Chapter 9

The CNN Universal Machine (CNN-UM)

In Chapter 7, we have shown a couplegeheric examples which can be solved
by a sequence of CNN templates. The harelaviCNN implementations using different
CNN components or different templates is , however, totally impractical. In this chapter
we show the architecture of the first 8pgemporal analogic array computer, the CNN
Universal Machine (CNN-UM).

In the examples mentioned above, and in many other examples including
physiologically faithful models of various parts of the nervous system, especially vision,
the following 2 completely different types of operations are used to solve a complex task:
e continuous-time, continuos valued spatiotemporal nonlinear array dynamics(2D and

3D arrays).
¢ |ocal and global logic

Hence, analog (continuous) and logic operations are mixeenavatided in the

array computer. Therefore we call this type of array compudimeogic.

The CNN-UM architecture, shown below
e contains aninimum number of component types
e providesstored programmable spatiaotemporal array computing, and
e is universal in two senses:
* as gpatial logic, it is equivalent to a Turing Machine and as a
local logic it may implement anlypcal Boolean function.

* asanonlinear dynamic operator, it can realize any local operator
of fading memory, i.e., practically all reasonable operators. Indeed, the CNNUM is a
common computational paradigm for as diverse fields of spatiotemporal computing as,
for example, retinal models, reaction diffusion equations, mathematical morphology, etc.

Remarks:

1. The stored program, as a sequence wofptates, could be considered as a
genetic code for the CNN-UM. The elentary genes are the templates, in
case of r=1 it is a 19-real-numbeode. This, in a way is a minimal
representation of a complex spatio-tempral dynamics.

2. In the nervous system, the consecutive templates are placed in space as
subsequent layers.

9.1 The architecture
9.1.1 The extended standard CNN universal cell

Actually, in chapter 7, we have shown almost all of the various components we
need in the extended standard universal cell, shown schematically in Figure 1.

! an operator y(t)¥ (w(t), w(t), ..., w(t)) is of fading memory if\y (t)k=c —0 as Au(t-t) is bounded and
T—>0.

9001

LCCU:
local communication
and control unit

i

LAM: CNN LLM:

local local
analoo nucleus |iodgic
LAOU: LLU: Extended cell
local analoy local logic
output unit unit

(a) the main components in the extended cell

56

[>> K B
________)- _—— - - - -
programable template BLA

ossible signal
standard controlled sources pf)aths contrglled
nonlinearity (A or B) to ij)

convergent sum of by switches
E I:I template controlled a—Program (e.g. temlate
sources from(#) values) from GAPU
local analog
memory (b) the analog part of a circuit schematic

Figure 1 (a) and (b)

9002

I1 IE IF'

anakog 1“I’_[‘IJ ?[2] ‘Y[p] LLK: lozal kbgic memo
I SOy S—— ; i
part N Li L Li [5.g. shift registen
¥ /
| 1 l l
B LLU: local kegic unit I \r'ij

B LLU

local kogic memory

binary conveartar programmsd local ogic
iBipokranalkg to unit. program from GAPU
Unipolar logic) lglobalanalogic

programming unit)

(o) kogic pan

Fig.1 The extended standard CNN universal cell. (a) the main components (b) the analog
part of a circuit schematic. (c) the logic part.

We have two elements not yet introduced in chapter 7.

The local analog output unit (LAOU) is a multiple-input single output analog
device. It has the same function for continusigmal values as the local logic unit (LLU)
for logic values. Namely, it combines loqatored) analog values into a single output.
We may have used it for analog addition in section 7.6, instead of using the CNN cell for
addition.

The local communication and control unit (LCCU) receives the programming
instructions, in each cell, from tigkobal analogic programming unit (GAPU), namely

e the analog template values (A, B, and z).
e the logic function codes for the local logic unit, and
e the switch configuration of the cell spedifg the signal paths and some settings in

the functional units (e.g., f(.), LAOU, GW(.)).
This means, at the same time, that meed registers (storage elements) in the
GAPU for these 3 types of information, namely:

9003

e an analog program register (APR) for the CNN templates.
e alogic program register (LPR) for the LLU functions, and
e a switch configuration register (SCR).

In Figure 1(b) the analog part of a cittcschematic of the cell is shown. We are
keeping in mind an electronic or a physgical model, though, except a capacitor, no
implementation-dependent elements are shown. An electronic integrated circuit
(VLSI) implementation of these elements will be discussed in Chapter 15.

We assigned separate local analog memaaggd for the input (u), initial state (x(0)),
threshold (z), and a sequence of outpuf)(yhowever, a single local analog memory
with a few places can also be used for all of these signals/data.

In Figurel(c) we show the logic part. Wave introduced the elements already in
chapter 7. The “global wire” (GW(.)) operator receives inputs from all cells, their cell
logic outputs are 3(:=Y(k)ij, k: specified.

Remarks:

There are other, very useful possibilitretated to a “global wire”. For example,
weighted analog outputs of each row may be calculated and added for the whole array.

9.1.2. The global analogic programming unit (GAPU)

This unit is the “conductor” of the ale analogic CNN universal machine, it
directs all the extended standard CNN universal cells.

Figure 2 shows that, in addition to theegjisters we already discussed in section
9.1.1 (i.e., the APR, LPR, SCR), the globhahlogic programming unit (GAPU) hosts the
main control of the array which is placedthe global analogic control unit (GACU).
Indeed, this is the (digital) machine codetlé sequence of instructions of the given
analogic CNN program.

9004

SCL

GAPU

e

GAPU

0L glebal clock

APR: zanaleg programming
instruction register

W global wirs :
LPR: kgicprogram
instruction register

@ . autsnded standard CHN SR swich configumtion
Universal csll registar

GACU: gobalanakoic

control unit

Fig. 2 The structure of the CNN universal machine

9005

Why stored programmability is possible?

In digital computers, we tacitly assume and taken for granted that, for any
sequence of instructions,

0] all the transients decay within a specified clock cycle, and

(i) all the signals remain within grescribed range of dynamics (including
dissipation, slope, etc.).

These conditions are not trivial in d#& implementations either. Think about
what would happen if a 75 MHz Pentiumopessor would have a clock of 100MHz.
Clearly it would not work because of vititeg the first condition above. It may even
destroy it due to violating the second condition.

A unique feature of the CNN dynamiasdathe CNN-UM architecture is that we
can assure conditions (i) and (ii) as wellisitmuch less trivial here than in the digital
case. Our main elementary instructioase the CNN templates and the local logic
operations. But the CNN templates may icglithe most exotic dynamics. The global
clock (GCL) has a faster clock cycle for the logic part than for the analog part.

The global analogic control unit stoyes1 digital form, the sequence of
instructions. Each instruction containse ttoperation code (template or logic), the
selection code for the parameters of the opangthe code for the 19 values: A, B, z; or
the code of the local logic function), atlte switch configuration. The parameters are
stored in the registers (APR, LPR, SCR).

Figure 3 shows the arrangement of the GAPU from this point of view.
TO ALL CELLS

’-----‘\-----\

APR | LPR SCR

TF % ol 11 Tel 11

GACU

Fig. 3. The organization of the GAPU

9006

9.2 A simple example in more details

In this example we show a completequence of various forms of an analogic

CNN program as it is executed on a\NIiC Universal Machine. The outline and
description of such a program contains the following information.

Global task
Theflow diagram of the algorithm.

The description of the algorithm in high lexallanguage gnalogic CNN language)
or in an assembler (the analogic machine code, AMC).

The result of arot compiler in the form ofn analogic machine code (AMC) as a
sequence afacro instructions and itshinary form (optional).

The physical code generated by the CNN ojpggasystem and the controlling CNN chip
“platform” is not shown here.

This example, called BARS-UP, is interesting in itself. flobal task is shown

in Fig. 4, we have to detect all objectshich have bars pointing upwards, and a
continuous (to this bar) middle segment (many animals are responding to these objects by
firing some neurons in their infero-temporal cortex).

The flow diagram of the analogic CN&gorithm is shown in Figure 5 with the

intermediate results. Thee language description (Versiéhl) is shown in Figure 6. We
will show later the other codes generated byathmmpiler.

The global task is: detect those objects which have bars pointing upwards. A typical
input>output image pair is shown below. Thegaral image is called BarsUpTest, the
output is RESULT.

tae ‘u
L1l 1
= AL A,

Figure 4: The global task
Remarks:
Here, we have a 5x5 template. Its actual physical implementation is not

considered here. There are several whaygealize this "large neighborhood" CNN
template. For example, to decompose it into several 3x3 templates.

9007

Original input image

Result of HOLLOW template:

05| -5| 05
=105| 2| 05
0.5| 05| 05

Logic XOR applied to the previous

BarsUpTest

B=

0| O
0| 2
0| O

two images

Result of HORDIST template:

9008

0 0 ojlo]o
0 0 ojlo]oO
=[2] B=[025]-025] 0] 0] 0
0 0 0oj]o]oO
0 0 0]0]oO
Result of RECALL template:
0.5| 05| 05 0| O
= |05 4|05 Bp=|0] 4
0.5| 05| 05 0| O
input: original image;
initial state: previous image
Fig. 5

.= 3
2=[15
2= 21

Visual Feature Detection
(a-language, version 2.1)

FUNCTION BARS-UP;
xLoad (LLM1, BarsUpTest);
LLM3:= LLM1;
HOLLOW(LLM1,LLM1,LLM2,10,-1);
LOGXOR(LLM2,LLM3,LLM1,10,-1);
HORDIST(LLM1,LLM1,LLM2,10,-1);
RECALL(LLM2,LLM3,LLM1,10,-1);
XSAVE(RESULT,LLM1);
ENDFUNCT;

Figure 6

Here, in this function description we have used two aewstructions:
XLOAD(local memory, file name) and
XxSAVE(file name, local memory)

These are the input and output instructions from and to the digital environment.

9.3 A very simple example on the circuit level

In the following example, we will explain the functional details of the CNN-UM
operation on the functional circuit level. Even though the example is very simple, it
contains the micro steps. At the same tihés not a transistor level description. Some
transistor level implementation details will be described in Chapter 15.

The task
Detect the horizontal intensity changesablack-and-white image (Figure 7 shows an
example)

The steps of the solution

e detect those white pixels which have a black pixel on their direct right hand side
(detection means to put the detected pixel to the black value, i.e. +1)

e detect those black pixels which have a white pixel on their direct right hand side

e apply a pixel by pixel logic OR function

9009

The flow diagram of the algorithm and the templates

The first step is performed by a templdteM1 and the second step by TEM2. The two
results are combined with a local logic OR operation.

The flow diagram with image fragments representing input, output, and intermediate
results is shown in Figure 7.

EEEE
W[
L0
[INPUT]] =
00000
m| | | OO
1 TEM1] [TEM2] H-BaFH
O])2 H_|m
o0 nEn
EEEN|
N [(e
(IO
EEEnEN

Figure 7. The flow diagram of the analog@NN algorithm. Operation is illustrated on
a simple test image fragment

The templates used in the CNN algorithm are as follows:

TEM1 (white to black): A= 8 g ng _02 g 8I:—15
0 0 O O 0O

TEM2 (black to white): Ao

(@)
N
o
w
1
o
N
|
N
I
|
I_\
ol

The macro code of the algorithm

As an example of the analogic macro c@d®C) description, we show the description
of our very simple algorithm:

LOADTEM >FF80, APR1 ; loading template (TEM1)
LOADTEM >FF60, APR2 ; loading template (TEM2)

9010

COPY A M2C, >FF40, LAM1 ; copy Analog image from
; Memory to Chip

RUNTEM APR1, LAM1, LAM1, LLM1 ;run TEM1 template operation
RUNTEM APR2, LAM1, LAM1, LLM2 ;run TEMZ2 template operation

RUNLOG OR, LLM1, LLM2, LLM3 ;run local logic operation OR
COPY L _C2M, LLM3, >FF00 ; copy binary (Logic) image
; from Chip to Memory
END
The syntax of the AMC instructions are simple:
LOADTEM [source], [target];
COPY [type],[source], [target];
RUNTEM [template], [input], [init. state], [output];
RUNLOG [type],[op1], [op2], [result];

The memory address is hexadecimal, ant the type of the image has a mnemonic name.

The core of the algorithm, in addition tee image and template downloading and the
output image uploading, is represented by 3hconsecutive AMC instructions denoted
by italic comments. That is:

e run TEML1 (stored in APR1) with input anitial state defined by the original input
image stored in LAM1) and place the rieq@fter converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM1

e run TEM2 (stored in APR2) with input anitial state defined by the original input
image stored in LAM1) and place the rieq@fter converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM2

e apply the local logic unit (LLU) with aolgic OR operation on the two intermediate
results stored in local logic memories LLM1 and LLM2 and place the result in
LLMS3

These three macro instructions will be conedrinto a series of elementary machine

micro instructions, as shown later.

Next, we will not go into the details howetlCNN operating system (COS) generate the
machine micro code to be put into the GAGLthe CNN Universal Chip (and how to fill
the registers of the GAPU), however, wenivdo show the functional circuit level
operation of an extended CNN cell. We vghow soon the operations generated by the
machine level micro instructions in the very details. First, we show an extended cell.

The functional circuit level schematics of an extended cell

An extended cell is shown in Figure 8.

The local analog memory (LAM) has twmaces, LAM1 and LAM2. The analog cell
contains two auxiliary storage capacitors at the input and at the state, respectively. The

9011

linput andioutput values represent the weighted sums (as currents) from the inputs (B
template) and from the outputs (A template) of the neighbor cells.

The local logic memory has thrggaces, LLM1, LLM2, LLM3. LLM1 and LLM2 is
implemented as a shift register, the inpustisred on LLM1 and every new input shifts
the content by one place to right (from LLM1LltbM2, etc.). If we want to store a LAM
value in (LLM1, LLM2), an automatic bipolaanalog to unipolar binary converter is
applied, shown after sw4. Thechd logic unit (LLU) in this cell is an OR function. It has
a direct LLM3 output buffer.

In this extended cell we have six switches: sw0, swl, sw2, sw3, sw4, sw5. Depending on
their positions, ON or OFF, they code differswitch configurations. The sequence of
switch configurations is stored in the svhitconfiguration register (SCR). Below, we

show five switch configurations (sc@hfsconfl, sconf2, sconf3, sconf4) which define

five actions in each and all cells (fully parallel).

Switch configuration; swO | swl| sw2| sw3| sw4 swb
and corresponding action
sconfO ; load input and initial stateff |[on | on off | off | off

from LAM1

sconfl ; start transient on oft off off offf off
sconf2 ; store the result in LAM2 on| of off on oft off
sconf3 ; store LAM2 in LLM off | off | off off on off

sconf4 ; activate the logic operation off | off | off off |off |on
and put the result in LLM3

9012

local logic memory: LLM

LI.M3
\/

LLU
— —
sw4
U N Xij ~ N Y1_] SW?)_-_ 1/0
+
Cu SWO\i RX 1output
:::}’ z I_Et: E: —_—
mput J l J CX T l f(Xij) -— -
\i’ w2 \ swl LAMI1| LAM2
] -

local analog memory: LAM

Figure 8. A very simple extended cell with the six switches, swO0, swl, sw2, sw3,
sw4, sw5 and the logic output (at the output of LLM3). It is supposed that the input
image has been downloaded to LAML1.

The content of the Global Analogic Programming Unit (GAPU)

First we specify the registers. Part of t@ntent of the switch configuration register
(SCR) has already been defined. This will be enough for running the three consecutive
core macro instructions defined above.

The analog program instruction register (ARRhtains two templates, that is, the two
sets of the 19 numbers defined by TEMidarEM2, coded some appropriate way in
APR1 and APR2.

The logic program instruction register (LPR) contains the codes for the logic operations
of the local logic unit (LLU), here we needly the OR operation, it is stored, and coded

in an appropriate way in LPR1.

The sequence of the actions in the CNNwdrsal Machine with our simple extended
cell, and the registers defined right nowgcaded in the Global Analogic Control Unit
(GACU). In our example, for the threenacro instructions defined above, for
implementing the core of our algorithms (running the two consecutive templates and the
logic OR operation with the appropriate starad the intermediate results), the sequence

of macro instructions of the GACU are as follows.

9013

Here, we suppose that the templates, tlalltogic operator and the input image are
loaded (TEM1 and TEM2 in APR1 and APRespectively, the OR operation in LPR1,
and the input image, pixel by pixel, in thAM1 place of each extended cell). Then the
next sequence is applied:

Action code Comment

sconfO; load input and initial state from LAM1

select APR1; tune the template element values defined by TEM1
sfonfl; start the analog spatiotemporal transient

sconf2; store the result in LAM2

sconf3; store LAM2 in LLM1

sconfO; load input and initial state from LAM1

select APR2; tune the template element values defined by TEM2
sfonfl; start the analog spatiotemporal transient

sconf2; store the result in LAM2

sconf3; store LAM2 in LLM1 (the former LLM1 value will be automati-

cally shifted to LLM2)

select LPR1; tune to the local logic operation OR
sconf4; calculate the OR operation and store the result in LLM3

In the first two action groups, the first two actions are made parallel.

The five extended cell configuratiom®rresponding to sconf0, sconfl, sconf2, sconf3
and sconf4 are shown on Figures 9, 10, 11, 12, and 13, respectively. The comments are
referring to the last two action groups t{eating TEM2 and OR). The closed switches

are shown bold. Hence, it is easy to detect the active parts of the circuit.

9014

local logic memory: LLM

e TG s
LILM3
V4 N

-

e

| f(x;) —

LAMI1| LAM2

-

Figure 9. SconfO; load input and ini

local analog memory: LAM

tial state from LAM1

local logic memory: LLM

LLMI

Nz

@ LIL.M2
LILM3
v

x l

_I/E o —{ <}
~ LLU —

wd
Cu RX output
L O&TI

e

| fxp

]
\Y sw?2 \i swl

LAMI1| LAM2

-

Figure 10. Sconfl; start

9015

local analog memory: LAM

transient

local logic memory: LLM

LLMI1

Aé

ES} I
LILM3
N4
~ {1
sSW3
LLU
- —
sw4
sw3

Ry | Toupur
2
l 1<

i_-> —_ |,
nput J l i f(Xij) -
LAM1| LAM2

]
\ swl
|

-

local analog memory: LAM

Figure 11. Sconf2; store the result in LAM2

local logic memory: LM

e T Tt
LIM3
v v
Cor +——{ "}
LLU
=) st
swd
Ui X i ¥ij SW{___
-+
Cu SWO\{ R‘x 1output
T : |‘='= = —
input J l Cx T J f(Xij) I—.— B
: LAMI| LAM2

\{ swl
I

-

local

analog memory: LAM

Figure 12. Sconf3; store LAM2 in LLM

9016

local logic memory: LM

POy e
LILM3

\V v/
=1
LLU
- —
sw4
Ui X . Vi SW?")___
Cu SWO\{ RX ioutput
__rin nt ‘ ’_:|:C ; # i
put | lJ T [fop | 5
\i’ w2 \ awl LAMI| LAM2Z
| -

local analog memory: LAM

Figure 13 Sconf4; activate the logic operation and put the result in LLM3

9.4 Language, compiler, operating system

In the preceding Chapters we have learnedvddeguages of different levels to describe
the analogic CNN algorithms. In Figure 14 siemmarize the various steps how our high

level a instructions code will be translatedona running program on a physical chip. It
shows the main software levels of this process.

On the lowest level, the chips are embetide their physical environment. The AMC
code will be translated into firmware and electrical signals.

9017

Algorithm: flow-diagram,
templates and subroutines

v

[Alpha source code]

A 4

Alpha Compiler

Script
macrocode
(AMC-like)

v

AMC (analogic machine code)
followed by interpreters

l ! !

Simulator
. - Emulated
running on a CNN-UM chip| [CNN-UM chip in digital
Pentium chip in CCPS Engine Board CNN-UM
ina PC

Figure 14. The levels of the software and the core engines

On the highest level, thelL compiler generates a macro (assembly) level code called
analogic macro code, AMC. The input of ®lecompiler is the description of the flow
diagram of the algorithm using ti@¢ language

The AMC like CNN Script Description (CSD)de is used for the software simulations

to control the different parameters of thengiation as well as to specify the graphical
demonstration of the results, as we hawas in Chapter 4. Here, the physical processor

is the Pentium microprocessor, controlled by the physical code running under an
operating system (like WINDOWS or UNIX). Themulator can also be used directly

from the QL source code via the compiler and the AMC (with default operating and
graphical parameters).

As an example for an AMC code in assemfaygmat and in hexadecimal format, these
codes for the program example BARS-UP, dégd in Section 9.2, are shown in Figures
15 and 16, respectively.

9018

Analogic Macro Code (AMC) description of BARS-UP

COPY B2C_L2L, >FFCO, 1 * board to chip copy (to LAM1)
LOADT >FFAO, 1 * load templatel

LOADT >FF80, 2 * load template2

LOADT >FF60, 3 * load template3

RUNA 1,1,1,2 * run templatel

RUNTL CXOR, 2,2, 2 * logic XOR

RUNA 2,2,2,2 * run template2

RUNA 3,2,1,2 * run template3

COPY C2C_L2L, 2, >FFCO * chip to board copy (from LAM2)
syntax:

COPY [type], [source], [destination]

LOADT [source],[destination]

RUNA [template], [input][init. state], [output]

RUNL [type], [op1], [op2], [output]

All the parameters are chip or board memory addresses, except the [type] paramet

Figure 15.

9019

ers

Compiled Analogic Macro Code
in hexadecimal format

hexa binary code
12h 0000 0000 0001 0010 COPY
8h 0000 0000 0000 1000 B2C L2L
FFCOh 1111 1111 1100 0000 >FFCO
1h 0000 0000 0000 0001 1
62h 0000 0000 0001 0010 LOADT
FFAOh 1111 1111 1010 0000 >FFAO
1h 0000 0000 0000 0001 1
62h 0000 0000 0001 0010 LOADT
FF80h 1111 1111 1010 0000 >FF80
2h 0000 0000 0000 0010 2
62h 0000 0000 0001 0010 LOADT
FF60h 1111 1111 1010 0000 >FF60
3h 0000 0000 0000 0011 3
61h 0000 0000 0001 0001 RUNA
1h 0000 0000 0000 0001 1
1h 0000 0000 0000 0001 1
1h 0000 0000 0000 0001 1
2h 0000 0000 0000 0010 2
61h 0000 0000 0001 0001 RUNL
5h 0000 0000 0000 0101 5
5h 0000 0000 0000 0101 5
5h 0000 0000 0000 0101 5
2h 0000 0000 0000 0010 2

Figure 16
Consider now the CNN Universal Machi@hip, called CNN-UM chip. We need the

appropriate software levels and a hardwanrfbasare environment. This is the CNN Chip
Prototyping System (CCPS). In the CCPSmagy also use the AMC code as the input.

9020

In Figure 17 we show the flow diagram of the whole process down to the physical chip.

ALPHA description ALPHA
of an algorithm ’ compiler)
/ display
interfaces and N N video
PC executable <«— image library | «—
program code for PC \
template library
I SA bus
or PCI bus / \
output of the Imagg data and Analogic macro input of the
CPS boar Decision code code, image and CPS board
template data
\ External '/
CNN) CNN “Operating System’
Prototyping (COS) running on the
System board TMS320C25 or
(CPS) TMS3206X \
electrical electrical control,
CNN Platformbus -~ output data template, and data
signals signals
CNN T l
Platform level shifters, sample/hd] multiplexers, ...etc.
optical input
CNN chip ¢

Figure 17 The architecture of thé&d®@ Chip prototyping System (CCPS)

9021

In this chip prototyping system the CNN-UBhip is hosted in a separate Platform,
connected to a PC. A special purpose addeard, the Chip Prototyping System Board
(CPS board) is serving as the hardwangienment for the CNN Operating System
(COS).

To make the whole CNN computer self contained we need a CNN Universal Chip set
and implement it on an Engine Board.

In single board or single chip solutions theEboard and its software is integrated into
the CNN-UM chip or board.

We stop here, not to explain more detasr aim was to show that writing analogic

CNN programs in high level languages (like ttelanguage) the rest of the familiar

computing infrastructure is ready to exeruhese programs in different formats and
physical implementations. As to the latt€&hapter 15 will describe the main types and
parameters of the physical implementations.

2T. Roska, “The CNN Chip set, engine boandl the visual mouse”, Proc. IEEE CNNA-96, pp. 487-492,
Seville, 1996

9022

	Chapter 9
	The CNN Universal Machine (CNN-UM)
	9.1 The architecture
	9.1.1 The extended standard CNN universal cell
	9.1.2. The global analogic programming unit (GAPU)

	9.2 A simple example in more details
	9.3 A very simple example on the circuit level
	9.4 Language, compiler, operating system

