Chapter 8

Back to Basics: Nonlinear Dyamics and Complete Stability

8.1.A Glimpse of Things to Come

All CNN templates we have investigated far share the common property that
regardless of the inputs, initial stateadaoundary conditions, all transient dynamics
eventually converge to sonae equilibrium state after soneettling timektcnn, Where
Tenn IS the time constant of a single cell, anebk10. Such CNN'’s are said to be
completely stable and represent the workhorse of most current CNN applications.
Indeed, almost all current CNN analogitograms are developed under the assumption
that all CNN templates (instructions) called for in the program are completely stable.
However, we will see in the following sections that all CNN’s are completely stable.
Indeed, some CNN templates will give rise to @sctillatory periodic steady state
behavior. Others can even exhibit an eternally transient (not periodic) phenomenon called
chaos

While the majority of current CNN applications requinstantdc (gray-scale)
outputs, future applications will no doubt eagplthe immense potentials of the relatively
unexplored terrains of oscillatory and chaatperating regions. A glimpse of some such
novel CNN applications in these regions will gngen in Chapter 18. In this chapter, we
will derive several general mathematical criteria for complete stability. To appreciate the
need for such criteria, we will prexst first a simple example of ascillatory CNN in
section 8.2, andehaoticCNN in section 8.3.

8.2. An Oscillatory CNN with Only two Cells

Consider a 2-cell CNN characterized by zero boundary conditions and the
following templates:

0] o o[ o] o
A= B[ al-p B=[ 0| 0o 0 z4 0
0] o] 0 ol o] o

using our earlier notations from sexti 2.2.6, this MxN=1x2 CNN with feedback
synaptic weights @:=f, ao=ca, and @;=p can be represented by the signal flow graph
shown in Fig.1.
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Fig.1 (a) A 1x2 CNN whose virtual boundary c€élsown shaded) are clamped to a zero

potential: 0= Yo1= Yo 2= Y03= Y10= Y13= Y2.0= Y2.1= Y2.2= Y23=0. (b) Corresponding
signal flow graph

The state equations for this CNN is given by:

X1= - X +o Y1 - BY2 (81)
Xo=-X+toays+By:

where we neglect the row index for simplicity. Here, the outpigtielated to the state x
by the standard nonlinearity

yi = f(x) = 0.5] x+1| - 0.5] x-1| (8.2)
which is shown graphically in Fig.2 for convenience.

L:'l'r|

Fig.2 The standard CNN piecewise-linear output characteristic.

The solution waveforms of Eq.(8.1) correspondingtte 2, f = 2, and initial
condition %(0) = 0.1 and X0) = 0.1 are shown in Figs&(and 3(b). Observe that
instead of converging to a dc equilibrium poa# in all of our previous examples, the
state variablespand % converge to @eriodic waveform, which is more clearly seen by
plotting the associatettajectory in the %-x, plane, as shown in Fig.3(c). Each point
along the trajectory, which starts from,(x;) = (0.1, 0.1) at t=0 in Fig.3(c) is
parameterized by time but is not shown infigare because, here, we are interested only
in the relationship between(¥) and %(t) as t>«, namely, alosed contoucalled aimit
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cycle Since the trajectory from (0.1, 0.1) does not converge to an equilibr)'@én (

XZQ), this CNN isnotcompletely stable.
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Fig.3 Periodic solution waveforms of( and x(t) and the corresponding trajectory for
a=2, f=2, %(0)=0.1 and %(0)=0.1.
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For this simple example, we can prove that all trajectories starting from any initial
state except the origin will converge to a lirtyicle. We will presenthe details of this
proof in order to introduce the uninitiategaders to some elementary aspects of
nonlinear qualitativeanalysis The first step in analyzing the dynamics ofaattonomous
CNN (i.e., where the time variable t does appear on the right-hand side of the state
equation) is to find the location of all equilibrium points, >1,2,...,q, such that
X1(Q;) =0 andx,(Q;) =0, whereX; (Qi)denotesxj(t) evaluated ak; = XQ, Hence,

upon setting Eqg.(8.1) to 0, the equilibrium points of this 2-cell CNN are the solutions of:

- X1 + 2f(xp) - 2f(x2) =0 (8.3a)
- Xo + 2f(xp) + 2f(x) =0 (8.3b)

Since the piecewise-linear function j(x Fig.3 has 3 segments, thexs state space
can be partitioned into 9 rectangular regi®tsj), i,j=1,2,3, as shown in Fig.4, where the
state equation (1) reduces to a lineguation in each region. In particular, the
equilibrium equation (3) reduces to 2 lineageddraic equations in each region R(i,j) and
the equilibrium point Q(i,j) can be triviallalculated. If Q(i,j) falls within region R(i,j),
then it is a valid equilibrium point. If Q(i,jfalls outside of R(i,j), it is a “virtual”
equilibrium point and is simply discamleThe above “brute-force” procedure can be
easily programmed to find all equilibriumpoints of any MxN CNN. However, the
computation time would grow exponentiallyitv MN so that it becomes impractical
when MN is large.

Ri3.3)

Ri2.3)

1.3

Fig.4. The dynamics of the 2-cell CNN in Fig.1 is linear in each region R(i,j).
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In view of the simplicity of Eq.(8.3), théollowing algebraic analysisan be
made to determine first those regions in Fig.4 which have valid equilibrium points:

Step 1. Central strifx|<1 (regions R(1,2), R(2,2), and R(3,2) in Fig.4):

In the strip | x|<1, we can write f(¥ = x; so that Eq.(8.3a) becomesi-«&2x; -
2f(x2) = 0. Consequently, |f§4 = [%|/2 < 0.5 and hence #{)x= x,. Equation (8.3) reduces
in this case to:

- X+ 2% - 2% =0
-Xo+ 2%+ 2% =0 (8.4)

Since (%, x2) = (0,0) is theuniquesolution of Eq.(8.4), only region R(2,2) in the central
strip has an equilibrium point; namely, the origin.

Step 2. Left stripp< -1 (regions R(1,1), R(2,1), and R(3,1) in Fig.4):

In the strip x< -1, we can write f( = -1so that Eq.(8.3b) becomes»x2f(x,) -
2 = 0. Solving this equation fop,xwe find %= -4 for region R(1,1) the only solution of
Eq.(8.3b) (the other two solutiong=2 for region R(2,1) and,x0 for region R(3,1) are
bothvirtual solutions). But ¥ -4 implies f(x)=-1 so that Eq.(8.3a) in the left strip gives
-X1-2+2=0, or x=0, which is outside dhe left strip. Hencezx-4 is a virtual solution for
Eq.(8.3). It follows thathere are no equilibrium points in the left strp<-1.

Step 3. Right strip;>1 (regions R(1,3), R(2,3), and R(3,3) in Fig.4):

In the strip x>1, we can write f(¥ = 1so that Eq.(8.3b) becomes & 2f(x;) +2
= 0. Solving this equation forxwe find %= 4 for region R(3,3) is the only solution of
Eq.(8.3b) (the other two solutiong=x2 for region R(2,3) and,x0 for region R(1,3) are
bothvirtual solutions). But x= 4 implies f(x)=1 so that Eq.(8.3a) in thieght strip gives
-X1+2-2=0, or x=0, which is outside of the right strip. Henge4 is a virtual solution for
Eq.(8.3). It follows thathere are no equilibrium points in the right stsp>1.

Steps 1-3 show that Eq.(1) has only eqeilibrium point; namely, the origin. To
determine the dynamical behavior near the origin, we examine the associated linear
equation

Xl = Xl - 2)(2
(8.5)
X2 = 2X1 + X2
obtained by setting f¢x =x; and f(%)=x. in EQ.(8.1). Since the eigenvalues of the above
matrix are given by;=1+j2 andi,=1-j2, the solution of Eq.(8.5) has the form:

x(t) =ke cos(2t9)
Xa(t) =ké sin(2t+0) (8.6)
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where the constants k afddepend on the initial condition(®) and %(0). Since the
trajectory associated with Eq.(8.6) is ‘@xpanding” spiral, as shown in Fig.3(b), and
since all solutions of EQ.(8.1) almunded(in view of Theorem 2 oChapter 2, this
expanding spiral must necessarily converge to some limitloged contour for
otherwise, the trajectory would intersectlfssince there is no room for maneuvering on
the x-X, plane. But no trajectory of an autonomaystem of differential equations can
intersect itself in view of theniquenesproperty (Theorem 1 of Chapter 2) -- otherwise
we can choose the self-intersection poinbas initial condition and obtain 2 different
trajectories originating from this point. The above reasoning can be given a formal
rigorous proof and the result is call@bincare-Bendixortheorem, which is a classic
result from the theory of differential equations.

8.3. A chaotic CNN with only 2 cells and one sinusoidal input
Suppose we apply a sinusoidal inpui(ty = 4.04 singt) to cell C(1,1) of the 2-

cell CNN shown in Fig.1 and choose2 andp=1.2 as its parameters. In this case, under
the same “zero” boundary conditions as befthe, state equation (1) generalizes to the
following non-autonomous system of two nonlinear differential equations:

X1=-Xi+2V-1.2yp+4.04 sin%t) (8.7)

Xo=-X+12y+2Vy%

where y = f(x) is defined by Eq.(8.2). Equation (8i8)the state equation of a 1x2 CNN
with templates

0 0 0 0 0 0
A= |12 2| -1.2 B= 0 1 0 zz 0
0 0 0 0 0 0

zero boundary conditions, a sinusoidal inpuftuto cell C(1,1) and a zero inpuiou= O

to cell C(1,2). The solution waveforms(ty and x(t) corresponding to the initial
condition %(0) = 0.1 and X0) = 0.1 are shown in Figs.5(a) and 5(b), respectively.
Observe that unlike the periodic waveforms shown earlier in Figs.3(a) and 3(b), these
two waveforms dmot converge to a periodic waveform asc. The non-periodic nature

of xi(t) and »(t) is more clearly seen by examining the associated trajectory shown in
Fig.5(c). Observe that the trajectory lookke a never-ending tangle of yarn. To
emphasize the non-periodic nature ofi(t)xand x(t), Figs.6(a) and 6(b) show the
numerically calculated power spectra ) of x;(t) and X%(w) of xx(t) have abroadband,
continuous, noise-like charactewhich is quite different fronthat of a periodic signal,
which consists of discrete lines correspogdio the harmonic components of its Fourier
series expansion. From the theory of tlealinear dynamics, the noise-like waveforms in
Figs.5(a) and 5(b) are said to ¢ieaotic and the associated trajectory is callexdtrange

Y For arigorous statement and proof of the Poincare-Bendixon theorem, see P. Hartman, Ordinary
Differential Equations, p.151.
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attractor because other solutions correspondingiéarby initial conditions will all be
“attracted” and converge to the same trajectory.

2
= Q
-2
4 b
" . . . . . . . . .
] 20 40 [1+] [1+] iao 120 140 180 ieq 200
t
3 T
sl
1+
%
-1
ERS
a . . . . . . . . .
a 20 40 &0 LD} i0a 120 140 140 180 200
t

(c)
Fig.5 Chaotic solution waveforms ofty and x(t) and the corresponding trajectory for
o=2, B=-1.2, %(0)=0.1 and %(0)=0.1.
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Fig.6 Frequency power spectra calculated numerically from the chaotic wavefgtins x
and x%(t) in Fig.5.

Even though the strange attractor Rig.5(c) looks extremely messy, it does
possess some orderly geometrical structuréchwyiin the case of a periodic input, is best
seen by sampling only the points on thejectory once every period of the input
waveform. The resulting set of points is caléeBoincare cross section, or by an abuse of
language, simplyPoincare mapbecause it was first introduced by the famous French
physicist and mathematician Poincare. In #{ample, the period of the sinusoidal input
is T=4. Consequently, if we plot %), x>(t)) on the x-x, plane only at t=0, 4, 8, 12, 16,
..., etc., we would obtain thedpled” strange attractor in Fig. 7, which is often referred
by as a Lady’s shoe attractor.

2F. Zou and J.A. Nossek, “A chaotic attractor with cellular neural netwtZEE Trans. on Circuits and
Systemsvol.38, no.7, pp.811-812, 1991.
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Fig.7 The Poincare map extracted from the strange attractor in Fig.5(c) is called the
“Lady’s shoe attractor” in view of its striking resemblance to a high-heel lady’s pump.

A discrete op-amp circditfor simulating Eq.(8.7) is shown in Fig.8. The
experimentally observed strange attractaregponding to Fig.5(c) is shown in Fig.9(a).
The corresponding Poincare map obtainegpeeimentally by “blanking” out the
oscilloscope beam except at regular intervals of T is shown in Fig.9(b). It is sometimes
instructive to interpret such Poincare mags “strobing” the strange attractor by a
stroboscope.
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Fig. 8 A two-cell CNN circuit driven by a sinusoidal signal.

3F. Zou, G. Seiler, A.J. Schuler, B. Eppingend 4.A. Nossek, “Experimental confirmation of the lady’s
shoe attractor’|EEE Trans. on Circuits and Systems|.39, no.10, pp.844-846, 1992.
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Fig.9 (a) Strange attractor obtained experimentally from the circuit in Fig.8. (b) The
“lady’s shoe” Poincare map extracted experimentally from the attractor in (a).

8.4. Symmetric A-template Implies Complete Stability

The preceding examples show that even CNN'’s with only two cells may not be
completely stable. Fortunately, the following theorem guarantees the complete stability
of an important subclass of CNN’s. To simyplifhie proof of this theorem, we will assume
that the nonlinear function;y=f(x;) is bounded differentiableand haspositive slope
everywhere. There is little loss of generality this assumption since our original
piecewise-linear function can be approxindai@rbitrarily closely by such a smooth
function. In fact, any physical realization of f{xwill be “smooth” rather than piece-
wise-linear so that this assumption is actually more consistent with reality.
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Complete Stability'heorem 1

Any MxN space-invariant CNN of arbitrary neighborhood size weitimstant
inputs andconstant thresholds completely stablé the following three hypotheses are
satisfied:

1. The A template is symmetric:
Ak D=AK L) (8.8)
2. The nonlinear function;y= f(x;) is differentiable boundedand
f'(xj) >0 , for all o< x; <o (8.9)
3. All equilibrium points arésolated*

Proof. Consider the CNN stateguation (2.8) from Chapter 2 f@onstantinput u and
thresholdz:

X=X+Ay+Bu+z (8.10)

y; = f(x), i=1,2, ..., n=MN (8.11)

Here, A and B are nxn matrices whose nonzero entries are the synaptic weights
A(,j:k,I) and B(i,j;k,1), respectively. Obsee that hypothesis (8) and space invariance
imply that

A=AT (8.12)
independent othe packing scheme.

Now, hypothesis (9) implies thatej(is a one-to-one (injective) function and
therefore has amversefunction

x =Yy (8.13)

defined for all y over the range of f(x xje (-, «). Define thescalar function

1 1 n i . . . (8.14)
V(X)=—=y Ay + f~(V)dv|—-y Bu-y z
(x)=-3y" Ay z;g (V)dv |-y y

wheref is any number such that {<0<f().

A scalar function ) is called aLyapunov functionf its time derivative along
any trajectory is non-positive, i.e.,

* An equilibrium pointxg of x=f(x) is said to bésolatedif, and only if, there are no other equilibrium

points in a sufficiently small neighborhood>ef
® In the nonlinearity f we have been using, we can chés8g since f(=) = -1, f(o) = 1. For the sake of
generality, the hypothesis on f does not require that the values of f lie between -1 and 1.

8011



ﬁdV

v (ol 6V(x)

I
Our first goal is to prove that Eq.(8.14) defines a Lyapunov function.

Observe that the right-hand side of Eq.(8.14) ssaar function of x =[ X1, %o, ... , %]
since y = f(x;) via Eqg.(8.11). Taking théme derivative of both sides of Eq.(8.14) we
obtain

V(X)———(y Ay +y Ay)+(zf (v))yi) -y Bu-y'z (8.15)
i=1

Now sincey' A y is a scalarandd = AT in view of Eq.(8.12), we can write
YAy =("Ay) =y ATy=y Ay (8.16)

Substituting Egs.(8.13) and (8.16) into BglS) and making use of Eq.(8.10), we obtain

. A n A
V(x):-yTAy+_Z XiVi-y Bu-y'z

=y (Ay+B u-x+2
=y 'x (8.17)

Observe next that
dy1
dt [ (x2) X1
dy2 f'(x2) X2
dt
y=| - |= ' " | = Df (x)x (8.18)

dyn £*(xn) | %n
 dt | Df (x)
Substituting Eq.(8.18) into Eq.(8.17) and noting BDHK) is symmetric, we obtain:

V(x) =-Df(x) x]"x
=-(x" Df(x) )

=3 )iE <0 (8.19)
i=1

Hence, VK) in Eq.(8.14) is a Lyapunov functiohet M denote the set of all pointsR"
whereV (x) = 0, i.e.,
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M={x: V (x) = 0} (8.20)

Since f'(x;)>0 (hypothesis 2), Eq.(8.19) implies/(x)=0 if, and only fif,
x;i=0,i=1,2, .., n. It follows that M in Eq.(8.26pnsists of the set of all equilibrium
points of Eq.(8.10). Hence,

V (X)<0 forallxeR" except at equilibrium points (8.21)

Now sincex(t) is boundedin view of Theorem 2rom Chapter 2, we can apply
LaSalle invariant principl® to conclude thadll trajectoriesof Eq.(10) must converge to
theinvariantsef M of equilibrium points.

Now since all equilibrium points of Eq@) are isolated (hypothesis 3), it follows
that all trajectories of Eq.(10) must converge to an equilibrium point.

Remarks

1. If the equilibrium points in M are not isolafethen our theorem can be relaxed

to assert only that all trajectories must converge to the set M of equilibrium points.
Strictly speaking, this assertion does not yniplat every trajectory will converge to an
equilibrium point since there exists (admittedly highly pathological and rare) situations
where every trajectory will approach Mat arbitrarily small rate so that—0 and yet

the trajectory never converges to any particular equilibrium point.

2. To visualize the geometrical idedsehind the above proof, consider the
hypothetical surface V{x x2) shown in Fig.10. Notice that this surface has five local
minima {Q, Qs, Qs, Q7, Qg}. Imagine the inside of theurface V as the surface of a
rugged narrow mountain crevice and a small ball is coasting down the surface. One such
hypothetical trajectory” representing the “track” made by the ball is shown in Fig.10.
Notice that due to gravity, a ball originatingiin any point other than an extremum point
must keep falling down along the steep slopdil it settles down at a local minimum;

ie.,

V (Xl, Xz) = %V(Xl(t), Xz(t)) <0 (822)

for all (X1, %2) # ( X2(Q)), X2(Q)).

€ J.P. LaSalle, “ An invariant principle in the theory of stability,” in J.K. Hale and J.P. Salle, Editors,
Differential Equations and Dynamical Systerisademic Press 1967.

" A set McR" is called arinvariant setof Eq.(8.10), if any trajectory starting from a poigeM at t=0
remains in M for all t>0. Since M in this case contains only equilibrium points, it is clearly an invariant set.
8 We have already encountered such a situation in Fig.3(c) of Chapter 6.
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(x1{0}, x2(0}y
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Fig.10 A hypothetical Lyapunov function ¥ (%) with five local extrem&);, Qs, Qs, Qy,
Qo, and a hypothetical trajectory converging toward the local minimun.Q

An n-dimensionakcalar function
V(X1, Xo, ..., %) | R'>R! (8.23)

is called aLyapunov functionassociated with amutonomoussystem of differential
equations

Xi=fi(Xy, X2, ..., %), 1=1,2,...,n (8.24)
if, and only if , corresponding tanytrajectory

(X1, X2, ..y %) =(ra(t), v2(b),..., yn(t)) (8.25)
of Eq.(8.24), the corresponding scalar function of time

V() £ V), va0), ... 7o) (8.26)
decreases monotonically with time, i.&/,(t) < 0. In particular, if V () = 0 only at

equilibrium points, then it follows that allajectories must land at an equilibrium point
Qi and the set(Q)) of all initial conditions such that corresponding trajectories converge

to Q is thebasin of attractionof Q. It follows from the abovgeometrical insights that
one method to prove Eq.(8.24) is completstigble is to find a scalar function \{(%,
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..., %) which possesses the above propeftigsfortunately, no systematic procedure is
presently available for finding such a scdianction, partly because solutions of most
nonlinear systems of differential equations, such as Eq.(8.24), ncarbe found by
analytical methods.

Now that the degree of difficulty fgroving complete stability of Eq.(8.24) is
understood, the reader would no doubt appreciate how lucky we are in being able to
invent the scalar function ¥J in Eq.(8.14) and prove that it qualifies as a Lyapunov
function.

8.5.Positive and Sign-Symmetric A-template Implies Complete Stability

In this section we will present anottmomplete stability criterion which depends
only on the “sign” , andiot the “value”, of the elements of the A-template.

Definition 1: Sign symmetric A-template

LetA1800 denote the template obtained by rotating an A-template by &0
respect to the center of the template. Lgtaad & denote the corresponding ij-th
elements of A and féoo' We say a (2r+1)x(2r+1) A-template, where r is the radius of the

sphere of influence,@), is sign symmetridf, and only if, § and &; areboth positive
both negativeorboth zergfor all i,j=1, 2, ..., 2r+1.

The above definition is equikent to the condition thatjaand a_ are both
positive or both negativeor both zerg for all (i,j)#(0,0), where the double subscripts
correspond to a Cartesian coordinate systdrase origin is located at the center of the
template. As an illustrative example, comsithe 5x5 A-template shown in Fig.11(a). To
determine whether this templatesigin symmetricwe first rotate “A” by 180 (always

with respect to the center of thertglate) to obtain the associate(iIS,OAB -template shown

in Fig.11(b). We then construct the corresponding “sign” template, denoted by sgn[A]
and sgn[Aigoo], respectively, by assigning the symbol +, -, or O to each eptshare @

>0, g <0 and §=0 in A and A1800’ respectively.

2l o0] 7] 5] 0 3] o] 8] -6/ o0
1] 6] o] 2| -6 2] 6| o -3 =4
A=l 0o | 2| 4] 3] o A =| 0| 3| a] 2] o
4] 3] 0 6 2 180° 6| 2] o0 6 1
o] 6| 8| o -3 o] 5| 7] o] -2

° This is, in fact, thenly generakool currently available to prove complete stability of Eq.(24).
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Fig. 11 (a) A non-symmetric 5x5 A-templated). (b) A1800 obtained by rotating the

A-template 18Dwith respect to the center of the template. (c) The “sign” of
corresponding coefficients of A anc}sﬁo are identical as depicted in this “sign”

template sgn[A] whose entries consist of +, -, and 0’s.

Then the A-template is sign symmetric if, and only if,

sgn[A] = sgn[Algoo] (8.27)

Since EQ.(8.27) is satisfied as shown in Figcll(ve conclude that the A-template in
Fig.11 is sign symmetric. Observe that this tEtgis not symmetric with respect to the
center, i.e., a sign-symmetric A-template is, in general, not symmetric, but a symmetric
A-template is always sign symmetric.

Definition 2. Synaptic weight conditions

Each of the following conditionsoacerning the relative signs of tlsgnaptic
weightsg; of a (2r+1)x(2r+1) A-template is calledsgnaptic weight condition

Arr . . . dr-1 aro dr1 . . . arr
A+l r . . . dr+1-1 Ar+10 | Ar+11 Ar+1r
a0, -r @1 a0,0 20,1 @d,r
A=
A1, . . . Q1-1 a-1,0 a-11 . . . Qir
S . . . Q-1 a0 a1 . . . ar

Synaptic weight condition 1:

aq >0 for all (k, )= (0, 0) (8.28)

Synaptic weight condition 2:
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aq >0 for all (k, )= (0, 0) and “even” k.
aq <0 for all “odd” k (8.29)
Synaptic weight condition 3:

a@>0 for all (k, )= (0, 0) and “even” I.
aq <0 for all “odd” | (8.30)

Synaptic weight condition 4:

aq >0 for all (k, I)#~ (0, 0) and “even” (k+l).
ag <0 for all “odd” (k+l) (8.31)

We are now ready to state our next theorem.

Complete Stabilitfrheorem 2°

An MxN CNN with a (2r+1)x(2r+1) A-template ompletely stablefor arbitrary
B-templateand arbitranthresholdz, if the following three conditions are satisfied:

1. The A-template isign symmetric

2. The template satisfies any one of the fyuraptic weight conditions

3. All the equilibrium points are isolated.

The proof of a special case of this theorem will be given in the next section.

Remark

Note that the synaptic weight condition 1 corresponds to an A-template with non-
negative coefficients (except possibly the teen Hence the title of this section is a
Corollary of the above theorem.

Corollary to Complete Stabilitfheorem 2

An MxN CNN with a 3x3 A-template, for arbitrar3-templateand arbitrary
threshold zjs completelystableif the following three conditions are satisfied:

1. The A-template isign symmetric

2. The A-template possessa®/ oneof the six synaptic weight patterns shown in Fig.12.

9 To be more precise, for theorems 2-4 (and the coiesléo these theorems) in this section, we should
add that the complete stabilipyoperty, unlike in theorem apply to all initial conditiongxcepftfor a set

of measure zero. For example, theray exist (possibly rare) such contplg stable CNN’s where there is
anunstableimit cycle.
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Fig.12. Six synaptic weight patterns which satisfy condition 2 dftimplete Stability
Theorem 2
where
0 denotes a “zero” synaptic weight
@ denotes a “positivedr “zero” synaptic weight
o denotes a “negativedr “zero” synaptic weight
5 mayassumeny value.

3. All the equilibrium points are isolated.

Proof. This corollary follows directly from #habove theorem since each of the synaptic
weight pattern 1-3, and six satisfies one @& tbur synaptic weight conditions in (28)-
(31).

Synaptic patterns 4 and 5 are trickéerd we give the following sketch of the
argument. If we rotate synaptic pattern 4 by, 46unterclockwise, we obtain the pattern

Looking at the nonzero entries, the center element is connected only to the top,
down, left and right neighbors. It can be shown that this is similar to the template

0 &) 0
= 5 =
0 &) 0
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which belongs to the class of synappiattern 2. The same can be said by rotating
synaptic pattern 5 by 4%lockwise.

Thus the stability of synaptic patternadd 5 can be deduced from the stability of
synaptic pattern 2.

To illustrate the properties of the sytiapveight patterns in Fig.12, consider the
following set of 12 hypothetical templates:

O|-2| 0 0 -2 7 0 0 0
A=| 2 7 4 |, A=| -4 7 -3, As= -2 9 -1
0 0 0 7 -1 0 0 0 0
7 0 -1 -7 0 0 0 1 2
A=] 0 8 o, A= 0 2 0|, As= -3 4 -5
0 0 0 2 0 -6 0 0 0
0 0 1 0 0 0 -1 -2 -3
A=\ 2 3 4 |, A= -1 -2 3, A= 4 5 0
5 6 0 0 -5 0 0 -7 0
-1 0 -2 1 -4 5 -2 -1 4
A]_o: 0 7 0 ,A11: 7 0 8 , A12: 2 3 1
3| 0 0 6 2 0 1 -5 -7

The following table summarizes the properties of these templates:

Template Is template;Asign- Synaptic weight pattern possessed by
symmetric? template A

A NO 3

Ar YES 1

As YES 1,2

Ay NO 5

As NO 4

Ae NO NONE
A; NO 6

Asg NO 1

Ag NO 3

A1 NO 2

A1 NO NONE
A1 YES NONE
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Observe that since none of the above 12 templates are symmetric, we cannot
make use of th&€€omplete Stability Theorem However, applying theCorollary to
Complete Stability Theorem #ve can assert that templates @nd A are completely
stable.

8.6.Positive and Cell-linking A-template Implies Complete Stability

In this section we will present yainother complete stability criterion, which
substitutes the “sign symmetry” conditiomiin Theorem 2 by a certain condition on the
signal flow graphba(MxN) associated with an MxN CNN, whetg(MxN) denotes a

directedgraph obtained by associatiegch cellC(i,j) of the CNN with anode(i,j) and
whereeachnode is connected to its ghbors via the signal flow grapgh associated

with the A-template defined in Fig.17 of Chapter 2.
Definition 3. CNN Signal flow grapia(MxN)

For each MxN CNN, we constructdarected grapha(MxN) corresponding to an
A-template as follows:

1. Draw the signal flow grapha associated with the A-template. For each non-zero and
non-central synaptic weight@0 (k=i, 1#) in A, draw adirectedbranchfrom node
(k,]) to the center node (i,j), andsamilarly-directedbranch from the center node (i,))
to thereflectednode k, 1); i.e., node k, |) is related to node (k,)) by a 180
rotation with respect to the center node {ijSee Figs.13(a) and 13(b) for an
example.

™ In this section, it is useful tthink of each directed branch asome-waystreet and a node as an
intersection between two or more one-wagets. Hence for each nonzero entry in A #£a0), there are
two connecting one-way streets in the same diredtibich allows one to travel from node (k,|) to node

(E ,I_). Two or more such branchesadrdirected graph are said todimilarly directed

As an example, the signal flow graph associated with the A-template in Fig.13(a) is shown in
Fig.13(b). Observe thdt, has six directed branches (not counting the self loop) since there are only three
non-zero non-central entries in the A-template; namely, @-2.6, & 0= 1.5 and g = 3.2. Observe that
for eachzeroentry (&, = 0, k#l) in the A-template, the corresponding node (k,Ipinhas no branches
attached to it. Observesal that the “sign” of @= 0 isirrelevantin so far as thdirection of the associated
branch is concerned, which always goes from node (k,l) to the center node (i,j), and its reflected “twin”

branch always goes from the center node (i,j) to r(crd&) .

In the signal flow grapl, shown in Fig.13(b), we also write the synaptic weighhext to the
pair of directed branches associatathveach entry of thé-template where@= 0. For completeness, we
also draw aself-loopat node (i,j) with theself-feedbaclsynaptic weight;a= 4.7 written next to it. For the
purpose of this section, however, both the synaptic weights and the self-loop are irrelevant to the following
complete stability theorem and will therefore be deleted fypm
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Fig.13. Steps for constructing the signal flow grap{iMxN) of an MxN CNN: (a)
Specify the A-template (b) Draw the signal flow graplassociated with the A-template.
Note that for each non-zero synaptic weight, kA, there correspond two branches in
Ya . (C) a 4x4 (M=N=4) CNN. (d) The reduced signal flow grap{¥x4) associated with

the A-template.

2. To each cell C(k,l) in an MxN CNN, draw a corresponding node (k,I), k=1,2 ..., M,
I=1,2, ..., N (see Figs.13(c) and 13(d) for a 4x4 CNN).

3. Duplicate the signal flow graphn (delete the coefficientsqaand the self-loop) from
step lat each node (k,l) frorstep 2 All branches connected to “virtual” boundary
nodes are deleted. The resulting diregeph is called the reduced Ciijnal flow
graph 5o(MxN). For the 4x4 CNN shown irrig.13(c), we obtain the 16-node

directed graplya(4x4) shown in Fig.13(d).
Definition 4. Cell-linking CNN

Let 5a(MxN) be the signal flow graph ain MxN CNN associated with an A-
template. Then the CNN is said to @&l-linking if, and only if, foreverytwo distinct
nodes (k 11) and (k, I,) in ¥a(MxN), there is asimilarly directedpath® in ya(MxN)
from node (k, |;) to node (k, I,), and a similarly directed return pattirom node (k, I,)
to node (k, 11).

For example, the 4x4 CNN shown in Fig.13(chad cell-linking because there is
at least one pair of nodes (e.g., from n¢de 1) to node (1,1)) where no similarly-
directed path exists. On the other hand, the 4x5 CNN shown in Fig.14 is cell-linking as

12 A similarly-directed path from node(K,) to node (k ,) is defined as a sequencedifectedbranches
(one-way streets) which alks one to travel from aimitial node (k, I;) to a destination node £K.).
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the reader can verify that there isiailarly-directed path from any node;(l;) in the
signal flow graphya(4x5) to any other node £kl,). For example, to go from node (2,2)
to node (3,4), we would travel alorige similarly-directed path (2,2p(3,2) —(2,3)
—(3,3)>(4,3)—>(3,4).

A = o |15] o . ®

fa) l1+]

[ .2 .3 a4 45

fcy id)

Fig.i4. Example of a 4x5 cell-linking CNN

Observe that before one can certify that a particular CNN is cell-linking,
definition 4 requires that one must examalé possible combinationsf initial and
terminal node pairs and in each case produce a similarly-directed path. This would be a
tedious task unless a computer progranwigten to do the checking. Fortunately, the
following 3 cell-linking testscan be used to certify quickly, often by inspection, a large
class of NxXN CNNs to be cell-linking.

Cell-linking test 1

An NxN CNN, where N is an odd integer,asll-linking if, and only if, there is a
similarly-directed pathfrom the center nod® of the associated signal flow graph
Ba(NxN) to every other nodeasf #a(NxN).

Examplel.

Consider the 3x3 CNN obtained by deletingvré and column 4 from the 4x4 CNN in
Fig. 13(c). The corresponding signal flow graph(3x3) is obtained by deleting all
nodes, and the branches attached to theom fthe last row and the last column in
Fig.13(d). In this case, node (2,2) is ttenter nodeof the associated signal flow graph
ba (3x3). Since there is neimilarly-directedpath going from node2(2) to node (1,3) in
Ha(3x3), we conclude that this 3x3 CNNrnist cell-linking.

13 Since N is an odd integer, the geometric centér@xN) is a node ofia(NxN).
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Example 2.

Consider the 3x3 CNN obtained by deletnogv 4 and columns 4, 5 from the 4x5 CNN
in Fig.14(c). The corresponding signal flow graph(3x3) is obtained by deleting all

nodes, and the branches attached to them, fihentast row and the last two columns in
Fig.14(d). In this case, node (2,2) is ttenter nodeof the associated signal flow graph
ba (3x3). Observe that there issanilarly-directed pathfrom node (2,2) to every other

nodes ofa(3x3):

(2,2y>(1,1),

(2,2)— (1,3)—> (2,3)—> (1,2),

(2,2)— (1,3),

(2,2)— (3,2)—> (2,1),

(2,2)—> (1,3)> (2,3),

2,2)— (3,2)—> (2,1)— (3,1),

(2.2)—> (3,2),

(2,2)— (3,2)—> (2,3)— (3,3).

It follows from thecell-linking test 1that this 3x3 CNN is cell-linking.

Proof of cell-linking test 1:

The proof of this test follows from eéhproof of the following cell-linking test 2,
since the center cell is rotationally symmetric with respect to itself.

Definition 5: Symmetric node-pair

If “a” is a node otthe signal flow grapta(MxN) let a* denote the corresponding
node which is 180rotationally symmetric (about the center) with respect to a.

Lemmal.:
There is a similarly-directed path from node a to node#a ify and only if, there

is a similarly-directed path from node b* to node a*.

Proof:

We will prove this Lemma bynathematical inductioron the length n of the path as
follows:

n=1: if there is a branch from node a tthken there is a branch from b* to a* in
view of the space-invariance of the templates, as shown in Fig.15.

b

at
center
[ ]
a
*

b
Fig.15 A branch from a to b implies that a branch exists from b* to a*, and vice versa.

8023



A directed path of length n=k+1 from a to b contains a path of length k from a to c
and a branch from c to b. By the induction hypsetbethere is a path of length k from c*
to a* and a branch from b* to c*. So there is a path of length k+1 from b* to a*. See
Fig.16.

*

C b a
center
a b’ c’
Fig.16 A directed path from a to b implies that a directed path exists from b* to a*, and
vice versa.

Cell-linking test 2.

An MxN CNN is cell-linking if, aad only if, there is a pair ofotationally
symmetricnodes’ (k,1) and (k, 1) such that there is a similarly-directed path from node
(k,)) to every other nodesf y4(MxN), and asimilarly-directed pattfrom node k, 1) to
every other nodesf 4a(MxN) .

Example3:

Consider the 4x4 CNN shown in Fig.13&)d its associated signal flow grajplf4x4) in
Fig.13(d). Observe thdor every pairof rotationally symmetric nodes (k,l) ané (1),

of which there are many (e.g., (1,1) and (4(8)2) and (2,3), (2,1) and (3,4), etc.), in
Ya(4x4), we cannot find a pair (k,I) and ( 1) such that there existssamilarly-directed
path from node (k,) (respk( 1)) to every other nodes of(4x4). It follows fromcell-
linking test 2that the 4x4 CNN of Fig.13 isot cell-linking.

Exampled:

Consider the 4x4 CNN obtained by deletcgumn 5 from the 4x5 CNN in Fig.14(c).
The corresponding signal flow graph(4x4) is obtained by deleting all nodes, and the
branches attached to them, from the tadtumn in Fig.14(d). Consider the rotationally-
symmetric pairs of nodes (1,1) a(l4). Observe that there issamilarly-directedpath
from node (1,1) t@very other nodesf b (4x4):

(1.1} (2,2),

1,1)> (2,1)—> (3,1),

1 Two nodes (k) andR, I_) are said to be rotationally symmetric if, and only if, the position of (k,I)
coincides with that of K, | ) upon rotating the CNN by 18@bout its center position.
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1,)—- (2,1)— (3,1)—> (4,2),

@1,)- (2,1)— (1,2),

1,)— (2,1)— (1,2)—> (2,2),

@1,)—-(2,1)— (1,2 > (2,2)— (3,2),

1,)—(2,1)—> (1,2) > (2,2)—> (3,2)— (4,2),

@,)- 21— (1,2)—> (2,2)— (1,3),

@1,)—(2,1)—> (1,2)—> (2,2)— (1,3)> (2,3),

@,1)- 21— (1,2)—> (2,2)—> (1,3)> (2,3)> (3,3),
@1,)-(2,1)—>(1,2)> (2,2)—> (1,3)> (2,3)—> (3,3)—> (4,3),
11— 21— (1,2)—>(2,2)—> (1,3)> (2,3} (1,4),
@1,1)-21)—>(1,2)—> (2,2)—> (1,3)> (2,3)> (1,4)—> (2,4),
1,)— (2,1)> (1,2)>(2,2)>(1,3)~>(2,3)~>(1,4)>(2,4) (3,4),
@1,1)-21)—>(1,2)> (2,2)> (1,3)> (2,3)> (1,4)—> (2,4)>(3,4)— (4,4).

A similarly-directed pathcan also be found from node (4,4) to every other node
of 4a(4x4). 1t follows fromcell-linking test Zhat this 4x4 CNN is cell-linking.

Proof of cell-linking test 2:

If the template is cell-linking, then by fi@tion a and a* have similarly-directed
paths to every other cell. Suppose both a antaae similarly-directed paths to every
other cell. Consider cell c different from a. Themll c* is different from a*. So there is a
path from a* to c*. By Lemma 1, there is a p&tbhm c to a. Since there is a path from a
to everywhere else, ¢ has a path to everywhere else too.

Cell-linking test 3

Let C(M1xN;) denote any CNN subset of an MxN CNN, wherg<M and
Ni<N. Suppose N1 and M>1. If C(MxN,) is cell-linking, then so is its associated
MxN CNN.

Example 5.

Consider the 4x5 CNN shown in Fig.14. Silkoeample 4shows that the 4x4 CNN subset
is cell-linking, it follows from thecell-linking test 3that the associated 4x5 CNN is also
cell-linking.

Proof of cell-linking test 3:

The proof is trivial by noting that the signal flow graph of azxxM; CNN can be
obtained from the signal flograph of an MxN CNN (M M3, N> N;) by deleting some
nodes and the branches connected to them. &hpeth in the smaller graph is also a
valid path in the bigger graph.

We are now ready to state our next complete stability criterion.
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Complete Stabilityrheorem 3.

An MxN CNN with a (2r+1)x(2r+1) A-template igsompletely stable for
arbitrary B-templatesand arbitrary threshold z if the following three conditions are
satisfied:

1. The CNN izell-linking.
2. Any one of the fousynaptic weight conditiongiven by Egs.(8.28)-(8.31).
3. All the equilibrium points are isolated.

Corollary to Complete Stability Theorem 3.

An NxN CNN with a 3x3 A-template, aarbitrary B-template and amarbitrary
threshold zis completely stabld the following three conditions are satisfied:

1. The CNN igell-linking.

2. The A-template possessasy oneof the sixsynaptic weight patterngiven in
Fig.12.

3. All the equilibrium points are isolated.
Proof.
We will only sketch the proof of thisorollary. For the proof of the complete

stability theorem 3, sé@,

Let us first prove the above Corollary the synaptic weight pattern 6. The state
equation is

X =X +Af(x) +Bu+z
The Jacobian matrix of the system is

-1+ AJ)
where | is the identity matrix and
[ (xa)

' (xn) |

The off-diagonal elements o are the off-center elements thie A-template which are
nonnegative. Cell-linking implies thigreducibility*® of the matrixA and hence -AJ is

15.0. Chua and C.W. Wu, “On the universe of stable cellular neural netwairks,J. Circuit Theory
and Applicationsvol.20, pp.497-517 (1992).
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also irreducible. Since the trajectoriease bounded and the equilibrium points are
isolated, the conclusion follows from theorem A.1. in the Appendix of this Chapter.

By using theorem A.2. in the Appendixgtynaptic weight patterns 1-3 can be
transformed into the synaptic pattefh Since “stability” and “irreducibility” are
preserved under these transformations, the corollary is proved.

Remarks

1. Complete stability theorem 3 can be used to prove complete stability theorem 2
since for sign-symmetric templates the signal flow graph can be decomposed into cell-
linking components.

2. The “connected component detector (CCD)” template
A=l 1 [ 2] 1]
to be presented in Chapter 12 does not belong to any of the above classes.

To understand the elusiveness of thesnplate, observe that the preceding
stability criteria only make use of the “sign” of the template entries, not the actual values.
In the following section, we will show that by changing the template entries of the CCD
CNN by an arbitrarily small amount we cankeat unstable. Consequently, any stability
criterion capable of predicting the stability tbie CCD template must include conditions
involving the synaptic weights of the A-template.

8.7. Stability of Some Sign-antisymmetric CNN'’s

We have already given an intuitiveason on why the stability of the CCD CNN
is very difficult to prove. Numerical simulations have shown that the trajectories
associated with the CCD template always converge to an equilibrium point. But if we
change the template values slightly, the system will oscillate.

In fact, computer simulations show that the parameters of the CCD template
A=l 1 [ 2 [ 1]

lies on astability boundaryin the parameter space. In fiaular, the slightly perturbed A-
template

A=[1.01] 2] -1.01
is found to be unstable. This is illustrated in Figs.18(a) and 18(b).

These templates belongs to the class of templates

A= a* 2 a |, B= 0 0 ol , zx 0

6 M.W.Hirsch, “System of differential equations that are competitive or cooperative Il: Convergence
almost everywhere,” SIAM Math. Anal., vol.16, no.3, May 1985, pp.423-439.
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When the parameters a and a* are adyrithe corresponding CNN exhibit different
behaviors. The a-a* parameter plane can be partitioned into eight pairs of symmetrically
spread regions which exhibit the same qualitative behavior.

Unstable
region
1 5

CCD —{'
-1

Unstable

region

Fig. 17 Partitioning of the a-a* parameter plane into 16 regions. See text for the
behaviors of the CNN'’s in each region. The CNN at the point “*” is related to the CCD
template
A= 1 2 | -1
by a 180° rotation and shares the same functionality as the CCD template except that all
pixels move in the other direction (see Chapter 12).

We have shown earlier that if a and @t both positive, or both negative, then
the CNN is stable (almost everywhere).

The following theorems can be proved:

Theorem 4 The CNN’s in region 1 of the parameter plane in Fig 1Aa@ossess any
stable equilibrium point and are therefo stable

Theorem 5 The CNN’s in regions 2 and 3 dhe parameter plane in Fig 17 are
completely stabland any binary one-dimensional pattern corresponds to the output of a
stable equilibrium point.

Theorem 6 The CNN’s in regions 5 and 7 dhe parameter plane in Fig 17 are
completely stableand all trajectories converge tan equilibrium point with a
homogeneous “white” output for all cells,

Lw | w [ w]w]lwlw]w]lw]|w]/fw,j

where “W” denotes a “white” output, or a homogenous “black” output for all cells:
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. B | B | B[ B | B[] BJ] B|] BJ|] BJ] B |
where “B” denotes a “black” output.

Theorem 7. The CNN’s in regions 6 and 8 othe parameter plane in Fig 17 are

completely stabland all trajectories converge to ajudibrium point with an alternating
“white-and-black” output

. w | B [ w ] B[] W[ B]|] W] B]|] W/[] B |

, Or an alternating “black-and-white” output.

| Bl w | B | W] B | W]J[ B | W] B[ W|

Computer simulations show that alN®'’s in region 4 behave like a CCD CNN.
Observe that the CCD template

A= 1 2 | -1

lies at the common corner boundary pointuoktable region 1, stable regions 5 and 6

(everything converge to one of two pdssi patterns) and stable region 4 (CCD
behavior).

Let us examine next the trajectoriesttod following two CNN's which lie in two
different regions in the parameter space in Fig.17, but which are very close to each other:

xi (l](suldlj and xz(q(dashad;

L L L
a 5 ia i5 20 25 an 35 4
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xi (It](seld] and x2(fidashad)

(b)
Fig.18(a) Stable output waveforms corresponding to template
A= 1099 2 |-0.99
in Region 4 with X0)= x(0)=0.1.
(b) Oscillating output waveforms corresponding to template
A= 1101 2 |-1.01

in Region 1 with X0)= x(0)=0.1.

Observe that the CNN in Fig.18(a) is stable while the other in Fig.18(b) is
unstable.

Proof of theorem 4.

Without loss of generality, let us ass®l a<-1 and a*>1. Suppose there is an
equilibrium point such that;|x1 for all i. Assume ®1, then

X1=-X%+2y+ap=-xx+2 +ay =0

Since 2-x < 1, we have gy= - (2-x) >-1. If y, = 1 then ay < -1, which leads to a
contradiction. Hencey= -1, i.e., x< -1

Similarly,
Xo=-X+2p+ta*yytas=-%-2 +ta*+ay=0

-X2-2 +ta*>1-2+1=0=ay<0

If ys = -1 then ay >1, which yields a contradiction. Soz ¥ 1 and % > 1.
Similarly, we find % <-1, % > 1, etc.

So, we have two possibilities:

Xn2< -1, %12 1, X<-1
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or
Xn22 1, X< -1, =1

In the first case

Xn=-X+t2%h+ta*Yp1=-X%-2 +a*=0
X, =a* -2 >-1, which leads to a contradiction.

A similar proof applies for the second case.

So, the equilibrium point for this system with| x1 for all i does not exist.
Hence, an equilibrium point for this system must satisfygk for some i. It can be
shown that such an equilibrium point is unstable.

Sketch of proof of theorem 5.

We will only show that any bimp pattern is the output of somstable
equilibrium point. Consider a binary output {, I, ..., b } where b €{-1, 1}. We need
to show that there exists an equilibrium point, (x., % ) such that f(= b. Stability
follows from the fact that the Jacobian matrix at this equilibrium point is

o) -
0

L - 1_

Since he{-1, 1}, this means that g 1. In this case the state equation can be written as:

X1=-x+t2n+tap=-xx+2bh+abk=0
X1=2b + ab

Xi=-X+2y+a*y,+ay
=-X+2h+a*b+ak=0
Xi = 2h+ a*b.1 + abs , for2<i < n-1.
Xn=-X%+2¥+a* Y1
= - X+ 20+ @ty =0
Xn = 2kh+ a*bng
Now we need to show that f{xb;

If b= 1 then x=2+ab. Since |a|<> |aly|<1, it follows that x>1
If b;=-1then x=-2+ab< -1. Hence, f(X=b,.
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Consider next X i < n-1. If h= 1 then x2+ a*h., + alx;. Since |a|+|a¥1, we
have | a*p; + alxs| <|a| + |a*k 1, and hence ; %1.

Similarly, if b= -1 then x< -1. Consequently f(x= b. We can also show f{x=
b, so we have found such an equilibrium point which outputs the binary pattern b

Proof of theorem 6.

We will only prove the case in regiorwhere a>1. Suppose a>1 and a*>0. Since
the template is sign-symmetric, we can apply the complete stability theorem 2 to show
that it's stable. It remains to show thaété are only 2 stable equilibrium points, whose

output is either

We know that a stable equilibrium point must satisfyIxfor all i.
X1:-X1+2y1+a)/2:0

Since a>1 it's easy to show that if ¥ 1 then x>1. If y, =-1 then %<-1, so y=

Ya.

X2=-X+2%+a‘y; +ay

=-x+t@2+a)yp+ay=0
Again it's easy to show thaty y;, SO we must haveiy= ¥, = y3 = ys = ... = . It
follows that
Lw |l w | w/[wl]w]lw]/[wl]w]|w]/[w,j
and

. B | B [ B | B | B|] B]|] BJ] BJ| BJ] B |

are the output of the only twstableequilibrium points.
The proof of theorem 7 is similar to that of theorem 6.

The Venn diagram in Fig.19 illustrateke relationship between the various
classes of templates we have discussed so far.
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Universe of all A-Templates Symmetric

Cell-linking

Stable This is the class of Sign-symmetric
termplates satisfying
the 4 synaptic
weight conditions

Fig.19 Venn diagram illustrating the relationship between classes of templates. The
number corresponds to the regions in Figure 17.
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Appendix to Chapter 8

The theorems in this section rely on the convergence results of Hirsch and the
equivalent transformation results of Chua and Rdskad Chua and W8

Theorem A.1:[1}°
Consider the system
X =F(x)
Assume that for eack the Jacobian matrix B is irreducible®® and its off-diagonal
elements are nonnegative. Suppose all trajectories remain bounded. Then for all initial
conditions in a full measure set, the cepending trajectories approach the set of
equilibrium points.
Theorem A.2:[2}
Consider a CNN with time-invariant input and bias:
X =X +Af(x) +Bu+z Al
Let
a b c
A=ld e f
g h i

Then there exisB 1, B, B 5 andz, z,, zs such that each of the following 3 systems

X =X +A1f(x) +Biu+z
X =X +Af(X) +Bu +2
X =X+Asf(X) +Bsu +z3

is topological conjugatéo system (A1), wherd 1, A ,, and A 5 are given by:

L.0. Chua and T. Roska, “Stability of a clagsionreciprocal cellular neak networks”, IEEE Trans.

on Circuits and Systems, vol. 37, pp.1520-1527.

18..0. Chua and C.W. Wu, “On the universe of stable cellular neural networks,” Int. J. Circuit Theory
and Application, vol.20, 497-512, 1992

19 M.W. Hirsch, “System of differential equatiotisat are competitive atooperative Il: Convergence
almost everywhere,” SIAM Math. Anal., vol.16, no.3, May 1985, pp.423-439.

20 A permutationmatrix P is a matrix whose entries consists 0 or 1 such that each row or column
contains only one “1”. A matrix D isreducibleif there exists @ermutationmatrix P such that PDRs of

the form

5 |p
® [5
where ‘4" denotes a matrix with all zero entriesy”“denotes a nonzero matrix, an®™ denotes any
matrix.
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-a b -c
Al=|-d e -f

-g h -i
—~a -b —c
A2=|d e f
-9 —-h —i]
a -b c|
A3=|-d e -f
g -h ]

Roughly speaking, topological conpgy means that the dynamics are
gualitatively the same. In particular, gtep properties are preserved under topological
conjugacy.

LaSalle’s invariance principle
Consider the autonomous system

x =f(x), xeR"

Let V(x) be a continuously differentiable function fromi iRto R. Let S be an arbitrary
set in R. SupposeV =V Vef(x) does not change sign in S. Define

E={x: V (x) =0,xe S}
where S denotes the closure of S. Let M be lgrgest invariant set in E. Then M is a
closedset and for all solutions remaining in S for a0t x(t) approaches the closed

invariant set M, or &”, i.e., Mu{x}, where “U" denotes “set union” and-<{} denotes
the point ato.
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