
Chapter 8 

Back to Basics: Nonlinear Dynamics and Complete Stability 

8.1. A Glimpse of  Things to Come 
 
 All CNN templates we have investigated so far share the common property that 
regardless of the inputs, initial states, and boundary conditions, all transient dynamics 
eventually converge to some dc equilibrium state after some settling time kτCNN, where τCNN is the time constant of a single cell, and k≈5~10. Such CNN’s are said to be 
completely  stable and represent the workhorse of most current CNN applications. 
Indeed, almost all current CNN analogic programs are developed under the assumption 
that all CNN templates (instructions) called for in the program are completely stable. 
However, we will see in the following sections that not all CNN’s are completely stable. 
Indeed, some CNN templates will give rise to an oscillatory periodic steady state 
behavior. Others can even exhibit an eternally transient (not periodic) phenomenon called 
chaos. 
 
 While the majority of current CNN applications require constant dc (gray-scale) 
outputs, future applications will no doubt exploit the immense potentials of the relatively 
unexplored terrains of oscillatory and chaotic operating regions. A glimpse of some such 
novel CNN applications in these regions will be given in Chapter 18. In this chapter, we 
will derive several general mathematical criteria for complete stability. To appreciate the 
need for such criteria, we will present first a simple example of an oscillatory CNN in 
section 8.2,  and a chaotic CNN in section 8.3. 
 

8.2. An Oscillatory CNN with Only two Cells 
 
 Consider a 2-cell CNN characterized by zero boundary conditions and the 
following templates: 
 

 0 0 0   0 0 0    

A =  β α -β  B =  0 0 0  z = 0 

0 0 0   0 0 0    

 
using our earlier notations from section 2.2.6, this MxN=1x2 CNN with feedback 
synaptic weights a0,-1=β, a0,0=α,  and a0,1=β can be represented by the signal flow graph 
shown in Fig.1.  
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Fig.1 (a) A 1x2 CNN whose virtual boundary cells (shown shaded) are clamped to a zero 
potential: y0,0= y0,1= y0,2= y0,3 =  y1,0= y1,3= y2,0= y2,1= y2,2= y2,3=0. (b) Corresponding 
signal flow graph  
 
The state equations for this CNN is given by: 

&x 1= - x1 +α y1 - βy2

&x 2= - x2 + α y2 + βy1

(8.1)

where we neglect the row index for simplicity. Here, the output yi is related to the state xi 
by the standard nonlinearity 
 

  yi = f(xi) = 0.5| xi +1| - 0.5| xi -1|     (8.2) 
 
which is shown graphically in Fig.2 for convenience.  

 

 
Fig.2 The standard CNN piecewise-linear output characteristic. 

 
 The solution waveforms of Eq.(8.1) corresponding to α = 2,  β = 2, and initial 
condition x1(0) = 0.1 and x2(0) = 0.1 are shown in Figs.3(a) and 3(b). Observe that 
instead of converging to a dc equilibrium point as in all of our previous examples, the 
state variables x1 and x2 converge to a periodic waveform, which is more clearly seen by 
plotting the associated trajectory in the x1-x2 plane, as shown in Fig.3(c). Each point 
along the trajectory, which starts from (x1, x2) = (0.1, 0.1) at t=0 in Fig.3(c) is 
parameterized by time but is not shown in the figure because, here, we are interested only 
in the relationship between x1(t) and x2(t) as t→∞, namely, a closed contour called a limit 
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cycle. Since the trajectory from (0.1, 0.1) does not converge to an equilibrium (, 

), this CNN is not completely stable. 
Qx1

Qx2

 
 (a) 

 
 (b) 

  
 (c) 

Fig.3 Periodic solution waveforms of x1(t) and x2(t) and the corresponding trajectory for α=2, β=2, x1(0)=0.1 and x2(0)=0.1. 
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 For this simple example, we can prove that all trajectories starting from any initial 
state except the origin will converge to a limit cycle. We will present the details of this 
proof in order to introduce the uninitiated readers to some elementary aspects of 
nonlinear qualitative analysis. The first step in analyzing the dynamics of an autonomous 
CNN (i.e., where the time variable t does not appear on the right-hand side of the state 
equation) is to find the location of all equilibrium points Qi, i=1,2,...,q, such that 

 and , where denotes  evaluated at Hence, 

upon setting Eq.(8.1) to 0, the equilibrium points of this 2-cell CNN are the solutions of: 

0)Q(x i1 =& 0)Q(x i2 =& )Q(x ij& )t(x j& iQi xx =
 

- x1 + 2f(x1) - 2f(x2) =0 

- x2 + 2f(x2) + 2f(x1) =0 

(8.3a)

(8.3b)
 
Since the piecewise-linear function f(xi) in Fig.3 has 3 segments, the x1-x2  state space 
can be partitioned into 9 rectangular regions R(i,j), i,j=1,2,3, as shown in Fig.4, where the 
state equation (1) reduces to a linear equation in each region. In particular, the 
equilibrium equation (3) reduces to 2 linear algebraic equations in each region R(i,j) and 
the equilibrium point Q(i,j) can be trivially  calculated. If Q(i,j) falls within region R(i,j), 
then it is a valid equilibrium point. If Q(i,j) falls outside of R(i,j), it is a “virtual” 
equilibrium point and is simply discarded. The above “brute-force” procedure can be 
easily programmed to find all equilibrium points of any MxN CNN. However, the 
computation time would grow exponentially with MN so that it becomes impractical 
when MN is large. 

 
Fig.4. The dynamics of the 2-cell CNN in Fig.1 is linear in each region R(i,j). 
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 In view of the simplicity of Eq.(8.3), the following algebraic analysis can be 
made to determine first those regions in Fig.4 which have valid equilibrium points: 
 
Step 1. Central strip |x1|<1 (regions R(1,2), R(2,2), and R(3,2) in Fig.4): 
 
 In the strip | x1 |<1, we can write f(x1) = x1 so that Eq.(8.3a) becomes - x1 + 2x1 -
2f(x2) = 0. Consequently, |f(x2)| = |x1|/2 < 0.5 and hence f(x2) = x2. Equation (8.3) reduces 
in this case to: 
 
   - x1 + 2x1 - 2x2 =0 
  - x2 + 2x2 + 2 x1 =0       (8.4) 
  
Since (x1, x2) = (0,0) is the unique solution of Eq.(8.4), only region R(2,2) in the central 
strip has an equilibrium point; namely, the origin. 
 
Step 2. Left strip x1< -1 (regions R(1,1), R(2,1), and R(3,1) in Fig.4): 
 
 In the strip x1< -1, we can write f(x1) = -1 so that Eq.(8.3b) becomes - x2 + 2f(x2) -
2  = 0. Solving this equation for x2, we find x2= -4 for region R(1,1) the only solution of 
Eq.(8.3b) (the other two solutions x2=2 for region R(2,1) and x2=0 for region R(3,1) are 
both virtual solutions). But x2= -4 implies f(x2)=-1 so that Eq.(8.3a) in the left strip gives  
-x1-2+2=0, or x1=0, which is outside of the left strip. Hence x2=-4 is a virtual solution for 
Eq.(8.3). It follows that there are no equilibrium points in the left strip x1<-1. 
 
Step 3. Right strip x1>1 (regions R(1,3), R(2,3), and R(3,3) in Fig.4): 
 
 In the strip x1>1, we can write f(x1) = 1 so that Eq.(8.3b) becomes - x2 + 2f(x2) +2  
= 0. Solving this equation for x2, we find x2= 4 for region R(3,3) is the only solution of 
Eq.(8.3b) (the other two solutions x2=-2 for region R(2,3) and x2=0 for region R(1,3) are 
both virtual solutions). But x2= 4 implies f(x2)=1 so that Eq.(8.3a) in the right strip gives 
-x1+2-2=0, or x1=0, which is outside of the right strip. Hence x2=4 is a virtual solution for 
Eq.(8.3). It follows that there are no equilibrium points in the right strip x1>1. 
 
 Steps 1-3 show that Eq.(1) has only one equilibrium point; namely, the origin. To 
determine the dynamical behavior near the origin, we examine the associated linear 
equation 

212

211

xx2x

x2xx

+=
−=

&

&
       (8.5) 

obtained by setting f(x1) =x1 and f(x2)=x2 in Eq.(8.1). Since the eigenvalues of the above 
matrix are given by λ1=1+j2 and λ2=1-j2, the solution of Eq.(8.5) has the form: 
 
       x1(t) =ket cos(2t+θ) 

  x2(t) =ket sin(2t+θ)       (8.6) 
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where the constants k and θ depend on the  initial condition x1(0) and x2(0). Since the 
trajectory associated with Eq.(8.6) is an “expanding” spiral, as shown in Fig.3(b), and 
since all solutions of Eq.(8.1) are bounded (in view of Theorem 2 of Chapter 2), this 
expanding spiral must necessarily converge to some limiting closed contour, for 
otherwise, the trajectory would intersect itself since there is no room for maneuvering on 
the x1-x2 plane. But no trajectory of an autonomous system of differential equations can 
intersect itself in view of the uniqueness property (Theorem 1 of Chapter 2) -- otherwise 
we can choose the self-intersection point as our initial condition and obtain 2 different 
trajectories originating from this point. The above reasoning can be given a formal 
rigorous proof and the result is called Poincare-Bendixon theorem, which is a classic 
result from the theory of differential equations.1

8.3. A chaotic CNN with only 2 cells and one sinusoidal input 

 Suppose we apply a sinusoidal input u11(t) = 4.04 sin(
π
2

t) to cell C(1,1) of the 2-

cell CNN shown in Fig.1 and choose α=2 and β=1.2 as its parameters. In this case, under 
the same “zero” boundary conditions as before, the state equation (1) generalizes to the 
following non-autonomous system of two nonlinear differential equations: 

&x 1 = -x1 + 2 y1 - 1.2 y2 + 4.04 sin(
π
2

t) 

&x 2 = -x2 +1.2 y1 + 2 y2

(8.7)

where yi = f(xi) is defined by Eq.(8.2). Equation (8.7) is the state equation of a 1x2 CNN 
with templates 

 0 0 0   0 0 0    

A =  1.2 2 -1.2  B =  0 1 0  z = 0 

0 0 0   0 0 0    

zero boundary conditions, a sinusoidal input u11(t) to cell C(1,1) and a zero input u12 = 0 
to cell C(1,2). The solution waveforms x1(t) and x2(t) corresponding to the initial 
condition x1(0) = 0.1 and x2(0) = 0.1 are shown in Figs.5(a) and 5(b), respectively. 
Observe that unlike the periodic waveforms shown earlier in Figs.3(a) and 3(b), these 
two waveforms do not converge to a periodic waveform as t→∞. The non-periodic nature 
of x1(t) and x2(t) is more clearly seen by examining the associated trajectory shown in 
Fig.5(c). Observe that the trajectory looks like a never-ending tangle of yarn. To 
emphasize the non-periodic nature of  x1(t) and x2(t), Figs.6(a) and 6(b) show the 
numerically calculated power spectra X1(ω) of x1(t) and X2(ω) of x2(t) have a broadband, 
continuous, noise-like character, which is quite different from that of a periodic signal, 
which consists of  discrete lines corresponding to the harmonic components of its Fourier 
series expansion. From the theory of the nonlinear dynamics, the noise-like waveforms in 
Figs.5(a) and 5(b) are said to be chaotic, and the associated trajectory is called a strange 

                                                           
1 For a rigorous  statement and proof of the Poincare-Bendixon theorem, see P. Hartman,  Ordinary 
Differential Equations, p.151. 
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attractor because other solutions corresponding to nearby initial conditions will all be 
“attracted” and converge to the same trajectory. 

 
 (a) 

 
 (b) 

 
(c) 

Fig.5 Chaotic solution waveforms of x1(t) and x2(t) and the corresponding trajectory for α=2, β = -1.2, x1(0)=0.1 and x2(0)=0.1. 
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 (a) 

 
(b) 

Fig.6 Frequency power spectra calculated numerically from the chaotic waveforms x1(t) 
and x2(t) in Fig.5. 

 
 Even though the strange attractor in Fig.5(c) looks extremely messy, it does 
possess some orderly geometrical structure, which, in the case of a periodic input, is best 
seen by sampling only the points on the trajectory once every period of the input 
waveform. The resulting set of points is called a Poincare cross section, or by an abuse of 
language, simply Poincare map because it was first introduced by the famous French 
physicist and mathematician Poincare. In this example, the period of the sinusoidal input 
is T=4. Consequently, if we plot (x1(t), x2(t)) on the x1-x2 plane only at t=0, 4, 8, 12, 16, 
... , etc., we would obtain the “sampled” strange attractor in Fig. 7, which is often referred 
by as a Lady’s shoe attractor.2  

 

                                                           
2F. Zou and J.A. Nossek,  “A chaotic attractor with cellular neural network,” IEEE Trans. on Circuits and 
Systems, vol.38, no.7, pp.811-812, 1991. 
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Fig.7 The Poincare map extracted from the strange attractor in Fig.5(c) is called the 

“Lady’s shoe attractor” in view of its striking resemblance to a high-heel lady’s pump. 
 
 A discrete op-amp circuit3 for simulating Eq.(8.7) is shown in Fig.8. The 
experimentally observed strange attractor corresponding to Fig.5(c) is shown in Fig.9(a). 
The corresponding Poincare map obtained experimentally by “blanking” out the 
oscilloscope beam except at regular intervals of T is shown in Fig.9(b). It is sometimes 
instructive to interpret such Poincare maps as “strobing” the strange attractor by a 
stroboscope. 

 

 
Fig. 8 A two-cell CNN circuit driven by a sinusoidal signal. 

                                                           
3 F. Zou,  G. Seiler, A.J. Schuler,  B. Eppinger   and J.A. Nossek,  “Experimental confirmation of the lady’s 
shoe attractor”, IEEE Trans. on Circuits and Systems, vol.39, no.10, pp.844-846, 1992. 
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(a) 
 

 
 

(b) 
 

Fig.9 (a) Strange attractor obtained experimentally from the circuit in Fig.8. (b) The 
“lady’s shoe” Poincare map extracted experimentally from the attractor in (a). 

 

8.4. Symmetric A-template Implies Complete Stability 
 
 The preceding examples show that even CNN’s with only two cells may not be 
completely stable. Fortunately, the following theorem guarantees the complete stability 
of an important subclass of CNN’s. To simplify the proof of this theorem, we will assume 
that the nonlinear function yij =f(xij) is bounded, differentiable and has positive slope 
everywhere. There is little loss of generality in this assumption since our original 
piecewise-linear function can be approximated arbitrarily closely by such a smooth 
function. In fact, any physical realization of f(xij) will be “smooth” rather than piece-
wise-linear so that this assumption is actually more consistent with reality. 
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Complete Stability Theorem 1 
 
 Any MxN space-invariant CNN of arbitrary neighborhood size with constant 
inputs and constant threshold is completely stable if the following three hypotheses are 
satisfied: 
 
1. The A template is symmetric: 

A(i,j;k,l)=A(k,l;i,j)       (8.8) 

2. The nonlinear function yij = f(xij)  is differentiable, bounded, and 

f ′(xij) > 0  , for  all -∞< xij <∞      (8.9) 

3. All equilibrium points are isolated.4  
 
Proof. Consider the CNN state equation (2.8) from Chapter 2 for constant input u and 
threshold z: 

&x  = -x + y + u + z $ $A B

yi = f(xi),  i =1,2, ..., n =MN 
(8.10)

(8.11)

Here,  and  are nxn matrices whose nonzero entries are the synaptic weights 
A(i,j;k,l) and B(i,j;k,l), respectively. Observe that hypothesis (8) and space invariance 
imply that  

$A $B

$A $A  =  T        (8.12) 

independent of  the packing scheme. 
 
 Now, hypothesis (9) implies that f(•) is a one-to-one (injective) function and 
therefore has an inverse function 

  xi = f -1(yi)        (8.13) 

defined for all yi  over the range of f(xi), xi∈(-∞, ∞). Define the scalar function 

zyuyyyx TT
n

1i

1-T B̂dv)v(fÂ
2

1
)(V

i −−⎥⎥⎦⎢⎢⎣
+−= ∑ ∫= θ

y ⎤⎡
 

(8.14)

where θ is any number such that f(-∞)<θ<f(∞). 5

 
 A scalar function V(x) is called a Lyapunov function if its time derivative along 
any trajectory is non-positive, i.e.,  
 

                                                           
4 An equilibrium point xQ of   is said to be isolated if, and only if, there are no other equilibrium 

points in a sufficiently small neighborhood of x

f(x)x =&
Q.

5 In the nonlinearity f we have been using, we can choose θ=0,  since f(-∞)  = -1, f(∞) = 1. For the sake of 
generality, the hypothesis on f does not require that the values of f  lie between -1 and  1. 
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  (x)&V  
dt

)(dV x n
= 

i=∑1
i

i
x

x
&∂

)(V∂ x
 ≤ 0.  

 
Our first goal is to prove that Eq.(8.14) defines a Lyapunov function. 
 
Observe that the right-hand side of Eq.(8.14) is a scalar function of  x =[ x1, x2, ... , xn]

T 
since yi = f(xi) via Eq.(8.11). Taking the time derivative of both sides of Eq.(8.14) we 
obtain  

zyuyyyyyx TT
ii

n

1i

1-TT B̂)y).y(f()ÂÂ(
2

1
)(V &&&&&& −−++−= ∑=   (8.15) 

Now since yT $A y $A $A

& ˆ &y &y $A &y $A

n

&y $A $B
x&

&  is a  scalar and   = T  in view of Eq.(8.12), we can write  
 

  yT $A y  = (yT A )T = T Ty = T y    (8.16) 
 
Substituting Eqs.(8.13) and (8.16) into Eq.(8.15) and making use of Eq.(8.10), we obtain 
 

      (x) = - T&V &y  y + x  - T$A
i=∑1

i &y i &y   u - T$B &y  z 

                      = - T ( y +  u - x + z) 
                  = - T         (8.17) &y

 
Observe next that 

& .

.

.

'( )

'( )

.

.

.

'( )

( )

&

&

.

.

.

&

( )&y

Df x

Df x x=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥
=

dy

dt
dy

dt

dy

dt

f x

f x

f x

x

x

xn n n

1

2

1

2

1

2

1 2444444 3444444

   (8.18) 

Substituting Eq.(8.18) into Eq.(8.17) and noting that Df(x) is symmetric, we obtain: 
 
  (x)  = -[Df(x) ]&V &x &

&

0i
1i

i ≤
=

&

&V

T x  
   = -( x T Df(x) ) &x

   = - ′∑       (8.19) x)x(f 2
n

 
Hence, V(x) in Eq.(8.14) is a Lyapunov function. Let M denote the set of all points x∈Rn 
where (x) = 0, i.e.,  
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  M={ x: (x) = 0}       (8.20) &V

 
Since >0 (hypothesis 2), Eq.(8.19) implies  if, and only if,  )x(f i′ 0)( =xV&

x& i = 0, i = 1,2, ..., n. It follows that M in Eq.(8.20) consists of the set of all equilibrium 
points of Eq.(8.10). Hence,  
 

&V  (x) < 0  for all x∈Rn  except at equilibrium points (8.21)
 
 Now since x(t) is bounded in view of Theorem 2 from Chapter 2, we can apply 
LaSalle invariant principle6  to conclude that all trajectories of Eq.(10) must converge to  
the invariant set7 M of equilibrium points. 
 
 Now since all equilibrium points of Eq.(10) are isolated (hypothesis 3), it follows 
that all trajectories of Eq.(10) must converge to an equilibrium point. 
 
 Remarks 
 
1. If  the equilibrium points in M are not isolated8, then our theorem can be relaxed 
to assert only that all trajectories must converge to the set M of equilibrium points. 
Strictly speaking, this assertion does not imply that every trajectory will converge to an 
equilibrium point since there exists (admittedly highly pathological and rare) situations 
where every trajectory will approach M at an arbitrarily small rate so that x&

&V

i→0 and yet 
the trajectory never converges to any particular equilibrium point. 
 
2. To visualize the geometrical ideas behind the above proof, consider the 
hypothetical surface V(x1, x2) shown in Fig.10. Notice that this surface has five local 
minima {Q1, Q3, Q5, Q7, Q9}. Imagine the inside of the surface V as the surface of a 
rugged narrow mountain crevice and a small ball is coasting down the surface. One such 
hypothetical trajectory Γ representing the “track” made by the ball is shown in Fig.10. 
Notice that due to gravity, a ball originating from any point other than an extremum point 
must keep falling down along the steep slope until it settles down at a local minimum; 
i.e., 
 

  (x1, x2) = 
d

dt

                                                          

V(x1(t), x2(t)) < 0     (8.22) 

 
for all (x1, x2) ≠ ( x1(Qi), x2(Qi)). 
 

 
6 J.P. LaSalle,  “ An invariant principle in the theory of stability,” in J.K. Hale and J.P. Salle, Editors, 
Differential Equations and Dynamical Systems, Academic Press 1967. 
7 A set M⊂Rn is called an invariant set of Eq.(8.10), if any trajectory starting from a point x0∈M at t=0 
remains in M for all t>0. Since M in this case contains only equilibrium points, it is clearly an invariant set. 
8 We have already encountered such a situation in Fig.3(c) of Chapter 6. 
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Fig.10 A hypothetical Lyapunov function V(x1, x2) with five local extrema Q1, Q3, Q5, Q7, 

Q9, and a hypothetical trajectory Γ converging toward the local minimum Q3. 
 
 An n-dimensional scalar function  
 

  V(x1, x2, ..., xn) : R
n→R1      (8.23) 

 
is called a Lyapunov function associated with an autonomous system of differential 
equations 
 

  = fix& i(x1, x2, ..., xn),  i = 1, 2, ..., n     (8.24) 

 
if, and only if , corresponding to any trajectory 
 

  (x1, x2, ..., xn) =(γ1(t), γ2(t),...,  γn(t))     (8.25) 
 
of Eq.(8.24), the corresponding scalar  function of time  
 

  V(t)  V(γ1(t), γ2(t),...,  γn(t))      (8.26) 
 
decreases monotonically with time, i.e., (t) ≤ 0. In particular, if  (t) = 0 only at 
equilibrium points, then it follows that all trajectories must land at an equilibrium point 
Q

&V &V

i and the set (Qi) of all initial conditions such that corresponding trajectories converge 
to Qi is the basin of attraction of Qi. It follows from the above geometrical insights that 
one method to prove Eq.(8.24) is completely stable is to find a scalar function V(x1, x2, 
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..., xn) which possesses the above properties.9 Unfortunately, no systematic procedure is 
presently available for finding such a scalar function, partly because solutions of most 
nonlinear systems of differential equations, such as Eq.(8.24), can not be found by 
analytical methods. 
 
 Now that the degree of difficulty for proving complete stability of Eq.(8.24) is 
understood, the reader would no doubt appreciate how lucky we are in being able to 
invent the scalar function V(x) in Eq.(8.14) and prove that it qualifies as a Lyapunov 
function. 
 

8.5. Positive and Sign-Symmetric A-template Implies Complete Stability 
 
 In this section we will present another complete stability criterion which depends 
only on the “sign” , and not the “value”, of  the elements of the A-template. 
 
Definition 1: Sign symmetric A-template 
  
 Let A

o180
 denote the template obtained by rotating an A-template by 180o with 

respect to the center of the template. Let aij and a′ij denote the corresponding ij-th  

elements of A and A . We say a (2r+1)x(2r+1) A-template, where r is the radius of the 

sphere of influence S
o180

o180

o180

r(ij),  is sign symmetric if, and only if,  aij and a′ij are both positive,  
both negative, or both zero, for all i,j = 1, 2, ... , 2r+1. 
 
 The above definition is equivalent to the condition that aij and a-i,-j are both 
positive, or both negative, or both zero, for all (i,j)≠(0,0), where the double subscripts 
correspond to a Cartesian coordinate system whose origin is located at the center of the 
template. As an illustrative example, consider the 5x5 A-template shown in Fig.11(a). To 
determine whether this template is sign symmetric, we first rotate “A” by 180o (always 

with respect to the center of the template) to obtain the associated A
o180

 -template shown 

in Fig.11(b). We then construct the corresponding “sign” template, denoted by sgn[A] 

and sgn[A ], respectively, by assigning the symbol +, -, or 0 to each entry aij where aij 

>0, aij <0 and aij =0 in A and A , respectively. 

 
 

-2 0 7 -5 0 -3 0 8 -6 0 
1 6 0 -2 -6 2 6 0 -3 -4 
0 2 4 3 0 0 3 4 2 0 
-4 -3 0 6 2 -6 -2 0 6 1 

 
 

A= 

0 -6 8 0 -3 

 
 

A
o180
=

 0 -5 7 0 -2 
 
                                                           
9 This is, in fact, the only general tool currently available to prove complete stability of Eq.(24). 
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- 0 + - 0 
+ + 0 - - 
0 + + + 0 
- - 0 + + 

 
 

sgn[A] = sgn[A
o180
] = 

0 - + 0 - 
 

Fig. 11 (a) A non-symmetric 5x5 A-template (A≠AT). (b) A
o180
 obtained by rotating the 

A-template 180o with respect to the center of the template. (c) The “sign” of 

corresponding coefficients of A and A
o180
 are identical as depicted in this “sign” 

template sgn[A] whose entries consist of +, -, and 0’s. 
 
 Then the A-template is sign symmetric if, and only if, 
 

  sgn[A] = sgn[A
o180
]       (8.27) 

 
Since Eq.(8.27) is satisfied as shown in Fig.11(c), we conclude that the A-template in 
Fig.11 is sign symmetric. Observe that this template is not symmetric with respect to the 
center, i.e., a sign-symmetric A-template is, in general, not symmetric, but a symmetric 
A-template is always sign symmetric. 
 
Definition 2. Synaptic weight conditions 
  
 Each of the following conditions concerning the relative signs of the synaptic 
weights aij of a (2r+1)x(2r+1) A-template is called a synaptic weight condition: 
 

a-r,-r . . . a-r,-1 a-r,0 a-r,1 . . . a-r,r
a-r+1,-r . . . a-r+1,-1 a-r+1,0 a-r+1,1    a-r+1,r

.           

.           

.           

a0,-r . . . a0,-1 a0,0 a0,1 . . . a0,r

.           

.           

.           
ar-1,-r . . . ar-1,-1 ar-1,0 ar-1,1 . . . ar-1,r

 
 
 
 
 
 

A= 

ar,-r . . . ar,-1 ar,0 ar,1 . . . ar,r
 
Synaptic weight condition 1: 
 

  akl ≥ 0  for all (k, l) ≠ (0, 0)      (8.28) 
 
Synaptic weight condition 2: 
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  akl ≥ 0  for all (k, l) ≠ (0, 0) and “even” k. 
  akl ≤ 0 for all “odd” k         (8.29) 
 
 
Synaptic weight condition 3: 
 
   akl ≥ 0  for all (k, l) ≠ (0, 0) and “even” l. 
  akl ≤ 0 for all “odd” l         (8.30) 
 
Synaptic weight condition 4: 
  akl ≥ 0  for all (k, l) ≠ (0, 0) and “even” (k+l). 

akl ≤ 0 for all “odd” (k+l)          (8.31) 

We are now ready to state our next theorem. 

 
Complete Stability Theorem 210

 
 An MxN CNN with a (2r+1)x(2r+1) A-template is completely stable, for arbitrary 
B-template and arbitrary threshold z,  if the following three conditions are satisfied: 
 
 1. The A-template is sign symmetric.  
 
 2. The template satisfies any one of the four synaptic weight conditions. 
 
 3. All the equilibrium points are isolated. 
 
 The proof of a special case of this theorem will be given in the next section. 
 
 Remark 
 
 Note that the synaptic weight condition 1 corresponds to an A-template with non-
negative coefficients (except possibly the center). Hence the title of this section is a 
Corollary of the above theorem. 
 
Corollary to Complete Stability Theorem 2 
 
 An MxN CNN with a 3x3 A-template, for arbitrary B-template and arbitrary 
threshold z, is completely stable if the following three conditions are satisfied: 

1. The A-template is sign symmetric. 

2. The A-template possesses any one of the six synaptic weight patterns shown in Fig.12. 
                                                           
10 To be more precise, for theorems 2-4 (and the corollaries to these theorems) in this section, we should 
add that the complete stability property, unlike in theorem 1, apply to all initial conditions except for a set 
of measure zero. For example, there may exist (possibly rare) such completely stable CNN’s where there is 
an unstable limit cycle. 
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⊕ ⊖ ⊕ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ 
⊖ 5 ⊖ ⊖ 5 ⊖ ⊕ 5 ⊕ 
⊕ ⊖ ⊕ 

 

⊖ ⊕ ⊖ 

 

⊖ ⊖ ⊖ 
synaptic weight 

pattern 1 
 synaptic weight 

pattern 2 
 

 synaptic weight 
pattern 3 

⊖ 0 ⊕ ⊕ 0 ⊖ ⊕ ⊕ ⊕ 
0 5 0 0 5 0 ⊕ 5 ⊕ 
⊕ 0 ⊖ 

 

⊖ 0 ⊕ 

 

⊕ ⊕ ⊕ 
synaptic weight 

pattern 4 
 synaptic weight 

pattern 5 
 synaptic weight 

pattern 6 

Fig.12. Six synaptic weight patterns which satisfy condition 2 of the Complete Stability 
Theorem 2. 

 
where 
 0 denotes a “zero” synaptic weight 
 ⊕ denotes a “positive” or “zero” synaptic weight 
 ⊖ denotes a “negative” or  “zero” synaptic weight 
 5 may assume any value. 
 
3. All the equilibrium points are isolated. 
 
Proof. This corollary follows directly from the above theorem since each of the synaptic 
weight pattern 1-3, and six satisfies one of the four synaptic weight conditions in (28)-
(31).  

 Synaptic patterns 4 and 5 are trickier and we give the following sketch of the 
argument. If we rotate synaptic pattern 4 by 45o, counterclockwise, we obtain the pattern 

 

 
 Looking at the nonzero entries, the center element is connected only to the top, 
down, left and right neighbors. It can be shown that this is similar to the template 
 

0 ⊕ 0 
⊖ 5 ⊖ 
0 ⊕ 0 
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which belongs to the class of  synaptic pattern 2. The same can be said by rotating 
synaptic pattern 5 by 45o clockwise. 
 
 Thus the stability of synaptic patterns 4 and 5 can be deduced from the stability of 
synaptic pattern 2. 
 
 To illustrate the properties of the synaptic weight patterns in Fig.12, consider the 
following  set of  12 hypothetical templates: 
 

0 -2 0 0 -2 7 0 0 0 
2 7 4 -4 7 -3 -2 9 -1 

 
A1= 

0 0 0 
,    A2=

7 -1 0 
,      A3=

0 0 0 
 
 

   

7 0 -1 -7 0 0 0 1 2 
0 8 0 0 2 0 -3 4 -5 

 
A4= 

0 0 0 
,    A5=

2 0 -6 
,      A6=

0 0 0 
  

 
  

0 0 1 0 0 0 -1 -2 -3 
2 3 4 -1 -2 -3 4 5 0 

 
A7= 

5 6 0 
,    A8=

0 -5 0 
,     A9=

0 -7 0 
  

 
  

-1 0 -2 1 -4 5 -2 -1 4 
0  7 0 7 0 8 2 3 1 

 
A10= 

-3 0 0 
,  A11=

6 2 0 
,    A12=

1 -5 -7 
 
 The following table summarizes the properties of these templates: 
 

Template  Is template Ai  sign-
symmetric? 

Synaptic weight pattern possessed by 
template AI

A1 NO  3 
A2 YES 1 
A3 YES 1, 2 
A4 NO 5 
A5 NO 4 
A6 NO NONE 
A7 NO 6 
A8 NO 1 
A9 NO 3 
A10 NO 2 
A11 NO NONE 
A12 YES NONE 
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 Observe that since none of the above 12 templates are symmetric, we cannot 
make use of the Complete Stability Theorem 1. However, applying the Corollary to 
Complete Stability Theorem 2, we can assert that templates A2 and A3 are completely 
stable. 

8.6. Positive and Cell-linking A-template Implies Complete Stability 
 
 In this section we will present yet another complete stability criterion, which 
substitutes the “sign symmetry” condition from Theorem 2 by a certain condition on the 
signal flow graph A(MxN) associated with an MxN CNN, where A(MxN) denotes a 
directed graph obtained by associating each cell C(i,j) of the CNN with a node (i,j) and 
where each node is connected to its neighbors via the signal flow graph A associated 
with the A-template defined in Fig.17 of Chapter 2. 
 
Definition 3. CNN Signal flow graph A(MxN) 
 
 For each MxN CNN, we construct a directed graph A(MxN) corresponding to an 
A-template as follows: 
 
1. Draw the signal flow graph A associated with the A-template. For each non-zero and 

non-central synaptic weight akl≠0 (k≠i, l≠j) in A, draw a directed branch from node 
(k,l) to the center node (i,j), and a similarly-directed branch from the center node (i,j) 
to the reflected node (k , l ); i.e., node (k , l )  is related to node (k,l) by a 180o 
rotation with respect to the center node (i,j).11 See Figs.13(a) and 13(b) for an 
example. 

                                                           
11 In this section, it is useful to think of each directed branch as a one-way street and a node as an 
intersection between two or more one-way streets. Hence for each nonzero entry in A (akl ≠ 0), there are 
two connecting one-way streets in the same direction which allows one to travel from node (k,l) to node 

( k , l ). Two or more such branches in a directed graph are said to be similarly directed.  
 
 As an example, the signal flow graph A associated with the A-template in Fig.13(a) is shown in 
Fig.13(b). Observe that A has six directed branches (not counting the self loop) since there are only three 
non-zero non-central entries in the A-template; namely, a-1,-1 = -2.6, a-1,0 = 1.5 and a1,1 = 3.2. Observe that 
for each zero entry (ak,l = 0, k≠l) in the A-template, the corresponding node (k,l) in A has no branches 
attached to it. Observe also that the “sign” of akl ≠ 0 is irrelevant in so far as the direction of the associated 
branch is concerned, which always goes from node (k,l) to the center node (i,j), and its reflected “twin” 

branch always goes from the center node (i,j) to node )l,k( . 

 
 In the signal flow graph A shown in Fig.13(b), we also write the synaptic weight akl next to the 
pair of directed branches associated with each entry of the A-template where akl ≠ 0. For completeness, we 
also draw a self-loop at node (i,j) with the self-feedback synaptic weight aij = 4.7 written next to it. For the 
purpose of this section, however, both the synaptic weights and the self-loop are irrelevant to the following 
complete stability theorem and will therefore be deleted fromA.  
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Fig.13. Steps for constructing the signal flow graph A(MxN) of an MxN CNN: (a) 

Specify the A-template (b) Draw the signal flow graph A associated with the A-template. 
Note that for each non-zero synaptic weight akl ≠0, k≠l, there correspond two branches in 

A . (c) a 4x4 (M=N=4) CNN. (d) The reduced signal flow graph A(4x4) associated with 
the A-template. 

 
2. To each cell C(k,l) in an MxN CNN, draw a corresponding node (k,l), k=1,2 ..., M, 

l=1,2, ..., N (see Figs.13(c) and 13(d) for a 4x4 CNN). 
 
3. Duplicate the signal flow graph A (delete the coefficients akl and the self-loop) from 

step 1 at each node (k,l) from step 2. All branches connected to “virtual” boundary 
nodes are deleted. The resulting directed graph is called the reduced CNN signal flow 
graph A(MxN). For the 4x4 CNN shown in Fig.13(c), we obtain the 16-node 
directed graph A(4x4) shown in Fig.13(d). 

 
Definition 4. Cell-linking CNN 
 
 Let A(MxN) be the signal flow graph of an MxN CNN associated with an A-
template. Then the CNN is said to be cell-linking if, and only if, for every two distinct 
nodes (k1, l1) and (k2, l2) in A(MxN), there is a similarly directed path12 in A(MxN) 
from node (k1, l1) to node (k2, l2), and a similarly directed return path from node (k2, l2) 
to node (k1, l1). 

 For example, the 4x4 CNN shown in Fig.13(c) is not cell-linking because there is 
at least one pair of nodes (e.g., from node (2, 1) to node (1,1)) where no similarly-
directed path exists. On the other hand, the 4x5 CNN shown in Fig.14 is cell-linking as 

                                                           
12 A similarly-directed path from node (k1, l1) to node (k2, l2) is defined as a sequence of directed branches 
(one-way streets) which allows one to travel from an initial  node (k1, l1) to a destination node (k2, l2). 
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the reader can verify that there is a similarly-directed path from any node (k1, l1) in the 
signal flow graph A(4x5) to any other node (k2, l2). For example, to go from node (2,2) 
to node (3,4), we would travel along the similarly-directed path (2,2) →(3,2) →(2,3) →(3,3) →(4,3) →(3,4). 

 

 
Fig.14. Example of a 4x5 cell-linking CNN 

 
 Observe that before one can certify that a particular CNN is cell-linking, 
definition 4 requires that one must examine all possible combinations of initial  and 
terminal node pairs and in each case produce a similarly-directed path. This would be a 
tedious task unless a computer program is written to do the checking. Fortunately, the 
following 3 cell-linking tests can be used to certify quickly, often by inspection, a large 
class of NxN CNN′s to be cell-linking.  
 
Cell-linking test 1 
 
 An NxN CNN, where N is an odd integer, is cell-linking if, and only if, there is a 
similarly-directed path from the center node13 of the associated signal flow graph

A(NxN) to every other nodes of A(NxN). 
 
 Example 1. 

Consider the 3x3 CNN obtained by deleting row 4 and column 4 from the 4x4 CNN in 
Fig. 13(c). The corresponding signal flow graph A (3x3) is obtained by deleting all 
nodes, and the branches attached to them, from the last row and the last column in 
Fig.13(d). In this case, node (2,2) is the center node of the associated signal flow graph 

A (3x3). Since there is no similarly-directed path going from node (2,2) to node (1,3) in 

A(3x3), we conclude that this 3x3 CNN is not cell-linking. 
 

                                                           
13 Since N is an odd integer, the geometric center of A(NxN) is a node of A(NxN). 
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Example 2. 

Consider the  3x3 CNN obtained by deleting row 4 and columns 4, 5 from the 4x5 CNN 
in Fig.14(c). The corresponding signal flow graph A (3x3) is obtained by deleting all 
nodes, and the branches attached to them, from the last row and the last two columns in 
Fig.14(d). In this case, node (2,2) is the center node of the associated signal flow graph 

A (3x3). Observe that there is a similarly-directed path from node (2,2) to every other 
nodes of A(3x3):  
(2,2)→ (1,1),  
(2,2) → (1,3) → (2,3) → (1,2),   
(2,2) → (1,3), 
(2,2) → (3,2) → (2,1),  
(2,2) → (1,3) → (2,3),  
(2,2) → (3,2) → (2,1) → (3,1),  
(2,2) → (3,2),  
(2,2) → (3,2) → (2,3) → (3,3).  
It follows from the cell-linking test 1 that this 3x3 CNN is cell-linking. 
 
 Proof of cell-linking test 1: 

 The proof of this test follows from the proof of the following cell-linking test 2, 
since the center cell is rotationally symmetric with respect to itself. 
 
Definition 5: Symmetric node-pair 
 
 If “a” is a node of the signal flow graph A(MxN) let a* denote the corresponding 
node which is 180o rotationally symmetric (about the center) with respect to a. 
 
 Lemma 1: 
  There is a similarly-directed path from node a to node b in A if, and only if, there 
is a similarly-directed path from node b* to node a*. 
 
 Proof: 

We will prove this Lemma by mathematical induction on the length n  of the path as 
follows:  

n=1: if there is a branch from node a to b then there is a branch from b* to a* in 
view of the space-invariance of the templates, as shown in Fig.15. 
 

 
Fig.15 A branch from a to b implies that a branch exists from b* to a*, and vice versa. 
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 A directed path of length n=k+1 from a to b contains a path of length k from a to c 
and a branch from c to b. By the induction hypothesis, there is a path of length k from c* 
to a* and a branch  from b* to c*. So there is a path of length k+1 from b* to a*. See 
Fig.16. 

 
Fig.16 A directed path from a to b implies that a directed path exists from b* to a*,  and 

vice versa. 
 
 Cell-linking test 2. 

 An MxN CNN is cell-linking if, and only if, there is a pair of rotationally 
symmetric nodes14 (k,l) and (k , l ) such that there is a similarly-directed path from node 
(k,l) to every other nodes of A(MxN), and a similarly-directed path from node (k , l ) to 
every other nodes of A(MxN) . 
 
 Example 3: 

Consider the 4x4 CNN shown in Fig.13(c) and its associated signal flow graph A(4x4) in 

Fig.13(d). Observe that for every pair of rotationally symmetric nodes (k,l) and (k , l ), 
of which there are many (e.g., (1,1) and (4,4), (3,2) and (2,3), (2,1) and (3,4), etc.),  in

A(4x4), we cannot find a pair (k,l) and (k , l ) such that there exists a similarly-directed 

path from node (k,l) (resp. (k , l )) to every other nodes of A(4x4). It follows from cell-
linking test 2 that the 4x4 CNN of Fig.13 is not cell-linking. 
 
 Example 4: 

Consider the 4x4 CNN obtained by deleting column 5 from the 4x5 CNN in Fig.14(c). 
The corresponding signal flow graph A(4x4) is obtained by deleting all nodes, and the 
branches attached to them, from the last column in Fig.14(d). Consider the rotationally-
symmetric pairs of nodes (1,1) and (4,4). Observe that there is a similarly-directed path 
from node (1,1) to every other nodes of A(4x4):  
(1,1)→ (2,1),  
(1,1) → (2,1) → (3,1),  
                                                           
14 Two nodes (k,l) and (k , l ) are said to be rotationally symmetric if, and only if, the position of (k,l) 

coincides with that of  (k , l ) upon rotating the CNN by 180o about its center  position. 
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(1,1) → (2,1) → (3,1) → (4,1),  
(1,1) → (2,1) → (1,2), 
(1,1) → (2,1) → (1,2) → (2,2),  
(1,1) → (2,1) → (1,2) → (2,2) → (3,2),  
(1,1) → (2,1) → (1,2) → (2,2) → (3,2) → (4,2),  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) ,  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) → (2,3),  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) → (2,3) → (3,3),  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) → (2,3) → (3,3) → (4,3),  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) → (2,3)→ (1,4),  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) → (2,3) → (1,4) → (2,4),  
(1,1) → (2,1) → (1,2)→(2,2)→(1,3)→(2,3)→(1,4)→(2,4)→ (3,4),  
(1,1) → (2,1) → (1,2) → (2,2) → (1,3) → (2,3) → (1,4) → (2,4)→(3,4) → (4,4). 
 
 A similarly-directed path can also be found from node (4,4) to every other node 
of A(4x4). It follows from cell-linking test 2 that this 4x4 CNN is cell-linking. 
 
 Proof of cell-linking test 2: 
 
 If the template is cell-linking, then by definition a and a* have similarly-directed 
paths to every other cell. Suppose both a and a* have similarly-directed paths to every 
other cell. Consider cell c different from a. Then cell c* is different from a*. So there is a 
path from a* to c*. By Lemma 1, there is a path from c to a. Since there is a path from a 
to everywhere else, c has a path to everywhere else too. 
 
 Cell-linking test 3 
 
 Let C(M1xN1) denote any CNN subset of an MxN CNN, where M1<M and  
N1<N.  Suppose N1>1 and M1>1. If C(M1xN1) is cell-linking, then so is its associated 
MxN CNN. 
 

Example 5. 

Consider the 4x5 CNN shown in Fig.14. Since Example 4 shows that the 4x4 CNN subset 
is cell-linking, it follows from the cell-linking test 3 that the associated 4x5 CNN is also 
cell-linking. 
 
Proof of cell-linking test 3: 
 
 The proof is trivial by noting that the signal flow graph of an M1x N1 CNN can be 
obtained from the signal flow graph of an MxN CNN (M≥ M1, N≥ N1) by deleting some 
nodes and the branches connected to them. Thus a path in the smaller graph is also a 
valid path in the bigger graph. 
 
 We are now ready to state our next complete stability criterion. 
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Complete Stability Theorem 3. 
 
 An MxN CNN with a (2r+1)x(2r+1) A-template is completely stable, for 
arbitrary B-templates and arbitrary threshold z, if the following three conditions are 
satisfied: 

 1. The CNN is cell-linking. 

 2. Any one of the four synaptic weight conditions given by Eqs.(8.28)-(8.31). 

 3. All the equilibrium points are isolated. 

 
Corollary  to Complete Stability Theorem 3. 
 
 An NxN CNN with a 3x3 A-template, an arbitrary B-template, and an arbitrary 
threshold z, is completely stable if the following three conditions are satisfied: 

 1. The CNN is cell-linking. 

 2. The A-template possesses any one of the six synaptic weight patterns given in 
Fig.12. 

 3. All the equilibrium points are isolated. 
 
Proof.  
 
 We will only sketch the proof of this corollary. For the proof of the complete 
stability theorem 3,  see 15. 

 Let us first prove  the above Corollary for the synaptic weight pattern 6. The state 
equation is 

x&  = -x + f(x) +B u + z Â ˆ

 The Jacobian matrix of the system is 

(-I + J) $A
where I is the identity matrix and 

J

f x

f xn

=
⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

' ( )

.

.

.

' ( )

1

 

The off-diagonal elements of  are the off-center elements of the A-template which are  
nonnegative. Cell-linking implies the irreducibility

Â
16 of the matrix  and hence -I+J is Â Â

                                                           
15 L.O. Chua and C.W. Wu,  “On the universe of stable cellular neural networks,”  Int. J. Circuit Theory 
and Applications, vol.20, pp.497-517 (1992). 
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also irreducible. Since the trajectories are bounded and the equilibrium points are 
isolated, the conclusion follows from theorem A.1. in the Appendix of this Chapter. 

 By using theorem A.2. in the Appendix, the synaptic weight patterns 1-3 can be 
transformed into the synaptic pattern 6. Since “stability” and “irreducibility” are 
preserved under these transformations, the corollary is proved. 
 
 Remarks: 
 
 1. Complete stability theorem 3 can be used to prove complete stability theorem 2 
since for sign-symmetric templates the signal flow graph can be decomposed into cell-
linking components. 

 2. The “connected component detector (CCD)” template    

A= 1 2 -1 

to be presented in Chapter 12 does not belong to any of the above classes. 

 To understand the elusiveness of this template, observe that the preceding 
stability criteria only make use of the “sign” of the template entries, not the actual values. 
In the following section, we will show that by changing the template entries of the CCD 
CNN by an arbitrarily small amount we can make it unstable. Consequently, any stability 
criterion capable of predicting the stability of the CCD template must include conditions 
involving the synaptic weights of the A-template. 

8.7. Stability of Some Sign-antisymmetric CNN’s 

 We have already given an intuitive reason on why the stability of the CCD CNN 
is very difficult to prove. Numerical simulations have shown that the trajectories 
associated with the CCD template always converge to an equilibrium point. But if we 
change the template values slightly, the system will oscillate. 

 In fact, computer simulations show that the parameters of the CCD template 

A= 1 2 -1 

lies on a stability boundary in the parameter space. In particular, the slightly perturbed A-
template  

A= 1.01 2 -1.01

is found to be unstable. This is illustrated in Figs.18(a) and 18(b).  

 These templates belongs to the class of templates 
 

A =  a* 2 a , B =  0 0 0 , z = 0 

 

                                                                                                                                                                             
16  M.W.Hirsch,  “System of differential equations that are competitive or cooperative II: Convergence 
almost everywhere,” SIAM Math. Anal., vol.16, no.3, May 1985, pp.423-439. 
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When the parameters a and a* are varied, the corresponding CNN exhibit different 
behaviors. The a-a* parameter plane can be partitioned into eight pairs of symmetrically 
spread regions which exhibit the same qualitative behavior. 

 
Fig. 17 Partitioning of the a-a* parameter plane into 16 regions. See text for the 

behaviors of the CNN’s in each region.  The CNN at the point “*” is related  to the CCD 
template  

A =  1 2 -1 

by a  180º  rotation and shares the same functionality as the CCD template except that all 
pixels move in the other direction (see Chapter 12). 

 
 We have shown earlier that if a and a* are both positive, or both negative, then 
the CNN is stable (almost everywhere).  
 
 The following theorems can be proved: 
 
Theorem 4: The CNN’s in region 1 of  the parameter plane in Fig 17 do not possess any 
stable equilibrium point and are therefore not stable. 
 
Theorem 5: The CNN’s in regions 2 and 3 of the parameter plane in Fig 17 are 
completely stable and any binary one-dimensional pattern corresponds to the output of a 
stable equilibrium point. 
 
Theorem 6: The CNN’s in regions 5 and 7 of the parameter plane in Fig 17 are 
completely stable and all trajectories converge to an equilibrium point with a 
homogeneous “white” output for all cells,  
 

W W W W W W W W W W 
 
where “W” denotes a “white” output,  or a homogenous “black” output for all cells: 
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B B B B B B B B B B 
where  “B” denotes a “black” output.  
 
Theorem 7. The CNN’s in regions 6 and 8 of  the parameter plane in Fig 17 are 
completely stable and all trajectories converge to an equilibrium point with an alternating 
“white-and-black” output 
 

W B W B W B W B W B 
 
, or an alternating “black-and-white” output. 
 

B W B W B W B W B W 
 
 Computer simulations show that all CNN’s in region 4 behave like a CCD CNN. 
Observe that the CCD template  

A =  1 2 -1 

lies at the common corner boundary point of unstable region 1, stable regions 5 and 6 
(everything converge to one of two possible patterns) and stable region 4 (CCD 
behavior). 
 
 Let us examine next the trajectories of the following two CNN’s which lie in two 
different regions in the parameter space in Fig.17, but which are very close to each other:  
 

 
(a) 
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(b) 

Fig.18(a) Stable output waveforms corresponding to template  
A =  0.99 2 -0.99

in Region 4 with x1(0)= x2(0)=0.1.   
 (b) Oscillating output waveforms corresponding to template  

A =  1.01 2 -1.01

in Region 1 with x1(0)= x2(0)=0.1. 
 
 Observe that the CNN in Fig.18(a) is stable while the other in Fig.18(b) is 
unstable. 
 
 Proof of theorem 4. 
 
 Without loss of generality, let us assume a<-1 and a*>1. Suppose there is an 
equilibrium point such that |xi|≥1 for all i.  Assume x1≥1, then  
 

x& 1 = - x1 + 2 y1 + a y2 = - x1 + 2  + a y2  = 0 
 
Since 2-x1 ≤ 1, we have  ay2 = - (2-x1) ≥-1. If y2 = 1 then ay2 < -1, which leads to a 
contradiction. Hence, y2 = -1, i.e., x2 ≤ -1 
 
 Similarly, 
  x& 2 = - x2 + 2 y2 + a* y1 + ay3 = - x2 - 2  + a* + a y3 = 0 
 
  - x2 - 2  + a* ≥ 1-2+1 = 0 ⇒ a y3  ≤ 0 
 
 If  y3 = -1 then ay3 >1, which yields a contradiction. So, y3 = 1 and x3 ≥ 1. 
Similarly,  we find x4  ≤ -1, x5  ≥ 1, etc. 
 
 So, we have two possibilities: 
 
  xn-2 ≤ -1,  xn-1 ≥ 1,   xn ≤ -1 
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or 
  xn-2 ≥ 1,  xn-1 ≤ -1,  xn≥1 
 
 In the first case 
 
  x& n = - xn + 2 yn + a* yn-1  = - xn - 2  + a* = 0 
  xn  =a* -2 >-1, which leads to a contradiction. 
 
 A similar proof applies for the second case. 
 
 So, the equilibrium point for this system with |xi| ≥1 for all i does not exist. 
Hence, an equilibrium point for this system must satisfy |xi| <1 for some i.  It can be 
shown that such an equilibrium point is unstable. 
 
 Sketch of proof of theorem 5. 
 
  We will only show that any binary pattern is the output of some stable 
equilibrium point. Consider a binary output { b1, b2, ...,  bn } where bi ∈{-1, 1}. We need 
to show that there exists an equilibrium point (x1, ..., xn ) such that f(xi)= bi. Stability 
follows from the fact that the Jacobian matrix at this equilibrium point is 

   

⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢

⎣

⎡

−

−

1

.0

.

0.

1

  
Since bi ∈{-1, 1}, this means that |xi|≥1. In this case the state equation can be written as: 
 
  x& 1 = - x1 + 2 y1 + ay2 = - x1 + 2b1 + a b2 = 0 

x1 = 2b1 + ab2

 
x& i = - xi + 2 yi + a* yi-1 + ayi+1  

         = - xi + 2bi + a*bi-1 + abi+1 = 0 
  xi = 2bi + a*bi-1 + abi+1 ,  for 2≤ i ≤ n-1. 
 
x& n = - xn + 2 yn + a* yn-1  

          = - xn + 2bn + a*bn-1 = 0 
  xn = 2bn + a*bn-1 

 

 Now we need to show that f(xi)=bi  
  
 If b1= 1 then x1=2+ab2. Since |a|<1 ⇒ |ab2|<1, it follows that x1 ≥1 
 If  b1= -1 then x1= -2+ab2 ≤  -1. Hence, f(x1)=b1. 
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 Consider next 2 ≤ i ≤ n-1. If  bi= 1 then xi=2+ a*bi-1 + abi+1. Since |a|+|a*| ≤1, we 
have | a*bi-1 + abi+1|  ≤ |a| + |a*| ≤ 1, and hence  xi ≥1. 
 
 Similarly, if bi= -1 then xi ≤ -1. Consequently f(xi) = bi. We can also show f(xn) = 
bn so we have found such an equilibrium point which outputs the binary pattern bi. 
 
 Proof of theorem 6. 
 
 We will only prove the case in region 7 where a>1.  Suppose a>1 and a*>0. Since 
the template is sign-symmetric, we can apply the complete stability theorem 2 to show 
that it’s stable. It remains to show that there are only 2 stable equilibrium points, whose 
output is either  
 

W W W W W W W W W W 
or 

B B B B B B B B B B 
 
 We know that a stable equilibrium point must satisfy |xi|≥1 for all i. 
 
  x& 1 = - x1 + 2 y1 + ay2 = 0 
 
 Since a>1 it’s easy to show that if y2 = 1 then x1>1. If y2 =-1 then x2<-1, so y1= 
y2. 
 
  x& 2 = - x2 + 2 y2 + a*y1 + ay3  

          = - x2 + (2 + a*)y2 + a y3 = 0 
 
Again it’s easy to show that y2= y3 , so we must have y1 = y2 = y3 = y4 = ... = yn. It 
follows that 
 

W W W W W W W W W W 
and 

B B B B B B B B B B 
 
are the output of the only two stable equilibrium points. 
 
 The proof of theorem 7 is similar to that of theorem 6. 
 
 The Venn diagram in Fig.19 illustrates the relationship between the various 
classes of templates we have discussed so far. 
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Fig.19 Venn diagram illustrating the relationship between classes of templates. The 
number corresponds to the regions in Figure 17. 
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Appendix to Chapter 8 
 
 The theorems in this section rely on the convergence results of Hirsch and the 
equivalent transformation results of Chua and Roska17 and Chua and Wu18. 
 

Theorem A.1:[1]19

Consider the system  

x&  = F(x) 

Assume that for each x the Jacobian matrix DF is irreducible20 and its off-diagonal 
elements are nonnegative. Suppose all trajectories remain bounded. Then for all initial 
conditions in a full measure set, the corresponding trajectories approach the set of 
equilibrium points. 
 

Theorem A.2:[2]8

Consider a CNN with time-invariant input and bias: 

   = -x + f(x) + u + z      (A1) x& Â B̂

Let  

   

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

ihg

fed

cba

A

 
Then there exist B̂ 1, B̂ 2, B̂ 3 and z1, z2, z3 such that each of the following 3 systems 
 
  x  = -x +& Â 1f(x) + B̂ 1u + z1

  x  = -x +& Â 2f(x) + B̂ 2u + z2

  x  = -x +& Â 3f(x) + B̂ 3u + z3

is topological conjugate to system (A1), where Â 1, Â 2, and  Â 3  are given by: 
 
                                                           
17 L.O. Chua  and T. Roska,  “Stability of a class of nonreciprocal cellular neural networks”, IEEE Trans. 
on Circuits and Systems, vol. 37, pp.1520-1527. 
18 L.O. Chua  and C.W. Wu,  “On the universe of stable cellular neural networks,” Int. J. Circuit Theory 
and Application, vol.20, 497-512, 1992 
19 M.W. Hirsch,  “System of differential equations that are competitive or cooperative II: Convergence 
almost everywhere,” SIAM Math. Anal., vol.16, no.3, May 1985, pp.423-439. 
20 A permutation matrix P is a matrix whose entries consists of  0 or 1 such that each row or column 
contains only one “1”. A matrix D is irreducible if there exists a permutation matrix P such that PDPT is of 
the form 

5 µ 
⊗ 5 

where “µ” denotes a matrix with all zero entries, “5” denotes a nonzero matrix,  and “⊗” denotes any 
matrix. 
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⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−−
−−
−−

=
ihg

fed

cba

A1

   

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−−−
−−−

=
ihg

fed

cba

A2

   

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−

−−
−

=
ihg

fed

cba

A3

 
 Roughly speaking, topological conjugacy means that the dynamics are 
qualitatively the same.  In particular, stability properties are preserved under topological 
conjugacy. 
 
LaSalle’s invariance principle 
 
 Consider the autonomous system 
 
   = f(x),      x∈R&x n

 
Let V(x) be a continuously differentiable function from Rn into R. Let S be an arbitrary 
set in Rn. Suppose V•f(x) does not change sign in S. Define  &V =∇
 
  E={ x: (x) =0, x∈&V S } 
 
where S  denotes the closure of S. Let M be the largest invariant set in E. Then M is a 
closed set and for all solutions remaining in S for all t≥0, x(t) approaches the closed 
invariant set M, or  “∞”, i.e., M∪{∞}, where “∪” denotes “set union” and {∞} denotes 
the point at ∞. 
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