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This paper continues our quest to develop a rigorous analytical theory of 1-D cellular automata
via a nonlinear dynamics perspective. The 18 yet uncharacterized local rules are henceforth
partitioned into ten complex Bernoulli o--shift rules and eight hyper Bernoulli o--shift rules, the
latter including such famous rules and [110]. All exhibit a bizarre composite wave dynamics
with arbitrarily large Bernoulli velocity o and Bernoulli return time 7 as the length L — oo.

Basin tree diagrams of all ten complex Bernoulli o, -shift rules are exhibited for lengths
L =3,4,...,8. Superficial as it may seem, these basin tree diagrams suggest general qualitative
properties which have since been proved to be true in general. Two such properties form the
main results of this paper; namely,

e Rule has no Isles of Eden.
e Rules and are composed of nothing but Isles of Eden for all string lengths L
not divisible by 3.

Explicit global state transition formulas are given for local rules [90], and [150]. Such
formulas led to the rigorous proof of several surprising periodicity constraints for rule , and to
the discovery of a new global, quasi-equivalence class, defined via an alternating transformation.
In particular, local rules and are globally quasi-equivalent where corresponding space-
time patterns can be derived from each other by simply complementing every other row.

Another important result of this paper is the discovery of a scale-free phenomenon exhibited
by the local rules [90], and [150]. In particular, the period “T” of all attractors of rules [90],
and [150], as well as of all isles of Eden of rules and [150], increases linearly with unit

slope, in logarithmic scale, with the length L.

Keywords: Cellular automata; nonlinear dynamics; attractors; Isles of Eden; Bernoulli shift; shift
maps; basin tree diagram; Bernoulli velocity; Bernoulli return time; complex Bernoulli shifts;
hyper Bernoulli shifts; rule 90; rule 105; rule 150; binomial series; scale-free phenomena.
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1. Recap of Main Results from
Parts I to VI

A rigorous analytical theory of one-dimensional cel-

lular automata composed of L 27 + 1 identical
cells, as shown in Fig. 1, has been studied in the
following series of papers from a nonlinear dynam-
ics perspective!:

Part I: Threshold of Complexity [Chua et al.,

2002]

Part II: Universal Neuron [Chua et al., 2003]

Part III: Predicting the Unpredictable [Chua et al.,
2004]

Part IV: From Bernoulli shift to 1/f spectrum
[Chua et al., 2005a]

Part V: Fractals everywhere [Chua et al., 2005b]

Part VI: From Time-reversible attractors to the
arrow of time [Chua et al., 20006]

1.1. Local rules and
Boolean cubes

Observe that the “zeros” and “ones” in Wolfram’s
truth tables [Wolfram, 2002] are symbolic variables
denoting a logic “Yes” or “No” state, or a “high” or
“low” state in digital electronic circuit implemen-
tations. In order to exploit powerful mathemati-
cal tools from nonlinear dynamics, it is necessary
to work with real numbers. Consequently, in the
papers cited above, the symbolic truth table shown
in Fig. 1(c) is converted into the numeric truth table
shown in Fig. 1(d).

One could also redefine the “0” and “1” in the
symbolic truth tables as real numbers, instead of
changing “0” to “—1”. There are two reasons why
we opted for the latter choice. First, each of the 256
local rules can be implemented on a cellular neural
network (CNN) chip [Chua & Roska, 2002] with at
least three orders of magnitude faster speed than
computing on standard digital computers. Such
CNN implementations require that the truth tables
be formulated in terms of “1” and “—1” [Chang &
Muthuswamy, 2007]. The second reason is that the
numeric truth table shown in Fig. 1(d) can be con-
veniently represented by merely coloring the eight
vertices of a “unit Boolean cube” whose center is

located at the origin of the (u;—1, u;, u;+1) — input
space, as shown in Fig. 1(e). Such a representation
in turn leads to simple visualizations of many rota-
tional symmetrical transformations [Chua et al.,
2003]. Each of the 256 local rules corresponds to
exactly one Boolean cube in Table 1 (extracted
from [Chua et al., 2003]). Observe that the num-
ber N printed under each cube corresponds to the
local rule number in [Wolfram, 2002]. This number
is easily obtained by adding the “vertex weights”
of all red vertices in the Boolean cube, where the
vertex weight for vertex @ is equal to 2¥, as spec-
ified in Fig. 1(e), as well as in the lower part of
Table 1.

1.2.

Observe also that the identification number N of
each Boolean cube is colored in red, blue or green,
depending on whether the red vertices can be seg-
regated and separated from each other by k = 1,2,
or 3 parallel planes, where k is called the index of
complexity of the local rule N [Chua et al., 2002].
Table 2 lists all 256 local rules along with their index
of complexity.

The index of complexity x is not a definition of
complexity. Rather it measures the relative num-
ber of electronic devices needed to implement each
local rule. A k = 1 local rule requires the small-
est number of transistors. More transistors must be
added to realize a k = 2 local rule. Still more tran-
sistors are required to implement a £ = 3 local
rule. In other words, the index of complexity &
measures the relative “cost” of hardware (Chip)
implementations.

While the asymptotic qualitative behaviors of
all k = 1 local rules, and all Kk = 3 local rules,
have been completely understood and character-
ized in [Chua et al., 2006], and in this paper (for
Rules [105], and [150]), there are some x = 2 local
rules that have not yet been characterized, includ-
ing rules [110], [124], [137] and [193] [Chua et al.,
2004]. Since these four rules are universal Turing
machines, they can never be completely character-
ized. In other words, it seems that x = 2 can be con-
sidered as the threshold of complezity, in the sense
articulated in [Wolfram, 2002].

Threshold of complexity

I These 6-part papers have been republished, with errors corrected, in two recent edited books [Chua, 2006] and

[Chua, 2007].
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Fig. 1. (a) A one-dimensional Cellular Automata (CA) made of L = I + 1 identical cells with a periodic boundary condition.
Each cell “” is coupled only to its left neighbor cell (i — 1) and right neighbor cell (i 4+ 1). (b) Each cell “/” is described by a
local rule N, where N is a decimal number specified by a binary string {5, 51,...,07}, 8;i € {0,1}. (¢) The symbolic truth
table specifying each local rule N, N = 0,1,2,...,255. (d) By recoding “0” to “—1”, each row of the symbolic truth table
in (c) can be recast into a numeric truth table, where v, € {—1,1}. (e) Each row of the numeric truth table in (d) can be
represented as a vertex of a Boolean Cube whose color is red if 74 = 1, and blue if v, = —1.
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Table 1.

et al.

Encoding 256 local rules defining a binary 1D CA onto 256 corresponding “Boolean Cubes”.
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Table 1. (Continued)
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Table 1.

(Continued )
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Table 1.

(Continued)
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Table 2. List of 256 local rules with their complexity index coded in red (k = 1), blue (k = 2) and green (k = 3),
respectively.
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x=1 (Red) 104 rules
x=2 (Blue) 126 rules
K= 3 (Green) 26 rules

1.3. Only 88 local rules are independent

Among the 256 local rules, only 88 are dynami-
cally independent® from each other in the sense that
the dynamics and solutions (space-time diagrams)
of any one of the remaining 168 local rules can be
derived ezactly from one of the 88 globally equiva-
lent rules, listed in Table 3 [Chua et al., 2004], via
one of the following three topological conjugacies:

3 Global 1. left-right tmnsformation_T‘L
Equivalence 2. global complementation T
Transformations | 3. left-right complementation T*

For the reader’s convenience, each of the 256 local
rules is listed in the left-most column in Table 4,
along with its equivalent local rule with respect to
each of the above three global equivalence trans-
formations. Observe that due to symmetries pos-
sessed by certain rules, some rules have only two
distinct equivalent rules (e.g. TH[1) = and
T() — () — 127 T/ (20)) - T(20)) —
and () = [0} T1(15) = (1) -
and T() = ) Such rules are iden-
tical twins. There are altogether 72 identical
twin local rules, as listed in Table 5. A few

2We thank Andy Adamatzky [Adamatzky, 2007] for suggesting possible intersections of our work with [Wuensche & Lesser,
1992]. We thank Andy Wuensche for informing us that the concept of global equivalence classes was first mentioned in [Walker,
1971]. The 88 equivalence classes of local rules were listed in [Walker & Aadryan, 1971] and [Wuensche & Lesser, 1992], using
differing numbering schemes. It is likely that other results published, or yet to be published, in our series of tutorial expositions
on “Wolfram’s New Kind of Science” may also intersect, if not contained, in other works. We apologize to all such authors for
not citing their publications, and we will appreciate their informing us of any such intersections so that future acknowledgments
can be made. Being novice on the mature subject of cellular automata, the high probability of such inadvertent omissions is
what prompted the authors to publish their papers as expositions for a nonspecialist audience, and not as original papers, in

the Tutorial-Review section of this journal.
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Table 3. The first 88 globally-independent local rules
among the 256 listed in Table 2.

88 Global Equivalence Classes

0,123 ,4|5|6/|7

8 (9 1011 12|13 |14 |15
18 | 19 | 22 | 23 | 24 | 25 | 26 | 27
28 129 |30 32(33/34|35]|36
37 |38 |40 |41 |42 |43 | 44 | 45
46 | 50 | 51 |54 | 56 | 57 | 58 | 60
62|72 73,74 |76 |77 |78 | 90
94 1104/105/106 108 (110122126
128130132134 136|138 | 140|142
146 150152154 156|160 | 162|164
168 170172178184 (200|204 |232

local rules are endowed with additional symmetries
such that Tt () = T() =T () = [N].
Such rules are identical quadruplets. There are only
eight identical quadruplet rules, as listed in Table 6.

1.4. Robust characterization of 70
independent local rules

By virtue of the three global equivalence transfor-
mations derived in [Chua et al., 2004] it suffices to
conduct an in-depth analysis of only the 88 local
rules listed in Table 3, out of 256, a saving of nearly
70% of otherwise wasted man hours! By using ran-
dom bit strings (with at least L = 400 bits) as test-
1ng signals, we have found via extensive computer
simulations, and supplemented by analytical studies
[Chua et al., 2006], that the robust time asymptotic
dynamics of 70, out of 88, local rules can be charac-
terized by only one of four steady-state behaviors.

1.4.1. Steady-state behavior 1: Period-1

attractors or period-1 isles of Eden

Table 7 lists 26 local rules from Table 3 which
exhibit a robust period-1 steady-state behavior

corresponding to fized points of the time-1 charac-
teristic function x of local rule [Chua et al.,

2004). Except for rule where all orbits are
period-1 isles of Eden, the generic steady-state
behavior of the other 25 rules in Table 7 are all
period-1 attractors. This asymptotic behavior holds
for almost all initial random bit strings, and for

arbitrary length L 27 + 1.

1.4.2.  Steady-state behavior 2: Period-2
attractors or period-2 isles of Fden

Table 8 lists 13 local rules from Table 3 which
exhibit a robust period-2 steady-state behavior cor-
responding to fized points of the time-2 characteris-
tic function x of local rule [Chua et al., 2006].

Except for rule where all orbits are period-2
isles of Eden, the generic steady-state behavior of
the other 12 rules in Table 8 are all period-2 attrac-
tors. This asymptotic behavior holds for almost all
initial random bit strings, and for arbitrary L.

1.4.3. Steady-state behavior 3: Period-3
attractors

There is only one rule from Table 3 which exhibits
a robust period-3 attractor, namely, rule [62]. As
demonstrated in, Figs. 5-14 of [Chua et al., 2006],
almost all initial bit strings of converge to a
period-3 orbit corresponding to fixed points of the
time-3 characteristic function X of local rule

[Chua et al., 2006]. The other attractors of have
a relatively small basin of attraction. The period-3
isles of Eden of have no basins of attraction and
therefore require an initial bit string falling exactly

on one of the three bit strings forming an isle of
Eden.

1.4.4. Steady-state behavior 4: Bernoulli
or-shift attractors or isles of Eden

Table 9 lists 30 local rules from Table 3 which
exhibit a robust Bernoulli o,-shift steady-state
behavior corresponding to a period-T attractor or
a period-T isle of Eden, where T" < 7L. The three
parameters (o, 7, ) characterizing each Bernoulli
rules are listed in Table 10 for each of the 30 robust
Bernoulli rules listed in Table 9. We will hence-
forth call “o” the Bernoulli Shift Velocity, “r”
the Bernoulli Return Time and “G” the Bernoulli
Complementation  sign, or simply Bernoulli

3Table 10 is constructed from Table 16 of [Chua et al., 2005, pp. 1159-1162].
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Table 4. Table of globally equivalent local rules. All local rules in each row are globally equivalent to each other. Rows with
red, blue, or green background colors denote local rules with a complexity index xk = 1,2, or 3, respectively.
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Table 4. (Continued )
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Table 4.  (Continued )
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Table 4. (Continued )
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Table 5. List of 72 identical twin rules.

0 1 4 5 250 | 251 | 254 | 255
15 18 19 | 22 | 233 | 236 | 237 | 240
29 | 32 33 | 36 219 | 222 | 223 | 226
37 43 50 [ 54 201 | 205 | 212 | 218
55 57 71 72 1 183 | 184 | 198 | 200
73 76 85 90 : 165 | 170 | 179 | 182
91 94 95 99 1 156 | 160 | 161 | 164

104 | 108 | 109 | 113 ! 142 | 146 | 147 | 151
122 | 123 | 126 | 127 ! 128 | 129 | 132 | 133

Table 6. List of eight identical quadruplet rules.

23 | 51 77 | 105 § 150 | 178 | 204 | 232

velocity, time, and sign, respectively. Observe that

local rules [6], [9], [11], [14], [27], [35], [38], [43], [56],
[57], [58], [134], [142], and have two robust

Bernoulli attractors, whereas local rules and
have three robust Bernoulli attractors.

Observe from Table 10 that only five rules listed
in Table 10 (, [14], [15], and ) have a
negative sign for B. The space-time evolution pat-
terns of these five rules are generated by follow-
ing the same procedures as the other rules (shift
left by o bits if o > 0, or shift right by |o| bits if
o < 0, every 7 iterations), and then complementing
(change color of all bits) the resulting bit string. In
fact, except for rule [15], only one of two Bernoulli
attractors from the other four rules have a negative
sign for (.

Observe that any Bernoulli (o, 7, ) rule with
[ < 0 is equivalent to iterating the rule with twice
the wvelocity and return time without complementa-
tion, i.e.

(0,7,8) = (20,27,18]), B <0 (1)
For examples illustrating this equivalence, see
Table 5 (pp. 2393) for in [Chua et al., 2003],
Fig. 29(as) for [11], Fig. 29(bs) for [14], Fig. 29(ds)
for [43], and Fig. 29(iy) for in [Chua et al.,
2006].

In general, T' = 7L if Ty 2 7L/|o| is not an inte-
ger. If Ty is an integer, then T' = 7L/|o| for |o| > 2.
If each bit string in the period-T" orbit consists of
a concatenation of m identical substrings, then the
period T is reduced further to T'/m.

Each Bernoulli rule listed in Table 9 can possess
up to three robust Bernoulli attractors, as depicted

in Table 29A of [Chua et al., 2006, pp. 1293-
1297] for rules [74], [88], [173] and [229]. Each
of these attractors has a large enough basin of
attraction that different random initial bit strings
could converge to one of these robust Bernoulli o,-
shift attractors. This steady-state behavior does not

depend on the length L 27 + 1 of the bit string.
Except for local rule and [170], whose orbits
are all isles of Eden, all other generic steady states
converge to a Bernoulli o -shift attractor.

1.4.5. There are ten complex Bernoulli and

eight hyper Bernoulli shift rules

Together, Tables 7-9, plus the period-3 rule [62],
made up 70, out of the 88, local rules from Table 3.
The robust steady-state behaviors of these 70 local
rules have been completely characterized in [Chua
et al., 2006]. The remaining 18 rules listed in Table 3
that have not yet been characterized are listed in
Table 11, dubbed complex Bernoulli-shift rules, and
Table 12, dubbed hyper Bernoulli-shift rules. 1t
will be clear from the sequel that all of these 18
yet uncharacterized rules are also identified with
Bernoulli shifts because they behave like Bernoulli
or-shifts from Table 9 except that the number of
attractors is no longer bounded by 3, but increases

Table 7. List of 26 robust Period-1 local rules.

26 Topologically-Distinct
Period-1 Rules

0O 4 38
32 | 36 | 40
76 |77 | 78
128132136
164 168|172
232

12

44

94
140
200

13
72
104
160
204
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Table 8. List of 13 robust Period-2 local rules.

13 Topologically-Distinct
Period-2 Rules

1 5 19
28 29 33
50 51 108
178

23
37
156

Table 9. List of 30 robust Bernoulli o-shift local rules.

30 Topologically-Distinct
Bernoulli O; -shift Rules

2136 |7 9
11
27
43
74
152

10
25
42
58
142

14
34
46
130
162

15
35
56
134
170

24
38
57
138
184

with the length L 27 + 1 of the bit strings. The
ten complex Bernoulli shift rules in Table 11 are

bilateral, and correspond to those listed in column
1 of Table 17 of [Chua et al., 2006, pp. 1176]. The

eight hyper Bernoulli-shift rules in Table 12 are
nonbilateral, and correspond to those listed in col-
umn 1 of Table 18 of [Chua et al., 2006]. Table 13
gives a composition of the asymptotic behaviors of
all 88 dynamically-independent local rules listed in
Table 3.

In this paper (Part VII) only the ten complex
Bernoulli-shift rules from Table 11 will be stud-
ied. The remaining eight Hyper Bernoulli-shift rules
from Table 12 will be studied in Part VIII.

2. Basin Tree Diagrams of
Ten Complex Bernoulli
Shift Rules

For binary bit strings

A G r7-1) (2)

at time n with finite L and periodic (or fixed)
boundary conditions, the evolution

(3 T A (3
T r—>x(m)::1:+1 (3)

under local rule must converge to either a fized
point

* * *
n

= (x5 o] w3y 377]3*—1) (4)

or to a periodic orbit I'p () of period T' < Thax,
at some finite time n* = T ansient + 1, Where

Xim: ) ) (5)
is the time-1 characteristic function defined in
[Chua et al., 2005a], and

Tonax = 2- (6)

is the number of distinct binary bit strings of
length L.

2.1. Basin of attraction and basin
trees

In general, many initial bit strings can converge to
one of several period-T orbits, including period-1
orbits (i.e. fixed points of X)-

Definition 1. Basin of attraction B (FT ()) of

Tr (V).

The union of all bit strings which converge to a

period-T orbit I'r () of local rule [N], including
all bit strings belonging to I'r (), is called the

basin of attraction B(FT ()) of I'p ()
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Table 10. Bernoulli Parameters o (Bernoulli shift velocity), 7 (Bernoulli return time),
and 8 (Bernoulli complementation sign) associated with the 30 Robust Bernoulli Rules
from Table 9.

N o T Yij N o T Yij
2 1 1 + 42 1 1 +
3 -l 2 1 1
+ 43 +
6 2 2 + -1 1 =
-2 2 + 46 1 1 +
7 -l 2 + 1 1
56 *
9 S 2 + -1 1 +
2 3 + 57 1 1 +
10 1 1 + -1 1 -~
1 1 + 1 1 +
1 -1 1 - ot =] 2 +
1 1 + 1 1 +
14 -1 1 — 74 2 2 +
15 -1 1 — -3 3 +
24 -1 1 + 130 1 1 +
-1 2 + 2 2 +
134
25 3 3 + 3 -2 2 +
2 5 + 138 1 1 +
-1 2 + 1 1 +
142
27 2 2 + -1 1 =
34 1 1 + 152 =] 1 +
- 162
35 1 2 + 6 1 1 +
1 1 + 170 1 1 +
2 2 + 1 1 +
184
S 2 2 + -1 1 +

Table 11. List of ten complex Bernoulli-shift rules.

18122 54|73 |90

105/122/126 146 150
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Table 12.
rules.

List of eight Hyper Bernoulli-shift

Table 13. Steady-state characterization of 88 dynamically-
independent local rules.

Topological Classifications of
88 Equivalence Classes

Topologically-
distinct Rules

Period-1 Rules 20
Period-2 Rules 13

Period-3 Rules 1

Bernoulli
O,-Shift Rules 30
10

Number

Complex-
Bernoulli-Shift
Rules
Hyper

Bernoulli-Shift 8
Rules

Total

88

More precisely,

B(rr() 2ufee > @ eTrf (@)

Al 1 1
where  pin(2) = pmo pmo - © pE()
n times
is the time-n map of [Chua et al., 2005a] pg
20— 2™, where n depends in general on x.

Definition 2. Basin Trees &(I'r). The set of all
bit strings which converges to a period-T orbit

4Under Definition 3, a fized point z* of X, i.e. a period-1 orbit, is not a garden of Eden of because x ! (z*) = 2*.

I'r (), excluding I'r (), is called the basin trees
of FT () .

More precisely,

(1) = B(0r(V)\Pr (V) (8)
An example of a basin tree is shown in Fig. 3(g)

of [Chua et al., 2006] for rule with L = 9. In
this case, I'r =11 () :@, and

() = (I ([62]))

={@0
@ ©) 8, 8 8. . @)

B(FT()) () u @ (9)

Observe from Fig. 3(g) that the digraph of
%(Fl ()) is a directed tree from graph theory.

Another example of a basin tree is shown in
Fig. 6 of [Chua et al., 2006]. Consider the period-3

orbit
£ {®. 69, 6D} (10)

in Fig. 6(a)-i. The basin tree of I's([62]) is the set
of bit strings

3 2 {10, @), @ (D.69.@) (1)

In this case, one can associate the basin tree $(I's)

as two subtrees {.} and {@ . @ @ @}

emerging from the period-3 orbit I‘g() which is
analogous to a cluster of roots. For large L, a basin
tree in general is made of many topologically simi-
lar subtrees, such as Fig. 11 of [Chua et al., 2006].
In this case, we have a period-14 orbit

= {69, (102), 3, 6D, (10), €9, 65,
, 01, 69 7 27, , @} (12)

and the basin tree %(FM ()) of I'14 () is made

of seven subtrees having identical topologies.

2.2. Garden of Eden
Definition 3. Garden of Eden. A bit string

Tr—1)

is said to be a garden of Eden of a local rule iff
its preimage is an empty set.

More precisely,® a bit string x is a garden of
Eden of iff it has no predecessors in the sense

x= (9 =1 X2

*
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that there does not exist a bit string y such that
= Xty (¥)-

Many examples of gardens of Eden can be found
in [Chua et al., 2006]. In particular, all gardens of
Eden of are identified by a pink color in Figs. 3,

6, 8, 9, 11-14, in [Chua et al., 2006]. Observe that
they are just the terminus of subtrees.

2.3. Isle of Eden

A cursory inspection of the basin of attractions of
the period-3 orbits I'y () of rule in Figs. 5(a)—
5(f) in [Chua et al., 2006] reveals that there are no
basin trees converging to any node (i.e. bit string)
belonging to these period-3 orbits! Such orbits are
indeed special, and except for rules [15], [85], [45],
[105], [150], [154], [170], and [240], they are isolated
period-T" orbits which are buried amidst neighbor-
ing bit strings belonging to basin trees of other peri-
odic orbits. We will see in Part VIII that for large L,
these isolated period-T orbits could have extremely
long periods and hence are very, very hard to find,?
like well-hidden FEaster eggs! Moreover, such rare
objects cannot exist in R™ in view of the Zubov—
Ura-Kimura Theorem [Garay & Hofbauer, 2003,
which implies that “no compact isolated invariant
sets in R™ can be an isle of Eden”. These objects
can be either isolated or dense, and are called Isles
of Eden in [Chua et al., 2005b] and [Chua et al.,
2006]. It’s time to give a formal definition.

Definition 4. Isle of Eden.
A bit string

r = (.’Eo I xI9 .CCLfl)
is said to be a period-n isle of Eden of a local rule
iff its preimage under X(x 18 itself, where X(x 18
the time-n characteristic function of [N].

More precisely, @ is a period-n isle of Eden of a

local rule iff

X (2) =z (13)
Proposition 1. A bit string x is a period-n isle of
Eden of[N] < @ belongs to a period-n orbit T',, ()
with an empty basin tree; i.e.

3(r () = 0

when O denotes the empty set.

(14)

Proof. Follows directly from Definitions 2 and 4.
|

Corollary 1. A bit string = is a period-n isle
of Eden of & the orbit through T is a
period-n orbit Fn() where each bit string x,

X(:I:), X(m), .. ,Xl(w) has a unique preimage.
Proof. Follows from Eq. (14) and Proposition 1.
[ |

Remarks

1. To avoid clutter, we will usually refer to all bit
strings belonging to the orbit of a period-n isle
of Eden also as an isle of Eden.

2. Every bit string belonging to a period-n isle of
Eden has exactly one incoming and one outgoing
bit string, for all n > 2.

2.4. Gallery of basin tree diagrams

The collection of all period-n orbits Fn() of
all possible periods n = 1,2,... and their asso-
ciated basin trees S(Fn()) of an L-bit cellu-
lar automata under local rule is called a basin
tree diagram of local rule [N]. An examination of
such diagrams, even for a relatively small L, can
reveal certain characteristic qualitative behaviors of
the space-time patterns of many local rules. These
empirical characteristics can sometimes be proved
to be true in general, as will be illustrated for the
complex Bernoulli shift rules and in this
paper, and for the hyper Bernoulli shift rules
and in Part VIII.

A gallery of such basin tree diagrams for the
ten complex Bernoulli shift rules listed in Table 11
is exhibited in Tables 14-23 for L = 3,4,5,6,7
and 8, respectively. Each table displays the peri-
odic orbits and their basin trees, where each bit
string is displayed in color along with its decimal
identification number, calculated from the decimal
equivalent of the binary bit string as in Fig. 6 of
[Chua et al., 2006]. For example, for L = 3, the two
binary bit strings [l [l [l and [l M in Gallery
18-1 from Table 14 would be identified by the deci-
mal numbers®

1022 +0e2! + 0020 =14

5Every isolated long-period isle of Eden is a gem worth digging for. They would provide ideal havens for cryptographic systems.
Any one who discovers a long-period isle of Edens earns the right of naming it after himself for posterity reasons!
5Each page of the basin tree diagrams listed under Tables 14-23 will be called a gallery, and identified by a Gallery number

N —k,k=1,2,..., where N is the local rule number.
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and
1e22 +r1e2' 10020 =6

respectively. These numbers are enclosed by small
circles, and are represented as modes of a digraph
where a directed edge pointing from node @ to
node @ means that bit string 51 maps to bit string
Sy after one iteration under rule [V ].

For example, Gallery 18-1 shows the basin trees
3 ([8) = {@r @ & (@, G (D), (6)} con-
verging to a period-1 (fixed point) orbit I'y ([18]) =
{©®}. The self-loop attached to node (©) means that
bit string (0) maps into itself, ad infinitum, thereby
implying (0) is a period-1 orbit.

Each sequence of nodes along each branch of
the tree %(Fl ()) depicts successive evolutions
over time. For example, the sequence 2) — ) — (0
translates into the space-time pattern shown in the
upper right-hand corner of Table 14-1. Similarly, the
sequence 1) — (3) — (0) translates into the space-
time pattern shown in the lower right-hand corner.

Observe that the first two rows in both space-
time patterns on the right of Gallery 18-1 represent
the transient phase of the dynamic evolution; they
correspond to nodes belonging to the basin tree’
%(Fl ()) The next four rows in these two space-
time patterns correspond to the steady state, which
is a period-1 orbit in this case.

Whenever a basin tree %(Fl ()) is not empty,
the associated periodic orbit (0) in steady state is
called an attractor because the period-1 bit string (0)
attracts all orbits belonging to the tree %(Fl ())
We now extend this definition to period-n orbits.

Definition 5. Period-n attractor. A period-n orbit
r, () of a local rule is said to be a period-n
attractor iff it has a nonempty basin tree, i.e.

3T () #0 (15)
It follows from Proposition 1 that every period-
n orbit of a local rule is either an attrac-
tor, or an isle of Fden. Although a period-n orbit
r, () of contains n distinct bit strings
x, X(:z:), X(sc), - Xm Y(x), we will usually refer
to each bit string x or X(sc), k=1,2,...,n—1,
as a period-n attractor, or a period-n isle of Fden,
respectively, to avoid clutter. In other words, a
period-n attractor or isle of Eden can mean either
any bit string in a “ring” orbit, or to the collection
of all “n” bit strings in the “ring”.

Also listed on top of each gallery is the robust-
ness coefficient

n

p=— <;L> 5T (16)

of the ith period-n orbit (n is a generic symbol
denoting the actual period of each periodic orbit)
where n(3>%) denotes the total number of all bit
strings in the symbolic state space ZL composed
of all binary bit strings of length L, and where n;
denotes the total number of nodes (i.e. bit strings)
in the basin of attraction of the ith period-n orbit,
where i = 1,2,...,m, and m is the total number of
period-n orbits. In Gallery 18-1, m = 1 since there
is only “one” attractor when L = 3. Hence, i = 1 in
Gallery 18-1. In the basin tree %(Fl ()) shown in
Gallery 18-1, there are all together eight nodes and
hence n; = 8. Since L = 3, we have p; = 8/23 = 1.

The robustness coefficient p; in Eq. (16) mea-
sures the percentage of initial bit strings which con-
verge to the ith attractor in question. In this case
pi = p1 = 1 because there is only one attractor in
this example and hence all orbits must converge to
(©. In general, 0 < p; < 1, where p; = 1 correspond
to maximum robustness.

1>

2.4.1. Highlights from Rule

Gallery 18-1: L =3,n <23> =38

There are seven basin-tree strings, all of which
converge to the global period-1 attractor {(0)}. Hence
the period-1 attractor (0) has maximum robustness
with p; = 1.

Gallery 18-2: L = 4,n (24) =16

(a) There is a period-1 attractor {(©)} with robust-
ness coefficient p; = 0.75.

(b) There are two period-2 isles of Eden {@, @},
and {@, @} with a combined robustness coef-
ficient po = 0.25. The dynamics on each isle of
Eden is a Bernoulli o,-shift with o1 = 2, 7 = 1,
or o9 = —2, 7 = 1, as depicted in the ¢, — ¢, 1
time-1 map in Gallery 18-2. Here, the red lines have

"Note that our definition of a basin tree S(T'n ((V])) does not include bit strings belonging to the associated period-n orbit

o ())-
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slope equal to 29! = 4, and the blue lines have slope
equal to 272 = 1/4. Both sets of parallel lines have
a positive slope, implying that g > 0.

Observe that the two period-2 “red” dots cor-
respond to the decimal representation

L1
p=> 27y (17)
i=0

(defined in Eq. (2) of [Chua et al., 2006]) of bit

string@ and@ of the isle of Eden {@, @} on

the left; namely,
(3)— 10273+ 1027 =0.1875 (left red dot)

12— 10271 + 10272 =0.75 (right red dot)

Observe that the two red dots lie at the intersection
of corresponding pairs of red and blue “Bernoulli”
lines, thereby confirming that the dynamics on this
isle of Eden can be described by a left shift of two
bits (o = 2) or, equivalently, by a right shift of two
bits (0 = —2), per iteration (7 = 1), as extensively
illustrated in [Chua et al., 2005a] and [Chua et al.,
2006].

Gallery 18-3,18-4: L = 5,n (25) — 32

(a) There is a period-1 attractor {(©} with robust-
ness coefficient p; = 0.375.

(b) There are five period-2 attractors with a com-
bined robustness coeflicient p2 = 0.625. The
dynamics on each attractor is a Bernoulli o, -shift
with o1 =5, 7 = 2, or 09 = =5, 7 = 2, as depicted
in the ¢,,_9 — ¢, time-2 map.

The time-2 map ¢,_o +— ¢, consists of § =
291 = 32 parallel red Bernoulli lines with slope
291 = 32, or equivalently, to § = 2|72l = 32 par-
allel blue Bernoulli lines with slope 272 = 1/32.
Observe that the two red dots now fall on the diag-
onal of the time-2 map, as expected of period-2
orbits. Again, § > 0 because the slope of each red
(or blue) Bernoulli line is positive.

For ease of visualization, we have displayed the
space-time pattern using bit strings with double
the length, namely, 2L = 10, which corresponds
to shifting around the period-2 ring twice. Note
that the decimal code of the 5-bit basin tree
translates into the corresponding 10-bit string

shown in Gallery 18-4.
Observe that all basin subtrees contain only one

bit string, implying that all basin trees of rule
are gardens of Eden, when L = 5.

Gallery 18-5,18-6 : L = 6,n (26) — 64

(a) There is a period-1 attractor {(©} with robust-
ness coefficient p; = 0.71875. Note that there are
three blue lines joining bit string (0) at three loca-
tions in the basin tree diagram. This is done to avoid
clutter. The reader should interpret all three nodes
labeled (0) as representing the same node. Observe
also from the basin tree diagram that the longest
transient regime is four iterations, such as the one
depicted in the space-time pattern originating from
string in Gallery 18-5. The shortest transient
regime is one iteration; they correspond to the 15
gardens of Eden in the three “translated” subtrees
joined by blue lines.

(b) There are three period-2 attractors with a com-
bined robustness coefficient py = 0.28125. The
dynamics on each attractor is a Bernoulli o -shift
with 01 =3, 7 =1, or 09 = —3, 7 = 1. In this case,
all basin trees are gardens of Eden.

Gallery 18-7: L = 7,n (27) = 128

There are 127 basin tree strings, all of which
converge to the global period-1 attractor {@}. It
follows that we have maximum robustness with
p1 = 1, as in Gallery 18-1.

Gallery 18-8,18-9: L = 8,1 (28) — 256

(a) There is a period-1 attractor {(®} with robust-
ness coefficient p; = 0.515625. The transient regime
ranges from one iteration (corresponding to sub-
trees composed of garden of Edens) to five itera-
tions, as illustrated in a typical space-time diagram
starting from bit String in Gallery 18-8.

(b) There are four period-6 attractors with a com-
bined robustness coefficient p; = 0.46875. The
dynamics on each attractor is a Bernoulli o -shift
with oy =4, 7 =3, 0r 09 = —4, 7 = 3.

The time-3 map ¢,_3 — ¢, shows 3 = 2* = 16
parallel Bernoulli “red” lines with slope 21 = 16, or
equivalently, 16 parallel Bernoulli “blue” lines with
slope 272 = 1/16. Observe that there are six red
dots in the time-3 map, implying a period-6 attrac-
tor. Again, # > 0 because both red and blue lines
have a positive slope.
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(Continued )

Table 16.

3) 4 Period-6 Attractors :

4, 1=
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(d) Bernoulli (O
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m (c) Period-3 Attractors :

Gallery 73- 6




L-€L >E__®O

HHHH
@ _nnnEEEEE0 |+

asoyd jua1sund]

q @w e

70<g

1 % <o ;

629510 =—(3% = T :siopemy 9-pouad (€ = 1 'y = 0) I[noung (v) @ = A

(ponuruoy) LT oqelL

.""".@v@

2898



8-¢/ AR

€O

EEEEEEENT
15¢ EJ

asvyd JuaIsuv.Lj

0<9g

[

€=10=20

CZ9CI 0 u%me = ¢d :siopemy ¢-podd (g =10 =0) Hmoung () @ = 7

(ponunyuoy))

LT 919%L

el

2899



£

[73], L

2900

Gallery 73- 9




OSSO0

6295100 ==z°= °d

L udpy JO SAS] [-pored  (9)

0T - £, ARI|eD

= 98
SL81'0 =

=¥d :siopemy g-pomgd (p) § = 7] :

(panuzguoy) LT dIqeT,

2901



: mu AR|eD

$/8940°0 u%om _Ld

: SI0)ORINY Z-POLId]
(T =12 3= 0) nourag (8)

----@ @----

ioemy zpomed ) 8= ‘[€L

(ponunquoy) L1 S[qeL

2902



G/89Y00 =d
62900 =%
629100 =°d
G/810 ="d
g0 =%d
GZ9ST0 =°d

G29ST°0

+

++++ +

MDOOMN A

<SOOOOON

OMMAN—TINN

<0000 «—N

—ANM<ITLOON~

GTT8ZE0
G/8T/9°0
Geo =9 + T e + T c ¢ c €
szo =% + 1 0 T v ¢ | ¥
Q 4 ﬂ 4 1 Nb ._”ﬂ ._”.._. ._”b hOcmww_m_m_ m.h.ouo.ml_ﬁm _
JUBID1JJ809 U | upousd wposaliaquinn
5SaU]1SNO0Y sklpweled I||nousklg pouad| 0 | eaqunn| QI
€/]8Iny Jojgl AB|[eD wol)

pa1oeIe [E£/]9INJ [ed0] Jo Salsedoid anlrelifend Jo Arewwns

:MO[9( POZLIBTIWINS dI€ LT 9[QRT, JO [T-L 0} -/ SOLId[[BY) 991)-UISB( WO} PajoeIIXo [¢L] o[ni (20 jo serpradoid oaryeyenb
o} ‘sureISerp 9soyy Jo sIsA[euR po[rejop € SUIMO[O LT O[], Ul POYIYXe aIe Q" ‘p‘e = 7 10} [gL] o[y JO sureiserp o091y uiseq Oy,

6] o1y wouf sybuybiy 5T

2903



06

T -06 AB|ED

_ 8, _T4. _ —_ ‘
[=71= d :sioppemy [-pourd (B) m — I_

06

a|ny JoJ swelbelp s8.1) ulseyg

[06] o1 10§ sureiSerp oo} uiseq QT O[qRL

2904



2 -06 AR|EeD

il
JUIISUDL]

ni asvyd

JUISUDL]

-«

<
JUIISUDL]

-«

2905

;=20 — 19 :1o1emy [-pouog (®) =" . 06

91

(ponuruoy)) QT 9[qR],



§290°0 =

4

7 =

€ -06 AB|ED

i

EEEEEEE
EEEEEEE
EEEEEEE
EEEEEEE
EEEEEENE
AN M < IO O N~

¢d :1010emy [-potdg (q) @ <

|

4

oy CE T4 - —_ k
SLE6OD =5 G = d :sio0emy ¢-poued (8) G = 7]

(panurguoy) 81 91qR,

asvyd
JUISUDL]

06

2906



¥ -06 AB|ED

SZ0 = W Q : 8101081y [-poldd (®) @ — I_ ‘ O@

(ponuguon) 81 dIqeL,

2907



S -06 ABI|ED

asvyd
JU2ISUDL]

JUIISUDA],

JUIISUDL],

"= ¥9
$L0=T7g

9= d : s10pemy ¢-poud (T =1 ‘g 3= O) Imoureg (q) @ = I_ : O@

(panurguoy) 81 91qR,

2908



9 -06 AB|ED

[ WA EENEGT]
EEEEENERT
EEEEENET
EEEEENNCT
EEEEENNTT
EEEEENENOT
EEEEEENG
EEEEEENS
EEEEEEN/
EEEEEEE EEEEEENO
EEEEEENS
EEEEEEREY
EEEEEENS
EEEEEENC
EEEENENT

£ Ed

JU2ISUDL],

4 asoyd

JU2ISUDA],

2909

o 8T, _ Ty . _ — 10— — ‘
§2959L°0 =7, = ~d :s1o0emy [-poued (L =1°Q = 0) Hmouweg (®) J = ‘06

(panuguoy) 8T dIqeT,



/ -06 ABI|ED
U D

B LLILLLLER
i mmmmnnn(i) unnnns S -
\\\ - EEEEEEE EEEEEEEG|
EEEEEEEV| <
- EEEEEEES
EEEEEEEC
\\\ - EEEEEENT
1 | EEEENENO]
0 09 wm
i EEEEEEN nm
” CQU =
i EEEEEEE
[ .......e EEEEEER

&=L

asoyd 4
JU2ISUDL]

(panunuod) sioyemy [-poudd (/. =1 ‘Q = O) I[nourg (e) ) = ‘ _ 06 _

(panurguoy) 81 91qR,

2910



§298100 =

8CI_ €
—7'= d

: 1010RINY
[-pod  (9)

8 -06 ARI|ED

1 % g0 0

JUDISUD.L],

181030013y L-potdd (T =1 G+= 0 ‘g3 = 0) 1moussg (q) /) =] ‘

SL8ICO =7

(panuguoy) 8T d[qeT,

JUDISUD.L],

06

2911



(Continued )

Table 18.

EEEEN EEEEN
EEEEN EEEEN
EEEEN EEEEN
EEEEN EEEEN
EEEEN EEEEN
EEEEN EEEEN
EEEEN EEEEN
BRSEAN |mEamn
é asoyd A é asoyd A
JURISUDL] JUIISUDL] 4 ssoyd A
JUISUDLT,
4 asvyd} E E
JU21SUD.L E @ ) @ @’ . @
I e @RS DEIRNE)
S B
XIS ERENNY 17005
| |H 3 éib 9\@ @l@.ﬁe@é’
- @@%\g @’f’é@
\1\&3@‘ 5 c a:@@.@@ é asvyd !

Gallery 90- 9

2912



d z a Y 2o Hn Ty 175) U ,,o:mmw_m_m_ mhewm%m _
JU3I2I4202 u-pouiad Ua dliequinN 1
5S8UISNQ0Y Sklpwerd Ij|jnouklyg pouad| 40 | sequnn| Q1

[06]9INY 10} 06 AB|[eD Wo.4
pajoeIxe [06]a|nJd [ed0| Jo seiuedoudanieyiend jo Arewwns

:MO[0q pozLIRTIWNS 018 QT 9[(R, JO 6-06 0} [-06 SOLId[[BY) 90I}-UISe( WOIJ PORINXd [06] o[t [820] Jo sorradord aaryesrrenb
o} ‘swrerISerp 9sory jo sisA[eue po[rejop e SUIMO[O QT O[(BT, Ul POYIYXd dIe Q" ‘F‘¢ = 7T I10J [06] o[y JO SWIRISEIP 991} UISeq O],

[06] 21y wouf spybyybryy  Gyg

2913



SOT

T -GOT AR|EeD

= mm -4 :10)en)y Z-pourd () m — I_ ¢

a|ny JoJ swelbelp s8.1) ulseyg

"[G0T] o1 10§ sureiSerp oo1y ulseq 6T A[UBL

SOT

2914



I T -:9 <0 ;

-S°0

. Yt

|
\\;@

[ |1 1] - -
EEEN EEEE melwﬁ _ &g
tY{T =1 ‘T = O) lnouldg tsYIy{T =1 ‘g = O) I[[nourdg :Udpy JO SIIS] ¢-pored ()

2915

1 uspg Jo 82 zpoud (Q) | €70 = o — 'd :uopg Jo sors] [-pomeg (®) V=] mOH

NI

(ponuzpuo)) 61 OI9EL



€ -G0T AB|EeD

[ el oo 0 ENEEE
— e
EEEEE m wlllll / \ ”

2900 = &= 2d \ S e

4
1 udpyg Jo 9[S] g-poudd (q) £=10=0 |

0>9d

52660 = GG = Td :uepg Jo saIs] 9-powad(g =10 > ¢ ‘0 = O) Mnowed (1) G = '[SOT ]

(ponunuo)) 6T oIqRI,

2916



i

EEEENE
ENEENR
EEEENE
EEEEN
EEEENE
EEEER
—ANMIT WO

E

¥ -G0T AB|eD

l
I EEEEEN EEEEEE
EEEEEN EEEEEE
Al_mwcam ......9 @......
JU21SUDA]

-«
llllll@ 9---

%

EEEEN
EEEENR
EEEEN
EEEEN
EEEEN
EEEEN
—ANM<I W0

E

IIIIIIQ
~

X ......@ 9......
EEEEEN EEEEEE
[ ctme lllllle °llllll
<
Gl = mm = 'd :10pemy z-pousd (v) 9="1 ‘[S0T

(ponuguop) 6T O[qEL

2917



G -G0T AR|ED

H_q EEEEEE EEEEEE
EEEEEE EEEEEE
EEEEEE EEEEEE

< Hsvyd

JUIISUD.L]
-«

llllll@ @llllll
I e @ EEEEEE

——— ] [ T[]

EEEEEN
» EEEEEN NEEEE= MEEEE.
— I
/ B : ......e e......

) Loy EEEEEE ° a RN
[ EEEEEE

0 =52 =%d r100emy -potad(T = 1T = 0) Hmousag (a) 9="1 ‘[S0T]

0<d

(panunuoyn) 6T 91qel],

2918



9 - GOT AB|EeD

HEEEEEEN EEEEEEN EEEEEEN
1 L% <o
r.- 1 1 1 -_ 1
—
N\
o H\\\\
-f - EEEEEEN EEEEEEN EEEEEEN
\\\ ;§ EEEEEER EEEEEER EEEEEEN
| - II|~
/. =10=90
HEEEEEEN
EEEEEER EEEEEEN EEEEEEN
EEEEEER HEEEEEEN EEEEEEN
HEEEEEEN
o %N&MI Hn& EEEEEER HEEEEEER HEEEEEEN
§895100 =—"7" = $2969/° Vwmp = 2d :uapg Jo SIS pI-Pouad (J =1°Q = O) mmoudg / (q)
: USPY JO J[S] g-pouad (¥) J =" '[SOT

(panuguoy) 61 IqelL,

2919




/ -S0T AB|ED

[ 1 b1} [V
HEENENGT EEEEEEE EEEEEEE EEEEEEE
N ENsT EEEEEEE EEEEEEE EEEEEEE

EEEEET|4
HEENEEcT
EEEENCT
EEEENTT
HEENENOT
]
|
|

EEENG
EEEEEEN EEEEEEN EEEEEEN

EEEEEEE EEEEEEN EEEEEEN
EEEEN° EEEEEEE EEEEEEE EEEEEEE EEEEEEE

[
|
[
[
N~
vl =.1

EEEEEEN:
EEEEEENC
EEEEEENT

o 111111 [N

: (ponunuod) USPH Jo SIIS[ p-poldd (L =1‘Q = 0) 1mousdg L(q) J = 7] ._mo._” |

(ponurguoy) 61 919BL

2920



EEEEEEN9
EEEEENENS
EEEEEEEY
EEEEENEEC
EEEEEENC
EEEEEENT

| EENENENO |

8 - GOT AB|EeD

\ Ugy EEEEENE EEEEEEE EEEEEEE
EEEEEEE EEEEEEE EEEEEEE
_ [, EEmEEEm EEEEENE EEEEENE EEEEEEE
¢ =1T7T-=0
SL8IC0 =
EEEEEEE EEEEEEE EEEEEEE EEEEEEE
I%WNN - EEEEEEE EEEEEEE EEEEEEE
vl —

1 uapyg JO SO[S[ $[-POMRfZ =1 ‘T — = O ‘T+ = 0) IHmourdg ¢ (9)

EEEEEEEO Iy HEEEEEER HEEEEEEN HEEEEEEE HEEEEEEN
EEEEEENES EEEEEENE EEEEEEER EEEEEEN
SEREERE. : (ponutju0d) uSpg Jo SIS $1-POLdd
EEEEEENC .

| EREEEEmA (=0 =ojmmowd @ /=71 1G0T

(panuguoy) 61 IqelL,

2921



6 - SO0T AR|ED

:

EEEEEEN
EEEEEER
EEEEEEN
EEEEEER
EEEEEERE
ENEEEER
EEEEEENR
EEEEEENR
AN M I IO O N~

E

:

EEEEEER
EENEEEEN
EEEEEENR
EEEEEEN
EEEEEENR
ENEEEEN
EEEEEEN
EEEEEENR
N M I IO O N~

|

$$$$

=

Rttt

e

§L0=— Imwv = Td :uopg jo sIIS] p-pouad 8y ()

(ponuyuop) 61

oIq®L,

8="1 '[S0T]

2922



0T - S0T AR|EeD

i

AN M I O O P~

|

: (ponunuos) USPY Jo SAS| p-poldd 8y ()

(panuguoy) 61 IqelL,

g=1"

SOT

2923



TT - S0T AR|ED

:

EEEEEER
EEEEEER
EEEEEER
EEEEEER
EEEEEENE
ENEEEER
EEEEEEN
EEEEEER
AN M I IO O N~

E

:

EEEEEEN
EENEEEEN
EEEEEER
EENEEEEN
EEEEEENR
ENEEEEN
EEEEEEN
EEEEEENR
N M I IO O N~

|

$$$$

&

Shad

e

D (ponunuod) udpyg JO SIIS] H-poudd | ()

(ponuyuop) 61

oIq®L,

8="1 '[S0T]

2924



2T -S0T AR|ED

1 ¢ <o 0

1
©

7 =l

+
8
VA
9
S
ﬁ l“““w EEEEEEEE EEEEEEEE EEEEEEEE EEEEREEE
LLLT1
a_w EEEEEEENT g=173=0
| EEEEEEENO|
L co . EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
7==0 +=0 | T T777 ||
8
T TV
ﬂ; EEENEEENO |
) <Q
._.__ﬁ EEE ““““W T EEEEREEE EEEEREEE EEEEREEE EEEEREEE
T L]
@M EEEEEEEN] C=LVEELS /910 uchNN._” — ¢d uopqg JO SIIS|
| EENEEEEEO|

p-pouad(z =1 ‘¢ 3= 0) mmoweg 71 @8 =T ‘[GOT

(panuguoy) 61 IqelL,

2925



€T - G0T AB|EeD

STISL00°0 V&% 9

uspyg Jo 9[SI Z-pouad (3)

1 VY <o 0

§2182000 ==5"= 0
Udpg JO 9[S] Z-PoLRd
(T =1 T 3= 0) Hmourg (9)

1 UUh <o 0

STISO0 n|cmm - g

uapy Jo s9[S] ¢-poud (T =1 ‘g 3= O) 1mourg ¢ (p)

'[SOT ]

CZ9S10°0 HIQMN €d uopg jo sos] 1-pored (9 Q = 7

(ponurguoy) 61 919BL

2926



G218.000 = d
G218.00°0 =0
GeTe0’0 ='d
GZ9GT00 =0
c/810=d + ¢ -
G/0="d

++
—id
—

1

—ANM<TLOO
0

+++++
AN
O<TONHO
< < NN
SN R

uap3
Q 4 ﬂ 4 1 N.O Hﬂ H.._. H.O 10 SO Q.Somém _
u u-pouag| Y POMedisquinN
JUSIDI9092 PoMadl o 7
5S9UISNqoy SRRWwerd Ijjhoukrg pousd| o] eaunn| QI

SOT]8Iny Jo} SOT A|eD woJj

po10e.1Xe [GOT|3|NJd 20| Jo sahuedoud anlreliend jo Arewwns
:MO[9( POZLIBWIWINS dI® GT O[qR, JO £T-GOT 0} [-GOT SOLIO[[BY) 90I}-UIS( WOy PAJORIIXd [GOT] ot [ed0] Jo sorpaedod oaryejienb
o} ‘SwreISerp oso) Jo SIsATeuR PO[Iejop © SUIMO[[O] "G O[R, Ul POYIqIUXo oIe ‘" ‘F ‘g = 7T I0J [GOT] o[y JO SWRISEIP 991} UISeq AT,
[GOT] apmey wosf syybuybiy  9%g

2927



=== )= (L)

ccl

T -221 AR|eD

NVWHHQ L 10emy [-podd () € = 7] ._NNH_
9|NYy 1o} swelbelp s911 ulseq

‘[gg1] o1 10§ sureiderp oo1y ulseq  “(Og [qBL

2928



2 -221 AR|Eeo

1 Y o 0 1 Y <o 0

0] m ﬂ.llllllu 0< Q.Llllllll

cco=3%z="d

SLEOD H.MMH °d : UdpH JO SOIS] Z-pord
SLEO uim|~n °d 1 1010RINY  7-POLId] (T =12 3= 0) Hnourg (e)
10)0ey [-poidd () (T =1‘T 3= 0) [mnoudyg (q) V=1 ‘ VAA)

(panuguoy) -0t 1qeL,

2929




EEEEN
EEEEN
52900 =% = ¢d

1 I030eIY [-poldd (Q)

€ -221 AR|EeD

(panunuoy))

Al_

<!

asvyd
JU21SUDLJ

43

G660 =§G = Td :sio10emYy Z-poug
(z=1‘0=0) rqmourdg (e)

G=1"

‘0¢ °19®L

cel |

2930



v - 221 am__mw

......9»\@......

1

=

1 7

=

& 1

asvyd N:&wtslml_

o PO
68660 == = °d
: 10)0RINY

@)

[-porRg (o)

asvyd ENEESMNH_

[

[ —
|
[
| —

c8r0="5g="d

2931

r9 _
SL8ICO =7 = °d : SI010BIY  7-POLId]

(T =1'€3=0) Inoureg (e)

9="1 ‘[¢cl

- J01oe1y C-pPoOLIRd
(T =1'T = 0) 1[noureg (q)

(panuguoy) -0t 1qeL,




G -22T AR|eD

BLLLLLLE
EEEEEEN/
EEEENENEN9
EEEENENENCS
EEEEEENY
EEEEEENC
EEEEEENC
EEEENEENT

| EEENNENO

(panurguop) -0 21981

2932



9 -22T AR|ED

790 nlmev = 'd :s1030emy 9-pouR(d (€ = 1 ‘¢ 3= O) Imourdg (e) Q=" ¢ VAA)

(panuguoy) -0t 1qeL,

2933



] -22T1 AR|EeD

= (U]
--------- o
i —
Ot ][ [ [/l 1]
VT A
HHH A
| s
REEREELESRERECE
EEEE RN
| \\Q\l\\l\\\
e RN ENEEE
BEamEEENEEEEEERE
— 1

S (panunuod) SI0)ORINY Q-porIdd
(€ =1 'y 3= 0) Hmoung (v)
oo 95C_ ¢ . ; — ‘
SLE60IT0 ==j¢= “d :10J0BmMY [-poldd (q) 8="71 |ZZT]

(panurguop) -0 21981

2934



SL89P0°0 =

8 -22T AR|eD

S0 0 1 T o 0

\n S -G
\

— 1 oA.n...__....o

U \ B
\_ ! =

& = Yd :siopemy Z-pouad

T=1T3=

3

0 | ospyd juzrsuv.ij EEEREEE

(1 Dummnnnns

(T =1 ‘2 3= 0) Hmoug (p)

(panuguoy) -0t 1qeL,

s @

) u o

)
@ I S S

MN%NNNNQ ||QM, -

T3e-2

asvyd
JUISUDL],

(S Jumnnmmnn (¢ Pummmnnnn
) 2

JBONy e
T (o)

@

(89 )mmnnnnnn

95C_ &d Joj0RIIy 7-pOLIR]

(T =1'T 3= 0) 1noueg (o)

8="1 ‘[ccl

2935



g/80v00="d + T -+ 1 ¢ Z ¢ | v
G8T/IT0="d + T T-  + T T Z T | € g
G/€60T2Z’0 =°d + T 0O T T | ¢
sz90="d + & -+ € V. 9 vV | T
G/E650 u_a + T 0O T T | €
g/81z0=d| + T T-  + T T Z T |12 1|9
giero="d| + T e- + T € Z c | T
s/€0="d + T O T T | €

sie0=d + T T-  + T T Z T |¢C |¥P
sco=d + T -+ T ¢ | ¢ T
Q Z Z 1 Z 0 Hm,_ T 1 H.O ocwwm_m | &ouom%m _

JuaIdIL09 g u ,”_-uo%_wn_ c-uwm dlisquinN 1
5SaUlSNgoy S,kPWe.jed [[jNOuUed pousd 5%&:2 sequnn| Al

22T |aIny o) zzT Al|eD woly

pa1oR X [ZZT|8INJ [ed0] Jo sansedoud aaeliend jo Arewwns
IMO[O( POZLIRUIINS OIR ()G O[qRT, JO 8-CGT 0F T-G¢T SOLIO[[RL) 90I)-UISR( WIOI] POJORIIXO E 9[n.x 180 Jo serjredord aaryejienb
9} ‘SureIserp 9soy} JO SISA[RUR Polelap ® SUIMO[[O] (¢ O[UR, Ul PIYQIUXd oI Q""" ‘F‘e = 7T 10] E 9N JO SwWRIZRIP 9911 UISR] YT,
G 1] oy wouf syybuybrrr LG

2936



T -92T AB|EeD

w
=

[ = %m = 'd :i0pemy [-pousd (e)

U1

‘[9g1] ot 10§ sureiSerp oo1y uiseq g 9[qe,

€=1"

oCl

9|nNy J0oJ swelubeip s8] ulseg

2937



Z -92T AR|ED

T-UYh <o 0

—

EEEN ———
c0 =— MVWN ~ 19
co = WN Z = ¢d s1010emy Z-poLad :I0yoemy [-pordd (®)
(T =1 'z 3= 0) Iqmourdg (q) =71 '19¢T

(panurguop)  1g 91981,

2938




€ -92T AR|ED

@ @—©

lllll@|V A|@lllll
EEEEE EEEE C/€0 u|mm%u d
790 =— Wmm - ¢d SI0)oen)y Z-poud :IojoeImy [-poud (®)
(c=1'0 = o) Hmoureg (q) G="1 '19¢T

(panuguoy) 1 dIqel,

2939



v -92T AB|eD B S S

[ WA EENO]
EEEEENGC
EEEEEEV|Y
EEEEEEE| 0
....““m JUISUDA],

s8r0="2g="d
: SI010BIMY  7-POLId]
(T =1‘c 3= 0) 1noureg (e)

9= ‘021

(panurguop)  1g 91981,

2940



(Continu

Table 21.

(a) Period-1 Attractor :
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(Continued )

Table 22.

(d) Period-1 Attractor :
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(Continued)

Table 23.

(a) 48 Period-4 Isles of Eden (continued) :
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Rule 90 :

K=2

Difference Equation

i+1

Firing Patterns
0 red pixel :

1 red pixel :

2 red pixels : 3.-

3 red pixels :

u. —sgn[l—lumﬂt ]

vertex | N 1+

% X v X ,\:
=1 -1 =1 =1

b -1 -1 1 |

q

-1 -1 |
-1 | -

|@|@|@|@|@ o|

Fig. 2.

3. Global Analysis of Local Rule

The truth table, Boolean cube, and “Difference
Equation” defining the local rule along with a
space-time pattern (with a single red-pixel initial
state) exhibited in Table 5 of [Chua et al., 2003] is
reproduced in Fig. 2 for the reader’s convenience.
For this paper, it is more instructive to recast the
Difference Equation defining into an equivalent
difference equation involving only a mod 2 addition
@ (defined in Table 24).

Substituting u; = 2z; — 1 from Eq. (4) of [Chua
et al., 2005a] for u; in the Difference Equation for

[90], we obtain
2017 — 1 =sgn[l — |22} +22%,; — 2|]

=sgn[l — 2z} | + i, —1]] (18)

Truth table, Boolean cube, Difference Equation, and space-time pattern of local rule .

Table 24. Table defining® z; @ T 2

®| 0| 1
0|01
11110

Simplifying Eq. (18) using Table 24, we obtain the
following equivalent Difference Equation:

Rule |z!*! = (2!, +2!,;) mod (2)

(19)
=z ®aly,

8The mod 2 operation x; ® x; between two binary variables is also called an exclusive OR operation in mathematical logic, and

denoted by z; ® x; a z; XOR x;.
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3.1. Rule has no Isle of Eden

A cursory glimpse at the basin-tree diagram of rule
in Table 18 reveals that all bit strings converge
to an attractor for 3 < L < 8. We now prove this
property is true for all L.

Theorem 1. Rule does not have any isle of
Eden.

Proof. It follows from Eq. (19) that an arbitrary
bit string
(20)

ol =(zy @ 7 1)

at time “t” is linearly related (mod 2) to its image
(21)

L (ghtl gl gl il

Iy Lo Tr 1

at time “t+1” via an L x L circulant matriz [Davis,
1979 M(), henceforth called the local time-1
state transition matrix:

€T

01 00O 1
-xtJrl- - xt -
?H 10100 0 g
x;ﬂ 01010 of | ™
T x
xfi}“ _ O 010 1 0 xz
1 0O0O0O0 .. 10 "
Lr—2 LL—2
t+1 0 0 0 0 0 1 14
Tr 1 | T 1
_Htil—_’ _1 O 00 ... 1 0_ T
M([90])
(22)

where addition is mod (2) sum @.

Note the diagonal elements of the circulant
matrix M| () are all equal to zero. Observe also
the elements directly below (resp. above) the diag-
onal of M () are all equal to one. All other ele-
ments are zero, except for the top rightmost ele-
ment, and the bottom leftmost elements, which are
equal to one, respectively. It follows from this spe-
cial structure that the leftmost column of M ()
is equal to the mod 2 sum of the remaining L-1
columns. Since the columns of M| () are not lin-
early independent, mod 2, it follows that M does not
have an inverse. Since the bit string 2!* 1 on the left
side of Eq. (19) does not have a unique preimage, it

follows that the bit string x! is not an isle of Eden

of [90].

Since ' is an arbitrary bit string, it follows that
cannot possess an isle of Fden for any L. W

t

3.2. Period of Rule grows with L

Since rule does not have isles of Eden, all bit
strings of must converge to period-T attractors
whose period “I” is bounded by

1 <T < Thax (23)

where Tyay = 20 as defined in Eq. (6). As an exam-
ple, the period T' of an attractor of is listed
in Table 25 for 3 < L < 100. Observe that the
period T for some L (e.g. L = 47,49, 53, etc.) is not
listed in Table 25 because it is so large that it had
exceeded the maximum simulation time allocated.
A Dbit string belonging to one of the many period-T'
attractors for 3 < L < 25 is given in Table 26. For
example, the bit string listed for L = 3 corresponds
to the third period-1 attractor (out of 4) listed in
Gallery 90-1 of Table 18. The bit string listed for
L = 5 corresponds to node@ of Gallery 90-3 of
Table 18, out of five period-3 attractors. The bit
string listed for L. = 6 corresponds to node in
the fifth attractor shown on the left of Gallery 90-5.
The bit string listed for L = 7 corresponds to node
in the top left attractor of shown on the top
left of Gallery 90-7.

As examination of Table 25 shows that unlike
the period-1 and period-2 local rules listed in Tables
7 and 8, and the period-3 local role [62], which have
a relatively small period, and independent of L, the
period T of rule can increase at an exponential
rate as a function of L, as depicted in Fig. 3. Such
exponential growth of T" as a function of L is a sig-
nature of all complex Bernoulli rules in Table 11,
and hyper-Bernoulli rules in Table 12.

In spite of the very large values T of some
period-T attractors of [90], these periods are usually
many orders of magnitude smaller than the upper
bound Tipay listed in Table 27 for 3 < L < 85.9
There exists, however, period T attractors whose
period T approaches the upper bound Ti,.x. For
example, Table 28 shows a period-504 bit string of
an isle of Eden of rule for L = 9, which is almost
as large as Tinax = 2° = 512! This example suggests
that some of the empty slots in Tables 25 may never
be filled.'?

9Tt would take at least 105, 104, 783, 572 years for a 1 GHz PC to simulate all Tax = 27 distinct bit strings!
0Rule will be studied in Part VIII where it is proved that all bit strings are isles of Eden if, and only if L is an odd number.
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Table 25. Period “T™” of attractors of local rule for 3 < L < 100.

L | Attractor L | Attractor L | Attractor L | Attractor L | Attractor
1 21 | T=063 41 | T=1023 61 81

2 22 | T=62 42 | T=126 62 |T=062 82 | T=2046
3 | T=1 23 | T = 2047 43 | T =127 63 |T=063 83

4 |\ T=1 24 | T=8 44 | T =124 64 |T=1 84 | T =252
5 |T=3 25 | T=1023 45 | T =4095 65 |T=063 85 | T=255
6 |T=2 26 | T=126 46 | T = 4094 66 |T=062 86 | T =254
7 \T=7 27 | T=511 47 67 87

8 |T=1 28 | T=28 48 | T =16 68 | T =060 88 | T =248
9 |T=7 29 | T=16383 49 69 89 | T =2047
10 |T=6 30 | T=30 50 | T =2046 70 | T =38190 90 | T=8190
11 | T=31 31 | T=31 51 | T=255 71 91 | T =4095
12 |T=4 32 | T=1 52 | T=252 72 | T =56 92 | T=238188
13 |T=063 33 | T=31 53 73 | T=511 93 | T=1023
14 | T=14 34 | T=30 54 | T=1022 74 | T = 174762 94

15 | T=15 35 | T =4095 55 75 95

16 |T=1 36 |T=28 56 | T =56 76 | T = 2044 9% | T =32
17 | T=15 37 |T=87381 57T |\ T=511 77 97

18 | T=14 38 | T=1022 58 | T=32766 78 | T = 8190 98

19 | T=511 39 | T =4095 59 79 9 |T=32767
20 | T=12 40 | T =24 60 | T =060 80 | T=48 100 | T = 4092

3.3. Global state-transition formula
for rule

The state transition formula given in Fig. 2 and

Eq. (19) for rule is local in time in the

sense that it generates from a bit string xf =

(zf 2% b --- 2% ) at time “¢” the next bit string
ot = (it 2T 2t 2Ly ag time

“t +17. Our next theorem gives an explicit formula
which is global in time in the sense that it generates
a bit string ay = (zf 2 x§ --- 2}_,) at any

future time n > t.

Theorem 2. Global State-Transition Formula for

M Recall the factorial notation 0! 2 1.

Fach pizel x' at time n > t is determined from
“n—+ 17 initial pizels x?ﬁn, x?fnJrz, ... 793?“%2, x?+n

at t = 0 via the binomial formula.

n

n n!
T = kz T ) piox mod (2)|  (24)
)

Proof. Apply mathematical induction as follow:

(a) n=1

Applying n = 1 in Eq. (24), we obtain!!

1:71 = x?_l + x?H mod (2) (25)

which is Eq. (19) for ¢t = 0.
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Table 26. Bit strings for generating a period-T" attractor of Rule .

—
—

A bit string on a Period-T attractor

OO~NOOUIP~hW

|
23 | 204/ ANEEEEEENEEEN
24 S HNENEENEEEEEEEEEEEEEEEEE
251023 iNEEEEEEEEEEEEEEEEEEEEEEE

10°
7 Legend:

) 2
10°. | ¥ - attractor period-T .

| ||| - artractors 5

- with T > 10 b
10

E AR
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]()37: e ol

ey
1027 R i
= ¥ 8
w oot
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%
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1 10 L=1+1 10

Fig. 3. Dependence of the period “I™” of attractor of rule as a function of L (in logarithmic scale).
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Table 27. The upper bound Tmax of the period “I” as
function of L for 3 < L < 85.

L Tmax — 2L
) 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

85 38685626227668133590597632

(b) Assume Eq. (24) is true for n = m (induction
hypothesis); namely,

m

m m! 0
$i=:Z%%R;;:Eﬁ'ﬂ%7nuk mod (2)  (26)

We must show that incrementing “m” to “m + 1”7
in Eq. (26) gives Eq. (24) with n =m + 1.

Substituting Eq. (26) to Eq. (19), we obtain
mtl = mod (2)

€T.

m m
i ; 1+9Cz‘+1

Zk'm kJ' (z 1)—m+2k
=0

- m! 0
+»g£%2565i:751x@+1%ﬂn+2k mod (2)
(27)

Changing symbol “m” on the right-hand side of
Eq. (27) to m' — 1 gives

(m —1)! 20
Z k:'(m’—l )| Li—m/+2k

mod (2)

(28)

Changing symbol £ in the second summation terms
in Eq. (28) to k' — 1 gives

Zk'm—l )'zm+2k

(m' — 1) 0
+ Z k./ _k/)!xifm’+2k/ (29)

i
Changing the dummy index &’ in Eq. (29) back to
k, we obtain

/

i m —1
3]
1
.xO

i—m/+2k (30)
The terms inside the bracket can be simplified
by observing for k = 1 to m’ — 1, we have
(m' —1)! (m' —1)!
El(m'—1—Fk)!  (k—1)!(m' —k)!

B (m' —1)! 1 1
T (k=D!(m —1—k)! [E T k)}

B (m/ — 1)! (m' — k) +k
_(k—l)!(m’—l—k)![ k(m/ — k) }

m'

k(! —k)!
Moreover, when £k = 0 and k& = m/, Eq. (31)
gives the same value as the first term on the left
of Eq. (30), and the last term on the right of
Eq. (30), respectively. Substituting back m = m/—1
in Eq. (31), and making use of Eqgs. (27)-(31), we
obtain

m—l

Zk,m_l_

(31)

m+1

2l = (m +1)! 0
Z El(m+1— k) ® Ti (m41)+2k

mod (2) (32)

which is identical to incrementing m in the induc-
tion hypothesis (26) tom +1. W

Table 29 gives the global state-transition for-
mula (24) of rule for n = 1,2,3,4 and 5.

Observe that the coefficients ( ) for each time

k
n > 1 is identical to the binomial coefficients in
the expansion of (x + y)", as listed in Table 30
forn =1,2,...,11. These binomial coefficients are
repackaged in Table 31 into the form of a Pascal’s
triangle where each coefficient under the pyramid
is obtained by adding adjacent left and right coeffi-
cients above it.
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Table 29. Global state-transition formula for rule for 1 <n<5.

Table 30. Table of (7) £ nl/k! (n— k), n=1,2,...,11, k=0,1,2,...,11.

k

n

1 2 3 4 6 7 8 9 10 | 11
1 1
2 2 1
3 3 3 1
4 4 6 4 1
5 5 10 | 10 | 5 1
6 6 I5 | 20 | 15 6 1
7 7 21 | 35 | 35 | 21 7 1
8 8 28 | 56 | 70 | 56 | 28 8 1
9 9 | 36 | 84 | 126|126 | 84 | 36 | 9 1
10 10 | 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 1
11 11 | 55 | 165|330 | 462 | 462 | 330 | 165 | 55 | 11 1
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Table 31.  Binomial coefficients (}.) repackaged into a Pas-
cal’s triangle.

Pascal’s Triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 41
1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8

Taking the “mod 2 equivalent” of each coeffi-
cient in Table 29, we obtain the more compact but
equivalent expansion in Table 32 where all nonzero
terms correspond to those in Table 29 with “odd
number” coefficients. The equivalent mod 2 coef-
ficients are repackaged in Table 33. Observe that
Table 33 can be obtained from Table 31 by replacing
each odd (respectively, even) coefficient in Table 31
by a one (respectively, a zero). If we fill in the miss-
ing slot in each row of the mod 2 Pascal’s triangle,
we would obtain the pyramidal “fractal” space-time
pattern of rule in Table 34, which is identical

to that shown in the bottom of Fig. 2, where the
initial configuration consists of a single red bit at
the center, as in [Wolfram, 2002].

Example 1. Table 35 shows the space-time pattern
obtained from the global state-transition formula
of rule in (a) when the initial configuration
consists of a single red bit at the center. The
corresponding pattern obtained from the local state-
transition formula is shown in (b). They are iden-
tical, as expected. The minor differences in the
graphics and color are due to the differences in the
softwares used to generate these patterns.

Example 2. Table 36 shows the corresponding
results when the initial configuration consists of a
string of random bits.

3.4. Periodicity constraints of
Rule

Theorem 1 implies that all bit strings of rule
must converge to a period-T" attractor, where T' <
Trax < 2L, We will prove in this subsection that

for finite length L 2 + 1, the period T must
satisfy certain constraints. Such periodicity con-
straints are useful on many occasions, such as ver-
ifying whether certain periodic orbit can exist, or
to generate new periodic orbits, etc. The proof of
many of these results depend on the following easily

Table 32. Compact global state-transition formula for rule for 1 <n <5.
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Table 33. Mod 2 binomial coefficients (Z) repackaged into
a mod 2 Pascal’s triangle.

Mod 2 Pascal’s Triangle

1
1 1
1 0 1
1 1 1 1
1 0 0 0 1
1 1 0 0 1 1
1 0 1 0 1 0 1
11 1 1 1 1 1 1
1 0 O 0O O O 0 01

verifiable identities:

Binomial Coefficient Lemma. If n = 2™, where
m > 2, then the following identities hold:

G)c;gzlnwﬂﬁ,ij:QLZ”qn—l

(33)
.« (n) _ JO mod (2), fork=1,2,...,n—1
(i) (k)_{l mod (2), fork=0,n

(34)

v fnt1y _ JO mod (2), fork=23,...,n—1
(i) < k ) - {1 mod (2), fork=0,1,n,n+1
(35)
where
n\ A n!
(k) = Hln )] (36)

Theorem 3. Periodicity Condition: L = 2™.
For L = 2™ m = 2,3,4,..., rule has a
global period-1 attractor I'; namely,
zI)=0 0 0 --- 0)

-/

(37)

L=2m

All bit strings not belonging to the attractor I con-
verge to I' in at most 2! iterations.

Proof. Let n = 2™~1 in the global state-transition
formula (24). It follows from Egs. (33) and (36) that

n!

El(n — k)!
=1
It follows from Eq. (38) and the global state-

transition formula (24) that 27 contains only
two nonzero terms; namely, the leftmost and the

mod (2)

fork=1,2,...,n—1

38
for k=0,n =2m"1 (38)

Table 34. Space-time pattern of the Pascal triangle fractal generated by rule .

n|-8 -7 6 -5 -4 -3 -2 -1

1 2 3 4 5 6

-1
o0

0O 0 0 O

g o 0

0 O
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Table 35. Space-time pattern of the rule with red central bit initial configuration: (a) from
global state-transition formula; (b) from local state-transition formula.

N ,
xn Zk. (n k)’ xio-n + 2k mOd(Z)

JAENEEEEEEEEENEEEEENEEENENNENENNEEEENEED
(b)
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Table 36.

Space-time pattern of the rule obtained from random initial state generated

by: (a) global state-transition formula; (b) local state-transition formula.

n

90

= — X
T - k)

! 0 mod(2)

n+2k

90 X?+I

=x"; + x/",

; mod(2)

rightmost terms. Hence,

=)y +aly, mod (2) (39)
where n = 2™~1. Substituting i = n = 27! in
Eq. (39), we obtain

ot =20+ x%_m mod (2)
=)+ 23, mod (2)
=)+ 29 mod (2)
=29+ 29 mod (2)
=2zy mod (2)
=0 (40)

because 328 =xy,.

Since z? is arbitrary, it follows that all bit
strings must converge to Eq. (7) in at most 271

iterations. W

Corollary to Theorem 2.
A bit string

@ =(zg 2} ay - G y) (41)
of length L = I + 1 (under periodic boundary

condition) is a period-n attractor of local rule
if, and only if, the periodicity condition

n _ .0
Limod(L) = Yi

" n!

El(n — k)!

i
o@

mod (2)

° x((z n+2k) mod(L))

is satisfied for all i.

Proof. Follows directly from Theorem 2 and the
periodic boundary condition. M

The periodicity constraint equation (42) is
applicable to any period-n attractor of rule [90].
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The “mod (L)” operation attached to the subscript
index of z' is just a mathematically precise
algorithm for implementing the periodic bound-
ary conditions. It is also mathematically equiva-
lent to concatenating replicas of the L-bit string

ro 1 T2 -+ x1 ad infinitum; namely,
tTo X1 T2 - T Lo X1 T2 v Tf
L bits L bits
To T To e T
L bits
(43)
where L =1 + 1.
In the special case where
n=2"—-1 (44)

all binomial coefficients in Eq. (42) are equal to
unity, in view of the Binomial Coeflicient Lemma;
namely,

n!

W=kl mod (2) =1,

Equation (45) is obtained by substituting n + 1 =
2™ from Eq. (44) in place of n in Eq. (33):

<(n—|—1)—1

f >:1m0d(2), k=0,1,2,...,n

(46)

Substituting Eq. (46) into Eq. (42), we obtain the
following simplified periodicity constraint:

T mod(L)
= x?
Valid if
' = > i-nt2tymoarry) mod (2)
k=0
for all 4
(47)

If we impose the additional constraint L =n =
2™ — 1, then we obtain the following simple method
for finding period-(2™ — 1) attractors:

Theorem 4. Periodicity Condition: L = 2™ — 1.
Rule has a period-n attractor where n = 2™ —1
and L = 2™ — 1 if, and only if,

Valid for 1
n=2m—-1 Z:c? mod (2) =0 (48)
L=2m—-1 i=0

k=0,1,2,...,n (45)

Proof. Let us list all terms from Eq. (47) as follows:
0 _ 0 0

Timod(L) — x((i—n) mod(L)) + x((i—n—l—?) mod(L))
- 0
+ : T ((i4n—2) mod(L))
T Tty mod(z)) Mod (2) (49)
Since “i” is an arbitrary index in Eq. (49), let it be

“n”. Substituting i« = n in Eq. (49), we obtain

0
x8 = $8 + xg + -+ Tp—1 +x?(n+1) mod(L))

n—1=2m-2<L

0 0
+ o T _2) mod(L)) T L((2n) mod(L))
mod (2) (50)
Observe next that for n = L = 2™ — 1, we have
(2n) mod (L) =0, ((2n—2)mod (L)) =L —2,
((n+1) mod (L)) = 1.
Observe also that L = 2™ — 1 implies that L — 2,
L — 4, etc. are odd numbers. Substituting these
mod (L) equivalent indices into Eq. (50), we obtain
z) =a)+ a4+ +29_ + a7+ 2
+ - +2% ,+2) mod (2) (51)
Observe that whereas the first #J on the right-hand
side of Eq. (51) comes from the corresponding first

term of Eq. (50), the last 2 of Eq. (51) comes from

the last bit x?(%) mod(L)) = z9 of Eq. (50). Rear-

ranging the terms in increasing subscript order in
Eq. (51), we obtain
) =a)+ad+al+a)+ - +af ,
+29 | mod (2) (52)
Substituting (zJ + z3) mod (2) = 0 in Eq. (52), we
obtain
xg :x(l)—f—:cg—i—:cg—i- +CC%_2
+29 | mod (2) (53)
By adding the bit xJ to both sides of Eq. (53), we
obtain
ot ag=ag+alal e ol
0
Omod(2) +2j_; mod (2) (54)
It follows from Eq. (54) that

L—-1
> 2 mod (2) =0 (55)
=0 n

Our next theorem shows that the same peri-
odicity condition in Eq. (45) of Theorem 4 also
holds for a different L = 2™ + 1 but for the same
n=2"—1.
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Theorem 5. Periodicity Condition: L = 2™ + 1.
Rule has a period-n attractor where n = 2™ —1
and L = 2™ + 1 if, and only if,
Valid for
n=2"-1

L=2"41

L—-1
Y 2 mod (2) =0 (56)
=0

Proof. Since n = 2™ — 1 remains the same as in
Theorem 4, Egs. (47) and (49) remain unchanged.
Substituting i = n in Eq. (49), we obtain'?

0 0 0 0 0
To=2pgF+ 2o+ - +Tp 1+ Tp
—~—

n41=2m<L
0
T Z(n+3)mod(L)) T
+ x?(2n72) mod(L))
Jr95(()(271) mod(r))  mod (2) (57)
Observe next that for L = 2™+1, we have L = n+2.
Hence, unlike in Eq. (51) we must now replace L in
mod (L) by n + 2 to obtain (2n mod (n +2)) =
n—2 (2n—2)mod (n+2)) =n—4,...,((n +
3) mod (n+2)) = 1. Equation (57) now reduces to
vy =g+ @+ af g+ +af +af

4+ oo+ ad 4+ 20, mod (2)

=a)+ad+ad+af+- - +ad_y+ad_,

+ 2%, mod (2) (58)
Observe that the term z¥ is missing from Eq. (58).
Replacing n by n = L —2 in Eq. (58) and by choos-
ing i = L — 2 in Eq. (47), we obtain

2 o=af+a)+a%+ - +ab_,
+29 5+ 29 | mod (2) (59)
Adding the term 29 , = 29 | to both sides of
Eq. (59), we obtain
2) o+a) s=ad+al+ad+ 429, +29_,
—_————
0mod(2) +29 429 | mod (2) (60)

Hence, we have

L—1
Z ¥ mod (2) =0
i=0 n

Corollary 1 to Theorems 4 and 5. The total
number of red pizels in the period 2™ — 1 attractors
of Theorems 4 and 5, must be an even number.

Corollary 2 to Theorem 3, 4, 5. Theorems 3-5
hold also for infinite bit strings (L — o0).

Recap. Theorems 3-5 give necessary and sufficient
conditions for rule to have the following period-
n attractors:

Theorem 3

n=1 and L=2"
Theorem 4

n=2"—-1 and L=2"-1
Theorem 5

n=2"—-1 and L=2"+1

As illustrations of the applications of these ana-
lytically derived results, let us examine the basin
tree diagrams exhibited in Tables 14-23.

Applications of Theorem 3
1.m=2L=2"=4

Gallery 90-2 shows all bit strings converge to the
unique global attractor (0), as predicted by Theo-
rem 3.

2. m=3 L=2"=8

Gallery 90-9 shows all bit strings converge to the
global attractor (0), as predicted by Theorem 3.

Applications of Theorem 4

m=3, n=2"-1=7 L=2"-1=7

Galleries 90-6, 90-7 and 90-8 show nine period-7
attractors as predicted. Observe the number of red
pixels in all attractors is an even number, as pre-
dicted. The only other attractor is a period-1 attrac-
tor, (0), which qualifies also as a period-7 attractor,
with “0” red pixels, an even number, as predicted.

Applications of Theorem 5

m=2 n=2"-1=3, L=2"+1=5

Gallery 90-3 shows five period-3 attractors, all have
only orbits with an even number of red pixels.
The only other attractor is a period-1 attractor, (0),
which qualifies also as a period-3 attractor. In this
case, there are no red bits, which is an even number,
as predicted.

20bserve that unlike Eq. (50) where n — 1 = 2™ — 2 < L, we now have n +1 = 2™ < 1.
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‘ Rule 150 : | HENNERNE \ K=3

Difference Equation

UM =sgn [3—' (7- I '~ +4(, -3]) |

Firing Patterns
0 red pixel :

1
2 red pixels :

3 red pixels : !

1 red pixel : (1| 2- (]

vertex I i i i+1

leleteloelela

Fig. 4. Truth table, Boolean cube, difference equation, and space-time pattern of local rule m

4. Global Analysis of Local Rules
and

The truth table, Boolean cube, and “Difference

Equation” defining the local rules and
along with a space-time pattern (with a single red-

pixel initial state) exhibited in Table 5 of [Chua
et al., 2003] is, reproduced in Figs. 4 and 5, respec-
tively, for the readers convenience. For this paper,
it is more instructive to recast the Difference Equa-

tions defining and as follow:

Rule
150

gt =ot | eateal,, (61)

Rule
105

vt =gl @@l (62)

where @ is the mod 2 sum defined in Table 24,
and the bar on top denotes complementation. The
alert reader will notice that we list ahead of
[105], counter to our style. This is done to avoid
clutter where formula (61) for is clearly sim-
pler than formula (62) for [105]. Yet, as will be
shown in Sec. 4.3, these two rules are related via a
global alternating transformation T where [105] =

T(), and = T_l(), so that it suffices
to study only [150].13

13Unlike the Vierergruppe transformations TT, T and T* in [Chua et al., 2004], which are defined for all 256 rules, the
alternating transformation in Sec. 4.2 is defined only for rules and [105].
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Rule 105 : | NN NEEN

Difference Equation

M+ . 1t r
U, —5gn[l ‘(2 | u,_ i —1

!
{.

i+l

+1 )l

vertex

Firing Patterns

0 red pixel : N
0

1 red pixel :

2 red pixels : 3- 5- *

3 red pixels :

llelelaelelelole

Fig. 5. Truth table, Boolean cube, difference equation, and space-time pattern of local rule m

4.1. Rules and are composed via an L x L circulant local time-1 state transition

of Isles of Eden if L is not matrix; namely,

divisible by 3 [t 11 0 0 177 ab T
Theorem 6. Fvery bit string of rules and ! 1110 O 0 2t
is an Isle of Eden if, and only if, L/3 is not t1+1 :
an Integer. Ty 0111 O 0 Zg
P.7-00f‘ We will present proof only for rule xtL+12 000 . 1 1] [at
since rules and are globally quasi- t+_1 .
equivalent via the alternating transformation T' to Tr-1 _1 00 ..0 1_ | L1
be defined in Sec. 4.3. ~— —

Just like rule [90], each arbitrary bit string at attt M () @

at time ¢ maps into 2t*! at time ¢ + 1 of rule [150]
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Here, the addition operation in the matrix multipli-
cation is mod (2) sum . It is easy to verify that the
above L x L matrix M| ( 150 ) can be decomposed
into the sum of three matrices

M([150]) = M° + M+ M"! (64)
where M% =1 is an L x L identity matrix,
MY =MeMe--- M (65)
L—1 times
and
™ 1 0o 0 --- 0]
o o1l o ---0
N oo0oo0 1 ---0
M= (66)
000 --- 0 1
1 o0 - 0 o0

It follows from well-known results on eigenvalues of
circulant matrices [Davis, 1979] that the eigenval-
ues of M () in Eq. (64) are given by the sum of
the eigenvalues of M, M and M"~!, respectively;
namely,

k k
A =1+ exp (2m'z> + exp (2772'(L - 1)3) (67)

where £k =0,1,...,L — 1.

It is easily verified that if L = 0 mod (3), i.e.
if L is divisible by 3, then there must exist some
ke {1,2,...,L — 1} such that A\ = 0. However, if
L =1,2mod (3), i.e. if L is not divisible by 3, then
for any k € {0,1,..., L — 1}, A\ #0.

It follows from the property

detM:)\o')\l'--AL,1

that if L is not divisible by 3, then det M([150]) # 0.
This implies that every bit string in this case has a
unique preimage, and hence is an isle of Eden.

On the other hand, if L is divisible by 3, then
every bit string has a multiple preimage, imply-
ing that it cannot be an isle of Eden. Such a bit
string must necessarily lie on a basin tree, or on an
attractor. W

As illustrations of Theorem 6, Tables 37 and
38 exhibit a list of the period “T” of at least one
period-T isle of Eden for L # 0 mod (3), and at
least one period-T attractor, if L = 0 mod (3),
of local rule [150] and [105], respectively. Those
“blank” rectangles in these two tables without any
entry imply that the period of either an isle of Eden,
or an attractor for the particular L is larger than

the threshold set by our program. Indeed, Table 28
suggests that the period T' of this set of L’s (e.g.
L = 47,49,53,55,67,69, etc.) could be astronomi-
cally large, and may never be found by brute-force
simulations.

4.2. Global state-transition formula
for Rules and

The state transition formulas given in Figs. 4 and 5
are local in time. Our next theorem gives an explicit

formula for rule [150], and for rule [105], which is

global in time.

Theorem 7. Global state-transition Formula for

rules and [105].

Each pizel x}' of rules and at time
n > 1 is determined from “n + 17 initial piz-
els x?_n, x?_n+2, e l‘?+n_2, x?+n at t = 0 wvia
the following corresponding “Composite Binomial

formulas”:

n k
n! k!
Rule — k!(n_k)!jgoﬂ(k_.])!

ox?_n+2k_j mod (2)
(68)
n n - n!
' =y + (1) Zk!(n—k)'
k=0
k
k!
° /1 N1
Rule [105] ;Juk—g)!
.xzfnJer J mod (2)
where
Al n
an 2 21— (-1)7]
(69)

Table 39 exhibits the detailed expansion of the
global state transition formula for rule forn =
1,2,...,8. The corresponding formula in mod (2)
coefficients are shown in Table 40. These coeffi-
cients are repacked into a Pascal’s like a triangle in
Table 41. Table 42 shows the space-time patterns
generated from applying the global and local state
transition formulas for rule when the initial
configuration consists of a single red center pixel.
Table 43 shows corresponding space-time patterns
when a random initial configuration is used.

The corresponding illustrations for rule [105]
are shown in Tables 44-48, respectively.
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Table 37.  Period “T” of Isles of Eden and attractors of local rule [150].

L Isle of Eden| Attractor L Isle of Eden| Attractor
1 26 T=42

2 27 T=511
3 T=1 28 T =28

4 = 29 T = 16383

5 = 30 T=15

6 T=1 31 T =31

7 _ 32 T=16

8 =4 33 T =31

9 T=7 34 T =30

10 T=6 35 T = 4095

11 T =31 36 T= 14
12 T=1 37 T =29127

13 =21 38 T =1022

14 T=14 39 T = 4095
15 T=15 40 T =24

16 T=38 41 T=1023

17 T=15 42 T =063
18 T=7 43 T=127

19 T=>511 44 T =124

20 T=12 45 T = 4095
21 T =63 46 T = 4094

22 T =62 47

23 T = 2047 48 T=4

24 T=2 49

25 T=1023 50 T = 2046
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Table 37.

(Continued )

L Isle of Eden| Attractor L |sle of Eden| Attractor
51 T =255 76 T = 2044

52 T =84 77

53 78 T = 4095
54 T=>511 79

55 80 T =48

56 T =56 81

57 T=>511 82 T = 2046

58 T = 32766 83

59 84 T =126
60 T =30 85 T =255

61 86 T =254

62 T =62 87

63 T =063 88 T =248

64 T =32 89 T = 2047

65 T=063 90 T = 4095
66 T =3I 91 T = 4095

67 92 T =8188

68 T =60 93 T = 1023
69 94

70 T = 8190 95

71 96 T=38

72 T=28 97

73 T=511 98

74 T = 58254 99 T = 32767
75 100 | T = 4092
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Table 37. (Continued )

L Isle of Eden| Attractor L Isle of Eden| Attractor
101 126 T =63
102 T =255 127 | T=127
103 128 | T =064
104 | T=168 129 T =127
105 T = 4095 130 |[T=126
106 131
107 132 T =62
108 T =1022 133 | T=262143
109 | T = 262143 134
110 135
111 136 | T =120
112 | T=112 137
113 | T = 16383 138
114 T=>511 139
115 140 | T=16380
116 | T = 65532 141
117 T = 4095 142
118 143
119 144 T =56
120 T =60 145 | T=16383
121 146 | T=1022
122 147
123 148 | T= 116508
124 | T=124 149
125 150
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Table 37.

(Continued )

L Isle of Eden| Attractor L |sle of Eden| Attractor
151 | T=32767 176 | T =49
152 | T =4088 177
153 178 | T = 4094
154 179
155 180 T = 8190
156 T= 8190 181
157 182 | T=8190
158 183
159 184 | T=16376
160 | T=96 185 | T=262143
161 186 T=1023
162 187
163 188
164 | T = 4092 189
165 190
166 191
167 192 T=16
168 T =252 193
169 194
170 | T =510 195 T = 4095
171 T=511 196
172 | T =508 197
173 198 T = 32767
174 199
175 200 | T=38184
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Table 37. (Continued )

L Isle of Eden| Attractor L Isle of Eden| Attractor
204 T=510 273 T = 4095
205 | T=1023 280 | T=32760
208 | T=336 288 T=1I2
210 T = 4095 290 | T = 32766
216 T = 2044 292 | T =2044
217 | T=32767 296 | T=233016
218 | T = 524286 302 | T=65534
224 | T=224 304 | T=8176
226 | T=32766 312 T = 16380
228 T = 1022 315 T = 4095
232 | T=131064 320 | T=192
234 T = 4095 328 | T=8184
240 T =120 336 T = 504
241 | T = 4095 340 | T=1020
248 | T =248 341 | T=1023
252 T =126 342 T=>511
254 | T =254 344 | T=1016
255 T =255 352 | T=992
256 | T=128 356 | T=8I88
257 | T=255 360 T = 16380
258 T =127 364 | T=16380
260 | T=252 368 | T'=32752
264 T =124 370 | T=524286
266 | T = 524286 372 T = 2046
272 | T=240 384 T=32
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Table 37.

(Continued )

L |sle of Eden| Attractor L |sle of Eden| Attractor
390 T = 4095 516 T = 254
396 T = 65534 520 | T=504
400 | T = 16368 528 T = 248
408 T = 1020 532 | T'= 1048572
410 | T=2046 544 | T =480
416 | T=672 546 T = 4095
420 T = 8190 560 | T=65520
432 T = 4088 565 | T=16383
434 | T=65534 576 T =224
436 | T = 1048572 580 | T=65532
A48 | T =448 584 | T'=4088
452 | T = 65532 585 T = 4095
455 | T = 4095 592 | T =466032
456 T = 2044 604 | T=131068
464 | T=262128 608 | T=16352
468 T = 8190 624 T = 32760
480 T = 240 630 T = 4095
482 | T=8190 640 | T =384
496 | T =496 656 | T=16368
504 T =252 672 T = 1088
508 | T'=508 680 | T = 2040
510 T =255 682 | T =2046
511 | T=511 683 | T =2047
512 | T=256 684 T = 1022
513 T =511 688 | T'=2032
514 | T=510 704 | T=1984
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Table 37. (Continued )

L |sle of Eden| Attractor
712 | T=16376
720 T = 32760
728 | T =32760
736 | T=65504
740 | T = 1048572

744 T =4092
768 T =064

780 T=28190
792 T =131068
800 T = 32736

816 T = 2040
819 T = 4095

820 T =4092
832 T = 1344

840 T=16380
864 T=8176
868 T=131068

896 T =896

904 T=131064
910 T =8190

912 T =4088
928 T = 524256

936 T=16380
960 T =480

964 T=16380
992 =997
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Table 38. Period “T” of Isles of Eden and attractors of local rule [105].

L Isle of Eden| Attractor L |sle of Eden| Attractor
1 26 T =42

2 27 T = 1022
3 T=2 28 T =28

4 = 29 T = 32766

5 = 30 T =30

6 T=2 31 T =62

7 T =14 32 T=16

8 T=4 33 T =62

9 T=14 34 T =30

10 T=6 35 T = 8190

11 T =62 36 T= 28
12 T=2 37 T = 58254

13 T =42 38 T =1022

14 T =14 39 T = 8190
15 T =30 40 T =24

16 T=8 41 T = 2046

17 T =30 42 T =126
18 T=14 43 T =254

19 T =1022 A4 T =124

20 T=12 45 T = 8190
21 T =126 46 T = 4094

22 T =62 47

23 T = 4094 48 T=38

24 T=4 49

25 T = 2046 50 T = 2046
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Table 38. (Continued )

Isle of Eden| Attractor L Isle of Eden| Attractor
51 T =510 76 T = 2044
52 T =84 77
53 78 T = 8190
54 T=1022 79
55 80 T =48
56 T =56 81
57 T =1022 82 T = 2046
58 T = 32766 83
59 84 T =252
60 T =60 85 T=510
61 86 T =254
62 T =62 87
63 T=126 88 T =248
64 T=32 89 T = 4094
65 T=126 90 T = 8190
66 T =62 91 T = 8190
67 92 T =8188
68 T =60 93 T = 2046
69 94
70 T = 8190 95
71 96 T=16
72 T =56 97
73 T =1022 08
74 T = 58254 99 T = 65534
75 100 | T = 4092
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Table 38.

(Continued )

L Isle of Eden| Attractor L |sle of Eden| Attractor
101 126 T =126
102 T=510 127 | T =254
103 128 | T =64
104 | T=168 129 T =254
105 T =8190 130 |(T=126
106 131
107 132 T =124
108 T = 2044 133 | T = 524286
109 | T = 524286 134
110 135
111 136 | T =120
112 | T=112 137
113 | T = 32766 138
114 T =1022 139
115 140 | T=16380
116 | T = 65532 141
117 T = 8190 142
118 143
119 144 T=112
120 T =120 145 | T = 32766
121 146 | T=1022
122 147
123 148 | T= 116508
124 | T=124 149
125 150
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Table 38. (Continued )

L Isle of Eden| Attractor L Isle of Eden| Attractor
151 | T=65534 176 | T =49
152 | T = 4088 177
153 178 | T = 4094
154 179
155 180 T = 16380
156 T= 16380 181
157 182 | T=8190
158 183
159 184 | T=16376
160 |T=96 185 | T = 524286
161 186 T = 2046
162 187
163 188
164 | T = 4092 189
165 190
166 191
167 192 T=32
168 T = 504 193
169 194
170 | T=510 195 T = 8190
171 T =1022 196
172 | T =508 197
173 198 T = 65534
174 199
175 200 | T=38184
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Table 38.

(Continued )

L Isle of Eden| Attractor L |sle of Eden| Attractor
204 T = 1020 273 T = 8190
205 | T = 2046 280 | T=32760
208 | T=336 288 T =224
210 T = 8190 290 | T = 32766
216 T = 4088 292 | T=2044
217 | T = 65534 296 | T'=233016
218 | T = 524286 302 | T=65534
224 | T=224 304 | T=8176
226 | T =32766 312 T = 32760
228 T = 2044 315 T = 8190
232 | T=131064 320 | T=192
234 T = 8190 328 | T=8184
240 T = 240 336 T = 1008
241 | T=8190 340 | T=1020
248 | T =248 341 | T=2046
252 T =252 342 T =1022
254 | T =254 344 | T=1016
255 T =510 352 | T=992
256 | T=128 356 | T=8I88
257 | T=5I10 360 T = 32760
258 T = 254 364 | T=16380
260 | T=252 368 | T=32752
264 T =248 370 | T=524286
266 | T = 524286 372 T = 4096
272 | T =240 384 T =64
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Table 38. (Continued )

L Isle of Eden| Attractor L Isle of Eden| Attractor
390 T = 8190 516 T = 508
396 T = 131068 520 | T =504
400 | T = 16368 528 T = 496
408 T = 2040 532 | T = 1048572
410 | T =2046 544 | T =480
416 | T=672 546 T = 8190
420 T = 16380 560 | T=65520
432 T=38176 565 | T = 32766
434 | T=65534 576 T = 448
436 | T = 1048572 580 | T =65532
A48 | T =448 584 | T=4088
452 | T = 65532 585 T = 8190
455 | T = 8190 592 | T = 466032
456 T = 4088 604 | T=131068
464 | T=262128 608 | T=16352
468 T = 16380 624 T = 65520
480 T = 480 630 T = 8190
482 | T=8190 640 | T =384
496 | T =496 656 | T=16368
504 T = 504 672 T = 2016
508 | T'=508 680 | T = 2040
510 T =510 682 | T =2046
511 | T=1022 683 | T = 4094
512 | T=256 684 T = 2044
513 T=1022 688 | T=2032
514 | T=510 704 | T=1984
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Table 38. (Continued )

L |sle of Eden| Attractor
712 | T=16376
720 T = 65520
728 | T =32760
736 | T=65504
740 | T = 1048572
744 T = 8184
768 T =128
780 T = 16380
792 T = 262136
800 | T=32736
816 T = 4080
819 T = 8190
820 | T =4092
832 | T'=1344
840 T = 32760
864 T = 16352
868 | T'=131068
896 | T'=89%
904 | T = 131064
910 | T=8190
912 T=28176
928 | T=524256
936 T = 32760
960 T = 960
964 | T=16380
992 | T=992
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Table 39. Global state-transition formula for rule for 1 <n <8.

The formal proof of Eq. (68) is given below. A
similar proof involving more messy expressions can
be given for Eq. (69). We omit the proof to avoid
clutter. A different and more illuminating proof fol-

lows as a Corollary to the = Alternating
Symmetry Duality given in the Appendiz.

Proof of Global State-Transition Formula
(68) for [150|. Apply mathematical induction as
follow:

(a) Applying n =1 in Eq. (68), we obtain

i =y + )+l mod (2) (70)

which is Eq. (61) for ¢t = 0.

x

(b) Assuming Eq. (68) is true for n = m (induction
hypothesis), namely,

om zm: m! i k!
! P k!(m—k)!j:0 gk —7)!
.w?—m+2k—j mod (2) (71)

We must show that incrementing “m” to “m+1" in
Eq. (71) gives Eq. (68) with n = m + 1. Rewriting
Eq. (70) as a mapping from m to m + 1, we have

m+1l _ m m m
o =t + x4 2 mod (2)

LI i k!
- (m — k)! 1k — 7)1
pard El(m — k)! = gk —7)!
L 1) myk—j (72)
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Table 40. Mod (2) global state-transition formula in terms of mod (2) coefficients
for rule for 1 <n <8.

Table 41. Mod (2) coefficients for global-transition formula for for 1 <n <8.

nl-8 -7 -6 -5 4 -3 -2 -1 1 2 9 4 & & 7 8

0 0 O
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Table 42. Space-time pattern of calculated from a single red center pixel via (a) global
state-transition formula, and (b) local state-transition formula.

n

X n n .’

I

!
k! X

]

150

3 & kl(n-k)!

2

j=0 .

jUK-j)!

0 .
i-n+2k-y

x.n+]

l

n
i+ 1/

150 =x",® x"®x
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Table 43. Space-time patterns of from

a random initial configuration calculated from the

global and local state-transition formula, respectively, of rule [150].

n

n!

k
0

X n

]

150

& kl(n - k)!

2

j=0

!
k! X

k- mod(2)

i-n+2k-j

150

i m! z’“: !
+ -
— El(m — k)! = gk —7)!
° 37?—m+2k—3 (73)
m k
m! k!
* kzzok:!(m—k)! gk —7)!
'37(()i+1)—m+2k—j mod (2) (74)

(b.1) Changing symbol “m” in Eq. (73) to m’ + 1
gives

mal - m! y k!
S kg Kl(m — k)! JZ:;) ik — )

o)\ inionj (75)

m/+1 k
(m' +1)! k!
+ 2 DT
| / _ | | A
— El(m/ +1—k)! = gk —j)!
i x?—m/—1+2k—j (76)
m k
(m)! k!
+ - -
;} El(m — k)! ; gk = j)!
i 37?+1—m+2k—j mod (2) (77)

Observe that if we substitute £ = m+1 in Eq. (75)
we would get a zero because (m — k)! in the denom-
inator gives, in this case, a singularity (—1)! Conse-
quently, the term at k£ = m + 1 vanishes and does
not affect our derivation. Hence, let us expand the
external sum in Eq. (75) from £k =0 to k =m + 1.
We omit also in Eq. (76) the prime in m’ for
convenience.
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Table 44. Mod (2) global state-transition formula for rule for 1 <n <8.

an = (1-(=1)")/2

Let us combine Egs. (75) and (76):

(m)!
=———"—(2m+2—k)
m+1 \ | E(m +1—Fk)!
it = Z (ku (m).k T (m+11).k 1)
k=0 (m — k)! l(m +1—k)! In this case Eq. (78) can be recast as follows:
k
k! 0 T (2(m + 1) — k) (m)!
® oy @ Tiem—142k—j m+l _ :
= k= g)! ’ Ti ;;) &) (m +1— k)l
m k
(m)! k! k %
+ . : : 0
;_0 El(m — k)! = gk —j)! ° jgo k=) ® Timm—1+42k—j
02011 ppap—; mod (2) (78)

The sum of the two binomial coefficients contained
between the large parentheses in the first sum is
(m)! (m+1)!
Ellm — k)  kl(m+1—k)!

(m)!

Separating terms with factors 2(m + 1) and (—k)
m((m—l—l — k) + (m+1)) we obtain

m)! <~ k!
T 2 Flm B! j;)j!(k )

© ) 1 o ; mod (2) (79)
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Table 45. Mod (2) global state-transition formula in terms of mod (2) coefficients for

rule [105] for 1 < n < 8.

(1= (=1)"/2

Table 46. Mod (2) coeflicients for global-transition formula for for 1 <n <8.

n(-8 -7 6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7
1% 3 3 3. 1 1 1 7 2 X3 kK X
2 0 0

3

4

ot

o« | | @
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Table 47. Space-time pattern of calculated from a single red center pixel via (a) global
state transition function, and (b) local state transition function.

n I3
n__ ’ n n! k! /]
105 Xi=a,+(-l) ,,é’k.-"(n - k},ﬁ)%'j;(k -jiN Xion+2k-j “10(1(2)

105 xtt = x" & x'@x

i i+ 1/
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Table 48. Space-time patterns of from a random initial configuration calculated from the global
and local state transition formula, respectively, of rule [105].

n " T ! £ k!
105 X‘v =Q, +(_U !‘_A:‘;k;(,:t k).’Z;’.’(k _J.-).fx:'t{n+2k-j lllOd(Z)

j=0 .

NEUUERERINESREE D D T T e FE e

(b)
m+1 L
m+l (m—|— 1)! k!
"t =2 kZ:O (K)!(m+1—k)! ; 3k — ) T 1 iok—j (80)
m+1 L
(—k) o (m)! k! .
+ kZ_O (k)!(m+1—k)!jz_:0j!(k_j)! © L o 1iok (81)
I(m)! e K ,
+ kZ:O El(m — k)! jgo ik — ) ® Tit1—m—+2k—j mod (2) (82)

The first term (80) vanishes under operation mod (2) because the multiplier 2 gives rise to all even
coefficients. However, let us retain this term until the final computations. The remaining terms are Eqs. (81)
and (82).
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(b.2) Let us now replace symbol “k” in Eq. (82) by &' — 1:

m+1

zftt = {Eq. (80)} + Z (m+ 1 ~ ) Z R E AT

m-+1 k'—1
0
+ Z e k’+1 , Z _1_3) o) _1iop—; | mod (2) (83)

/

Here we cancel, for convenience, the factorials k! and (k' —1)! from both denominator and numerator. Also
we transpose the factor (—k) in the first term, see Eq. (81), to the inner sum.
Now by omitting the prime in &’ we can combine the two sums as follows:

m—+1 (

1
) e E] = Z ( T ) * iz mod (2 (34

The sum of the two binomial coefficients in Eq. (84) gives

—k 1 k4 (k) ~1

- ~— + - ~ = - = - -
U=t gk =1=5! k=7t (G =1k =)
As a result, Eq. (84) transforms to

m+1
0
n Z k'(m — k + 1)! Z < (5 — D)k —j)! ) ® T (m+1)4+2k—j mod (2).

Here we reinsert the factorial k! in the denominator and in the numerator again.

(b.3) Let us now replace k by £’ + 1, and j by 7/ + 1 to obtain

kl

- (m)! (K + 1)
_kgl (k" + 1)'(m — k;/)' j’:zl m ? (m+1)+142k"—5/ mod ( )

Replacing m on the right by m’ + 1 we get

m/+1 m+1
0
_Z k'/ m—i—l_kfl Z ,)'..’EZ (m/+1)+2k" —j /mod()

Observe that at k' = —1 and at j' = —1, the factorials (k¥')! and (j')! represented in the denominator are
singular, i.e. they are equal to (—1)! Hence, terms with these factorials vanish. Omitting the primes in the
symbols m/, k' and j'and recalling term (80) we obtain finally

m—+1 (m + 1 k
m+1 __ 0
e Z (k)!(m +1—k)! Z Lie(m41)+2k—j
k=0 =0
(m+1)! 10
a Z (k‘) m-+1— | Z : i*(m+1)+2k7j mod (2)
k=0 ]:0
(m +1)! 3
k=0 =

The result is precisely Eq. (71) with m replaced by m + 1, in the induction hypothesis in Eq. (71). W



3008 L. O. Chua et al.

4.3. Rules and are globally quasi-equivalent

It follows from the global state transition formulas (68) for rule and (69) for rule that they are
globally equivalent in the sense that their space-time evolution patterns from any initial bit string can be
derived from each other via the following affine transformation

zg([105]) 1 1 0 0 --- O] [ «p(150])
z7(1105)) 01 o0 0| | «7([150])
x_,([105]) 0 0 O 11 (27 ,([150))
A _ L i
x([105]) ffé(_l)nl ([150])
where
1—(—1)"
an 2 12 (87
2
and 1 denotes the unit (identity) matrix.
The inverse affine transformation is given by:
[ 22 ([150]) ] 1 0 O7 1 2r(105]) 7
27 ([150 010 O | 27105
{L’g( 150 ) — a1+ (_1)71 0 0 1 0 xg( 105 ) (88)
|71 (150]) 0 00 - 1|]|z7_,(105])
—_—— - ) R —
z([150]) TZ(fl)”l z([105])

Observe that the inverse matrix T is itself. B

An analysis of the above global equivalence transformation shows that T effectively leaves even-
numbered rows unchanged while complementing the color of all odd-numbered rows, for the same initial
configuration. An example illustrating this transformation is given in Figs. 4 and 5. Consequently, we will
henceforth christened T as an alternating transformation. Observe that since T' depends on the iteration
number “n”, it does not defined a topological conjugacy between the space-time patterns of the two local
rules and [150]. The global quasi-equivalence transformation T is therefore weaker than the three
topologically conjugate transformations T, T and T™ from the Vierergruppe defined in [Chua et al., 2004].
In particular, the number of connected components and the minimal period of corresponding attractors of
and are not preserved by T', as is evident from the basin-tree diagrams of rules and [150].
On the other hand, the alternating transformation T is not only a bijection but it also preserves certain
qualitative properties; e.g. gardens of Eden maps onto gardens of Eden, transient bit strings maps onto
transient bit strings, some connected period-T orbits of maps onto two disconnected pem’od—% orbits

of [150], etc.
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In terms of the real variables u]' = 22} — 1 defined in Eq. (4) of [Chua et al., 2005a], Eq. (88) assumes

the following more compact form:

[ up(105]) 7 (1 0 0 - O] r un(150)
u'([105]) O 10 - O w(150)
ub([105]) | _ (—1)" 0 01 0 ub (1150]) (89)
_UTLL—1( 105 )_ 0O 00 - 1 _UTLL—1( 150 )_
—_—— - S —
u([105)) (-1)m1 u([150])
where
[(—1)" 0 0 0
0 (=" 0 - 0
1~—v _ 0 0 (—1)” 0 (90)
0 0 0 (=)

is the alternating transformation.

5. Concluding Remarks

We cannot overemphasize the usefulness of the basin
tree diagrams presented in Tables 14-23. Indeed,
Theorems 3-5 originated from conjectures sug-
gested by Tables 18, 19 and 23. Space limitation pre-
cludes a more detailed analysis of the other tables.
They will be the subject of future papers.

We wish to remark that in order to make use
of the “empty” spaces in these basin-tree diagrams,
we have inserted typical space-time patterns, along
with their associated Bernoulli ¢n,—r +— ¢, return
maps. These maps typically indicate the associated
Bernoulli velocity o, the Bernoulli return time 7 and
the Bernoulli complementation sign (3. Unlike the
elementary Bernoulli o,-shifts studied in Parts IV
and VI, where these parameters do not depend on L,
we now find them to depend crucially on L. More-
over, both |o| and 7 can assume arbitrarily large
values as L — 0.

The period T associated with each ¢ and 7
of the complexr and hyper Bernoulli rules listed in
Tables 11 and 12 is generally equal to T = 7L,
if To 2 7L/|o| is not an integer, or T' = 7L/|o| if
|o| > 2. The presence of symmetry in a period-T" bit
string can reduce the minimal period T further by
a factor of “m” for bit strings made of m identical
substrings.

For those space-time patterns which do not
exhibit a Bernoulli shift with |o| > 0, we can

generalize our definition of “Bernoulli o, -shift” to
include o = 0 for all such period-T orbits. In this
case, the return map ¢n_r — ¢, will consist of
points lying on the diagonal line ¢, = ¢p—r. We
usually include such a graph whenever space per-
mits.

We note also that the period “T” of rules [90],
and exhibit a scale free property as
L — o0. For example, for L = 2™ the period of
rule is always equal 7" =1 with 0 0 ---

0 as
L bits
its global fized point attractor. To its immediate left

(L=2"—1) and immediate right (L = 2™+ 1),
the period-T orbits have equal period T' = 2™ —1, at
any scale L — oo. To illustrate the scale-free distri-
bution of the period “T” of rule [90], Fig. 6 shows a
plot of log T" as a function of log L of the data listed
in Table 25. Observe the six period-1 red stars on
the horizontal axis (T' = 1) are located at L = 2™,
m = 2,3,4,5; namely, L = 4,8,16,32,64, as pre-
dicted by Theorem 3. Observe that all data points
from Table 25 lie along straight lines with a slope
equal to “one”.

The distributions of the period T of rules [150]
and are plotted in Figs. 7 and 8, respectively,
as a function of the string length L = I + 1, in
base-10 logarithmic scales. The data are extracted
from Table 37 for rule [150], and from Table 38
for rule [105], respectively. Data points correspond-
ing to isles of Eden are shown as blue dots. Those
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10°
T A log(T)
] I :
105_5 stope AlOg(L) 1//
log(8) - log(2) _ /
i log(24)-log(6) .
10 //
103-5 /
102-5
10-5
f v
| ¥ sl

1 | | 10 L=I1+1 102

Fig. 6. Relationship between the period T and the length L = I + 1 of attractors of rule plotted in base-10 logarithmic
scales.

108
g Alog(T)
T slope = Alog(l)
105 log(32) - log(4)
log(384)-log(48)
10%
104
1024
10 Alog(T)
_Ta— Alogt) —
1 — T
I 10 W J=I+1 10?

Fig. 7. Relationship between the period T and the length L = I + 1 of isles of Eden (plotted as blue dots), and attractors
(plotted as red stars) of rule [150].
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If|6

T slope ()
SOP€ = “ATog(l)
log(32) - log(4)

5
107 G~ L b A L
log(192)-log(24)

I||‘-

l[|3-

H_Iz.

=

Cla— Alog(l) —

Alog(T)

|::2 J=1+1 10?

Fig. 8. Relationship between the period T and the length L = I + 1 of isles of Eden (plotted as blue dots), and attractors

(plotted as red stars) of rule [105].

corresponding to attractors are shown as red stars
Again, the scale-free distributions are clearly seen
from the parallel straight lines where these data
points are located.
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Appendix

= Alternating Symmetry
Duality

The bit strings {xg,27,2%,...,27} and {y{,y7,
yy,...,yJ} generated respectively by rules and
from the same initial state {2, 2,29,...,2%}
obey the following alternating symmetry relations:

Y = an + (=1)"af (A1)
= ay + (—1)"yP (A.2)

Proof. Bit string {z{}, 27, x5, . ..

, '} } evolves under
rule via the formula

ntl

i

mod (2)  (A.3)

n n n
T+ + X

Bit string {y§,y7,v5,...,y}} evolves under rule

via the formula

n+1

=1 = (g g ) mod (2)  (Ad)

[A9e%})

Changing the symbol “y” in Eq. (A.4) into “x
by applying Eq. (A.1) and invoking the identity
(3a,) mod (2) = a,, mod (2) we obtain

Gt + (1)
=1—Bayp + (=)l |+ (—=1)"x}
£ mod (2)
= —an) = (=)@ + i +2i,) mod (2)
(A.5)

Consider the following two cases:

(a) Assume n is even in Eq. (A.5).
In this case a, = 0 and a,+1 = 1. Equa-
tion (A.5) reduces to:

1—a!t =1~ (2" +a +2f4;) mod (2)
(A.6)

Hence,

n+1l __ n n n
T = (2 ol +a)

(b) Assume n is odd in Eq. (A.5).
In this case a, = 1 and a,+1 = 0. Equa-
tion (A.5) reduces to:

mod (2) (A.7)

et = (2l + 2P +2Py) mod (2) (A.8)

Hence, both Egs. (A.7) and (A.8) are identical
to Eq. (A.3).

Following the same procedure let us change
the symbol “z” in Eq. (A.3) into “y” by applying
Eq. (A.2) to obtain

Oni1 + (_1)n+1y?+1
= Bay + (=1)"yi"y + (=1)"y}'
+(=1)"yi%y1) mod (2)
=an+ (=1)"(yi1 + ¥’ +yiy) mod (2)
(A.9)

Again, we must consider two cases:

(a) Assume n is even in Eq. (A.9).
In this case a, = 0 and a,+1 = 1. Equa-
tion (A.9) reduces to:

L—y™h = (P + Y + ) mod (2)
(A.10)
Hence,
yrt =1 (yy +y +yly) mod (2)
(A1)

(b) Assume n is odd in Eq. (A.9).
In this case o, = 1 and a,4+1 = 0. Equa-
tion (A.9) reduces to:

0+yr™ =1—(y'y +y' +yy) mod (2)
(A.12)

Hence, both Egs. (A.11) and (A.12) are identi-
cal to Eq. (A.4). [ |



