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Tudunk-e mondani valamit általánosságban a dinamikáról?

Imserjük a dinamikát láttunk már egy-két funkciót is, de tudunk-e valamit 
kvalitatívan mondani a dinamikáról?

Kaphatunk-e periódikus pályákat? Kaotikus pályákat?

Elméleti korlátokat kell adnunk arra,hogy milyen értékekre, milyen 
körülmények között használhatjuk a dinamikát

Az elmélet és stabilitás fontossága
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- BIBO stability (Bounded 
Input, Bounded Output 
stability),

- Structural stability

- Nyquist stability

- Asymptotic stability( Ljapunov 
Stability)

- Directional stability      

- Slope stability

Kaotikus jelenségek:

Komplex

Stabilitás

Ahogy haladunk az összetettebb bonyolultabb 
dinamikák felé, úgy lesz általánosabb a rendszer, de 
egyben nehezebben is alkalmazható



Egyértelmű megoldás létezése
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Egyértelmű megoldás létezése:

5x + 3 = 8 

x^2 - 3x + 2 = 0 

sin(x) = 0 

A rendszer nincs jól meghatározva, mérnökileg nem használható

Alapvető elvárás egy rendszerrel szemben, ugyanakkor a dinamikának 
általánosnak is kell lennie



Egyértelmű megoldás létezése
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Diffegyenlet megoldhatósága:

Vegyük az alábbi egyszerű példát.

y' = y 

Ezen egyenletnek végtelen sok megoldása létezik y = e^x  y = 2e^x

Ezek függhetnek a kezdeti értékektől, s ez általában hasznos.

A kezdeti értékek mellett is kaphatunk több/végtelen különböző 
megoldást:

y' = y^(2/3)

Kezdeti érték:  y(0) = 0 

Két lehetséges megoldás: y = (1/27)x^3 

                                           y = 0.



Áramköri szinten
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Lineáris elemekből épített áramkör használatával mindig egyértelműen 
létezik megoldás.

Azonban ezek számításra nem igazán alkalmasak. Egy 
döntés/osztályozás pont akkor érdekes, ha nemlineáris.

Nemlineáris elemek esetén nem biztosított a megoldás egyértelmű 
létezése – (már 2 elemű nemlineáris áramkör esetén sem)



Megoldás egyértelmű létezése
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X(0)=0 kezdeti 
érték esetén, 
tetszőleges T>0 jó 
megoldás lesz.

Végtelen sok 
megoldás létezik.



Megoldás egyértelmű létezése

Vizsgáljuk meg az alábbi egyszerű áramkört, mely egyetlen nemlineáris 
elemet tartalmaz:
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Az áramkört leíró differenciálegyenlet:



Megoldás egyértelmű létezése
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A valós számok halmazán ezen dinamikának nem létezik megoldása 
t>x0^2 esetén



Megoldás egyértelmű létezése

Picard–Lindelöf tétel /Cauchy-Lipschitz/ ( Émile Picard, Ernst Lindelöf):

Adott a következő kezdeti érték feladat:

Tfh:

 f Lipschitz folytonos y-ban és folytonos t-ben

A kezdetiérték feladatnak egyértelműen létezik megoldása a megadott 
halmazon
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Megoldás egyértelmű létezése

Felt 1:  szinaptikus operátorok lineárisak és memóriamentesek:

A és B skalárral szorzás

Felt 2: A bemenet uij(t) és a bias zij(t) folytonos függvények

Felt 3: A nemlinearitás (kimenet: y=f(x) ) Lipschitz folytonos

Ezen esetben bármilyen x(0) állapot esetén egyértelműen létezik 
megoldása az állapotegyenletnek, mivel az:

Alakba írható, ahol y folytonos és f Lipschitz folytonos.
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Megoldás egyértelmű létezése

Felt 1:  szinaptikus operátorok lineárisak és memóriamentesek:

A és B skalárral szorzás:

Konstans, időben nem változó template értékeket használunk

Felt 2: A bemenet uij(t) és a bias zij(t) folytonos függvények:

A bemenet és a Bias is konstans 

Felt 3: A nemlinearitás (kimenet: y=f(x) ) Lipschitz folytonos

A általunk használt nemlinearitás valóban Lipschitz folytonos
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A dinamika korlátossága
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Egy áramkörre mindig teljesül a gyakorlatban, mivel végés eneriga áll 
rendelkezésre.

Azonban meg kell vizsgálnunk a dinamikát, nehogy egy nem várt 
korlátba ütközzünk



A dinamika korlátossága
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Korlátosság:



Stabilitás
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Ljapunov stabilitás:

A dinamika tart valahova

Mérnökileg azt szeretnénk, hogy egy adott T idő elteltével mindig az 
elvárt megoldást ovlassuk ki (lehetőleg minél pontosabban).

Differenciálegyenletek esetén ez nem megvalósítható, de elvárhatjuk, 
hogy az idő múlásával egyre közelebb kerüljünk a megoldáshoz.



Nem minden template stabil
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Periódikus kimenet egyszerű hálózat esetén:

Vizgsáljuk meg az alábbi template-et egy két cellából álló hálózat 
esetén:



Nem minden template stabil

Pázmány Péter Catholic University, Faculty of Information Technology

Összesen 9 különböző dinamikánk van



Template-ek a gyakorlatban 
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Középső rész   -1<x1<1:

                          -1<x2<1:
Ezen a szakaszon:

A dinamikának egyetlen stabil pontja van: x1=0 x2=0



Template-ek a gyakorlatban 
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Bal oldali sáv:  x1<-1 Ezen a szakaszon:

A dinamikának nincs stabil pontja



Template-ek a gyakorlatban 
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Jobb oldali sáv:   x1>1 Ezen a szakaszon:

A dinamikának nincs stabil pontja



Template-ek a gyakorlatban 
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Az egyetlen stabil pont körül (0,0) a megoldás:

A diffegyenlet megoldás a harmonikus oszcilláció dinamikája:



Kaotikus dinamika
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Sinus-os bemenet az egyik cellán: Kaotikus kimenet:
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Teljes mértékben determinisztikus

Könnyebb megadni a tulajdonságait, 
mint definiálni:

1. Létezik tetszőlegesen sűrű 
periódikus pálya

2. Érzékeny a kezdeti feltételekre 
(pillangó effektus)

3. Topológikusan tranzitív

Kaotikus rendszer

1960 Lorentz:

Időjárás előrejelzés

6 tizedessel számoló gép, 
3 tizedes eredmény
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Véletlenszám generálás:

Ezen esetben hasznos, hogy a kezdeti feltételektől nagymértékben függ 
az eredmény 

Brown mozgás: vitatott, hogy kaotikus-e

Tőzsde

Kaotikus rendszerek a gyakorlatban



Pázmány Péter Catholic University, Faculty of Information Technology

Kaotikus oszcillátor
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Kaotikus oszcillátor
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Három test probléma

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Chaos/ThreeBody/ThreeBo
dy.html



Stabilitás vizsgálata
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Stabilitás:

Megmondhatjuk-e egy dinamikáról, hogy biztosan 
tart valahova anélkül, hogy megoldanánk a 
diffegyenletet?

Ljapunov függvény:

V(x)>0

dV(x)/dx <0   (asszimptótikusan stabil, egyenlőség esetén stabil 
egyensúlyi pont)

Korlátos, monoton függvény, ami kapcsolódik a dinamikához

Enerigafüggvény



Template-ek a gyakorlatban 
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Ljapunov függvény



CNN stabilitás
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A teljes hálózatot megadó diffegyenlet:



CNN stabilitás lemma
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Ha A centrálisan szimmetrikus     szimmetrikus



CNN stabilitás
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CNN Ljapunov függvény:

Lássuk be,hogy valóban Ljapunov függvény

Ha A centrálisan szimmetrikus, akkor a dinamika asszimptótikusan 
stabil.

Elég,ha A előjelesen centrálisan szimmetrikus. Ezt most nem bizonyítjuk
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