
Chapter 9 
 

The CNN Universal Machine (CNN-UM) 
 
 In Chapter 7, we have shown a couple of generic examples which can be solved 
by a sequence of CNN templates. The hardwired CNN implementations using different 
CNN components or different templates is , however, totally impractical. In this chapter 
we show the architecture of the first spatio-temporal analogic array computer, the CNN 
Universal Machine (CNN-UM). 
 In the examples mentioned above, and in many other examples including 
physiologically faithful models of various parts of the nervous system, especially vision, 
the following 2 completely different types of operations are used to solve a complex task: • continuous-time, continuos valued spatiotemporal nonlinear array dynamics(2D and 

3D arrays). • local and global logic 
 Hence, analog (continuous) and logic operations are mixed and embedded in the 
array computer. Therefore we call this type of array computing: analogic. 
 
 The CNN-UM architecture, shown below • contains a minimum number of component types • provides stored programmable spatiaotemporal array computing, and  • is universal in two senses: 
   * as spatial logic, it is equivalent to a Turing Machine and as a 
local logic it may implement any local Boolean function. 
 
   * as a nonlinear dynamic operator, it can realize any local operator 
of fading memory1, i.e., practically all reasonable operators. Indeed, the CNNUM is a 
common computational paradigm for as diverse fields of spatiotemporal computing as, 
for example, retinal models, reaction diffusion equations, mathematical morphology, etc. 
 Remarks: 

1. The stored program, as a sequence of templates, could be considered as a 
genetic code for the CNN-UM. The elementary genes are the templates, in 
case of r=1 it is a 19-real-number code. This, in a way is a minimal 
representation of a complex spatio-tempral dynamics. 

2. In the nervous system, the consecutive templates are placed in space as 
subsequent layers.  

 
9.1 The architecture  
9.1.1 The extended standard CNN universal cell 
 Actually, in chapter 7, we have shown almost all of the various components we 
need in the extended standard universal cell, shown schematically in Figure 1. 

                                                           
1 an operator y(t)= ( u$y 1(t), u2(t), ..., un(t)) is of fading memory if ∆y (t)|t=t0 →0 as  ∆ui(t-τ) is bounded and 

τ→∞. 
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Figure 1 (a) and (b) 
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Fig.1 The extended standard CNN universal cell. (a) the main components (b) the analog 
part of a circuit schematic. (c) the logic part. 

 
 We have two elements not yet introduced in chapter 7. 
 
 The local analog output unit (LAOU) is a multiple-input single output analog 
device. It has the same function for continuous signal values as the local logic unit (LLU) 
for logic values. Namely, it combines local (stored) analog values into a single output. 
We may have used it for analog addition in section 7.6, instead of using the CNN cell for 
addition. 
 
 The local communication and control unit (LCCU) receives the programming 
instructions, in each cell, from the global analogic programming unit (GAPU), namely 
 • the analog template values (A, B, and z). • the logic function codes for the local logic unit, and  • the switch configuration of the cell specifying the signal paths and some settings in 

the functional units (e.g., f(.), LAOU, GW(.)).  
 
 This means, at the same time, that we need registers (storage elements) in the 
GAPU for these 3 types of information, namely: 
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 • an analog program register (APR) for the CNN templates. • a logic program register (LPR) for the LLU functions, and  • a switch configuration register (SCR). 
 
 In Figure 1(b) the analog part of a circuit schematic of the cell is shown. We are 
keeping in mind an electronic or a physiological model, though, except a capacitor, no 
implementation-dependent elements are shown. An electronic integrated circuit 
(VLSI) implementation of these elements will be discussed in Chapter 15. 
  
We assigned separate local analog memory places for the input (u), initial state (x(0)), 
threshold (z), and a sequence of outputs (y(n)), however, a single local analog memory 
with a few places can also be used for all of these signals/data.  
 
 In Figure1(c) we show the logic part. We have introduced the elements already in 
chapter 7. The “global wire” (GW(.)) operator receives inputs from all cells, their cell 
logic outputs are Yij :=Y(k)

ij, k: specified. 
 
 Remarks: 
 
 There are other, very useful possibilities related to a “global wire”. For example, 
weighted analog outputs of each row may be calculated and added for the whole array. 
 
9.1.2. The global analogic programming unit (GAPU) 
 
 This unit is the “conductor” of the whole analogic CNN universal machine, it 
directs all the extended standard CNN universal cells.  
 
 Figure 2 shows that, in addition to the 3 registers we already discussed in section 
9.1.1 (i.e., the APR, LPR, SCR), the global analogic programming unit (GAPU) hosts the 
main control of the array which is placed in the global analogic control unit (GACU). 
Indeed, this is the (digital) machine code of the sequence of instructions of the given 
analogic CNN program. 
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Fig. 2 The structure of the CNN universal machine 
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Why stored programmability is possible? 
 
 In digital computers, we tacitly assume and taken for granted that, for any 
sequence of instructions,  
 
(i)  all the transients decay within a specified clock cycle, and 
 
(ii)  all the signals remain within a prescribed range of dynamics (including 
dissipation, slope, etc.). 

These conditions are not trivial in digital implementations either. Think about 
what would happen if a 75 MHz Pentium processor would have a clock of 100MHz. 
Clearly it would not work because of violating the first condition above. It may even 
destroy it due to violating the second condition.  
 A unique feature of the CNN dynamics and the CNN-UM architecture is that we 
can assure conditions (i) and (ii) as well. It is much less trivial here than in the digital 
case. Our main elementary instructions are the CNN templates and the local logic 
operations. But the CNN templates may induce the most exotic dynamics. The global 
clock (GCL) has a faster clock cycle for the logic part than for the analog part. 
 
 The global analogic control unit stores, in digital form, the sequence of 
instructions. Each instruction contains the operation code (template or logic), the 
selection code for the parameters of the operation (the code for the 19 values: A, B, z; or 
the code of the local logic function), and the switch configuration. The parameters are 
stored in the registers (APR, LPR, SCR). 
 
 Figure 3 shows the arrangement of the GAPU from this point of view. 

 
Fig. 3. The organization of the GAPU 
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9.2 A simple example in more details 

 In this example we show a complete sequence of various forms of an analogic 
CNN program as it is executed on a CNN Universal Machine. The outline and 
description of such a program contains the following information. 
 • Global task • The flow diagram of the algorithm.  
• The description of the algorithm in high level α language (analogic CNN language) 

or in an assembler (the analogic machine code, AMC). 
• The result of an α compiler in the form of an analogic machine code (AMC) as a 

sequence of macro instructions and its binary form (optional). 
 
The physical code generated by the CNN operating system and the controlling CNN chip 
“platform” is not shown here. 
 
 This example, called BARS-UP, is interesting in itself. The global task is shown 
in Fig. 4, we have to detect all objects, which have bars pointing upwards, and a 
continuous (to this bar) middle segment (many animals are responding to these objects by 
firing some neurons in their infero-temporal cortex). 
 
 The flow diagram of the analogic CNN algorithm is shown in Figure 5 with the 

intermediate results. The α language description (Version 2.1) is shown in Figure 6. We 

will show later the other codes generated by the α compiler. 
 
The global task is: detect those objects which have bars pointing upwards. A typical 
input→output image pair is shown below. The original image is called BarsUpTest, the 
output is RESULT. 
 

  
 

Figure 4: The global task 
 Remarks: 
 Here, we have a 5x5 template. Its actual physical implementation is not 
considered here. There are several ways to realize this "large neighborhood" CNN 
template. For example, to decompose it into several 3x3 templates. 
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Result of HOLLOW template: 
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0.5 2 0.5 

0.5 0.5 0.5 

0 0 0 

0 2 0 

0 0 0 
B = z = A = 3 

 
 
 
Logic XOR applied to the previous 
two images 
 
 
 
 
 
 
 
Result of HORDIST template: 

0 0 0 0 0 
0 0 0 0 0 
0.25 -0.25 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

z = -1.5 B = A = 2 

 
 
 
Result of RECALL template: 

 

0.5 0.5 0.5 

0.5 4 0.5 

0.5 0.5 0.5 

0 0 0 

0 4 0 

0 0 0 

z = B = 2.1 A = 

input: original image; 
initial state: previous image 
 

Fig. 5 
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Visual Feature Detection 
(α-language, version 2.1) 

 
FUNCTION BARS-UP; 

xLoad (LLM1, BarsUpTest); 
 LLM3:= LLM1; 
 HOLLOW(LLM1,LLM1,LLM2,10,-1); 

LOGXOR(LLM2,LLM3,LLM1,10,-1); 
HORDIST(LLM1,LLM1,LLM2,10,-1); 

 RECALL(LLM2,LLM3,LLM1,10,-1); 
xSAVE(RESULT,LLM1); 

ENDFUNCT; 
 

 
Figure 6 

 
Here, in this function description we have used two new α instructions: 
 
xLOAD(local memory, file name) and 
 
xSAVE(file name, local memory) 
 
These are the input and output instructions from and to the digital environment. 
 
 
9.3 A very simple example on the circuit level 
 
In the following example, we will explain the functional details of the CNN-UM 
operation on the functional circuit level. Even though the example is very simple, it 
contains the micro steps. At the same time, it is not a transistor level description. Some 
transistor level implementation details will be described in Chapter 15. 
 
The task: 
Detect the horizontal intensity changes on a black-and-white image (Figure 7 shows an 
example) 
 
The steps of the solution: 
 • detect those white pixels which have a black pixel on their direct right hand side 

(detection means to put the detected pixel to the black value, i.e. +1) • detect those black pixels which have a white pixel on their direct right hand side • apply a pixel by pixel logic OR function 
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The flow diagram of the algorithm and the templates:  
 
The first step is performed by a template TEM1 and the second step by TEM2. The  two 
results are combined with a local logic OR operation. 
 
The flow diagram with image fragments representing input, output, and intermediate 
results is shown in Figure 7. 
 

 
Figure 7.  The flow diagram of the analogic CNN algorithm. Operation is illustrated on 

a simple test image fragment 

 
The templates used in the CNN algorithm are as follows: 
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TEM2 (black to white):  
A B I=

⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥

= −
⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥

= −
0 0 0

0 2 0

0 0 0

0 0 0

0 2 2

0 0 0

15, ,

 
The macro code of the algorithm: 
 
As an example of the analogic macro code (AMC) description, we show the description 
of our very simple algorithm: 
 

 LOADTEM >FF80, APR1 ; loading template (TEM1) 
 LOADTEM >FF60, APR2 ; loading template (TEM2) 
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 COPY A_M2C, >FF40, LAM1 ; copy Analog image from  
; Memory to Chip 

  
 RUNTEM APR1, LAM1, LAM1, LLM1 ; run TEM1 template operation 
 RUNTEM APR2, LAM1, LAM1, LLM2 ; run TEM2 template operation 
 RUNLOG OR, LLM1, LLM2, LLM3 ; run local logic operation OR 
  
 COPY L_C2M, LLM3, >FF00 ; copy binary (Logic) image  

; from Chip to Memory 
 END 
 
The syntax of the AMC instructions are simple: 
 LOADTEM [source], [target]; 
 COPY [type], [source], [target]; 
 RUNTEM [template], [input], [init. state], [output]; 
 RUNLOG [type], [op1], [op2], [result]; 
The memory address is hexadecimal, ant the type of the image has a mnemonic name. 
 
The core of the algorithm, in addition to the image and template downloading and the 
output image uploading, is represented by the 3 consecutive AMC instructions denoted 
by italic comments. That is: • run TEM1 (stored in APR1) with input and initial state defined by the original input 

image stored in LAM1) and place the result (after converting from bipolar analog 
representation to unipolar binary one) in local logic memory LLM1 • run TEM2 (stored in APR2) with input and initial state defined by the original input 
image stored in LAM1) and place the result (after converting from bipolar analog 
representation to unipolar binary one) in local logic memory LLM2 • apply the local logic unit (LLU) with a logic OR operation on the two intermediate 
results stored in local logic memories LLM1 and LLM2 and place the result in 
LLM3 

These three macro instructions will be converted into a series of elementary machine 
micro instructions, as shown later. 
 
Next, we will not go into the details how the CNN operating system (COS) generate the 
machine micro code to be put into the GACU of the CNN Universal Chip (and how to fill 
the registers of the GAPU), however, we want to show the functional circuit level 
operation of an extended CNN cell. We will show soon the operations generated by the 
machine level micro instructions in the very details. First, we show an extended cell. 
 
The functional circuit level schematics of an extended cell:  
 
An extended cell is shown in Figure 8. 

The local analog memory (LAM) has two places, LAM1 and LAM2. The analog cell 
contains two auxiliary storage capacitors at the input and at the state, respectively. The 
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iinput and ioutput values represent the weighted sums (as currents) from the inputs (B 
template) and from the outputs (A template) of the neighbor cells.  

 

The local logic memory has three places, LLM1, LLM2, LLM3. LLM1 and LLM2 is 
implemented as a shift register, the input is stored on LLM1 and every new input shifts 
the content by one place to right (from LLM1 to LLM2, etc.). If we want to store a LAM 
value in (LLM1, LLM2), an automatic bipolar analog to unipolar binary converter is 
applied, shown  after sw4. The local logic unit (LLU) in this cell is an OR function. It has 
a direct LLM3 output buffer. 
 
In this extended cell we have six switches: sw0, sw1, sw2, sw3, sw4, sw5. Depending on 
their positions, ON or OFF, they code different switch configurations. The sequence of 
switch configurations is stored in the switch configuration register (SCR). Below, we 
show five switch configurations  (sconf0, sconf1, sconf2, sconf3, sconf4) which define 
five actions in each and all cells (fully parallel).   
 

Switch configuration; 
and corresponding action 

sw0 sw1 sw2 sw3 sw4 sw5 

sconf0 ; load input and initial state 
from LAM1 

off on on off off off 

sconf1 ;  start transient on off off off off off 
sconf2 ;  store the result in LAM2 on off off on off off 
sconf3 ;  store LAM2 in LLM off off off off on off 

sconf4 ;  activate the logic operation 
and put the result in LLM3   

off off off off off on 
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Figure 8. A very simple extended cell with the six switches, sw0, sw1, sw2, sw3, 
sw4, sw5 and the logic output (at the output of LLM3). It is supposed that the input 
image has been downloaded to LAM1. 
 
The content of the Global Analogic Programming Unit (GAPU) : 
 
First we specify the registers. Part of the content of the switch configuration register 
(SCR) has already been defined. This will be enough for running the three consecutive 
core macro instructions defined above. 
The analog program instruction register (APR) contains two templates, that is, the two 
sets of the 19 numbers defined by TEM1 and TEM2, coded some appropriate way in 
APR1 and APR2. 
The logic program instruction register (LPR) contains the codes for the logic operations 
of the local logic unit (LLU), here we need only the OR operation, it is stored, and coded 
in an appropriate way in LPR1. 
 
The sequence of the actions in the CNN Universal Machine with our simple extended 
cell, and the registers defined right now, is coded in the Global Analogic Control Unit 
(GACU). In our example, for the three macro instructions defined above, for 
implementing the core of  our algorithms (running the two consecutive templates and the 
logic OR operation with the appropriate storage of the intermediate results), the sequence 
of macro instructions of the GACU are as follows.  
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Here, we suppose that the templates, the local logic operator and the input image are 
loaded (TEM1 and TEM2 in APR1 and APR2, respectively, the OR operation in LPR1, 
and the input image, pixel by pixel, in the LAM1 place of each extended cell). Then  the 
next sequence is applied: 
  
 Action code  Comment 
 
 sconf0;  load input and initial state from LAM1 
 select APR1; tune the template element values defined by TEM1 
 sfonf1;  start the analog spatiotemporal transient  
 sconf2;  store the result in LAM2 
 sconf3;  store LAM2 in LLM1 
 

sconf0;  load input and initial state from LAM1 
 select APR2; tune the template element values defined by TEM2 
 sfonf1;  start the analog spatiotemporal transient  
 sconf2;  store the result in LAM2 
 sconf3;  store LAM2 in LLM1 (the former LLM1 value will be automati- 

cally shifted to LLM2) 
 
 select LPR1; tune to the local logic operation OR 
 sconf4;  calculate the OR operation and store the result in LLM3 
 
In the first two action groups, the first two actions are made parallel. 
The five extended cell configurations corresponding to sconf0, sconf1, sconf2, sconf3 
and sconf4 are shown on Figures 9, 10, 11, 12, and 13, respectively. The comments are 
referring to the last two action groups (activating TEM2 and OR). The closed switches 
are shown bold. Hence, it is easy to detect the active parts of the circuit.  
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Figure 9. Sconf0; load input and initial state from LAM1 

 
Figure 10. Sconf1; start transient 
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Figure 11. Sconf2; store  the result in LAM2 

 
Figure 12. Sconf3; store LAM2 in LLM  
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Figure 13 Sconf4; activate the logic operation and put the result in LLM3 

 
 
9.4 Language, compiler, operating system 
 
In the preceding Chapters we have learned a few languages of different levels to describe 
the analogic CNN algorithms. In Figure 14 we summarize the various steps how our high 
level α instructions code will be translated into a running program on a physical chip. It 
shows the main software levels of this process. 
 
On the lowest level, the chips are embedded in their physical environment. The AMC 
code will be translated into firmware and electrical signals. 
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Figure 14. The levels of the software and the core engines 

On the highest level, the α compiler generates a macro (assembly) level code called 

analogic macro code, AMC. The input of the α compiler  is the description of the flow 

diagram of the algorithm using the α language.  
 
The AMC like CNN Script Description (CSD) code is used for the software simulations 
to control the different parameters of the simulation as well as to specify the graphical 
demonstration of the results, as we have shown in Chapter 4. Here, the physical processor 
is the Pentium microprocessor, controlled by the physical code running under an 
operating system (like WINDOWS or UNIX). The simulator can also be used directly 

from the α source code via the compiler and the AMC (with default operating and 
graphical parameters). 
 
As an example for an AMC code in assembly format and in hexadecimal format, these 
codes for the program example BARS-UP, described in Section 9.2, are shown in Figures 
15 and 16, respectively. 
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Analogic Macro Code ( AMC ) description of BARS-UP 
 

 COPY B2C_L2L, >FFC0, 1 * board to chip copy ( to LAM1 ) 
 
 LOADT >FFA0, 1   * load template1 
 
 LOADT >FF80, 2   * load template2 
 
 LOADT >FF60, 3   * load template3 
 
 RUNA 1, 1, 1, 2   * run template1 
 
 RUNTL CXOR, 2, 2, 2  * logic XOR 
 
 RUNA 2, 2, 2, 2   * run template2 
 
 RUNA 3, 2, 1, 2   * run template3 
 
 COPY C2C_L2L, 2, >FFC0 * chip to board copy ( from LAM2 ) 
 
 syntax:

 COPY  [type], [source], [destination] 

 LOADT [source], [destination] 

 RUNA [template], [input], [init. state], [output] 

 RUNL  [type], [op1], [op2], [output] 

All the parameters are chip or board memory addresses, except the [type] parameters 

 
Figure 15. 
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Compiled Analogic Macro Code 

in hexadecimal format 
 hexa   binary     code 
 
 12h   0000 0000 0001 0010   COPY 
 8h   0000 0000 0000 1000   B2C_L2L 
 FFC0h   1111 1111 1100 0000   >FFC0 
 1h   0000 0000 0000 0001   1 
 
 62h   0000 0000 0001 0010   LOADT 
FFA0h   1111 1111 1010 0000   >FFA0 
 1h   0000 0000 0000 0001   1 
 
 62h   0000 0000 0001 0010   LOADT 
 FF80h   1111 1111 1010 0000   >FF80 
 2h   0000 0000 0000 0010   2 
 
 62h   0000 0000 0001 0010   LOADT 
 FF60h   1111 1111 1010 0000   >FF60 
 3h   0000 0000 0000 0011   3 
 
 61h   0000 0000 0001 0001   RUNA 
 1h   0000 0000 0000 0001   1 
 1h   0000 0000 0000 0001   1 
 1h   0000 0000 0000 0001   1 
 2h   0000 0000 0000 0010   2 
 
 61h   0000 0000 0001 0001   RUNL 
5h   0000 0000 0000 0101   5 
 5h   0000 0000 0000 0101   5 
 5h   0000 0000 0000 0101   5 
2h   0000 0000 0000 0010   2 

. 

. 

. 
 

Figure 16 
 
Consider now the CNN Universal Machine Chip, called CNN-UM chip. We need the 
appropriate software levels and a hardware-software environment. This is the CNN Chip 
Prototyping System (CCPS). In the CCPS we may also use the AMC code as the input. 
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In Figure 17 we show the flow diagram of the whole process down to the physical chip. 
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Figure 17 The architecture of the CNN Chip prototyping System (CCPS) 
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In this chip prototyping system the CNN-UM chip is hosted in a separate Platform, 
connected to a PC. A special purpose add-in-board, the Chip Prototyping System Board 
(CPS board) is serving as the hardware environment for the CNN Operating System 
(COS). 
 
To make the whole CNN computer self contained we need a CNN Universal Chip set 2 
and implement it on an Engine Board.  
 
In single board or single chip solutions the CPS board and its software is integrated into 
the CNN-UM chip or board. 
 
We stop here, not to explain more details. Our aim was to show that writing analogic 

CNN programs in high level languages (like the α language) the rest of the familiar 
computing infrastructure is ready to execute these programs in different formats and 
physical implementations. As to the latter, Chapter 15 will describe the main types and 
parameters of the physical implementations. 
 

                                                           
2 T. Roska,  “The CNN Chip set, engine board and the visual mouse”, Proc. IEEE CNNA-96, pp. 487-492, 
Seville, 1996 
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