as a response (TRUE or FALSE) to all 
possible  N-tuple input. In our case N = 9. Hence, F is defined as a 512-tuple (there are  
2512≈10154 such 512-tuple, hence, different Boolean functions F). 
 
 F is generated as follows: 

  f(0) := b(0)   

  f(1) := f(0) Θ(1) b(1) 

  f(2) := f(1) Θ(2) b(2) 

  ... 

  f(M) := f(M-1) Θ(M)b(M) 

where Θ(k) ∈ L (one of the 16 two-input, one output logic functions). 

 To calculate the consecutive terms b(k)Θ (k) (and here f (k)) we need a distance 
calculation unit of two N-tuples (u and v) where the distance is calculated as follows 
 

  dist(u, v) =  ui ⊕ vi
i

N

=

−∑
0

1

where  ⊕ denotes the XOR operation.  

 Clearly, using an XOR local logical unit and a few local logic memory units in a 
cell, this distance (dist (u, v )  ) calculation can be computed in about N steps. 

                                                           
2 a function b defined by weights w1, w2, ..., w9 and is denoted by b(w1, w1, ..., w9), z. 
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 The distance of two Boolean functions, f and g, of N variables can be calculated 
similarly 

  distF(f, g) =  f(u) ⊕ g(u);  f, g ∈ F 
u

N

=

−∑
0

12

where 2N XOR operations (N = 9 → 2N = 512) are needed. 
 

k:= 0

b
(o)

 = f
(o)

  = arg min dist (b, F)
for all b∈  B    g

k:= k+1

Θ(k) ,  b (k) + arg min dist (f (k-1) Θ , b, F )
for all  Θ ∈ L , b ∈ B                 g

f  (k)
= f

(k-1) Θ (k)
b

(k)

f
(k)

 = F
NO

YES

F desired function

 
 

bo, .......... Θ (k)  b (k)

 
Figure 8 

 
 
 The greedy algorithm defined by the flow chart in Fig.8 calculates the 
consecutive b(k) Θ(k) functions. b(k) are chosen from the set B. Set B contains all the 
Boolean functions which can be implemented with the restricted weight values. If N=9, 
there are 118098=39x6 elements of B (we choose six z values between -8 and +8). 

A ballterm b is represented by the 9 feedforward  template element values and the z 
value, denoted by  
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b (b1 b2 b3 b4 b5 b6 b7 b8 b9 ), z 
 
where the last value is the bias value and the order is the same as shown before (the A 
template has a central nonzero element of 1). 
 

 The reasoning behind the algorithm is as follows (search algorithms are denoted 
by  ν in Fig.8. )  

• in the first search algorithm, we find b(0) of minimum distance from the prescribed F. 

• in the next iterative search algorithm, we test all the possible combinations of the 
restricted weight functions (∈B) and the two-input one-output logic function (∈L) to 
find the best combination, it will modify the previously composed function f(k-1) to f(k) 
which will be of  minimal distance to F. 

 
 It is possible to proof that this algorithm converges and, in the worst case, will not 
result in more terms than the minterm (or maxterm) algorithm shown in the previous 
section3.  
 
 Example--game of life 
 
 This famous problem, with a single Boolean output value, is a linearly non-
separable problem. Hence, it cannot be implemented by a single template. The algorithm 
in Fig.8 results in just 2 terms: 

  b(0) = b(-1, -1, -1, -1, 0, -1, -1, -1, -1), +1 

  b(1) = b(+1, +1, +1, +1, +1, +1, +1, +1, +1), -4 

  Θ(1) = AND 
 
Hence, we can implement the game of life with a cell of Fig.7 containing an AND local 
logical unit, and the two templates which implement the “ballterms” b(0) and b(1) are 
 

  A = ; B(0) = ;  z = +1 

0 0 0

0 1 0

0 0 0

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

− − −
−
− − −
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

1 1 1

1 0 1

1 1 1

−

                                                          

and 

  A = ; B(1) = ;   z = -4 

0 0 0

0 1 0

0 0 0

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

+ + +
+ + +
+ + +
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

1 1 1

1 1 1

1 1 1

respectively. 
 

3 K. R. Crounse,  E. L. Fung and L. O. Chua, , Efficient implementation of neighborhood logic for cellular 
automata via the cellular neural network universal machine, IEEE Trans. CAS-I, Vol. 44, pp. 355-361, 
1997  
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7.7 Analog-to-digital array converter 
 
SUBROUTINE ADARRAY(., ., .) 
 
 ADARRAY(P, n, B[0, n-1]) 
 
  P:   positive image 0≤pij≤1 
  n:   integer, number of bits 
  B[0, n-1]: Bij[k]: The value of the k-th bit ∈{0, 1},    
   k=0,1,2, ..., n-1. 
 
Global task Array-type analog to digital converter. 
 
 Given a signal array P at a given time instant t0, i.e.,  P=P(t)|t=t0. 

 
 P=[pij], i=1,2,..., M; j=1,2, ..., N. 0≤pij≤1.  
 

Compute the representation of the real (analog) values 
   

 pij: Bij[k], k=0, 1, 2, ...., n-1.  
 
 
The algorithm 
 
 The algorithm (a well known method) is given for a single cell, all cells are 
computing fully parallel, without interaction. 
 
 Given: p, 0≤pij≤1  real and n, integer, r: real, b: binary, 
  
  let : r(-1):=p      and      b(-1):=1 
 FOR i:=0 step 1 until i<n      DO 
  
  begin 
   r(i):=2r(i-1) - b(i-1) 
   b(i):=sgn(r(i)) 
   B(i):=bconvert (b(i)) 
  end 
 
where “bconvert” (binary converter) is a function with input {-1, +1} and output {0,1} 
which represent logic LOW and HIGH. B(i) are the sequence of the output bits. 
 
 
Example 
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 Convert the value p=0.6875=
1

2
+0.

1

4
+ 

1

8
+

1

16
 (i.e., the code B() is: 1011). The 

consecutive steps of the algorithm are as follows 
 
 r(-1)=0.6875;     b(-1) =1 
 
 i=0 
 begin r(0) = 2x0.6875-1= 0.375 
   b(0) = sgn(0.375) = 1 
   B(0) = bconvert(1)=  

1  end 
  
 i=1 
 begin r(1) = 2x0.375-1= -0.25 
   b(1) = sgn(-0.25) = -1 
   B(1) = bconvert(-1)=  

0  end 
 
 i=2 
 begin r(2) = 2x(-0.25) + 1= 0.5 
   b(2) = sgn(0.5) = 1 
   B(2) = bconvert(1)=  

1  end 
 
 i=3 
 begin r(3) = 2x0.5-1= 0 
   b(3) = sgn(0) = 1 
   B(3) = bconvert(1)=  

1  end 
 
CNN implementation 
 
A: hardwired components 
 
 To implement this algorithm via CNN we need some additional components in 
each cell. For the time being, we suppose that each template is implemented by a single 
CNN standard cell, as a component, and the whole array is hardwired form the 
components. An extended cell (type 2) is shown below. 
 
 
 
 
 
 
 
Extended cell 2 

 7023



LAM

 
Fig.8 The extended cell 2. In addition to the CNN cell which may have a switch, we have 

2 new components: an analog storage device, a local analog memory (LAM) and  a 
bipolar to unipolar converter (B/U). 

  
 
The new component in the Extended Cell 2 are: • in some CNN standard cells (type 2), for the time being we consider them as 

separate components, there is a switch SW1 which, if it is OFF, set the value 
of the standard nonlinearity of the cell to zero, i.e., if SWI: OFF then f(.)=0; 
we suppose that if SW1=OFF then the input and output of the cell can be 
specified and the value at the state will be the outcome, • an analog memory unit LAM (local analog memory), in this case with 3 
storage places, • a binary converter B/U (denoted by  bconvert( . )  ), converting a bipolar {-
1,1} analog signal into a unipolar {0, 1}-{LOW, HIGH} logic bit.  

 
 Suppose we place the Extended Cell 2 in a CNN array, then we can design the 
flow diagram of the A/D algorithm. This flow diagram is shown in Figure 9. On the same 
figure we show parallel, the program of the algorithm implementing our A/DARRAY(.) 
subroutine, for a single cell.  
 
 Here we suppose that this program is hardwired, i.e., the clock signals activate the 
subsequent units according to a predefined sequence. 
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n p

a3:=p

a1:=1

n:=4

i:=0

i:=i+1
u:=a1;y:=a3

f( . ):=0

TEM1    z:=0
a00:=2; b00:=-1

a3:=x

x ( = r(i) )

a2:=x

x(0):=a2

f( . ):=f( . )

TEM2     z:=0;
a00:=2; b00:=-1

a1:=y

y ( =b(i) )

i<n STOP

B/U conv erter
Y

N

FUNCTION ADARRAY;

USE(TEM0);

  N=4;

LAM3:=  p ;

LAM1:= 1 ;

REPEAT i:= 0 TO n BY 1

 SW1:=OFF;

TEM0(LAM1,LAM2,LAM3, 5, -1);

LAM3:=LAM2;

 SW1 := ON;

  TEM0(LAM1,LAM2,LAM1, 5, -1);

 B[ i ] := bconvert (LAM1);

END REPEAT;

END  
 

Figure 9 
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