
Chapter 9

The CNN Universal Machine (CNN-UM)

 In Chapter 7, we have shown a couple of generic examples which can be solved
by a sequence of CNN templates. The hardwired CNN implementations using different
CNN components or different templates is , however, totally impractical. In this chapter
we show the architecture of the first spatio-temporal analogic array computer, the CNN
Universal Machine (CNN-UM).
 In the examples mentioned above, and in many other examples including
physiologically faithful models of various parts of the nervous system, especially vision,
the following 2 completely different types of operations are used to solve a complex task: • continuous-time, continuos valued spatiotemporal nonlinear array dynamics(2D and

3D arrays). • local and global logic
 Hence, analog (continuous) and logic operations are mixed and embedded in the
array computer. Therefore we call this type of array computing: analogic.

 The CNN-UM architecture, shown below • contains a minimum number of component types • provides stored programmable spatiaotemporal array computing, and • is universal in two senses:
 * as spatial logic, it is equivalent to a Turing Machine and as a
local logic it may implement any local Boolean function.

 * as a nonlinear dynamic operator, it can realize any local operator
of fading memory1, i.e., practically all reasonable operators. Indeed, the CNNUM is a
common computational paradigm for as diverse fields of spatiotemporal computing as,
for example, retinal models, reaction diffusion equations, mathematical morphology, etc.
 Remarks:

1. The stored program, as a sequence of templates, could be considered as a
genetic code for the CNN-UM. The elementary genes are the templates, in
case of r=1 it is a 19-real-number code. This, in a way is a minimal
representation of a complex spatio-tempral dynamics.

2. In the nervous system, the consecutive templates are placed in space as
subsequent layers.

9.1 The architecture
9.1.1 The extended standard CNN universal cell
 Actually, in chapter 7, we have shown almost all of the various components we
need in the extended standard universal cell, shown schematically in Figure 1.

1 an operator y(t)= (u$y 1(t), u2(t), ..., un(t)) is of fading memory if ∆y (t)|t=t0 →0 as ∆ui(t-τ) is bounded and

τ→∞.

 9001

LAOU:
local analog
output unit

LLU:
local logic

unit

LLM:
local
logic
memory

LCCU :
local communication

and control unit

LAM:
local
analog
memory

CNN
nucleus
with switches

Extended cell

(a) the main components in the extended cell

Sr(ij)

>
= B = = = f (.) A = = =…..

LAM4-k

LAOU
y*

ij

ana1 a2

yij

AB

z =I

xij(0)

LAM3LAM2LAM1

uij

f (.)

standard
nonlinearity

programable template
controlled sources
(A or B) to Sr(ij)

Sr(ij)

AB

convergent sum of
template controlled
sources from Sr(ij)

possible signal
paths controlled

by switches

=
local analog

memory

program (e.g. temlate
values) from GAPU

(b) the analog part of a circuit schematic

Figure 1 (a) and (b)

 9002

Fig.1 The extended standard CNN universal cell. (a) the main components (b) the analog
part of a circuit schematic. (c) the logic part.

 We have two elements not yet introduced in chapter 7.

 The local analog output unit (LAOU) is a multiple-input single output analog
device. It has the same function for continuous signal values as the local logic unit (LLU)
for logic values. Namely, it combines local (stored) analog values into a single output.
We may have used it for analog addition in section 7.6, instead of using the CNN cell for
addition.

 The local communication and control unit (LCCU) receives the programming
instructions, in each cell, from the global analogic programming unit (GAPU), namely
 • the analog template values (A, B, and z). • the logic function codes for the local logic unit, and • the switch configuration of the cell specifying the signal paths and some settings in

the functional units (e.g., f(.), LAOU, GW(.)).

 This means, at the same time, that we need registers (storage elements) in the
GAPU for these 3 types of information, namely:

 9003

 • an analog program register (APR) for the CNN templates. • a logic program register (LPR) for the LLU functions, and • a switch configuration register (SCR).

 In Figure 1(b) the analog part of a circuit schematic of the cell is shown. We are
keeping in mind an electronic or a physiological model, though, except a capacitor, no
implementation-dependent elements are shown. An electronic integrated circuit
(VLSI) implementation of these elements will be discussed in Chapter 15.

We assigned separate local analog memory places for the input (u), initial state (x(0)),
threshold (z), and a sequence of outputs (y(n)), however, a single local analog memory
with a few places can also be used for all of these signals/data.

 In Figure1(c) we show the logic part. We have introduced the elements already in
chapter 7. The “global wire” (GW(.)) operator receives inputs from all cells, their cell
logic outputs are Yij :=Y(k)

ij, k: specified.

 Remarks:

 There are other, very useful possibilities related to a “global wire”. For example,
weighted analog outputs of each row may be calculated and added for the whole array.

9.1.2. The global analogic programming unit (GAPU)

 This unit is the “conductor” of the whole analogic CNN universal machine, it
directs all the extended standard CNN universal cells.

 Figure 2 shows that, in addition to the 3 registers we already discussed in section
9.1.1 (i.e., the APR, LPR, SCR), the global analogic programming unit (GAPU) hosts the
main control of the array which is placed in the global analogic control unit (GACU).
Indeed, this is the (digital) machine code of the sequence of instructions of the given
analogic CNN program.

 9004

Fig. 2 The structure of the CNN universal machine

 9005

Why stored programmability is possible?

 In digital computers, we tacitly assume and taken for granted that, for any
sequence of instructions,

(i) all the transients decay within a specified clock cycle, and

(ii) all the signals remain within a prescribed range of dynamics (including
dissipation, slope, etc.).

These conditions are not trivial in digital implementations either. Think about
what would happen if a 75 MHz Pentium processor would have a clock of 100MHz.
Clearly it would not work because of violating the first condition above. It may even
destroy it due to violating the second condition.
 A unique feature of the CNN dynamics and the CNN-UM architecture is that we
can assure conditions (i) and (ii) as well. It is much less trivial here than in the digital
case. Our main elementary instructions are the CNN templates and the local logic
operations. But the CNN templates may induce the most exotic dynamics. The global
clock (GCL) has a faster clock cycle for the logic part than for the analog part.

 The global analogic control unit stores, in digital form, the sequence of
instructions. Each instruction contains the operation code (template or logic), the
selection code for the parameters of the operation (the code for the 19 values: A, B, z; or
the code of the local logic function), and the switch configuration. The parameters are
stored in the registers (APR, LPR, SCR).

 Figure 3 shows the arrangement of the GAPU from this point of view.

Fig. 3. The organization of the GAPU

 9006

9.2 A simple example in more details

 In this example we show a complete sequence of various forms of an analogic
CNN program as it is executed on a CNN Universal Machine. The outline and
description of such a program contains the following information.
 • Global task • The flow diagram of the algorithm.
• The description of the algorithm in high level α language (analogic CNN language)

or in an assembler (the analogic machine code, AMC).
• The result of an α compiler in the form of an analogic machine code (AMC) as a

sequence of macro instructions and its binary form (optional).

The physical code generated by the CNN operating system and the controlling CNN chip
“platform” is not shown here.

 This example, called BARS-UP, is interesting in itself. The global task is shown
in Fig. 4, we have to detect all objects, which have bars pointing upwards, and a
continuous (to this bar) middle segment (many animals are responding to these objects by
firing some neurons in their infero-temporal cortex).

 The flow diagram of the analogic CNN algorithm is shown in Figure 5 with the

intermediate results. The α language description (Version 2.1) is shown in Figure 6. We

will show later the other codes generated by the α compiler.

The global task is: detect those objects which have bars pointing upwards. A typical
input→output image pair is shown below. The original image is called BarsUpTest, the
output is RESULT.

Figure 4: The global task
 Remarks:
 Here, we have a 5x5 template. Its actual physical implementation is not
considered here. There are several ways to realize this "large neighborhood" CNN
template. For example, to decompose it into several 3x3 templates.

 9007

Original input image
 BarsUpTest

Result of HOLLOW template:

0.5 -.5 0.5

0.5 2 0.5

0.5 0.5 0.5

0 0 0

0 2 0

0 0 0
B = z = A = 3

Logic XOR applied to the previous
two images

Result of HORDIST template:

0 0 0 0 0
0 0 0 0 0
0.25 -0.25 0 0 0
0 0 0 0 0
0 0 0 0 0

z = -1.5 B = A = 2

Result of RECALL template:

0.5 0.5 0.5

0.5 4 0.5

0.5 0.5 0.5

0 0 0

0 4 0

0 0 0

z = B = 2.1 A =

input: original image;
initial state: previous image

Fig. 5

 9008

Visual Feature Detection
(α-language, version 2.1)

FUNCTION BARS-UP;

xLoad (LLM1, BarsUpTest);
 LLM3:= LLM1;
 HOLLOW(LLM1,LLM1,LLM2,10,-1);

LOGXOR(LLM2,LLM3,LLM1,10,-1);
HORDIST(LLM1,LLM1,LLM2,10,-1);

 RECALL(LLM2,LLM3,LLM1,10,-1);
xSAVE(RESULT,LLM1);

ENDFUNCT;

Figure 6

Here, in this function description we have used two new α instructions:

xLOAD(local memory, file name) and

xSAVE(file name, local memory)

These are the input and output instructions from and to the digital environment.

9.3 A very simple example on the circuit level

In the following example, we will explain the functional details of the CNN-UM
operation on the functional circuit level. Even though the example is very simple, it
contains the micro steps. At the same time, it is not a transistor level description. Some
transistor level implementation details will be described in Chapter 15.

The task:
Detect the horizontal intensity changes on a black-and-white image (Figure 7 shows an
example)

The steps of the solution:
 • detect those white pixels which have a black pixel on their direct right hand side

(detection means to put the detected pixel to the black value, i.e. +1) • detect those black pixels which have a white pixel on their direct right hand side • apply a pixel by pixel logic OR function

 9009

The flow diagram of the algorithm and the templates:

The first step is performed by a template TEM1 and the second step by TEM2. The two
results are combined with a local logic OR operation.

The flow diagram with image fragments representing input, output, and intermediate
results is shown in Figure 7.

Figure 7. The flow diagram of the analogic CNN algorithm. Operation is illustrated on

a simple test image fragment

The templates used in the CNN algorithm are as follows:

TEM1 (white to black): A B I= ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ = −⎡

⎣
⎢⎢

⎤
⎦
⎥⎥ = −0 0 0

0 2 0
0 0 0

0 0 0
2 2 0
0 0 0

15, , .

.

TEM2 (black to white):
A B I=

⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥

= −
⎡
⎣
⎢⎢⎢

⎤
⎦
⎥⎥⎥

= −
0 0 0

0 2 0

0 0 0

0 0 0

0 2 2

0 0 0

15, ,

The macro code of the algorithm:

As an example of the analogic macro code (AMC) description, we show the description
of our very simple algorithm:

 LOADTEM >FF80, APR1 ; loading template (TEM1)
 LOADTEM >FF60, APR2 ; loading template (TEM2)

 9010

 COPY A_M2C, >FF40, LAM1 ; copy Analog image from
; Memory to Chip

 RUNTEM APR1, LAM1, LAM1, LLM1 ; run TEM1 template operation
 RUNTEM APR2, LAM1, LAM1, LLM2 ; run TEM2 template operation
 RUNLOG OR, LLM1, LLM2, LLM3 ; run local logic operation OR

 COPY L_C2M, LLM3, >FF00 ; copy binary (Logic) image

; from Chip to Memory
 END

The syntax of the AMC instructions are simple:
 LOADTEM [source], [target];
 COPY [type], [source], [target];
 RUNTEM [template], [input], [init. state], [output];
 RUNLOG [type], [op1], [op2], [result];
The memory address is hexadecimal, ant the type of the image has a mnemonic name.

The core of the algorithm, in addition to the image and template downloading and the
output image uploading, is represented by the 3 consecutive AMC instructions denoted
by italic comments. That is: • run TEM1 (stored in APR1) with input and initial state defined by the original input

image stored in LAM1) and place the result (after converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM1 • run TEM2 (stored in APR2) with input and initial state defined by the original input
image stored in LAM1) and place the result (after converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM2 • apply the local logic unit (LLU) with a logic OR operation on the two intermediate
results stored in local logic memories LLM1 and LLM2 and place the result in
LLM3

These three macro instructions will be converted into a series of elementary machine
micro instructions, as shown later.

Next, we will not go into the details how the CNN operating system (COS) generate the
machine micro code to be put into the GACU of the CNN Universal Chip (and how to fill
the registers of the GAPU), however, we want to show the functional circuit level
operation of an extended CNN cell. We will show soon the operations generated by the
machine level micro instructions in the very details. First, we show an extended cell.

The functional circuit level schematics of an extended cell:

An extended cell is shown in Figure 8.

The local analog memory (LAM) has two places, LAM1 and LAM2. The analog cell
contains two auxiliary storage capacitors at the input and at the state, respectively. The

 9011

iinput and ioutput values represent the weighted sums (as currents) from the inputs (B
template) and from the outputs (A template) of the neighbor cells.

The local logic memory has three places, LLM1, LLM2, LLM3. LLM1 and LLM2 is
implemented as a shift register, the input is stored on LLM1 and every new input shifts
the content by one place to right (from LLM1 to LLM2, etc.). If we want to store a LAM
value in (LLM1, LLM2), an automatic bipolar analog to unipolar binary converter is
applied, shown after sw4. The local logic unit (LLU) in this cell is an OR function. It has
a direct LLM3 output buffer.

In this extended cell we have six switches: sw0, sw1, sw2, sw3, sw4, sw5. Depending on
their positions, ON or OFF, they code different switch configurations. The sequence of
switch configurations is stored in the switch configuration register (SCR). Below, we
show five switch configurations (sconf0, sconf1, sconf2, sconf3, sconf4) which define
five actions in each and all cells (fully parallel).

Switch configuration;
and corresponding action

sw0 sw1 sw2 sw3 sw4 sw5

sconf0 ; load input and initial state
from LAM1

off on on off off off

sconf1 ; start transient on off off off off off
sconf2 ; store the result in LAM2 on off off on off off
sconf3 ; store LAM2 in LLM off off off off on off

sconf4 ; activate the logic operation
and put the result in LLM3

off off off off off on

 9012

Figure 8. A very simple extended cell with the six switches, sw0, sw1, sw2, sw3,
sw4, sw5 and the logic output (at the output of LLM3). It is supposed that the input
image has been downloaded to LAM1.

The content of the Global Analogic Programming Unit (GAPU) :

First we specify the registers. Part of the content of the switch configuration register
(SCR) has already been defined. This will be enough for running the three consecutive
core macro instructions defined above.
The analog program instruction register (APR) contains two templates, that is, the two
sets of the 19 numbers defined by TEM1 and TEM2, coded some appropriate way in
APR1 and APR2.
The logic program instruction register (LPR) contains the codes for the logic operations
of the local logic unit (LLU), here we need only the OR operation, it is stored, and coded
in an appropriate way in LPR1.

The sequence of the actions in the CNN Universal Machine with our simple extended
cell, and the registers defined right now, is coded in the Global Analogic Control Unit
(GACU). In our example, for the three macro instructions defined above, for
implementing the core of our algorithms (running the two consecutive templates and the
logic OR operation with the appropriate storage of the intermediate results), the sequence
of macro instructions of the GACU are as follows.

 9013

Here, we suppose that the templates, the local logic operator and the input image are
loaded (TEM1 and TEM2 in APR1 and APR2, respectively, the OR operation in LPR1,
and the input image, pixel by pixel, in the LAM1 place of each extended cell). Then the
next sequence is applied:

 Action code Comment

 sconf0; load input and initial state from LAM1
 select APR1; tune the template element values defined by TEM1
 sfonf1; start the analog spatiotemporal transient
 sconf2; store the result in LAM2
 sconf3; store LAM2 in LLM1

sconf0; load input and initial state from LAM1
 select APR2; tune the template element values defined by TEM2
 sfonf1; start the analog spatiotemporal transient
 sconf2; store the result in LAM2
 sconf3; store LAM2 in LLM1 (the former LLM1 value will be automati-

cally shifted to LLM2)

 select LPR1; tune to the local logic operation OR
 sconf4; calculate the OR operation and store the result in LLM3

In the first two action groups, the first two actions are made parallel.
The five extended cell configurations corresponding to sconf0, sconf1, sconf2, sconf3
and sconf4 are shown on Figures 9, 10, 11, 12, and 13, respectively. The comments are
referring to the last two action groups (activating TEM2 and OR). The closed switches
are shown bold. Hence, it is easy to detect the active parts of the circuit.

 9014

Figure 9. Sconf0; load input and initial state from LAM1

Figure 10. Sconf1; start transient

 9015

Figure 11. Sconf2; store the result in LAM2

Figure 12. Sconf3; store LAM2 in LLM

 9016

Figure 13 Sconf4; activate the logic operation and put the result in LLM3

9.4 Language, compiler, operating system

In the preceding Chapters we have learned a few languages of different levels to describe
the analogic CNN algorithms. In Figure 14 we summarize the various steps how our high
level α instructions code will be translated into a running program on a physical chip. It
shows the main software levels of this process.

On the lowest level, the chips are embedded in their physical environment. The AMC
code will be translated into firmware and electrical signals.

 9017

Algorithm: flow-diagram,
templates and subroutines

Alpha source code

Alpha Compiler

Script
macrocode
(AMC-like)

AMC (analogic machine code)
followed by interpreters

Simulator
running on a
Pentium chip

in a PC

CNN-UM chip

in CCPS

CNN-UM chip in

 Engine Board

Emulated
digital

CNN-UM

Figure 14. The levels of the software and the core engines

On the highest level, the α compiler generates a macro (assembly) level code called

analogic macro code, AMC. The input of the α compiler is the description of the flow

diagram of the algorithm using the α language.

The AMC like CNN Script Description (CSD) code is used for the software simulations
to control the different parameters of the simulation as well as to specify the graphical
demonstration of the results, as we have shown in Chapter 4. Here, the physical processor
is the Pentium microprocessor, controlled by the physical code running under an
operating system (like WINDOWS or UNIX). The simulator can also be used directly

from the α source code via the compiler and the AMC (with default operating and
graphical parameters).

As an example for an AMC code in assembly format and in hexadecimal format, these
codes for the program example BARS-UP, described in Section 9.2, are shown in Figures
15 and 16, respectively.

 9018

Analogic Macro Code (AMC) description of BARS-UP

 COPY B2C_L2L, >FFC0, 1 * board to chip copy (to LAM1)

 LOADT >FFA0, 1 * load template1

 LOADT >FF80, 2 * load template2

 LOADT >FF60, 3 * load template3

 RUNA 1, 1, 1, 2 * run template1

 RUNTL CXOR, 2, 2, 2 * logic XOR

 RUNA 2, 2, 2, 2 * run template2

 RUNA 3, 2, 1, 2 * run template3

 COPY C2C_L2L, 2, >FFC0 * chip to board copy (from LAM2)

 syntax:

 COPY [type], [source], [destination]

 LOADT [source], [destination]

 RUNA [template], [input], [init. state], [output]

 RUNL [type], [op1], [op2], [output]

All the parameters are chip or board memory addresses, except the [type] parameters

Figure 15.

 9019

Compiled Analogic Macro Code

in hexadecimal format
 hexa binary code

 12h 0000 0000 0001 0010 COPY
 8h 0000 0000 0000 1000 B2C_L2L
 FFC0h 1111 1111 1100 0000 >FFC0
 1h 0000 0000 0000 0001 1

 62h 0000 0000 0001 0010 LOADT
FFA0h 1111 1111 1010 0000 >FFA0
 1h 0000 0000 0000 0001 1

 62h 0000 0000 0001 0010 LOADT
 FF80h 1111 1111 1010 0000 >FF80
 2h 0000 0000 0000 0010 2

 62h 0000 0000 0001 0010 LOADT
 FF60h 1111 1111 1010 0000 >FF60
 3h 0000 0000 0000 0011 3

 61h 0000 0000 0001 0001 RUNA
 1h 0000 0000 0000 0001 1
 1h 0000 0000 0000 0001 1
 1h 0000 0000 0000 0001 1
 2h 0000 0000 0000 0010 2

 61h 0000 0000 0001 0001 RUNL
5h 0000 0000 0000 0101 5
 5h 0000 0000 0000 0101 5
 5h 0000 0000 0000 0101 5
2h 0000 0000 0000 0010 2

.

.

.

Figure 16

Consider now the CNN Universal Machine Chip, called CNN-UM chip. We need the
appropriate software levels and a hardware-software environment. This is the CNN Chip
Prototyping System (CCPS). In the CCPS we may also use the AMC code as the input.

 9020

In Figure 17 we show the flow diagram of the whole process down to the physical chip.

display

template library

electrical
output data

signals

electrical control,
template, and data

signals

ISA bus
or PCI bus

 CNN
 Prototyping
 System board
 (CPS)

CNN Platform bus

CNN
Platform

optical input

 PC

ALPHA description
of an algorithm

ALPHA
compiler

interfaces and
executable

 program code for PC

image library
video

External
CNN “Operating System”

(COS) running on the
TMS320C25 or

TMS3206X

level shifters, sample/hold, multiplexers, ...etc.

CNN chip

{ input of the
CPS board}output of the

CPS board

Image data and
Decision code

Analogic macro
code, image and
template data

Figure 17 The architecture of the CNN Chip prototyping System (CCPS)

 9021

In this chip prototyping system the CNN-UM chip is hosted in a separate Platform,
connected to a PC. A special purpose add-in-board, the Chip Prototyping System Board
(CPS board) is serving as the hardware environment for the CNN Operating System
(COS).

To make the whole CNN computer self contained we need a CNN Universal Chip set 2
and implement it on an Engine Board.

In single board or single chip solutions the CPS board and its software is integrated into
the CNN-UM chip or board.

We stop here, not to explain more details. Our aim was to show that writing analogic

CNN programs in high level languages (like the α language) the rest of the familiar
computing infrastructure is ready to execute these programs in different formats and
physical implementations. As to the latter, Chapter 15 will describe the main types and
parameters of the physical implementations.

2 T. Roska, “The CNN Chip set, engine board and the visual mouse”, Proc. IEEE CNNA-96, pp. 487-492,
Seville, 1996

 9022

	Chapter 9
	The CNN Universal Machine (CNN-UM)
	9.1 The architecture
	9.1.1 The extended standard CNN universal cell
	9.1.2. The global analogic programming unit (GAPU)

	9.2 A simple example in more details
	9.3 A very simple example on the circuit level
	9.4 Language, compiler, operating system

