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This paper continues our quest to develop a rigorous analytical theory of 1-D cellular automata
via a nonlinear dynamics perspective. The 18 yet uncharacterized local rules are henceforth
partitioned into ten complex Bernoulli στ -shift rules and eight hyper Bernoulli στ -shift rules, the
latter including such famous rules 30 and 110 . All exhibit a bizarre composite wave dynamics
with arbitrarily large Bernoulli velocity σ and Bernoulli return time τ as the length L → ∞.

Basin tree diagrams of all ten complex Bernoulli στ -shift rules are exhibited for lengths
L = 3, 4, . . . , 8. Superficial as it may seem, these basin tree diagrams suggest general qualitative
properties which have since been proved to be true in general. Two such properties form the
main results of this paper; namely,

• Rule 90 has no Isles of Eden.
• Rules 105 and 150 are composed of nothing but Isles of Eden for all string lengths L

not divisible by 3.

Explicit global state transition formulas are given for local rules 90 , 105 and 150 . Such
formulas led to the rigorous proof of several surprising periodicity constraints for rule 90 , and to
the discovery of a new global, quasi-equivalence class, defined via an alternating transformation.
In particular, local rules 105 and 150 are globally quasi-equivalent where corresponding space-
time patterns can be derived from each other by simply complementing every other row.

Another important result of this paper is the discovery of a scale-free phenomenon exhibited
by the local rules 90 , 105 and 150 . In particular, the period “T ” of all attractors of rules 90 ,
105 and 150 , as well as of all isles of Eden of rules 105 and 150 , increases linearly with unit
slope, in logarithmic scale, with the length L.

Keywords : Cellular automata; nonlinear dynamics; attractors; Isles of Eden; Bernoulli shift; shift
maps; basin tree diagram; Bernoulli velocity; Bernoulli return time; complex Bernoulli shifts;
hyper Bernoulli shifts; rule 90; rule 105; rule 150; binomial series; scale-free phenomena.
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1. Recap of Main Results from

Parts I to VI

A rigorous analytical theory of one-dimensional cel-

lular automata composed of L
∆
= I + 1 identical

cells, as shown in Fig. 1, has been studied in the
following series of papers from a nonlinear dynam-
ics perspective1:

Part I: Threshold of Complexity [Chua et al.,
2002]

Part II: Universal Neuron [Chua et al., 2003]
Part III: Predicting the Unpredictable [Chua et al.,

2004]
Part IV: From Bernoulli shift to 1/f spectrum

[Chua et al., 2005a]
Part V: Fractals everywhere [Chua et al., 2005b]

Part VI: From Time-reversible attractors to the
arrow of time [Chua et al., 2006]

1.1. Local rules and

Boolean cubes

Observe that the “zeros” and “ones” in Wolfram’s
truth tables [Wolfram, 2002] are symbolic variables
denoting a logic “Yes” or “No” state, or a “high” or
“low” state in digital electronic circuit implemen-
tations. In order to exploit powerful mathemati-
cal tools from nonlinear dynamics, it is necessary
to work with real numbers. Consequently, in the
papers cited above, the symbolic truth table shown
in Fig. 1(c) is converted into the numeric truth table
shown in Fig. 1(d).

One could also redefine the “0” and “1” in the
symbolic truth tables as real numbers, instead of
changing “0” to “−1”. There are two reasons why
we opted for the latter choice. First, each of the 256
local rules can be implemented on a cellular neural
network (CNN) chip [Chua & Roska, 2002] with at
least three orders of magnitude faster speed than
computing on standard digital computers. Such
CNN implementations require that the truth tables
be formulated in terms of “1” and “−1” [Chang &
Muthuswamy, 2007]. The second reason is that the
numeric truth table shown in Fig. 1(d) can be con-
veniently represented by merely coloring the eight
vertices of a “unit Boolean cube” whose center is

located at the origin of the (ui−1, ui, ui+1) — input
space, as shown in Fig. 1(e). Such a representation
in turn leads to simple visualizations of many rota-
tional symmetrical transformations [Chua et al.,
2003]. Each of the 256 local rules corresponds to
exactly one Boolean cube in Table 1 (extracted
from [Chua et al., 2003]). Observe that the num-
ber N printed under each cube corresponds to the
local rule number in [Wolfram, 2002]. This number
is easily obtained by adding the “vertex weights”
of all red vertices in the Boolean cube, where the
vertex weight for vertex ♠k is equal to 2k, as spec-
ified in Fig. 1(e), as well as in the lower part of
Table 1.

1.2. Threshold of complexity

Observe also that the identification number N of
each Boolean cube is colored in red, blue or green,
depending on whether the red vertices can be seg-
regated and separated from each other by κ = 1, 2,
or 3 parallel planes, where κ is called the index of
complexity of the local rule N [Chua et al., 2002].
Table 2 lists all 256 local rules along with their index
of complexity.

The index of complexity κ is not a definition of
complexity. Rather it measures the relative num-
ber of electronic devices needed to implement each
local rule. A κ = 1 local rule requires the small-
est number of transistors. More transistors must be
added to realize a κ = 2 local rule. Still more tran-
sistors are required to implement a κ = 3 local
rule. In other words, the index of complexity κ
measures the relative “cost” of hardware (Chip)
implementations.

While the asymptotic qualitative behaviors of
all κ = 1 local rules, and all κ = 3 local rules,
have been completely understood and character-
ized in [Chua et al., 2006], and in this paper (for
Rules 105 , and 150 ), there are some κ = 2 local
rules that have not yet been characterized, includ-
ing rules 110 , 124 , 137 and 193 [Chua et al.,
2004]. Since these four rules are universal Turing
machines, they can never be completely character-
ized. In other words, it seems that κ = 2 can be con-
sidered as the threshold of complexity, in the sense
articulated in [Wolfram, 2002].

1These 6-part papers have been republished, with errors corrected, in two recent edited books [Chua, 2006] and
[Chua, 2007].
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Fig. 1. (a) A one-dimensional Cellular Automata (CA) made of L = I +1 identical cells with a periodic boundary condition.
Each cell “i” is coupled only to its left neighbor cell (i − 1) and right neighbor cell (i + 1). (b) Each cell “i” is described by a
local rule N , where N is a decimal number specified by a binary string {β0, β1, . . . , β7}, βi ∈ {0, 1}. (c) The symbolic truth
table specifying each local rule N , N = 0, 1, 2, . . . , 255. (d) By recoding “0” to “−1”, each row of the symbolic truth table
in (c) can be recast into a numeric truth table, where γk ∈ {−1, 1}. (e) Each row of the numeric truth table in (d) can be
represented as a vertex of a Boolean Cube whose color is red if γk = 1, and blue if γk = −1.
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Table 1. Encoding 256 local rules defining a binary 1D CA onto 256 corresponding “Boolean Cubes”.
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Table 1. (Continued )



2844 L. O. Chua et al.

Table 1. (Continued )
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Table 1. (Continued )
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Table 2. List of 256 local rules with their complexity index coded in red (κ = 1), blue (κ = 2) and green (κ = 3),
respectively.

255254253252251250249248247246245244243242241240

239238237236235234233232231230229228227226225224

223222221220219218217216215214213212211210209208

207206205204203202201200199198197196195194193192

191190189188187186185184183182181180179178177176

175174173172171170169168167166165164163162161160

159158157156155154153152151150149148147146145144

143142141140139138137136135134133132131130129128

127126125124123122121120119118117116115114113112

11111010910810710610510410310210110099989796

95949392919089888786858483828180

79787776757473727170696867666564

63626160595857565554535251504948

47464544434241403938373635343332

31302928272625242322212019181716

1514131211109876543210

κκ = 1 (Red) 104 rules

κ = 2 (Blue) 126 rules

κ = 3 (Green) 26 rules

1.3. Only 88 local rules are independent

Among the 256 local rules, only 88 are dynami-
cally independent2 from each other in the sense that
the dynamics and solutions (space-time diagrams)
of any one of the remaining 168 local rules can be
derived exactly from one of the 88 globally equiva-
lent rules, listed in Table 3 [Chua et al., 2004], via
one of the following three topological conjugacies:

3 Global
Equivalence

Transformations

1. left-right transformation T †

2. global complementation T
3. left-right complementation T ∗

For the reader’s convenience, each of the 256 local
rules is listed in the left-most column in Table 4,
along with its equivalent local rule with respect to
each of the above three global equivalence trans-
formations. Observe that due to symmetries pos-
sessed by certain rules, some rules have only two
distinct equivalent rules

(
e.g. T †( 1 ) = 1 and

T
(

1
)

= T ∗
(

1
)

= 127 ; T †
(

29
)

= T
(

29
)

= 71

and T ∗
(

29
)

= 29 ; T †
(

15
)

= T ∗
(

15
)

=

85 and T
(

15
)

= 15
)
. Such rules are iden-

tical twins. There are altogether 72 identical
twin local rules, as listed in Table 5. A few

2We thank Andy Adamatzky [Adamatzky, 2007] for suggesting possible intersections of our work with [Wuensche & Lesser,
1992]. We thank Andy Wuensche for informing us that the concept of global equivalence classes was first mentioned in [Walker,
1971]. The 88 equivalence classes of local rules were listed in [Walker & Aadryan, 1971] and [Wuensche & Lesser, 1992], using
differing numbering schemes. It is likely that other results published, or yet to be published, in our series of tutorial expositions
on “Wolfram’s New Kind of Science” may also intersect, if not contained, in other works. We apologize to all such authors for
not citing their publications, and we will appreciate their informing us of any such intersections so that future acknowledgments
can be made. Being novice on the mature subject of cellular automata, the high probability of such inadvertent omissions is
what prompted the authors to publish their papers as expositions for a nonspecialist audience, and not as original papers, in
the Tutorial-Review section of this journal.
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Table 3. The first 88 globally-independent local rules
among the 256 listed in Table 2.

88 Global Equivalence Classes

232204200184178172170168

164162160156154152150146

142140138136134132130128

12612211010810610510494

9078777674737262

6058575654515046

4544434241403837

3635343332302928

2726252423221918

15141312111098

76543210

local rules are endowed with additional symmetries
such that T †

(
N
)

= T
(

N
)

= T ∗
(

N
)

= N .
Such rules are identical quadruplets. There are only
eight identical quadruplet rules, as listed in Table 6.

1.4. Robust characterization of 70

independent local rules

By virtue of the three global equivalence transfor-
mations derived in [Chua et al., 2004] it suffices to
conduct an in-depth analysis of only the 88 local
rules listed in Table 3, out of 256, a saving of nearly
70% of otherwise wasted man hours! By using ran-
dom bit strings (with at least L = 400 bits) as test-
ing signals, we have found via extensive computer
simulations, and supplemented by analytical studies
[Chua et al., 2006], that the robust time asymptotic
dynamics of 70, out of 88, local rules can be charac-
terized by only one of four steady-state behaviors.

1.4.1. Steady-state behavior 1: Period-1

attractors or period-1 isles of Eden

Table 7 lists 26 local rules from Table 3 which
exhibit a robust period-1 steady-state behavior

corresponding to fixed points of the time-1 charac-
teristic function χ1

N
of local rule N [Chua et al.,

2004]. Except for rule 204 where all orbits are
period-1 isles of Eden, the generic steady-state
behavior of the other 25 rules in Table 7 are all
period-1 attractors. This asymptotic behavior holds
for almost all initial random bit strings, and for

arbitrary length L
∆
= I + 1.

1.4.2. Steady-state behavior 2: Period-2

attractors or period-2 isles of Eden

Table 8 lists 13 local rules from Table 3 which
exhibit a robust period-2 steady-state behavior cor-
responding to fixed points of the time-2 characteris-
tic function χ2

N
of local rule N [Chua et al., 2006].

Except for rule 51 where all orbits are period-2
isles of Eden, the generic steady-state behavior of
the other 12 rules in Table 8 are all period-2 attrac-
tors. This asymptotic behavior holds for almost all
initial random bit strings, and for arbitrary L.

1.4.3. Steady-state behavior 3: Period-3

attractors

There is only one rule from Table 3 which exhibits
a robust period-3 attractor, namely, rule 62 . As
demonstrated in, Figs. 5–14 of [Chua et al., 2006],
almost all initial bit strings of 62 converge to a
period-3 orbit corresponding to fixed points of the
time-3 characteristic function χ3

62
of local rule 62

[Chua et al., 2006]. The other attractors of 62 have
a relatively small basin of attraction. The period-3
isles of Eden of 62 have no basins of attraction and
therefore require an initial bit string falling exactly
on one of the three bit strings forming an isle of
Eden.

1.4.4. Steady-state behavior 4: Bernoulli

στ -shift attractors or isles of Eden

Table 9 lists 30 local rules from Table 3 which
exhibit a robust Bernoulli στ -shift steady-state
behavior corresponding to a period-T attractor or
a period-T isle of Eden, where T ≤ τL. The three
parameters (σ, τ , β) characterizing each Bernoulli
rules are listed in Table 10 for each of the 30 robust
Bernoulli rules listed in Table 9.3 We will hence-
forth call “σ” the Bernoulli Shift Velocity, “τ”
the Bernoulli Return Time and “β” the Bernoulli
Complementation sign, or simply Bernoulli

3Table 10 is constructed from Table 16 of [Chua et al., 2005, pp. 1159–1162].
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Table 4. Table of globally equivalent local rules. All local rules in each row are globally equivalent to each other. Rows with
red, blue, or green background colors denote local rules with a complexity index κ = 1, 2, or 3, respectively.
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Table 4. (Continued )
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Table 4. (Continued )
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Table 4. (Continued )
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Table 5. List of 72 identical twin rules.

151147146142113109108104

133132129128127126123122

16416116015699959491

18217917016590857673

20019818418372715755

21821220520154504337

22622322221936333229

24023723623322191815

2552542512505410

Table 6. List of eight identical quadruplet rules.

232204178150105775123

velocity, time, and sign, respectively. Observe that
local rules 6 , 9 , 11 , 14 , 27 , 35 , 38 , 43 , 56 ,
57 , 58 , 134 , 142 , and 184 have two robust
Bernoulli attractors, whereas local rules 25 and
74 have three robust Bernoulli attractors.

Observe from Table 10 that only five rules listed
in Table 10

(
11 , 14 , 15 , 43 and 142

)
have a

negative sign for β. The space-time evolution pat-
terns of these five rules are generated by follow-
ing the same procedures as the other rules (shift
left by σ bits if σ > 0, or shift right by |σ| bits if
σ < 0, every τ iterations), and then complementing
(change color of all bits) the resulting bit string. In
fact, except for rule 15 , only one of two Bernoulli
attractors from the other four rules have a negative
sign for β.

Observe that any Bernoulli (σ, τ , β) rule with
β < 0 is equivalent to iterating the rule with twice
the velocity and return time without complementa-
tion, i.e.

(σ, τ, β) = (2σ, 2τ, |β|), if β < 0 (1)

For examples illustrating this equivalence, see
Table 5 (pp. 2393) for 15 in [Chua et al., 2003],
Fig. 29(a2) for 11 , Fig. 29(b2) for 14 , Fig. 29(d2)
for 43 , and Fig. 29(i2) for 142 in [Chua et al.,
2006].

In general, T = τL if T0
∆
= τL/|σ| is not an inte-

ger. If T0 is an integer, then T = τL/|σ| for |σ| ≥ 2.
If each bit string in the period-T orbit consists of
a concatenation of m identical substrings, then the
period T is reduced further to T/m.

Each Bernoulli rule listed in Table 9 can possess
up to three robust Bernoulli attractors, as depicted

in Table 29A of [Chua et al., 2006, pp. 1293–
1297] for rules 74 , 88 , 173 and 229 . Each
of these attractors has a large enough basin of
attraction that different random initial bit strings
could converge to one of these robust Bernoulli στ -
shift attractors. This steady-state behavior does not

depend on the length L
∆
= I + 1 of the bit string.

Except for local rule 15 and 170 , whose orbits
are all isles of Eden, all other generic steady states
converge to a Bernoulli στ -shift attractor.

1.4.5. There are ten complex Bernoulli and

eight hyper Bernoulli shift rules

Together, Tables 7–9, plus the period-3 rule 62 ,
made up 70, out of the 88, local rules from Table 3.
The robust steady-state behaviors of these 70 local
rules have been completely characterized in [Chua
et al., 2006]. The remaining 18 rules listed in Table 3
that have not yet been characterized are listed in
Table 11, dubbed complex Bernoulli-shift rules, and
Table 12, dubbed hyper Bernoulli-shift rules. It
will be clear from the sequel that all of these 18
yet uncharacterized rules are also identified with
Bernoulli shifts because they behave like Bernoulli
στ -shifts from Table 9 except that the number of
attractors is no longer bounded by 3, but increases

Table 7. List of 26 robust Period-1 local rules.

26 Topologically-Distinct 

Period-1 Rules

232

204200172168164

160140136132128

10494787776

7244403632

1312840
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Table 8. List of 13 robust Period-2 local rules.

13 Topologically-Distinct 

Period-2 Rules

178

1561085150

37332928

231951

Table 9. List of 30 robust Bernoulli στ -shift local rules.

30 Topologically-Distinct 

Bernoulli       -shift Rulesτσ

184170162152142

1381341307458

5756464342

3835342725

2415141110

97632

with the length L
∆
= I + 1 of the bit strings. The

ten complex Bernoulli shift rules in Table 11 are
bilateral, and correspond to those listed in column
1 of Table 17 of [Chua et al., 2006, pp. 1176]. The

eight hyper Bernoulli-shift rules in Table 12 are
nonbilateral, and correspond to those listed in col-
umn 1 of Table 18 of [Chua et al., 2006]. Table 13
gives a composition of the asymptotic behaviors of
all 88 dynamically-independent local rules listed in
Table 3.

In this paper (Part VII) only the ten complex
Bernoulli-shift rules from Table 11 will be stud-
ied. The remaining eight Hyper Bernoulli-shift rules
from Table 12 will be studied in Part VIII.

2. Basin Tree Diagrams of

Ten Complex Bernoulli

Shift Rules

For binary bit strings

xn = (xn
0 xn

1 xn
2 · · · xn

L−1) (2)

at time n with finite L and periodic (or fixed)
boundary conditions, the evolution

xn �→ χ1
N

(xn)
∆
= xn+1 (3)

under local rule N must converge to either a fixed
point

x∗ = (xn∗

0 xn∗

1 xn∗

2 · · · xn∗

L−1) (4)

or to a periodic orbit ΓT

(
N
)

of period T ≤ Tmax,
at some finite time n∗ = Ttransient + T , where

χ1
N

:
∑

→
∑

(5)

is the time-1 characteristic function defined in
[Chua et al., 2005a], and

Tmax
∆
= 2L (6)

is the number of distinct binary bit strings of
length L.

2.1. Basin of attraction and basin

trees

In general, many initial bit strings can converge to
one of several period-T orbits, including period-1
orbits (i.e. fixed points of χ1

N
).

Definition 1. Basin of attraction B
(
ΓT

(
N
))

of

ΓT

(
N
)
.

The union of all bit strings which converge to a
period-T orbit ΓT

(
N
)

of local rule N , including

all bit strings belonging to ΓT

(
N
)
, is called the

basin of attraction B
(
ΓT

(
N
))

of ΓT

(
N
)
.
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Table 10. Bernoulli Parameters σ (Bernoulli shift velocity), τ (Bernoulli return time),
and β (Bernoulli complementation sign) associated with the 30 Robust Bernoulli Rules
from Table 9.

+11

+22

+22
38

+11

+2-1
35

+1134

+22

+2-1
27

+52

+33

+2-1

25

+1-124

1-115

1-1
14

1-1

+11
11

+1110

+32

+2-2
9

+2-17

+2-2

+22
6

+2-13

+112

βτσ

+11
184

162

142

134

74

58

46

+2-1

+1-1

+11170

+11

+1-1152

1-1

+11

+11138

+2-2

+22

+11130

+3-3

+22

+11

+11

+1-1

+11
57

+1-1

+11
56

+11

1-1

+11
43

+1142

βτσN N

Table 11. List of ten complex Bernoulli-shift rules.

150146126122105

9073542218
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Table 12. List of eight Hyper Bernoulli-shift
rules.

15411010660

45413026

Table 13. Steady-state characterization of 88 dynamically-
independent local rules.

Topological Classifications of 

88 Equivalence Classes

8
Hyper 

Bernoulli-Shift 
Rules

1Period-3 Rules

10
Complex-

Bernoulli-Shift
Rules

30Bernoulli
-Shift Rules

13Period-2 Rules

26Period-1 Rules

NumberTopologically-
distinct Rules

τσ

Total           88

More precisely,

B
(
ΓT

(
N
)) ∆

= ∪
{
x ∈

∑
: ρn

N
(x) ∈ ΓT

}
(7)

where ρn
N

(x)
∆
= ρ1

N
◦ ρ1

N
◦ · · · ◦ ρ1

N
(x)

︸ ︷︷ ︸
n times

is the time-n map of N [Chua et al., 2005a] ρn
N

:

x0 �→ xn, where n depends in general on x.

Definition 2. Basin Trees ℑ(ΓT ). The set of all
bit strings which converges to a period-T orbit

ΓT

(
N
)
, excluding ΓT

(
N
)
, is called the basin trees

of ΓT

(
N
)
.

More precisely,

ℑ(ΓT )
∆
= B

(
ΓT

(
N
))
\ΓT

(
N
)

(8)

An example of a basin tree is shown in Fig. 3(g)
of [Chua et al., 2006] for rule 62 with L = 9. In
this case, ΓT = Γ1

(
62
)

= ♠0 , and

ℑ(ΓT ) = ℑ
(
Γ1

(
62
))

=
{ ♠73 , ♠85 , ✒✑

✓✏
146 , ✒✑

✓✏
149 , ✒✑

✓✏
165 , ✒✑

✓✏
169 ,

✒✑
✓✏
170 , ✒✑

✓✏
292 , ✒✑

✓✏
298 , ✒✑

✓✏
330 , ✒✑

✓✏
338 , ✒✑

✓✏
340 , ✒✑

✓✏
511
}

B
(
ΓT

(
62
)) ∆

= ℑ(Γ1) ∪ ♠0 (9)

Observe from Fig. 3(g) that the digraph of
ℑ
(
Γ1

(
62
))

is a directed tree from graph theory.
Another example of a basin tree is shown in

Fig. 6 of [Chua et al., 2006]. Consider the period-3
orbit

Γ3

(
62
) ∆

=
{ ♠3 , ♠38 , ♠61

}
(10)

in Fig. 6(a)-i. The basin tree of Γ3

(
62
)

is the set
of bit strings

ℑ(Γ3)
∆
=
{ ♠40 , ♠23 , ♠60 , ♠1 , ♠35 , ♠22

}
(11)

In this case, one can associate the basin tree ℑ(Γ3)
as two subtrees

{ ♠40
}

and { ♠23 , ♠60 , ♠1 , ♠35 , ♠22}

emerging from the period-3 orbit Γ3

(
62
)
, which is

analogous to a cluster of roots. For large L, a basin
tree in general is made of many topologically simi-
lar subtrees, such as Fig. 11 of [Chua et al., 2006].
In this case, we have a period-14 orbit

Γ( 62 ) =
{ ♠59 , ✒✑

✓✏
102 , ♠93 , ♠51 , ✒✑

✓✏
110 , ♠89 , ♠55 ,

✒✑
✓✏
108 , ♠91 , ♠54 , ✒✑

✓✏
109 , ♠27 , ✒✑

✓✏
118 , ♠77

}
(12)

and the basin tree ℑ
(
Γ14

(
62
))

of Γ14

(
62
)

is made
of seven subtrees having identical topologies.

2.2. Garden of Eden

Definition 3. Garden of Eden. A bit string

x = (x0 x1 x2 . . . xL−1)

is said to be a garden of Eden of a local rule N iff
its preimage is an empty set.

More precisely,4 a bit string x is a garden of
Eden of N iff it has no predecessors in the sense

4Under Definition 3, a fixed point x∗ of χ1

N
, i.e. a period-1 orbit, is not a garden of Eden of N because χ−1(x∗) = x∗.
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that there does not exist a bit string y such that
x = χ1

N
(y).

Many examples of gardens of Eden can be found
in [Chua et al., 2006]. In particular, all gardens of
Eden of 62 are identified by a pink color in Figs. 3,
6, 8, 9, 11–14, in [Chua et al., 2006]. Observe that
they are just the terminus of subtrees.

2.3. Isle of Eden

A cursory inspection of the basin of attractions of
the period-3 orbits Γ3

(
62
)

of rule 62 in Figs. 5(a)–
5(f) in [Chua et al., 2006] reveals that there are no
basin trees converging to any node (i.e. bit string)
belonging to these period-3 orbits! Such orbits are
indeed special, and except for rules 15 , 85 , 45 ,
105 , 150 , 154 , 170 , and 240 , they are isolated
period-T orbits which are buried amidst neighbor-
ing bit strings belonging to basin trees of other peri-
odic orbits. We will see in Part VIII that for large L,
these isolated period-T orbits could have extremely
long periods and hence are very, very hard to find,5

like well-hidden Easter eggs! Moreover, such rare
objects cannot exist in R

n in view of the Zubov–
Ura–Kimura Theorem [Garay & Hofbauer, 2003],
which implies that “no compact isolated invariant
sets in R

n can be an isle of Eden”. These objects
can be either isolated or dense, and are called Isles
of Eden in [Chua et al., 2005b] and [Chua et al.,
2006]. It’s time to give a formal definition.

Definition 4. Isle of Eden.
A bit string

x = (x0 x1 x2 · · · xL−1)

is said to be a period-n isle of Eden of a local rule
N iff its preimage under χn

N
is itself, where χn

N
is

the time-n characteristic function of N .
More precisely, x is a period-n isle of Eden of a

local rule N iff

χ−n
N

(x) = x (13)

Proposition 1. A bit string x is a period-n isle of
Eden of N ⇔ x belongs to a period-n orbit Γn

(
N
)

with an empty basin tree; i.e.

ℑ
(
Γn

(
N
))

= Ø (14)

when Ø denotes the empty set.

Proof. Follows directly from Definitions 2 and 4.
�

Corollary 1. A bit string x is a period-n isle
of Eden of N ⇔ the orbit through x is a
period-n orbit Γn

(
N
)

where each bit string x,

χ1
N

(x), χ2
N

(x), . . . , χn−1
N

(x) has a unique preimage.

Proof. Follows from Eq. (14) and Proposition 1.
�

Remarks

1. To avoid clutter, we will usually refer to all bit
strings belonging to the orbit of a period-n isle
of Eden also as an isle of Eden.

2. Every bit string belonging to a period-n isle of
Eden has exactly one incoming and one outgoing
bit string, for all n ≥ 2.

2.4. Gallery of basin tree diagrams

The collection of all period-n orbits Γn

(
N
)

of
all possible periods n = 1, 2, . . . and their asso-
ciated basin trees ℑ

(
Γn

(
N
))

of an L-bit cellu-

lar automata under local rule N is called a basin
tree diagram of local rule N . An examination of
such diagrams, even for a relatively small L, can
reveal certain characteristic qualitative behaviors of
the space-time patterns of many local rules. These
empirical characteristics can sometimes be proved
to be true in general, as will be illustrated for the
complex Bernoulli shift rules 105 and 150 in this
paper, and for the hyper Bernoulli shift rules 45
and 154 in Part VIII.

A gallery of such basin tree diagrams for the
ten complex Bernoulli shift rules listed in Table 11
is exhibited in Tables 14–23 for L = 3, 4, 5, 6, 7
and 8, respectively. Each table displays the peri-
odic orbits and their basin trees, where each bit
string is displayed in color along with its decimal
identification number, calculated from the decimal
equivalent of the binary bit string as in Fig. 6 of
[Chua et al., 2006]. For example, for L = 3, the two
binary bit strings and in Gallery
18-1 from Table 14 would be identified by the deci-
mal numbers6

1 • 22 + 0 • 21 + 0 • 20 = 4

5Every isolated long-period isle of Eden is a gem worth digging for. They would provide ideal havens for cryptographic systems.
Any one who discovers a long-period isle of Edens earns the right of naming it after himself for posterity reasons!
6Each page of the basin tree diagrams listed under Tables 14–23 will be called a gallery, and identified by a Gallery number
N − k, k = 1, 2, . . . , where N is the local rule number.
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and

1 • 22 + 1 • 21 + 0 • 20 = 6

respectively. These numbers are enclosed by small
circles, and are represented as nodes of a digraph
where a directed edge pointing from node ♠S1 to
node ♠S2 means that bit string S1 maps to bit string
S2 after one iteration under rule N .

For example, Gallery 18-1 shows the basin trees
ℑ
(
Γ1

(
18
))

=
{ ♠7 ; ♠2 ♠5 ; ♠4 , ♠3 ; ♠1 , ♠6 } con-

verging to a period-1 (fixed point) orbit Γ1

(
18
)

=
{ 0©}. The self-loop attached to node 0© means that
bit string 0© maps into itself, ad infinitum, thereby
implying 0© is a period-1 orbit.

Each sequence of nodes along each branch of
the tree ℑ

(
Γ1

(
18
))

depicts successive evolutions
over time. For example, the sequence 2© → 5© → 0©
translates into the space-time pattern shown in the
upper right-hand corner of Table 14-1. Similarly, the
sequence 4© → 3© → 0© translates into the space-
time pattern shown in the lower right-hand corner.

Observe that the first two rows in both space-
time patterns on the right of Gallery 18-1 represent
the transient phase of the dynamic evolution; they
correspond to nodes belonging to the basin tree7

ℑ
(
Γ1

(
18
))

. The next four rows in these two space-
time patterns correspond to the steady state, which
is a period-1 orbit in this case.

Whenever a basin tree ℑ
(
Γ1

(
18
))

is not empty,
the associated periodic orbit 0© in steady state is
called an attractor because the period-1 bit string 0©
attracts all orbits belonging to the tree ℑ

(
Γ1

(
18
))

.
We now extend this definition to period-n orbits.

Definition 5. Period-n attractor. A period-n orbit
Γn

(
N
)

of a local rule N is said to be a period-n
attractor iff it has a nonempty basin tree, i.e.

ℑ
(
Γn

(
N
))

�= Ø (15)

It follows from Proposition 1 that every period-
n orbit of a local rule N is either an attrac-
tor, or an isle of Eden. Although a period-n orbit
Γn

(
N
)

of N contains n distinct bit strings

x, χ1
N

(x), χ2
N

(x), . . . χn−1
N

(x), we will usually refer

to each bit string x or χk
N

(x), k = 1, 2, . . . , n − 1,
as a period-n attractor, or a period-n isle of Eden,
respectively, to avoid clutter. In other words, a
period-n attractor or isle of Eden can mean either
any bit string in a “ring” orbit, or to the collection
of all “n” bit strings in the “ring”.

Also listed on top of each gallery is the robust-
ness coefficient

ρi =
ni

n
(∑L

) ∆
=

ni

2L
(16)

of the ith period-n orbit (n is a generic symbol
denoting the actual period of each periodic orbit)

where n(
∑L) denotes the total number of all bit

strings in the symbolic state space
∑L composed

of all binary bit strings of length L, and where ni

denotes the total number of nodes (i.e. bit strings)
in the basin of attraction of the ith period-n orbit,
where i = 1, 2, . . . ,m, and m is the total number of
period-n orbits. In Gallery 18-1, m = 1 since there
is only “one” attractor when L = 3. Hence, i = 1 in
Gallery 18-1. In the basin tree ℑ

(
Γ1

(
18
))

shown in
Gallery 18-1, there are all together eight nodes and
hence ni = 8. Since L = 3, we have ρ1 = 8/23 = 1.

The robustness coefficient ρi in Eq. (16) mea-
sures the percentage of initial bit strings which con-
verge to the ith attractor in question. In this case
ρi = ρ1 = 1 because there is only one attractor in
this example and hence all orbits must converge to
0©. In general, 0 < ρi ≤ 1, where ρi = 1 correspond
to maximum robustness.

2.4.1. Highlights from Rule 18

Gallery 18-1 : L = 3, n
(∑3

)
= 8

There are seven basin-tree strings, all of which
converge to the global period-1 attractor { 0©}. Hence
the period-1 attractor 0© has maximum robustness
with ρ1 = 1.

Gallery 18-2 : L = 4, n
(∑4

)
= 16

(a) There is a period-1 attractor { 0©} with robust-
ness coefficient ρ1 = 0.75.

(b) There are two period-2 isles of Eden { ♠3 , ♠12},
and { ♠6 , ♠9 } with a combined robustness coef-
ficient ρ2 = 0.25. The dynamics on each isle of
Eden is a Bernoulli στ -shift with σ1 = 2, τ = 1,
or σ2 = −2, τ = 1, as depicted in the φn �→ φn−1

time-1 map in Gallery 18-2. Here, the red lines have

7Note that our definition of a basin tree ℑ
`

Γn

`

N
´´

does not include bit strings belonging to the associated period-n orbit

Γn

`

N
´

.
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slope equal to 2σ1 = 4, and the blue lines have slope
equal to 2σ2 = 1/4. Both sets of parallel lines have
a positive slope, implying that β > 0.

Observe that the two period-2 “red” dots cor-
respond to the decimal representation

φ =
L−1∑

i=0

2−(i+1)xi (17)

(defined in Eq. (2) of [Chua et al., 2006]) of bit
string ♠3 and ♠12 of the isle of Eden { ♠3 , ♠12} on
the left; namely,

♠3 �→ 1 • 2−3 + 1 • 2−4 = 0.1875 (left red dot)

♠12 �→ 1 • 2−1 + 1 • 2−2 = 0.75 (right red dot)

Observe that the two red dots lie at the intersection
of corresponding pairs of red and blue “Bernoulli”
lines, thereby confirming that the dynamics on this
isle of Eden can be described by a left shift of two
bits (σ = 2) or, equivalently, by a right shift of two
bits (σ = −2), per iteration (τ = 1), as extensively
illustrated in [Chua et al., 2005a] and [Chua et al.,
2006].

Gallery 18-3, 18-4 : L = 5, n
(∑5

)
= 32

(a) There is a period-1 attractor { 0©} with robust-
ness coefficient ρ1 = 0.375.

(b) There are five period-2 attractors with a com-
bined robustness coefficient ρ2 = 0.625. The
dynamics on each attractor is a Bernoulli στ -shift
with σ1 = 5, τ = 2, or σ2 = −5, τ = 2, as depicted
in the φn−2 �→ φn time-2 map.

The time-2 map φn−2 �→ φn consists of β =
2σ1 = 32 parallel red Bernoulli lines with slope
2σ1 = 32, or equivalently, to β = 2|−σ2| = 32 par-
allel blue Bernoulli lines with slope 2σ2 = 1/32.
Observe that the two red dots now fall on the diag-
onal of the time-2 map, as expected of period-2
orbits. Again, β > 0 because the slope of each red
(or blue) Bernoulli line is positive.

For ease of visualization, we have displayed the
space-time pattern using bit strings with double
the length, namely, 2L = 10, which corresponds
to shifting around the period-2 ring twice. Note
that the decimal code of the 5-bit basin tree ♠16
translates into the corresponding 10-bit string

✒✑
✓✏
528 shown in Gallery 18-4.

Observe that all basin subtrees contain only one
bit string, implying that all basin trees of rule 18
are gardens of Eden, when L = 5.

Gallery 18-5, 18-6 : L = 6, n
(∑6

)
= 64

(a) There is a period-1 attractor { 0©} with robust-
ness coefficient ρ1 = 0.71875. Note that there are
three blue lines joining bit string 0© at three loca-
tions in the basin tree diagram. This is done to avoid
clutter. The reader should interpret all three nodes
labeled 0© as representing the same node. Observe
also from the basin tree diagram that the longest
transient regime is four iterations, such as the one
depicted in the space-time pattern originating from
string ♠30 in Gallery 18-5. The shortest transient
regime is one iteration; they correspond to the 15
gardens of Eden in the three “translated” subtrees
joined by blue lines.

(b) There are three period-2 attractors with a com-
bined robustness coefficient ρ2 = 0.28125. The
dynamics on each attractor is a Bernoulli στ -shift
with σ1 = 3, τ = 1, or σ2 = −3, τ = 1. In this case,
all basin trees are gardens of Eden.

Gallery 18-7 : L = 7, n
(∑7

)
= 128

There are 127 basin tree strings, all of which
converge to the global period-1 attractor { 0©}. It
follows that we have maximum robustness with
ρ1 = 1, as in Gallery 18-1.

Gallery 18-8, 18-9 : L = 8, n
(∑8

)
= 256

(a) There is a period-1 attractor { 0©} with robust-
ness coefficient ρ1 = 0.515625. The transient regime
ranges from one iteration (corresponding to sub-
trees composed of garden of Edens) to five itera-
tions, as illustrated in a typical space-time diagram
starting from bit string ♠78 in Gallery 18-8.

(b) There are four period-6 attractors with a com-
bined robustness coefficient ρ2 = 0.46875. The
dynamics on each attractor is a Bernoulli στ -shift
with σ1 = 4, τ = 3, or σ2 = −4, τ = 3.

The time-3 map φn−3 �→ φn shows β = 24 = 16
parallel Bernoulli “red” lines with slope 2σ1 = 16, or
equivalently, 16 parallel Bernoulli “blue” lines with
slope 2σ2 = 1/16. Observe that there are six red
dots in the time-3 map, implying a period-6 attrac-
tor. Again, β > 0 because both red and blue lines
have a positive slope.
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Fig. 2. Truth table, Boolean cube, Difference Equation, and space-time pattern of local rule 90 .

3. Global Analysis of Local Rule 90

The truth table, Boolean cube, and “Difference
Equation” defining the local rule 90 along with a
space-time pattern (with a single red-pixel initial
state) exhibited in Table 5 of [Chua et al., 2003] is
reproduced in Fig. 2 for the reader’s convenience.
For this paper, it is more instructive to recast the
Difference Equation defining 90 into an equivalent
difference equation involving only a mod 2 addition
⊕ (defined in Table 24).

Substituting ui = 2xi−1 from Eq. (4) of [Chua
et al., 2005a] for ui in the Difference Equation for
90 , we obtain

2xt+1
i − 1 = sgn[1 − |2xt

i−1 + 2xt
i+1 − 2|]

= sgn[1 − 2|xt
i−1 + xt

i+1 − 1|] (18)

Table 24. Table defining8 xi ⊕ xj
∆
=

xi XOR xj .

011

100

10

Simplifying Eq. (18) using Table 24, we obtain the
following equivalent Difference Equation:

Rule

90

xt+1
i = (xt

i−1 + xt
i+1) mod (2)

= xt
i−1 ⊕ xt

i+1

(19)

8The mod 2 operation xi ⊕xj between two binary variables is also called an exclusive OR operation in mathematical logic, and

denoted by xi ⊕ xj
∆
= xi XOR xj .
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3.1. Ru1e 90 has no Isle of Eden

A cursory glimpse at the basin-tree diagram of rule
90 in Table 18 reveals that all bit strings converge
to an attractor for 3 ≤ L ≤ 8. We now prove this
property is true for all L.

Theorem 1. Rule 90 does not have any isle of
Eden.

Proof. It follows from Eq. (19) that an arbitrary
bit string

xt = (xt
0 xt

1 xt
2 · · · xt

L−1) (20)

at time “t” is linearly related (mod 2) to its image

xt+1 = (xt+1
0 xt+1

1 xt+1
2 · · · xt+1

L−1
) (21)

at time “t+1” via an L×L circulant matrix [Davis,
1979] M

(
90
)
, henceforth called the local time-1

state transition matrix:




xt+1
0

xt+1
1

xt+1
2

xt+1
3

...

xt+1
L−2

xt+1
L−1




︸ ︷︷ ︸
xt+1

=




· · ·

· · ·

· · ·

· · ·

...
. . .

...

· · ·

· · ·

· · ·




︸ ︷︷ ︸
M
(

90
)




xt
0

xt
1

xt
2

xt
3

...

xt
L−2

xt
L−1




︸ ︷︷ ︸
xt

(22)

where addition is mod (2) sum +©.
Note the diagonal elements of the circulant

matrix M
(
90
)

are all equal to zero. Observe also
the elements directly below (resp. above) the diag-
onal of M

(
90
)

are all equal to one. All other ele-
ments are zero, except for the top rightmost ele-
ment, and the bottom leftmost elements, which are
equal to one, respectively. It follows from this spe-
cial structure that the leftmost column of M

(
90
)

is equal to the mod 2 sum of the remaining L-1
columns. Since the columns of M

(
90
)

are not lin-
early independent, mod 2, it follows that M does not
have an inverse. Since the bit string xt+1 on the left
side of Eq. (19) does not have a unique preimage, it

follows that the bit string xt is not an isle of Eden
of 90 .

Since xt is an arbitrary bit string, it follows that
90 cannot possess an isle of Eden for any L. �

3.2. Period of Rule 90 grows with L

Since rule 90 does not have isles of Eden, all bit
strings of 90 must converge to period-T attractors
whose period “T” is bounded by

1 ≤ T ≤ Tmax (23)

where Tmax = 2L as defined in Eq. (6). As an exam-
ple, the period T of an attractor of 90 is listed
in Table 25 for 3 ≤ L ≤ 100. Observe that the
period T for some L (e.g. L = 47, 49, 53, etc.) is not
listed in Table 25 because it is so large that it had
exceeded the maximum simulation time allocated.
A bit string belonging to one of the many period-T
attractors for 3 ≤ L ≤ 25 is given in Table 26. For
example, the bit string listed for L = 3 corresponds
to the third period-1 attractor (out of 4) listed in
Gallery 90-1 of Table 18. The bit string listed for
L = 5 corresponds to node ♠6 of Gallery 90-3 of
Table 18, out of five period-3 attractors. The bit
string listed for L = 6 corresponds to node ♠30 in
the fifth attractor shown on the left of Gallery 90-5.
The bit string listed for L = 7 corresponds to node♠68 in the top left attractor of 90 shown on the top
left of Gallery 90-7.

As examination of Table 25 shows that unlike
the period-1 and period-2 local rules listed in Tables
7 and 8, and the period-3 local role 62 , which have
a relatively small period, and independent of L, the
period T of rule 90 can increase at an exponential
rate as a function of L, as depicted in Fig. 3. Such
exponential growth of T as a function of L is a sig-
nature of all complex Bernoulli rules in Table 11,
and hyper-Bernoulli rules in Table 12.

In spite of the very large values T of some
period-T attractors of 90 , these periods are usually
many orders of magnitude smaller than the upper
bound Tmax listed in Table 27 for 3 ≤ L ≤ 85.9

There exists, however, period T attractors whose
period T approaches the upper bound Tmax. For
example, Table 28 shows a period-504 bit string of
an isle of Eden of rule 45 for L = 9, which is almost
as large as Tmax = 29 = 512! This example suggests
that some of the empty slots in Tables 25 may never
be filled.10

9It would take at least 105, 104, 783, 572 years for a 1 GHz PC to simulate all Tmax = 2L distinct bit strings!
10Rule 45 will be studied in Part VIII where it is proved that all bit strings are isles of Eden if, and only if L is an odd number.
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Table 25. Period “T” of attractors of local rule 90 for 3 ≤ L ≤ 100.

T = 1220

T = 51119

T = 1418

T = 1517

T = 116

T = 1515

T = 1414

T = 6313

T = 412

T = 3111

T = 610

T = 79

T = 18

T = 77

T = 26

T = 35

T = 14

T = 13

2

1

AttractorL

T = 2440

T = 409539

T = 102238

T = 8738137

T = 2836

T = 409535

T = 3034

T = 3133

T = 132

T = 3131

T = 3030

T = 1638329

T = 2828

T = 51127

T = 12626

T = 102325

T = 824

T = 204723

T = 6222

T = 6321

AttractorL

T = 6060

59

T = 3276658

T = 51157

T = 5656

55

T = 102254

53

T = 25252

T = 25551

T = 204650

49

T = 1648

47

T = 409446

T = 409545

T = 12444

T = 12743

T = 12642

T = 102341

AttractorL

T = 4880

79

T = 819078

77

T = 204476

75

T = 17476274

T = 51173

T = 5672

71

T = 819070

69

T = 6068

67

T = 6266

T = 6365

T = 164

T = 6363

T = 6262

61

AttractorL

T = 4092100

T = 3276799

98

97

T = 3296

95

94

T = 102393

T = 818892

T = 409591

T = 819090

T = 204789

T = 24888

87

T = 25486

T = 25585

T = 25284

83

T = 204682

81

AttractorL

3.3. Global state-transition formula

for rule 90

The state transition formula given in Fig. 2 and
Eq. (19) for rule 90 is local in time in the
sense that it generates from a bit string xt =
(xt

0 xt
1 xt

2 · · · xt
L−1) at time “t” the next bit string

xt+1 = (xt+1
0 xt+1

1 xt+1
2 · · · xt+1

L−1) at time
“t + 1”. Our next theorem gives an explicit formula
which is global in time in the sense that it generates
a bit string xn

0 = (xn
0 xn

1 xn
2 · · · xn

L−1) at any
future time n > t.

Theorem 2. Global State-Transition Formula for
90 .

Each pixel xn
i at time n > t is determined from

“n + 1” initial pixels x0
i−n, x0

i−n+2, . . . , x
0
i+n−2, x

0
i+n

at t = 0 via the binomial formula.

xn
i =

n∑

k=0

n!

k!(n − k)!
• x0

i−n+2k mod (2) (24)

Proof. Apply mathematical induction as follow:

(a) n = 1
Applying n = 1 in Eq. (24), we obtain11

x1
i = x0

i−1 + x0
i+1 mod (2) (25)

which is Eq. (19) for t = 0.

11Recall the factorial notation 0!
∆
= 1.



2972 L. O. Chua et al.

Table 26. Bit strings for generating a period-T attractor of Rule 90 .

L T A  bit  string  on  a  Period-T  attractor

3 1
4 1
5 3
6 2
7 7
8 1
9 7

10 6
11 31
12 4
13 63
14 14
15 15
16 1
17 15
18 14
19 511
20 12
21 63
22 62
23 2047
24 8
25 1023

Legend :
- attractor  period-T
- attractors

with T > 10
6

  2
1 10 10

  2

  3

  4

  5

  6

1

10

10

10

10

10

10

L = I + 1

T

Fig. 3. Dependence of the period “T” of attractor of rule 90 as a function of L (in logarithmic scale).
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Table 27. The upper bound Tmax of the period “T” as
function of L for 3 ≤ L ≤ 85.

3868562622766813359059763285

6553616

3276815

1638414

819213

409612

204811

102410

5129

2568

1287

646

325

164

83

2L
maxT =

.

.

.

.

.

.

L

(b) Assume Eq. (24) is true for n = m (induction
hypothesis); namely,

xm
i =

m∑

k=0

m!

k!(m − k)!
• x0

i−m+2k mod (2) (26)

We must show that incrementing “m” to “m + 1”
in Eq. (26) gives Eq. (24) with n = m + 1.

Substituting Eq. (26) to Eq. (19), we obtain

xm+1
i = xm

i−1 + xm
i+1 mod (2)

=
m∑

k=0

m!

k!(m − k)!
x0

(i−1)−m+2k

+
m∑

k=0

m!

k!(m − k)!
x0

(i+1)−m+2k mod (2)

(27)

Changing symbol “m” on the right-hand side of
Eq. (27) to m′ − 1 gives

m′−1∑

k=0

(m′ − 1)!

k!(m′ − 1 − k)!
x0

i−m′+2k

+
m′−1∑

k=0

(m′ − 1)!

k!(m′ − 1 − k)!
x0

i−m′+2k+2 mod (2)

(28)

Changing symbol k in the second summation terms
in Eq. (28) to k′ − 1 gives

m′−1∑

k=0

(m′ − 1)!

k!(m′ − 1 − k)!
x0

i−m′+2k

+
m′∑

k′=1

(m′ − 1)!

(k′ − 1)!(m′ − k′)!
x0

i−m′+2k′ (29)

Changing the dummy index k′ in Eq. (29) back to
k, we obtain
[

m′−1∑

k=0

(m′ − 1)!

k!(m′ − 1 − k)!
+

m′∑

k=1

(m′ − 1)!

(k − 1)!(m′ − k)!

]

•x0
i−m′+2k (30)

The terms inside the bracket can be simplified
by observing for k = 1 to m′ − 1, we have

(m′ − 1)!

k!(m′ − 1 − k)!
+

(m′ − 1)!

(k − 1)!(m′ − k)!

=
(m′ − 1)!

(k − 1)!(m′ − 1 − k)!

[
1

k
+

1

(m′ − k)

]

=
(m′ − 1)!

(k − 1)!(m′ − 1 − k)!

[
(m′ − k) + k

k(m′ − k)

]

=
m′!

k!(m′ − k)!
(31)

Moreover, when k = 0 and k = m′, Eq. (31)
gives the same value as the first term on the left
of Eq. (30), and the last term on the right of
Eq. (30), respectively. Substituting back m = m′−1
in Eq. (31), and making use of Eqs. (27)–(31), we
obtain

xm+1
i =

m+1∑

k=0

(m + 1)!

k!(m + 1 − k)!
• x0

i−(m+1)+2k

mod (2) (32)

which is identical to incrementing m in the induc-
tion hypothesis (26) to m + 1. �

Table 29 gives the global state-transition for-
mula (24) of rule 90 for n = 1, 2, 3, 4 and 5.

Observe that the coefficients
(

n

k

)
for each time

n ≥ 1 is identical to the binomial coefficients in
the expansion of (x + y)n, as listed in Table 30
for n = 1, 2, . . . , 11. These binomial coefficients are
repackaged in Table 31 into the form of a Pascal’s
triangle where each coefficient under the pyramid
is obtained by adding adjacent left and right coeffi-
cients above it.
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Table 29. Global state-transition formula for rule 90 for 1 ≤ n ≤ 5.

Table 30. Table of
`n

k

´ ∆
= n!/k! (n − k)!, n = 1, 2, . . . , 11, k = 0, 1, 2, . . . , 11.

1

11

11551653304624623301655511111

1

10

10

1

9

45

9

1

8

120

36

8

1

7

2102522101204510110

841261268436919

2856705628818

721353521717

16152015616

151010515

146414

13313

1212

111

6543210
n

k
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Table 31. Binomial coefficients
`

n
k

´

repackaged into a Pas-
cal’s triangle.

Pascal’s Triangle
1

1     1
1      2 1

1     3   3     1
1  4   6  4 1

1     5     10 10 5    1
1    6 15     20 15    6 1

1  7     21     35  35 21    7    1
1    8     28     56    70     56    28    81

...

Taking the “mod 2 equivalent” of each coeffi-
cient in Table 29, we obtain the more compact but
equivalent expansion in Table 32 where all nonzero
terms correspond to those in Table 29 with “odd
number ” coefficients. The equivalent mod 2 coef-
ficients are repackaged in Table 33. Observe that
Table 33 can be obtained from Table 31 by replacing
each odd (respectively, even) coefficient in Table 31
by a one (respectively, a zero). If we fill in the miss-
ing slot in each row of the mod 2 Pascal’s triangle,
we would obtain the pyramidal “fractal” space-time
pattern of rule 90 in Table 34, which is identical

Table 32. Compact global state-transition formula for rule 90 for 1 ≤ n ≤ 5.

to that shown in the bottom of Fig. 2, where the
initial configuration consists of a single red bit at
the center, as in [Wolfram, 2002].

Example 1. Table 35 shows the space-time pattern
obtained from the global state-transition formula
of rule 90 in (a) when the initial configuration
consists of a single red bit at the center. The
corresponding pattern obtained from the local state-
transition formula is shown in (b). They are iden-
tical, as expected. The minor differences in the
graphics and color are due to the differences in the
softwares used to generate these patterns.

Example 2. Table 36 shows the corresponding
results when the initial configuration consists of a
string of random bits.

3.4. Periodicity constraints of

Rule 90

Theorem 1 implies that all bit strings of rule 90
must converge to a period-T attractor, where T ≤
Tmax ≤ 2L. We will prove in this subsection that

for finite length L
∆
= I + 1, the period T must

satisfy certain constraints. Such periodicity con-
straints are useful on many occasions, such as ver-
ifying whether certain periodic orbit can exist, or
to generate new periodic orbits, etc. The proof of
many of these results depend on the following easily
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Table 33. Mod 2 binomial coefficients
` n

k

´

repackaged into
a mod 2 Pascal’s triangle.

Mod 2 Pascal’s Triangle

...

1
1 1

1  0 1
1     1   1     1

1  0 0   0 1
1     1      0 0 1     1

1   0 1     0 1     0 1
1  1      1    1      1      1      1     1

1     0 0       0      0       0     0      01

verifiable identities:

Binomial Coefficient Lemma. If n = 2m, where
m ≥ 2, then the following identities hold:

(i)
(

n − 1

k

)
= 1 mod (2), for k = 0, 1, 2, . . . , n − 1

(33)

(ii)
(

n

k

)
=

{
0 mod (2), for k = 1, 2, . . . , n − 1
1 mod (2), for k = 0, n

(34)

Table 34. Space-time pattern of the Pascal triangle fractal generated by rule 90 .

(iii)
(

n + 1

k

)
=

{
0 mod (2), for k = 2, 3, . . . , n − 1
1 mod (2), for k = 0, 1, n, n + 1

(35)

where
(

n

k

)
∆
=

n!

k!(n − k)!
(36)

Theorem 3. Periodicity Condition: L = 2m.
For L = 2m, m = 2, 3, 4, . . . , rule 90 has a

global period-1 attractor Γ; namely,

x(Γ) = (0 0 0 · · · 0)︸ ︷︷ ︸
L=2m

(37)

All bit strings not belonging to the attractor Γ con-
verge to Γ in at most 2m−1 iterations.

Proof. Let n = 2m−1 in the global state-transition
formula (24). It follows from Eqs. (33) and (36) that

n!

k!(n − k)!
mod (2)

=

{
0, for k = 1, 2, . . . , n − 1

1, for k = 0, n = 2m−1 (38)

It follows from Eq. (38) and the global state-
transition formula (24) that xn

i contains only
two nonzero terms; namely, the leftmost and the
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Table 35. Space-time pattern of the rule 90 with red central bit initial configuration: (a) from
global state-transition formula; (b) from local state-transition formula.

mod(2)

90

x       =i
n + 1 x      +  xi - 1 i + 1

n n mod(2)
90
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Table 36. Space-time pattern of the rule 90 obtained from random initial state generated
by: (a) global state-transition formula; (b) local state-transition formula.

90 mod(2)

90 x       =i
n + 1 x      +  xi - 1 i + 1

n n mod(2)

rightmost terms. Hence,

xn
i = x0

i−n + x0
i+n mod (2) (39)

where n = 2m−1. Substituting i = n = 2m−1 in
Eq. (39), we obtain

xn
i = x0

n−n + x0
n+n mod (2)

= x0
0 + x0

2n mod (2)

= x0
0 + x0

2m mod (2)

= x0
0 + x0

L mod (2)

= 2x0 mod (2)

= 0 (40)

because x0
0 = xL.

Since x0
i is arbitrary, it follows that all bit

strings must converge to Eq. (7) in at most 2m−1

iterations. �

Corollary to Theorem 2.
A bit string

x0 = (x0
0 x0

1 x0
2 · · · x0

L−1) (41)

of length L = I + 1 (under periodic boundary
condition) is a period-n attractor of local rule 90
if, and only if, the periodicity condition

xn
imod(L) = x0

i

=
n∑

k=0

n!

k!(n − k)!

•x0
((i−n+2k) mod(L)) mod (2)

(42)

is satisfied for all i.

Proof. Follows directly from Theorem 2 and the
periodic boundary condition. �

The periodicity constraint equation (42) is
applicable to any period-n attractor of rule 90 .
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The “mod (L)” operation attached to the subscript
index of x0 is just a mathematically precise
algorithm for implementing the periodic bound-
ary conditions. It is also mathematically equiva-
lent to concatenating replicas of the L-bit string
x0 x1 x2 · · · xI ad infinitum; namely,

· · · x0 x1 x2 · · · xI︸ ︷︷ ︸
L bits

x0 x1 x2 · · · xI︸ ︷︷ ︸
L bits

x0 x1 x2 · · · xI︸ ︷︷ ︸
L bits

· · ·

(43)

where L = I + 1.
In the special case where

n = 2m − 1 (44)

all binomial coefficients in Eq. (42) are equal to
unity, in view of the Binomial Coefficient Lemma;
namely,

n!

k!(n − k)!
mod (2) = 1, k = 0, 1, 2, . . . , n (45)

Equation (45) is obtained by substituting n + 1 =
2m from Eq. (44) in place of n in Eq. (33):
(

(n + 1) − 1

k

)
= 1 mod (2), k = 0, 1, 2, . . . , n

(46)

Substituting Eq. (46) into Eq. (42), we obtain the
following simplified periodicity constraint:

Valid if

n = 2m − 1

xn
imod(L)

= x0
i

=
2m−1∑

k=0

x0
((i−n+2k)mod(L)) mod (2)

for all i

(47)

If we impose the additional constraint L = n =
2m−1, then we obtain the following simple method
for finding period-(2m − 1) attractors:

Theorem 4. Periodicity Condition: L = 2m − 1.
Rule 90 has a period-n attractor where n = 2m−1
and L = 2m − 1 if, and only if,

Valid for

n = 2m − 1

L = 2m − 1

L−1∑

i=0

x0
i mod (2) = 0 (48)

Proof. Let us list all terms from Eq. (47) as follows:

x0
i mod(L) = x0(

(i−n) mod(L)
) + x0(

(i−n+2) mod(L)
)

+ · · · + x0
((i+n−2) mod(L))

+ x0
((i+n)mod(L)) mod (2) (49)

Since “i” is an arbitrary index in Eq. (49), let it be
“n”. Substituting i = n in Eq. (49), we obtain

x0
0 = x0

0 + x0
2 + · · · + x0

n−1︸ ︷︷ ︸
n−1=2m−2<L

+x0
((n+1) mod(L))

+ · · · + x0
((2n−2) mod(L)) + x0

((2n) mod(L))

mod (2) (50)

Observe next that for n = L = 2m − 1, we have

(2n) mod (L) = 0, ((2n − 2) mod (L)) = L − 2,

((n + 1) mod (L)) = 1.

Observe also that L = 2m − 1 implies that L − 2,
L − 4, etc. are odd numbers. Substituting these
mod (L) equivalent indices into Eq. (50), we obtain

x0
0 = x0

0 + x0
2 + · · · + x0

L−1 + x0
1 + x0

3

+ · · · + x0
L−2 + x0

0 mod (2) (51)

Observe that whereas the first x0
0 on the right-hand

side of Eq. (51) comes from the corresponding first
term of Eq. (50), the last x0

0 of Eq. (51) comes from
the last bit x0

((2n) mod(L)) = x0
0 of Eq. (50). Rear-

ranging the terms in increasing subscript order in
Eq. (51), we obtain

x0
0 = x0

0 + x0
0 + x0

1 + x0
2 + · · · + x0

L−2

+ x0
L−1 mod (2) (52)

Substituting (x0
0 + x0

0) mod (2) = 0 in Eq. (52), we
obtain

x0
0 = x0

1 + x0
2 + x0

3 + · · · + x0
L−2

+ x0
L−1 mod (2) (53)

By adding the bit x0
0 to both sides of Eq. (53), we

obtain

x0
0 + x0

0︸ ︷︷ ︸
0mod(2)

= x0
0 + x0

1 + x0
2 + · · · + x0

L−2

+ x0
L−1 mod (2) (54)

It follows from Eq. (54) that

L−1∑

i=0

x0
i mod (2) = 0 (55)

�

Our next theorem shows that the same peri-
odicity condition in Eq. (45) of Theorem 4 also
holds for a different L = 2m + 1 but for the same
n = 2m − 1.
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Theorem 5. Periodicity Condition: L = 2m + 1.
Rule 90 has a period-n attractor where n = 2m−1
and L = 2m + 1 if, and only if,

Valid for

n = 2m − 1

L = 2m + 1

L−1∑

i=0

x0
i mod (2) = 0 (56)

Proof. Since n = 2m − 1 remains the same as in
Theorem 4, Eqs. (47) and (49) remain unchanged.
Substituting i = n in Eq. (49), we obtain12

x0
0 = x0

0 + x0
2 + · · · + x0

n−1 + x0
n+1︸ ︷︷ ︸

n+1=2m<L

+ x0
((n+3) mod(L)) + · · ·

+ x0
((2n−2) mod(L))

+ x0
((2n) mod(L)) mod (2) (57)

Observe next that for L = 2m+1, we have L = n+2.
Hence, unlike in Eq. (51) we must now replace L in
mod (L) by n + 2 to obtain (2n mod (n + 2)) =
n − 2, ((2n − 2) mod (n + 2)) = n − 4, . . . , ((n +
3) mod (n + 2)) = 1. Equation (57) now reduces to

x0
0 = x0

0 + x0
2 + · · · + x0

n−1 + x0
n+1 + x0

1 + x0
3

+ · · · + x0
n−4 + x0

n−2 mod (2)

= x0
0 + x0

1 + x0
2 + x0

3 + · · · + x0
n−2 + x0

n−1

+ x0
n+1 mod (2) (58)

Observe that the term x0
n is missing from Eq. (58).

Replacing n by n = L−2 in Eq. (58) and by choos-
ing i = L − 2 in Eq. (47), we obtain

x0
L−2 = x0

0 + x0
1 + x0

2 + · · · + x0
L−4

+ x0
L−3 + x0

L−1 mod (2) (59)

Adding the term x0
L−2 = x0

I−1 to both sides of
Eq. (59), we obtain

x0
L−2 + x0

L−2︸ ︷︷ ︸
0mod(2)

= x0
0 + x0

1 + x0
2 + · · · + x0

L−4 + x0
L−3

+ x0
L−2 + x0

L−1 mod (2) (60)

Hence, we have

L−1∑

i=0

x0
i mod (2) = 0

�

Corollary 1 to Theorems 4 and 5. The total
number of red pixels in the period 2m − 1 attractors
of Theorems 4 and 5, must be an even number.

Corollary 2 to Theorem 3, 4, 5. Theorems 3–5
hold also for infinite bit strings (L → ∞).

Recap. Theorems 3–5 give necessary and sufficient
conditions for rule 90 to have the following period-
n attractors:

Theorem 3

n = 1 and L = 2m

Theorem 4

n = 2m − 1 and L = 2m − 1

Theorem 5

n = 2m − 1 and L = 2m + 1

As illustrations of the applications of these ana-
lytically derived results, let us examine the basin
tree diagrams exhibited in Tables 14–23.

Applications of Theorem 3

1. m = 2, L = 2m = 4

Gallery 90-2 shows all bit strings converge to the
unique global attractor 0©, as predicted by Theo-
rem 3.

2. m = 3, L = 2m = 8

Gallery 90-9 shows all bit strings converge to the
global attractor 0©, as predicted by Theorem 3.

Applications of Theorem 4

m = 3, n = 2m − 1 = 7, L = 2m − 1 = 7

Galleries 90-6, 90-7 and 90-8 show nine period-7
attractors as predicted. Observe the number of red
pixels in all attractors is an even number, as pre-
dicted. The only other attractor is a period-1 attrac-
tor, 0©, which qualifies also as a period-7 attractor,
with “0” red pixels, an even number, as predicted.

Applications of Theorem 5

m = 2, n = 2m − 1 = 3, L = 2m + 1 = 5

Gallery 90-3 shows five period-3 attractors, all have
only orbits with an even number of red pixels.
The only other attractor is a period-1 attractor, 0©,
which qualifies also as a period-3 attractor. In this
case, there are no red bits, which is an even number,
as predicted.

12Observe that unlike Eq. (50) where n − 1 = 2m − 2 < L, we now have n + 1 = 2m < 1.
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Fig. 4. Truth table, Boolean cube, difference equation, and space-time pattern of local rule 150 .

4. Global Analysis of Local Rules

150 and 105

The truth table, Boolean cube, and “Difference
Equation” defining the local rules 150 and 105
along with a space-time pattern (with a single red-
pixel initial state) exhibited in Table 5 of [Chua
et al., 2003] is, reproduced in Figs. 4 and 5, respec-
tively, for the readers convenience. For this paper,
it is more instructive to recast the Difference Equa-
tions defining 150 and 105 as follow:

Rule

150
xt+1

i = xt
i−1 ⊕ xt

i ⊕ xt
i+1 (61)

Rule

105
xt+1

i = xt
i−1 ⊕ xt

i ⊕ xt
i+1 (62)

where ⊕ is the mod 2 sum defined in Table 24,
and the bar on top denotes complementation. The
alert reader will notice that we list 150 ahead of
105 , counter to our style. This is done to avoid
clutter where formula (61) for 150 is clearly sim-
pler than formula (62) for 105 . Yet, as will be
shown in Sec. 4.3, these two rules are related via a
global alternating transformation T̃ where 105 =

T̃ ( 150 ), and 150 = T̃
−1

( 105 ), so that it suffices
to study only 150 .13

13Unlike the Viererqruppe transformations T †, T and T ∗ in [Chua et al., 2004], which are defined for all 256 rules, the
alternating transformation in Sec. 4.2 is defined only for rules 150 and 105 .
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Fig. 5. Truth table, Boolean cube, difference equation, and space-time pattern of local rule 105 .

4.1. Rules 150 and 105 are composed

of Isles of Eden if L is not

divisible by 3

Theorem 6. Every bit string of rules 150 and
105 is an Isle of Eden if, and only if, L/3 is not
an Integer.

Proof. We will present proof only for rule 150
since rules 150 and 105 are globally quasi-

equivalent via the alternating transformation T̃ to
be defined in Sec. 4.3.

Just like rule 90 , each arbitrary bit string xt

at time t maps into xt+1 at time t + 1 of rule 150

via an L × L circulant local time-1 state transition
matrix; namely,



xt+1
0

xt+1
1

xt+1
2

...

xt+1
L−2

xt+1
L−1




︸ ︷︷ ︸
xt+1

=




· · ·

· · ·

· · ·

...
. . .

...

· · ·

· · ·




︸ ︷︷ ︸
M
(
150

)




xt
0

xt
1

xt
2

...

xt
L−2

xt
L−1




︸ ︷︷ ︸
xt

mod (2) (63)
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Here, the addition operation in the matrix multipli-
cation is mod (2) sum ⊕. It is easy to verify that the
above L × L matrix M

(
150

)
can be decomposed

into the sum of three matrices

M
(

150
)

= M0 + M + ML−1 (64)

where M0 = 1 is an L × L identity matrix,

ML−1 = M • M • · · ·M︸ ︷︷ ︸
L−1 times

(65)

and

M
∆
=




0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

...
...

0 0 0 · · · 0

0 0 · · · 0 0




(66)

It follows from well-known results on eigenvalues of
circulant matrices [Davis, 1979] that the eigenval-
ues of M

(
150

)
in Eq. (64) are given by the sum of

the eigenvalues of M0, M and ML−1, respectively;
namely,

λk = 1 + exp

(
2πi

k

L

)
+ exp

(
2πi(L − 1)

k

L

)
(67)

where k = 0, 1, . . . , L − 1.
It is easily verified that if L ≡ 0 mod (3), i.e.

if L is divisible by 3, then there must exist some
k ∈ {1, 2, . . . , L − 1} such that λk = 0. However, if
L ≡ 1, 2 mod (3), i.e. if L is not divisible by 3, then
for any k ∈ {0, 1, . . . , L − 1}, λk �= 0.

It follows from the property

detM = λ0 · λ1 · · ·λL−1

that if L is not divisible by 3, then detM
(

150
)
�= 0.

This implies that every bit string in this case has a
unique preimage, and hence is an isle of Eden.

On the other hand, if L is divisible by 3, then
every bit string has a multiple preimage, imply-
ing that it cannot be an isle of Eden. Such a bit
string must necessarily lie on a basin tree, or on an
attractor. �

As illustrations of Theorem 6, Tables 37 and
38 exhibit a list of the period “T” of at least one
period-T isle of Eden for L �= 0 mod (3), and at
least one period-T attractor, if L ≡ 0 mod (3),
of local rule 150 and 105 , respectively. Those
“blank” rectangles in these two tables without any
entry imply that the period of either an isle of Eden,
or an attractor for the particular L is larger than

the threshold set by our program. Indeed, Table 28
suggests that the period T of this set of L’s (e.g.
L = 47, 49, 53, 55, 67, 69, etc.) could be astronomi-
cally large, and may never be found by brute-force
simulations.

4.2. Global state-transition formula

for Rules 150 and 105

The state transition formulas given in Figs. 4 and 5
are local in time. Our next theorem gives an explicit
formula for rule 150 , and for rule 105 , which is
global in time.

Theorem 7. Global state-transition Formula for
rules 150 and 105 .

Each pixel xn
i of rules 150 and 105 at time

n > 1 is determined from “n + 1” initial pix-
els x0

i−n, x0
i−n+2, . . . , x0

i+n−2, x0
i+n at t = 0 via

the following corresponding “Composite Binomial
formulas”:

Rule 150
xn

i =
n∑

k=0

n!

k!(n − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i−n+2k−j mod (2)

(68)

Rule 105

xn
i = αn + (−1)n

n∑

k=0

n!

k!(n − k)!

•

k∑

j=0

k!

j!(k − j)!

•x0
i−n+2k−j mod (2)

where

αn
∆
=

1

2
[1 − (−1)n].

(69)

Table 39 exhibits the detailed expansion of the
global state transition formula for rule 150 for n =
1, 2, . . . , 8. The corresponding formula in mod (2)
coefficients are shown in Table 40. These coeffi-
cients are repacked into a Pascal’s like a triangle in
Table 41. Table 42 shows the space-time patterns
generated from applying the global and local state
transition formulas for rule 150 when the initial
configuration consists of a single red center pixel.
Table 43 shows corresponding space-time patterns
when a random initial configuration is used.

The corresponding illustrations for rule 105
are shown in Tables 44–48, respectively.



A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden 2985

Table 37. Period “T” of Isles of Eden and attractors of local rule 150 .

T = 102325

T = 224

T = 204723

T = 6222

T = 6321

T = 1220

T = 51119

T = 718

T = 1517

T = 816

T = 1515

T = 1414

T = 2113

T = 112

T = 3111

T = 610

T = 79

T = 48

T = 77

T = 16

T = 35

T = 24

T = 13

2

1

AttractorIsle of EdenL

T = 204650

49

T = 448

47

T = 409446

T = 409545

T = 12444

T = 12743

T = 6342

T = 102341

T = 2440

T = 409539

T = 102238

T = 2912737

T= 1436

T = 409535

T = 3034

T = 3133

T = 1632

T = 3131

T = 1530

T = 1638329

T = 2828

T = 51127

T = 4226

AttractorIsle of EdenL
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Table 37. (Continued )

75

T = 5825474

T = 51173

T = 2872

71

T = 819070

69

T = 6068

67

T = 3166

T = 6365

T = 3264

T = 6363

T = 6262

61

T = 3060

59

T = 3276658

T = 51157

T = 5656

55

T = 51154

53

T = 8452

T = 25551

AttractorIsle of EdenL

T = 4092100

T = 3276799

98

97

T = 896

95

94

T = 102393

T = 818892

T = 409591

T = 409590

T = 204789

T = 24888

87

T = 25486

T = 25585

T = 12684

83

T = 204682

81

T = 4880

79

T = 409578

77

T = 204476

AttractorIsle of EdenL
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Table 37. (Continued )

125

T = 124124

123

122

121

T = 60120

119

118

T = 4095117

T = 65532116

115

T = 511114

T = 16383113

T = 112112

111

110

T = 262143109

T = 1022108

107

106

T = 4095105

T = 168104

103

T = 255102

101

AttractorIsle of EdenL

150

149

T = 116508148

147

T = 1022146

T = 16383145

T = 56144

143

142

141

T = 16380140

139

138

137

T = 120136

135

134

T = 262143133

T = 62132

131

T = 126130

T = 127129

T = 64128

T = 127127

T = 63126

AttractorIsle of EdenL
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Table 37. (Continued )

175

174

173

T = 508172

T = 511171

T = 510170

169

T = 252168

167

166

165

T = 4092164

163

162

161

T = 96160

159

158

157

T= 8190156

155

154

153

T = 4088152

T = 32767151

AttractorIsle of EdenL

T = 8184200

199

T = 32767198

197

196

T = 4095195

194

193

T = 16192

191

190

189

188

187

T = 1023186

T = 262143185

T = 16376184

183

T = 8190182

181

T = 8190180

179

T = 4094178

177

T = 496176

AttractorIsle of EdenL
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Table 37. (Continued )

T = 240272

T = 524286266

T = 124264

T = 252260

T = 127258

T = 255257

T = 128256

T = 255255

T = 254254

T = 126252

T = 248248

T = 4095241

T = 120240

T = 4095234

T = 131064232

T = 1022228

T = 32766226

T = 224224

T = 524286218

T = 32767217

T = 2044216

T = 4095210

T = 336208

T = 1023205

T = 510204

AttractorIsle of EdenL

T = 32384

T = 2046372

T = 524286370

T = 32752368

T = 16380364

T = 16380360

T = 8188356

T = 992352

T = 1016344

T = 511342

T = 1023341

T = 1020340

T = 504336

T = 8184328

T = 192320

T = 4095315

T = 16380312

T = 8176304

T = 65534302

T = 233016296

T = 2044292

T = 32766290

T = 112288

T = 32760280

T = 4095273

AttractorIsle of EdenL
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Table 37. (Continued )

T = 510514

T = 511513

T = 256512

T = 511511

T = 255510

T = 508508

T = 252504

T = 496496

T = 8190482

T = 240480

T = 8190468

T = 262128464

T = 2044456

T = 4095455

T = 65532452

T = 448448

T = 1048572436

T = 65534434

T = 4088432

T = 8190420

T = 672416

T = 2046410

T = 1020408

T = 16368400

T = 65534396

T = 4095390

AttractorIsle of EdenL

T = 1984704

T = 254516

T = 504520

T = 248528

T = 1048572532

T = 480544

T = 4095546

T = 65520560

T = 16383565

T = 224576

T = 65532580

T = 4088584

T = 4095585

T = 466032592

T = 131068604

T = 16352608

T = 32760624

T = 4095630

T = 384640

T = 16368656

T = 1088672

T = 2040680

T = 2046682

T = 2047683

T = 1022684

T = 2032688

AttractorIsle of EdenL
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Table 37. (Continued )

T = 992992

T = 16376712

T = 32760720

T = 32760728

T = 65504736

T = 1048572740

T = 4092744

T = 64768

T = 8190780

T = 131068792

T = 32736800

T = 2040816

T = 4095819

T = 4092820

T = 1344832

T = 16380840

T = 8176864

T = 131068868

T = 896896

T = 131064904

T = 8190910

T = 4088912

T = 524256928

T = 16380936

T = 16380964

T = 480960

AttractorIsle of EdenL
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Table 38. Period “T” of Isles of Eden and attractors of local rule 105 .

T = 204625

T = 424

T = 409423

T = 6222

T = 12621

T = 1220

T = 102219

T = 1418

T = 3017

T = 816

T = 3015

T = 1414

T = 4213

T = 212

T = 6211

T = 610

T = 149

T = 48

T = 147

T = 26

T = 65

T = 24

T = 23

2

1

AttractorIsle of EdenL

T = 204650

49

T = 848

47

T = 409446

T = 819045

T = 12444

T = 25443

T = 12642

T = 204641

T = 2440

T = 819039

T = 102238

T = 5825437

T= 2836

T = 819035

T = 3034

T = 6233

T = 1632

T = 6231

T = 3030

T = 3276629

T = 2828

T = 102227

T = 4226

AttractorIsle of EdenL
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Table 38. (Continued )

75

T = 5825474

T = 102273

T = 5672

71

T = 819070

69

T = 6068

67

T = 6266

T = 12665

T = 3264

T = 12663

T = 6262

61

T = 6060

59

T = 3276658

T = 102257

T = 5656

55

T = 102254

53

T = 8452

T = 51051

AttractorIsle of EdenL

T = 4092100

T = 6553499

98

97

T = 1696

95

94

T = 204693

T = 818892

T = 819091

T = 819090

T = 409489

T = 24888

87

T = 25486

T = 51085

T = 25284

83

T = 204682

81

T = 4880

79

T = 819078

77

T = 204476

AttractorIsle of EdenL
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Table 38. (Continued )

125

T = 124124

123

122

121

T = 120120

119

118

T = 8190117

T = 65532116

115

T = 1022114

T = 32766113

T = 112112

111

110

T = 524286109

T = 2044108

107

106

T = 8190105

T = 168104

103

T = 510102

101

AttractorIsle of EdenL

150

149

T = 116508148

147

T = 1022146

T = 32766145

T = 112144

143

142

141

T = 16380140

139

138

137

T = 120136

135

134

T = 524286133

T = 124132

131

T = 126130

T = 254129

T = 64128

T = 254127

T = 126126

AttractorIsle of EdenL
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Table 38. (Continued )

175

174

173

T = 508172

T = 1022171

T = 510170

169

T = 504168

167

166

165

T = 4092164

163

162

161

T = 96160

159

158

157

T= 16380156

155

154

153

T = 4088152

T = 65534151

AttractorIsle of EdenL

T = 8184200

199

T = 65534198

197

196

T = 8190195

194

193

T = 32192

191

190

189

188

187

T = 2046186

T = 524286185

T = 16376184

183

T = 8190182

181

T = 16380180

179

T = 4094178

177

T = 496176

AttractorIsle of EdenL
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Table 38. (Continued )

T = 240272

T = 524286266

T = 248264

T = 252260

T = 254258

T = 510257

T = 128256

T = 510255

T = 254254

T = 252252

T = 248248

T = 8190241

T = 240240

T = 8190234

T = 131064232

T = 2044228

T = 32766226

T = 224224

T = 524286218

T = 65534217

T = 4088216

T = 8190210

T = 336208

T = 2046205

T = 1020204

AttractorIsle of EdenL

T = 64384

T = 4096372

T = 524286370

T = 32752368

T = 16380364

T = 32760360

T = 8188356

T = 992352

T = 1016344

T = 1022342

T = 2046341

T = 1020340

T = 1008336

T = 8184328

T = 192320

T = 8190315

T = 32760312

T = 8176304

T = 65534302

T = 233016296

T = 2044292

T = 32766290

T = 224288

T = 32760280

T = 8190273

AttractorIsle of EdenL
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Table 38. (Continued )

T = 510514

T = 1022513

T = 256512

T = 1022511

T = 510510

T = 508508

T = 504504

T = 496496

T = 8190482

T = 480480

T = 16380468

T = 262128464

T = 4088456

T = 8190455

T = 65532452

T = 448448

T = 1048572436

T = 65534434

T = 8176432

T = 16380420

T = 672416

T = 2046410

T = 2040408

T = 16368400

T = 131068396

T = 8190390

AttractorIsle of EdenL

T = 1984704

T = 508516

T = 504520

T = 496528

T = 1048572532

T = 480544

T = 8190546

T = 65520560

T = 32766565

T = 448576

T = 65532580

T = 4088584

T = 8190585

T = 466032592

T = 131068604

T = 16352608

T = 65520624

T = 8190630

T = 384640

T = 16368656

T = 2016672

T = 2040680

T = 2046682

T = 4094683

T = 2044684

T = 2032688

AttractorIsle of EdenL
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Table 38. (Continued )

T = 992992

T = 16376712

T = 65520720

T = 32760728

T = 65504736

T = 1048572740

T = 8184744

T = 128768

T = 16380780

T = 262136792

T = 32736800

T = 4080816

T = 8190819

T = 4092820

T = 1344832

T = 32760840

T = 16352864

T = 131068868

T = 896896

T = 131064904

T = 8190910

T = 8176912

T = 524256928

T = 32760936

T = 16380964

T = 960960

AttractorIsle of EdenL
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Table 39. Global state-transition formula for rule 150 for 1 ≤ n ≤ 8.

The formal proof of Eq. (68) is given below. A
similar proof involving more messy expressions can
be given for Eq. (69). We omit the proof to avoid
clutter. A different and more illuminating proof fol-
lows as a Corollary to the 105 ⇄ 150 Alternating
Symmetry Duality given in the Appendix.

Proof of Global State-Transition Formula
(68) for 150 . Apply mathematical induction as
follow:

(a) Applying n = 1 in Eq. (68), we obtain

x1
i = x0

i−1 + x0
i + x0

i+1 mod (2) (70)

which is Eq. (61) for t = 0.

(b) Assuming Eq. (68) is true for n = m (induction
hypothesis), namely,

xm
i =

m∑

k=0

m!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i−m+2k−j mod (2) (71)

We must show that incrementing “m” to “m+1” in
Eq. (71) gives Eq. (68) with n = m + 1. Rewriting
Eq. (70) as a mapping from m to m + 1, we have

xm+1
i = xm

i−1 + xm
i + xm

i+1 mod (2)

=

m∑

k=0

m!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
(i−1)−m+2k−j (72)
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Table 40. Mod (2) global state-transition formula in terms of mod (2) coefficients
for rule 150 for 1 ≤ n ≤ 8.

Table 41. Mod (2) coefficients for global-transition formula for 150 for 1 ≤ n ≤ 8.
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Table 42. Space-time pattern of 150 calculated from a single red center pixel via (a) global
state-transition formula, and (b) local state-transition formula.

150

150 x      =
i
n + 1 x     +  x   + x

i - 1 i i + 1
n n n
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Table 43. Space-time patterns of 150 from a random initial configuration calculated from the
global and local state-transition formula, respectively, of rule 150 .

150

150 x      =
i
n + 1 x     +  x   + x

i - 1 i i + 1
n n n

+

m∑

k=0

m!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i−m+2k−j (73)

+

m∑

k=0

m!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
(i+1)−m+2k−j mod (2) (74)

(b.1) Changing symbol “m” in Eq. (73) to m′ + 1
gives

xm+1
i =

m∑

k=0

m!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i−1−m+2k−j (75)

+

m′+1∑

k=0

(m′ + 1)!

k!(m′ + 1 − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i−m′−1+2k−j (76)

+
m∑

k=0

(m)!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i+1−m+2k−j mod (2) (77)

Observe that if we substitute k = m+1 in Eq. (75)
we would get a zero because (m−k)! in the denom-
inator gives, in this case, a singularity (−1)! Conse-
quently, the term at k = m + 1 vanishes and does
not affect our derivation. Hence, let us expand the
external sum in Eq. (75) from k = 0 to k = m + 1.
We omit also in Eq. (76) the prime in m′ for
convenience.



A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden 3003

Table 44. Mod (2) global state-transition formula for rule 105 for 1 ≤ n ≤ 8.

Let us combine Eqs. (75) and (76):

xm+1
i =

m+1∑

k=0

(
(m)!

k!(m − k)!
+

(m + 1)!

k!(m + 1 − k)!

)

•
k∑

j=0

k!

j!(k − j)!
• x0

i−m−1+2k−j

+

m∑

k=0

(m)!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i+1−m+2k−j mod (2) (78)

The sum of the two binomial coefficients contained
between the large parentheses in the first sum is

(m)!

k!(m − k)!
+

(m + 1)!

k!(m + 1 − k)!

=
(m)!

k!(m + 1 − k)!

(
(m + 1 − k) + (m + 1)

)

=
(m)!

k!(m + 1 − k)!
(2m + 2 − k)

In this case Eq. (78) can be recast as follows:

xm+1
i =

m+1∑

k=0

(
2(m + 1) − k

)
(m)!

(k)!(m + 1 − k)!

•
k∑

j=0

k!

j!(k − j)!
• x0

i−m−1+2k−j

+
m∑

k=0

(m)!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!

•x0
i+1−m+2k−j mod (2) (79)

Separating terms with factors 2(m + 1) and (−k)
we obtain
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Table 45. Mod (2) global state-transition formula in terms of mod (2) coefficients for
rule 105 for 1 ≤ n ≤ 8.

Table 46. Mod (2) coefficients for global-transition formula for 105 for 1 ≤ n ≤ 8.
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Table 47. Space-time pattern of 105 calculated from a single red center pixel via (a) global
state transition function, and (b) local state transition function.

105

105 x      =
i
n + 1 x     +  x   + x

i - 1 i i + 1
n n n
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Table 48. Space-time patterns of 105 from a random initial configuration calculated from the global
and local state transition formula, respectively, of rule 105 .

105

105 x      =
i
n + 1 x     +  x   + x

i - 1 i i + 1
n n n

xm+1
i = 2




m+1∑

k=0

(m + 1)!

(k)!(m + 1 − k)!

k∑

j=0

k!

j!(k − j)!
• x0

i−m−1+2k−j


 (80)

+

m+1∑

k=0

(−k) • (m)!

(k)!(m + 1 − k)!

k∑

j=0

k!

j!(k − j)!
• x0

i−m−1+2k−j (81)

+

m∑

k=0

(m)!

k!(m − k)!

k∑

j=0

k!

j!(k − j)!
• x0

i+1−m+2k−j mod (2) (82)

The first term (80) vanishes under operation mod (2) because the multiplier 2 gives rise to all even
coefficients. However, let us retain this term until the final computations. The remaining terms are Eqs. (81)
and (82).
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(b.2) Let us now replace symbol “k” in Eq. (82) by k′ − 1:

xm+1
i = {Eq. (80)} +




m+1∑

k=0

(m)!

(m + 1 − k)!

k∑

j=0

(−k)

j!(k − j)!
• x0

i−m−1+2k−j

+

m+1∑

k′=1

(m)!

(m − k′ + 1)!

k′−1∑

j=0

1

j!(k′ − 1 − j)!
• x0

i−m−1+2k′−j


 mod (2) (83)

Here we cancel, for convenience, the factorials k! and (k′−1)! from both denominator and numerator. Also
we transpose the factor (−k) in the first term, see Eq. (81), to the inner sum.

Now by omitting the prime in k′ we can combine the two sums as follows:

m+1∑

k=0

(m)!

(m + 1 − k)!

k∑

j=0

(
(−k)

j!(k − j)!
+

1

j!(k − 1 − j)!

)
• x0

i−m−1+2k−j mod (2) (84)

The sum of the two binomial coefficients in Eq. (84) gives

−k

j!(k − j)!
+

1

j!(k − 1 − j)!
=

−k + (k − j)

j!(k − j)!
=

−1

(j − 1)!(k − j)!
.

As a result, Eq. (84) transforms to

−

m+1∑

k=0

(m)!

k!(m − k + 1)!

k∑

j=0

(
k!

(j − 1)!(k − j)!

)
• x0

i−(m+1)+2k−j mod (2).

Here we reinsert the factorial k! in the denominator and in the numerator again.

(b.3) Let us now replace k by k′ + 1, and j by j′ + 1 to obtain

−

m∑

k′=−1

(m)!

(k′ + 1)!(m − k′)!

k′∑

j′=−1

(k′ + 1)!

(j′)!(k′ − j′)!
• x0

i−(m+1)+1+2k′−j′ mod (2).

Replacing m on the right by m′ + 1 we get

−
m′+1∑

k′=−1

(m′ + 1)!

(k′)!(m′ + 1 − k′)!

k′∑

j′=−1

(k′)!

(j′)!(k′ − j′)!
• x0

i−(m′+1)+2k′−j′ mod (2).

Observe that at k′ = −1 and at j′ = −1, the factorials (k′)! and (j′)! represented in the denominator are
singular, i.e. they are equal to (−1)! Hence, terms with these factorials vanish. Omitting the primes in the
symbols m′, k′ and j′and recalling term (80) we obtain finally

xm+1
i = 2




m+1∑

k=0

(m + 1)!

(k)!(m + 1 − k)!

k∑

j=0

k!

(j)!(k − j)!
• x0

i−(m+1)+2k−j




−
m+1∑

k=0

(m + 1)!

(k)!(m + 1 − k)!

k∑

j=0

(k)!

(j)!(k − j)!
• x0

i−(m+1)+2k−j mod (2)

=
m+1∑

k=0

(m + 1)!

(k)!(m + 1 − k)!

k∑

j=0

k!

(j)!(k − j)!
• x0

i−(m+1)+2k−j mod (2) (85)

The result is precisely Eq. (71) with m replaced by m + 1, in the induction hypothesis in Eq. (71). �
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4.3. Rules 150 and 105 are globally quasi-equivalent

It follows from the global state transition formulas (68) for rule 150 and (69) for rule 105 that they are
globally equivalent in the sense that their space-time evolution patterns from any initial bit string can be
derived from each other via the following affine transformation




xn
0 ( 105 )

xn
1 ( 105 )

xn
2 ( 105 )

...

xn
L−1( 105 )




︸ ︷︷ ︸
x( 105 )

= αn1 + (−1)n




0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

...
. . .

...

0 0 0 · · ·




︸ ︷︷ ︸
eT

△
=(−1)n1




xn
0 ( 150 )

xn
1 ( 150 )

xn
2 ( 150 )

...

xn
L−1( 150 )




︸ ︷︷ ︸
x( 150 )

(86)

where

αn
∆
=

1 − (−1)n

2
(87)

and 1 denotes the unit (identity) matrix.
The inverse affine transformation is given by:




xn
0 ( 150 )

xn
1 ( 150 )

xn
2 ( 150 )

...

xn
L−1( 150 )




︸ ︷︷ ︸
x( 150 )

= αn1 + (−1)n




· · ·

· · ·

· · ·

...
. . .

...

· · ·




︸ ︷︷ ︸
eT=(−1)n1




xn
0 ( 105 )

xn
1 ( 105 )

xn
2 ( 105 )

...

xn
L−1( 105 )




︸ ︷︷ ︸
x( 105 )

(88)

Observe that the inverse matrix T̃ is itself.
An analysis of the above global equivalence transformation shows that T̃ effectively leaves even-

numbered rows unchanged while complementing the color of all odd-numbered rows, for the same initial
configuration. An example illustrating this transformation is given in Figs. 4 and 5. Consequently, we will
henceforth christened T̃ as an alternating transformation. Observe that since T̃ depends on the iteration
number “n”, it does not defined a topological conjugacy between the space-time patterns of the two local
rules 105 and 150 . The global quasi-equivalence transformation T̃ is therefore weaker than the three
topologically conjugate transformations T †, T and T ∗ from the Vierergruppe defined in [Chua et al., 2004].
In particular, the number of connected components and the minimal period of corresponding attractors of
105 and 150 are not preserved by T̃ , as is evident from the basin-tree diagrams of rules 105 and 150 .

On the other hand, the alternating transformation T̃ is not only a bijection but it also preserves certain
qualitative properties; e.g. gardens of Eden maps onto gardens of Eden, transient bit strings maps onto
transient bit strings, some connected period-T orbits of 105 maps onto two disconnected period-T

2 orbits

of 150 , etc.
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In terms of the real variables un
i = 2xn

i − 1 defined in Eq. (4) of [Chua et al., 2005a], Eq. (88) assumes
the following more compact form:




un
0 ( 105 )

un
1 ( 105 )

un
2 ( 105 )

...

un
L−1( 105 )




︸ ︷︷ ︸
u( 105 )

= (−1)n




· · ·

· · ·

· · ·

...
. . .

...

· · ·




︸ ︷︷ ︸
(−1)n1




un
0 ( 150 )

un
1 ( 150 )

un
2 ( 150 )

...

un
L−1( 150 )




︸ ︷︷ ︸
u( 150 )

(89)

where

T̃ =




(−1)n 0 0 · · · 0

0 (−1)n 0 · · · 0

0 0 (−1)n · · · 0

...

0 0 0 · · · (−1)n




(90)

is the alternating transformation.

5. Concluding Remarks

We cannot overemphasize the usefulness of the basin
tree diagrams presented in Tables 14–23. Indeed,
Theorems 3–5 originated from conjectures sug-
gested by Tables 18, 19 and 23. Space limitation pre-
cludes a more detailed analysis of the other tables.
They will be the subject of future papers.

We wish to remark that in order to make use
of the “empty” spaces in these basin-tree diagrams,
we have inserted typical space-time patterns, along
with their associated Bernoulli φn−τ �→ φn return
maps. These maps typically indicate the associated
Bernoulli velocity σ, the Bernoulli return time τ and
the Bernoulli complementation sign β. Unlike the
elementary Bernoulli στ -shifts studied in Parts IV
and VI, where these parameters do not depend on L,
we now find them to depend crucially on L. More-
over, both |σ| and τ can assume arbitrarily large
values as L → ∞.

The period T associated with each σ and τ
of the complex and hyper Bernoulli rules listed in
Tables 11 and 12 is generally equal to T = τL,

if T0
∆
= τL/|σ| is not an integer, or T = τL/|σ| if

|σ| ≥ 2. The presence of symmetry in a period-T bit
string can reduce the minimal period T further by
a factor of “m” for bit strings made of m identical
substrings.

For those space-time patterns which do not
exhibit a Bernoulli shift with |σ| > 0, we can

generalize our definition of “Bernoulli στ -shift” to
include σ = 0 for all such period-T orbits. In this
case, the return map φn−τ �→ φn will consist of
points lying on the diagonal line φn = φn−τ . We
usually include such a graph whenever space per-
mits.

We note also that the period “T” of rules 90 ,
150 and 105 exhibit a scale free property as
L → ∞. For example, for L = 2m, the period of
rule 90 is always equal T = 1 with 0 0 · · · 0︸ ︷︷ ︸

L bits

as

its global fixed point attractor. To its immediate left
(L = 2m − 1) and immediate right (L = 2m + 1),
the period-T orbits have equal period T = 2m−1, at
any scale L → ∞. To illustrate the scale-free distri-
bution of the period “T” of rule 90 , Fig. 6 shows a
plot of log T as a function of log L of the data listed
in Table 25. Observe the six period-1 red stars on
the horizontal axis (T = 1) are located at L = 2m,
m = 2, 3, 4, 5; namely, L = 4, 8, 16, 32, 64, as pre-
dicted by Theorem 3. Observe that all data points
from Table 25 lie along straight lines with a slope
equal to “one”.

The distributions of the period T of rules 150
and 105 are plotted in Figs. 7 and 8, respectively,
as a function of the string length L = I + 1, in
base-10 logarithmic scales. The data are extracted
from Table 37 for rule 150 , and from Table 38
for rule 105 , respectively. Data points correspond-
ing to isles of Eden are shown as blue dots. Those
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slope =
∆
∆ log(L)

log(T)

log(8) - log(2)

log(24)-log(6)
= = 1

∆ log(L)

∆ log(T)

  2
1 10 10

  2
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  5

  6

1

10

10

10

10

10

10

L = I + 1

T

Fig. 6. Relationship between the period T and the length L = I + 1 of attractors of rule 90 plotted in base-10 logarithmic
scales.

Fig. 7. Relationship between the period T and the length L = I + 1 of isles of Eden (plotted as blue dots), and attractors
(plotted as red stars) of rule 150 .
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Fig. 8. Relationship between the period T and the length L = I + 1 of isles of Eden (plotted as blue dots), and attractors
(plotted as red stars) of rule 105 .

corresponding to attractors are shown as red stars.
Again, the scale-free distributions are clearly seen
from the parallel straight lines where these data
points are located.
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Appendix

105 ⇄ 150 Alternating Symmetry

Duality

The bit strings {xn
0 , xn

1 , xn
2 , . . . , xn

I } and {yn
0 , yn

1 ,
yn
2 , . . . , yn

I } generated respectively by rules 150 and
105 from the same initial state {z0

0 , z0
1 , z0

2 , . . . , z0
I}

obey the following alternating symmetry relations:

yn
i = αn + (−1)nxn

i (A.1)

xn
i = αn + (−1)nyn

i (A.2)

Proof. Bit string {xn
0 , xn

1 , xn
2 , . . . , xn

I } evolves under
rule 150 via the formula

xn+1
i = xn

i−1 + xn
i + xn

i+1 mod (2) (A.3)

Bit string {yn
0 , yn

1 , yn
2 , . . . , yn

I } evolves under rule
105 via the formula

yn+1
i = 1 − (yn

i−1 + yn
i + yn

i+1) mod (2) (A.4)

Changing the symbol “y” in Eq. (A.4) into “x”
by applying Eq. (A.1) and invoking the identity
(3αn)mod (2) = αn mod (2) we obtain

αn+1 + (−1)n+1xn+1
i

= 1 − (3αn + (−1)nxn
i−1 + (−1)nxn

i

+ (−1)nxn
i+1) mod (2)

= (1 − αn) − (−1)n(xn
i−1 + xn

i + xn
i+1) mod (2)

(A.5)

Consider the following two cases:

(a) Assume n is even in Eq. (A.5).
In this case αn = 0 and αn+1 = 1. Equa-

tion (A.5) reduces to:

1 − xn+1
i = 1 − (xn

i−1 + xn
i + xn

i+1) mod (2)

(A.6)

Hence,

xn+1
i = (xn

i−1 + xn
i + xn

i+1) mod (2) (A.7)

(b) Assume n is odd in Eq. (A.5).
In this case αn = 1 and αn+1 = 0. Equa-

tion (A.5) reduces to:

xn+1
i = (xn

i−1 + xn
i + xn

i+1) mod (2) (A.8)

Hence, both Eqs. (A.7) and (A.8) are identical
to Eq. (A.3).

Following the same procedure let us change
the symbol “x” in Eq. (A.3) into “y” by applying
Eq. (A.2) to obtain

αn+1 + (−1)n+1yn+1
i

= (3αn + (−1)nyn
i−1 + (−1)nyn

i

+ (−1)nyn
i+1) mod (2)

= αn + (−1)n(yn
i−1 + yn

i + yn
i+1) mod (2)

(A.9)

Again, we must consider two cases:

(a) Assume n is even in Eq. (A.9).
In this case αn = 0 and αn+1 = 1. Equa-

tion (A.9) reduces to:

1 − yn+1
i = (yn

i−1 + yn
i + yn

i+1) mod (2)

(A.10)

Hence,

yn+1
i = 1 − (yn

i−1 + yn
i + yn

i+1) mod (2)

(A.11)

(b) Assume n is odd in Eq. (A.9).
In this case αn = 1 and αn+1 = 0. Equa-

tion (A.9) reduces to:

0 + yn+1
i = 1 − (yn

i−1 + yn
i + yn

i+1) mod (2)

(A.12)

Hence, both Eqs. (A.11) and (A.12) are identi-
cal to Eq. (A.4). �


