
CNN, 4. gyakorlat
2017. tavasz

Mai feladatok
1. ismerkedés a MatCNN szimulátorral

2. egyszerű objektumklasszifikáció megvalósítása

2

MatCNN
1. szimulátor letöltése:

a. Windows/Linux alá: http://users.itk.ppke.hu/~horan/CNN/matCNN.zip
b. OS X alá: http://users.itk.ppke.hu/~horan/CNN/os_x_matcnn.zip
c. kicsomagolás a Matlab munkakönyvtárába

2. gyak4.zip letöltése, kicsomagolása, ebből temlib_plus.m bemásolása a
MatCNN mappa gyökerébe

3. a Matlab fő szalagján, Home alatt: Set Path
a. a felugró ablakban ‘Add with Subfolders...’
b. válasszuk ki a kicsomagolt MatCNN mappát
c. Save majd Close
d. géptermi gépekhez megjegyzés: nincs írási jogunk bizonyos mappákhoz, ezért a root

hitelesítésre a válasz ‘No’, aztán mentsük más helyre a pathdef.m fájlt (pl a Documents
mappádba vagy a MATLAB mappádba azon belül)

4. template-gyűjtemény (függvénykönyvtár, pl v3.1):
http://cnn-technology.itk.ppke.hu/ 3

http://users.itk.ppke.hu/~horan/CNN/matCNN.zip
http://users.itk.ppke.hu/~horan/CNN/os_x_matcnn.zip
http://cnn-technology.itk.ppke.hu/
http://cnn-technology.itk.ppke.hu/

gyak4_introduction.m
● 12 template-példa mintamegvalósítással, blokk-kommentben
● template-ek használatának bevezető lépései -- egyszer, a szkriptünk elején:

○ close all; clear all; → minden bezárása, törlése a munkatérből
○ cnn_setenv; → CNN környezet inicializálása, létrejön az mCNN struktúra részeivel együtt
○ mCNN.TemGroup = ‘temlib_plus’; → ha szeretnénk felülírni az alapértelmezett

függvénykönyvtárat (template-katalógust); szövegfájl az egyes template-ek A, B és I (elméleti
leírásban z azaz bias) mátrixaival/értékeivel, pl:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EDGE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

EDGE_A = [0 0 0;
 0 2 0;
 0 0 0];
EDGE_B = [-0.25 -0.25 -0.25;
 -0.25 2.0 -0.25;
 -0.25 -0.25 -0.25];
EDGE_I = -1.5;

4

gyak4_introduction.m
● egy template használatának lépései:

○ in_pic = lbmp2cnn('piclib/BABOON.bmp'); → egy kép betöltése egy változóba
○ mCNN.INPUT1 = 1.* in_pic; → a szimulátor bemenetének megadása; elemenként 1-gyel

szorzás, értelme: új memóriaterület allokálásának kikényszerítése
○ init_state = lbmp2cnn('piclib/BABOON.bmp');
○ mCNN.STATE = 1.* init_state; → a szimulátor kezdőállapotának beállítása
○ mCNN.Boundary = 2; → határfeltétel beállítása: konstans: [-1 … 1], zeroflux: 2, periódikus: 3
○ mCNN.TimeStep = 0.1; → elemi integrálási idő
○ mCNN.IterNum = 20; → összes iterációk száma

megjegyzés: habár a szimuláció összidejét a TimeStep x IterNum határozza meg, bizonyos
template-ek esetén nem közömbös, hogy milyen finomságú elemi lépésekkel szimulálunk

○ loadtem('GRADT'); → template-értékek betöltése név alapján, az előzőleg megadott
függvénykönyvtárból (mCNN.TemGroup -ban rögzített fájl)

○ runtem; → szimulátor futtatása
○ figure;
○ cnnshow(mCNN.OUTPUT); → az mCNN struktúra OUTPUT mezőjéből kérhető le a kimenet, a

cnnshow dinamikatartomány-helyes megjelenítést csinál ([0 255] vs [-1 1], bw csere) 5

Objektumklasszifikáció
Detektálandó objektumok:
1. kicsi, fekete négyzet (pl. 20x20 vagy annál kisebb)
2. középszürke téglalap (oldalak közt az arány legalább 1.5-szeres)
3. lyukas objektum

Adottak különböző képek a gyak4_images mappában, egy kép akár több
különböző típusú objektumot is tartalmazhat.

A LoadGT függvény egy oszlopvektorként visszaadja a referenciamegoldást. A
használt kódrendszer:
● legkisebb helyiérték -- kicsi, fekete négyzet, legnagyobb helyiérték: lyukas

objektum;
● 0 -- nem tartalmaz az adott osztályú objektumból, 1 -- tartalmaz
● pl: 011 → van kis, fekete négyzet és szürke téglalap a képen 6

Objektumklasszifikáció - segédfüggvények
Egy ilyen tömbprocesszoron mint célarchitekturán általában nem magától értetődő
individuális memóriacellák olvasása/írása (ehelyett például teljes kép feltöltése,
eredménykép lementése, szélső oszlopok/sorok olvasása, stb.)

● CountBlackRow(.) → visszaadja a paraméterként adott kép utolsó előtti
sorában a fekete pixelek (+1) számát

● CountBlackCol(.) → visszaadja a paraméterként adott kép 2. oszlopában
a fekete pixelek (+1) számát

● CountBlackImg(.) → megmondja, hogy a paraméterként adott kép hány
fekete pixelt (+1) tartalmaz összesen

7

Objektumklasszifikáció - fő szkript: gyak4.m
● 5 kép van a gyak4_images mappában

○ a class vektorba kódoljuk majd az egyes osztályokba tartozás fennállását, helyiértékek
szerint

○ a LoadGT() függvény visszatérési értéke alapján majd le tudjuk ellenőrizni, hogy helyes
osztályokba soroltuk-e a képeket

● a nagy for-ciklus egyesével végigiterál a képeken
○ a ciklusmagon belül három különböző blokkban érdemes az egyes osztályba-tartozásokat

vizsgálni, template-sorozatokkal
○ a példa kedvéért a 3. osztály (lyukas objektum) detektáló algoritmusát meghagytuk, ez:

■ binarizálás (‘THRES’)
■ lyukas objektum feltöltés (‘HOLE’ másnéven holefiller)
■ logikai különbségképzéssel (‘LOGDIF’): a feltöltött mínusz a simán binarizált kép

→ ha ennek az eredményén maradt még fekete pixel, akkor volt lyukas objektum az
eredeti képen

8

