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Mire j6 egy CNN architektura?

Turing teljes, de mit old meg hatékonyan?

2D — 2D reprezentacio. Térbeli és tériddbeli lenyomatok (,feature™)-0k
elGallitasa

A standarad CNN architechtura cellak M*N-es
regularis halézata
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Retina felépitése

Gerinces retina: Inverz retina (ellentétben a fejlabuakkal, kulon fejlédési ag) az
erzekelo sejtek a leghatso rétegben talalhatoak

Csapok (cones):
6 millid, Er6s megvilagitas mellett
Fovea-ban, szinlatas

pigment
A ithelium
Palcikak (rods): P = _t ',1, S
120 millis, gyenge megvildgitas mellett photoreceptors {fl{iH il ﬁ Q- rods & cones
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Hierarchikus struktura a retinaban

Horizontal  Bipolar cells Retinal ganglion cells
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ganglion sejt: TR

:;';q'-:.':' " — —
..::ﬁfgﬁ'

Nagymeértékl tomoritésre van
szUkség
Nem pixel szinten latunk:

Surround
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Mit varunk egy felismer6 rendszert6l?
Ismételt lenyomatok (The replicated feature approach)

Nagyon népszerl neuralsi halézatok esetében
Es altalaban déntési folyamatokban

Ugyanazon lenyomat kinyerd strukturat hasznaljuk az E E
adaton kulonbozo 'helyzetekben' O

— Kulonbozb poziciokban azonos valaszt
varnank 14 E

— Azonos valaszt varnank kulonboz6 meretl és O
orientacidju objektumokban (nehéz és y
szamitasigényes)

— Nagyon leegyszerusiti a tanitast, sokkal
kevesebb szabad paraméter lesz
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Mit érunk el a lenyomat kiszamitasanak topografikus
ismetléseével?

g}

Nagyon leegyszerusiti a tanitast, sokkal kevesebb szabad paraméter lesz

Invariant knowledge:A tanitas esetén ha egy régioban hasznosnak bizonyult
egy feature és ezt a rendszer megtanulta,akkor az 0sszes pozicioban
hasznos lesz.

Ha a feature-0k detekcidjat homogeén CNN strukturaval hajtjuk veégre, akkor a
detekcid biztosan invarians lesz a transzlaciora
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Oliver Selfridge

1926- 2008

A gép észlelés (Machine Perception) és
a mesterséges intelligencia uttoréje

Magas szintl elirasokat adott a gepi
eszlelés modszereirdl és az azzal
szemben tamasztott elvarasokrol

R
ARTIFICIAL INTELLIGENCE




COGXITIVE DEMONS

Pandemonium paper

Egy Top-down leirast adott a gépi
latas objektum felismereés
folyamatardl, anélkil, hogy
konkrét modszereket
implementalt volna. Eszerint a
kovetkez6kre van szukseg:
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HMAX Algoritmus

Motivacio: Biologiai (Tomasso Poggio)

,EQy altalanositasa az agyban talalhaté egyszer( sejtekt6l a komplex
rendszerik” jelenségnek.

A modell valtakozo rétegekre épul (S -simple és C complex)

Az egyszerl S retegek egy-egy feature-t, lenyomatot sazmolnak ki, mig
a C rétegek ezen S tulajonsagokat 0sszegzik

A legfelsé réteg nem neuralis halézat, hanem egy dontési mechanizmus

Altalaban SVM, de lehet decision tree is
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HMAX Algoritmus
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HMAX Algoritmus

Deep Learning esetében
hosszu tanitas, gyors dontes. A
feature-Ok szama és az
architektura is kotott.

HMAX eseteben a rétegek
szama fix, de a feature-0k
szama a tanitas soran valtozik,
igy a tanitasi folyamat lerovidul,
azonban minéll tobb mintat
tanitottunk, altalaban annal tobb
feature kell egy felismerés
lefuttatasahoz

SVM

C2 Layer |

Max T
S2 Layer - .‘\
Dictionary m—cl—
of features / ’lfj 2 /
liper ¢ TN
Local Max | 1'

S1 Layer / \ \

Gabor Fllters======

Image Pyramid/ / \ e




Pazmany Péter Catholic University, Faculty of Information Te¢

HTM Algoritmus

Jeff Hawkins and Dileep George (Numetna)
biomimetic model based on the memory-prediction
Minden szint azonos funkcidval bir

A legfels6 szint, altalaban egyetlen elem, ami a lehetséges
mintazatokat kodolja

Input image
Level O 32x32 pixels

Motivacio: a neocortex Ill-ik Bt wodia

retegében talalhato sejtek
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HTM: szigoruan binaris
mintazatok és szinapszisok
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HTM Algoritmus

HTM sequence learning

Appendix A: A Comparison between Biological Neurons and
Ha terben és idoben kozel HTM Cells

mitnazatok tinnek fel
egyutt, akkor a

szinapszisok .H:“‘H

meger(’ijdnek H"x.. TECCEED
L1

Ha egy Uj mintazat tlinik Y

fel, akkor a szinapszis

gyengul

LAsiel 1 is] 1 lsis] |

N darab tér és idobeli
mintat tud tarolni




Pazmany Péter Catholic University, Faculty of Informatio

HTM Algoritmus

Tanitas soran az elemek idobeli sorozatokat kapnak

Spatial pooling: térrbeli mintazatokat jegyez meg. Azon
mintazatok melyek egyutt tlnnek fel, eltarolasra kerulnek. Ha
egy ehhez hasonlé mintazat érkezik ujra, a mitna
megerosodik

Temporal pooling: Azok a mintazatok, amelyek id6ben
egymas utan kovetkeznek ugyanigy eltarolsara kerulnek

A fels6bb szinteken tarolt mintak sokkal lassabban valtoznak,
mint az alsok

Felismerés esetében egy elem egy valoszinlséget (sulyt) ad
vissza,hogy mennyire valoszin(, hogy az éppen megfigyelt
mintazat egy osztalyba tartozik.




Pazmany Péter Catholic University, Faculty of Information T

HTM Algoritmus

A tanitas soran kulonbozo sulyok tarolédnak a halozatban, de
az eltarolt mintak nem egyszerl feature-0k ,hanem tér és
idObeli sorozatok.

Ezaltal képes predikciora is, vagyis,ha mar felismert egy
mintat — egy adott idoépont utan a legnagyobb sulyu feature-
oket visszuk tovabb a kovetkez6 korokben- Akkor az eltarolt
mintazatot kapjuk vissza
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HTM Algoritmus

Egyszerl modell tanitasa HTM- mel (bouncing ball)

https://www.youtube.com/watch?v=YeBC9eew3Lg
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HTM Algoritmus

Numenta: Vitamin D — Sighthound
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