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Theorem The space C([a, b]) of continuous functions from [a, b] to Rn equipped

with the norm

‖f‖∞ := sup
{

|f(x)|
∣

∣ x ∈ [a, b]
}

is a Banach space.

Definition Two different norms ‖ · ‖1 and ‖ · ‖2 on a vector space X are
equivalent if there exist constants m, M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1

for every x ∈ X .

Theorem If (X , ‖ · ‖1) is a Banach space and ‖ · ‖2 is equivalent to ‖ · ‖1 on

X , then (X , ‖ · ‖2) is a Banach space.

Theorem A closed subspace of a complete metric space is a complete metric

space.

We are now in a position to state and prove the Picard-Lindelöf Existence-
Uniqueness Theorem. Recall that we are dealing with the IVP

{

ẋ = f(t, x)

x(t0) = a.
(1)

Theorem (Picard-Lindelöf) Suppose f : [t0 − α, t0 + α] × B(a, β) → R
n is

continuous and bounded by M . Suppose, furthermore, that f(t, ·) is Lipschitz

continuous with Lipschitz constant L for every t ∈ [t0 − α, t0 + α]. Then (1)
has a unique solution defined on [t0 − b, t0 + b], where b = min{α, β/M}.

Proof. Let X be the set of continuous functions from [t0−b, t0 +b] to B(a, β).
The norm

‖g‖w := sup
{

e−2L|t−t0||g(t)|
∣

∣ t ∈ [t0 − b, t0 + b]
}
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is equivalent to the standard supremum norm ‖ · ‖∞ on C([t0 − b, t0 + b]), so
this vector space is complete under this weighted norm. The set X endowed
with this norm/metric is a closed subset of this complete Banach space, so X
equipped with the metric d(x1, x2) := ‖x1 −x2‖w is a complete metric space.

Given x ∈ X , define T (x) to be the function on [t0 − b, t0 + b] given by
the formula

T (x)(t) = a +

∫

t

t0

f(s, x(s)) dx.

Step 1: If x ∈ X then T (x) makes sense.
This should be obvious.

Step 2: If x ∈ X then T (x) ∈ X .
If x ∈ X , then it is clear that T (x) is continuous (and, in fact, differentiable).
Furthermore, for t ∈ [t0 − b, t0 + b]

|T (x)(t) − a| =

∣

∣

∣

∣

∫

t

t0

f(s, x(s)) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

t

t0

|f(s, x(s))| ds

∣

∣

∣

∣

≤ Mb ≤ β,

so T (x)(t) ∈ B(a, β). Hence, T (x) ∈ X .
Step 3: T is a contraction on X .

Let x, y ∈ X , and note that ‖T (x) − T (y)‖w is

sup

{

e−2L|t−t0|

∣

∣

∣

∣

∫

t

t0

[f(s, x(s)) − f(s, y(s))] ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

t ∈ [t0 − b, t0 + b]

}

.

For a fixed t ∈ [t0 − b, t0 + b],

e−2L|t−t0|

∣

∣

∣

∣

∫

t

t0

[f(s, x(s)) − f(s, y(s))] ds

∣

∣

∣

∣

≤ e−2L|t−t0|

∣

∣

∣

∣

∫

t

t0

|f(s, x(s)) − f(s, y(s))| ds

∣

∣

∣

∣

≤ e−2L|t−t0|

∣

∣

∣

∣

∫

t

t0

L|x(s) − y(s)| ds

∣

∣

∣

∣

≤ Le−2L|t−t0|

∣

∣

∣

∣

∫

t

t0

‖x − y‖we2L|s−t0| ds

∣

∣

∣

∣

=
‖x − y‖w

2

(

1 − e−2L|t−t0|
)

≤
1

2
‖x − y‖w.
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Taking the supremum over all t ∈ [t0−b, t0+b], we find that T is a contraction
(with λ = 1/2).

By the contraction mapping principle, we therefore know that T has a
unique fixed point in X . This means that (1) has a unique solution in X
(which is the only place a solution could be).
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