Cellular neural
networks and
visual computing

Foundations and applications

= W
) o

| [-
O

S
LICT L

:I[MD'E
I

Leon Chua and Tamas Roska

This page intentionally left blank

Cellular neural networks and visual computing

Cellular Nonlinear/neural Network (CNN) technology is both a revolutionary concept and an
experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are
set to change the way analog signals are processed and are paving the way to an entire new analog
computing industry.

This unique undergraduate-level textbook includes many examples and exercises, including CNN
simulator and development software accessible via the Internet. It is an ideal introduction to CNNs
and analogic cellular computing for students, researchers, and engineers from a wide range of
disciplines. Although its prime focus is on visual computing, the concepts and techniques described
in the book will be of great interest to those working in other areas of research, including modeling
of biological, chemical, and physical processes.

Leon Chua is a Professor of Electrical Engineering and Computer Science at the University of
California, Berkeley where he coinvented the CNN in 1988 and holds several patents related to CNN
Technology. He received the Neural Network Pioneer Award, 2000.

Tamas Roska is a Professor of Information Technology at the Pdzmény P. Catholic University of
Budapest and head of the Analogical and Neural Computing Laboratory of the Computer and
Automation Research Institute of the Hungarian Academy of Sciences, Budapest and was an early
pioneer of CNN technology and a coinventor of the CNN Universal Machine as an analogic
supercomputer, He has also spent 12 years as a part-time visiting scholar at the University of

California at Berkeley.

Cellular neural networks
and visual computing

Foundation and applications

Leon 0. Chua

and

Tamas Roska

T CAMBRIDGE

AAAAAAAAAA

@) UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Cambridge University Press 2004
First published in printed format 2002

ISBN 0-511-03302-8 eBook (Adobe Reader)
ISBN 0-521-65247-2 hardback

To our wives, Diana and Zsuzsa

Contents

Acknowledgements

I

1 Introduction

I

2 Notation, definitions, and mathematical foundation
2.1 Basic notation and definitions
2.2 Mathematical foundations

I

3 Characteristics and analysis of simple CNN templates
3.1 Two case studies: the EDGE and EDGEGRAY templates
3.2 Three quick steps for sketching the shifted DP plot
3.3 Some other useful templates

I

4 Simulation of the CNN dynamics

vii

4.1
42
4.3
4.4
4.5
4.6
4.7

Integration of the standard CNN differential equation
Image input

Software simulation

Digital hardware accelerators

Analog CNN implementations

Scaling the signals

Discrete-time CNN (DTCNN)

page xi

35
49
50

100

100
101
102
110
111
113
114

viii Contents
|

5 Binary CNN characterization via Boolean functions

5.1
52
53

Binary and universal CNN truth table
Boolean and compressed local rules
Optimizing the truth table

6 Uncoupled CNNs: unified theory and applications

6.1 The complete stability phenomenon
6.2 Explicit CNN output formula
6.3 Proof of completely stable CNN theorem
6.4 The primary CNN mosaic
6.5 Explicit formula for transient waveform and settling time
6.6 Which local Boolean functions are realizable by uncoupled CNNs?
6.7 Geometrical interpretations
6.8 How to design uncoupled CNNs with prescribed Boolean functions
6.9 How to realize non-separable local Boolean functions?
I
7 Introduction to the CNN Universal Machine
7.1 Global clock and global wire
7.2 Set inclusion
7.3 Translation of sets and binary images
7.4 Opening and closing and implementing any morphological operator
7.5 Implementing any prescribed Boolean transition function by not more than
256 templates
7.6 Minimizing the number of templates when implementing any possible
Boolean transition function
7.7 Analog-to-digital array converter
I

8 Back to basics: Nonlinear dynamics and complete stability

8.1
8.2
8.3
8.4
8.5

A glimpse of things to come

An oscillatory CNN with only two cells

A chaotic CNN with only two cells and one sinusoidal input
Symmetric A template implies complete stability

Positive and sign-symmetric A template implies complete stability

115
122
124

139
140
142
156
161
162

166
173

183

184
184
188
190

195

198
201

205

205
205
210
214
219

ix Contents
|

8.6 Positive and cell-linking A template implies complete stability
8.7 Stability of some sign-antisymmetric CNNs

A Appendix to Chapter 8

9 The CNN Universal Machine (CNN-UM)

9.1 The architecture
9.2 A simple example in more detail

9.3 A very simple example on the circuit level

9.4 Language, compiler, operating system

10 Template design tools

11

12

13

10.1 Various design techniques

10.2 Binary representation, linear separability, and simple decomposition
10.3 Template optimization

10.4 Template decomposition techniques

CNNs for linear image processing

11.1 Linear image processing with B templates is equivalent to spatial convo-
lution with FIR kernels

11.2 Spatial frequency characterization

11.3 A primer on properties and applications of discrete-space Fourier trans-
form (DSFT)

11.4 Linear image processing with A and B templates is equivalent to spatial
convolution with IIR kernels

Coupled CNN with linear synaptic weights
12.1 Active and inactive cells, dynamic local rules
12.2 Binary activation pattern and template format

12.3 A simple propagating type example with B/W symmetrical rule
12.4 The connectivity problem

Uncoupled standard CNNs with nonlinear synaptic weights

13.1 Dynamic equations and DP plot

224
231
236

239
240
244

246
254

258
258
260

264
265

267

267

269

272

272

276
278
283

284
286

290

291

Contents

X
I
14 Standard CNNs with delayed synaptic weights and motion analysis
14.1 Dynamic equations
14.2 Motion analysis — discrete time and continuous time image acquisition

15 Visual microprocessors — analog and digital VLSI implementation
of the CNN Universal Machine

15.1 The analog CNN core

15.2 Analogic CNN-UM cell

15.3 Emulated digital implementation

15.4 The visual microprocessor and its computational infrastructure
15.5 Computing power comparison

16 CNN models in the visual pathway and the ‘“‘Bionic Eye”
16.1 Receptive field organization, synaptic weights, and cloning template
16.2 Some prototype elementary functions and CNN models of the visual
pathway
16.3 A simple qualitative “engineering” model of a vertebrate retina
16.4 The “Bionic Eye” implemented on a CNN Universal Machine

Notes
Bibliography
Exercises
Appendices
Index

296

296
297

304

304
310
312
313
318

320

321

322

338

339
348
361
389
390

Xi

Acknowledgements

We started to teach a formal course devoted entirely to CNN only in 1996, in the Spring
Semester, at Berkeley and in the Autumn Semester in Budapest. Since then, several
versions of Lecture Notes have been iterated. We are indebted to many of our former
students — some of whom have become our coworkers — who have helped us in various
forms we are thankful to all of them. Dr. Akos Zarandy, Dr. Ken Crounse, Dr. Csaba
Rekecky, Dr. Chai-Wah Wu, Dr. Laszl6 Kék, Dr. Laszl6 Nemes, Dr. Andras Radvanyi,
and Dr. Péter Szolgay, as well as Tao Yang, An-Shan Huang, Ddvid Bdlya, Katalin
Kesert, Istvan Petrds and Istvdan Szatmdri made special efforts to help us during the
many years of forming the text to this present version. We are also grateful to Phil
Meyler for his kind initiative to publish this textbook.

Leon 0. Chua and Tamas Roska
Berkeley—Budapest, May 2000

-
1

Introduction

Scenario

Recent history of the electronic and computer industry can be viewed as three waves
of revolutionary processes.! The first revolution, making cheap computing power
available via microprocessors in the 1970s, led to the PC industry of the 1980s. The
cheap laser and fiber optics, which resulted in cheap bandwidth at the end of the
1980s, led to the Internet industry of the 1990s. The third wave, the sensor revolution
at the end of the 1990s, will also provide for a new industry. Sensor revolution
means that cheap sensor and MEMS (micro-electro-mechanical system) arrays are
proliferating in almost all the conceivable forms. Artificial eyes, nose, ears, taste,
and somatosensory devices as well as sensing all physical, chemical, and biological
parameters, together with microactuators, etc. are becoming commodities. Thousands
and millions of generically analog signals are produced waiting for processing. A new
computing paradigm is needed. The cited technology assessment' reads:

The long-term consequence of the coming sensor revolution may be the emergence of a newer analog
computing industry in which digital technology plays a mere supporting role, or in some instances
plays no role at all.

For processing analog array signals, the revolutionary Analogic Cellular Computer
paradigm is a major candidate. The core of this computer is a Cellular Nonlinear/neural
network? (CNN), an array of analog dynamic processors or cells. The computer archi-
tecture is the CNN Universal Machine,? with its various physical implementations. At
the same time, Analogic CNN computers mimic the anatomy and physiology of many
sensory and processing organs with an additional capability of stored programmability.
Recent studies on optical and nano-scale implementations open up new horizons on the
atomic and molecular levels.

The CNN was invented by Leon O. Chua and Lin Yang in Berkeley in 1988. Unlike
cellular automata, CNN host processors accepting and generating analog signals, the
time is continuous, and the interaction values are also real values. Unlike lattice
dynamics, the input of the CNN array plays an important role. Moreover, CNN
becomes a rigorous framework for complex systems exhibiting emergent behavior and
the various forms of emergent computations. The notion of the cloning template, the

Introduction

representation of the local interconnection pattern, is crucial. This allows not only
modeling but also engineering of complex systems.

Stored programmability, invented by John von Neumann, was the key for endowing
digital computers with an almost limitless capability within the digital universe of
signals, opening the door to human invention via digital algorithms and software.
Indeed, according to the Turing—Church thesis, any algorithms on integers conceived
by humans can be represented by Recursive functions/Turing Machines/Grammars.
The CNN Universal Machine is universal not only in a Turing sense but also on analog
array signals. Due to stored programmability, it is also open to human intelligence
with a practically limitless capability within the universe of analog array signals, via
analogic spatio-temporal algorithms and software.

The new world opened by the Analogic CNN computing paradigm is nowadays a
reality. There are operational focal plane visual microprocessors with 4096 or 16 000
processors, which are fully stored, programmable, and there are Walkman-size self-
contained units with image supercomputer speed.

The CNN Universal Chip* highlighted on the cover of this book represents a mile-
stone in information technology because it is the first operational, fully programmable
industrial-size brain-like stored-program dynamic array computer in the world. This
complete computer on a chip consists of an array of 64 x 64 0.5 micron CMOS cell
processors, where each cell is endowed not only with a photo sensor for direct optical
input of images and videos, but also with communication and control circuitries, as
well as local analog and logic memories. Each CNN cell is interfaced with its nearest
neighbors, as well as with the outside world. This massively parallel focal-plane array
computer is capable of processing 3 trillion equivalent digital operations per second (in
analog mode), a performance which can be matched only by supercomputers. In terms
of the SPA (speed, power, area) measures, this CNN universal chip is far superior to
any equivalent DSP implementation by at least three orders of magnitude in either
speed, power, or area. In fact, by exploiting the state-of-the-art vertical packaging
technologies, close to peta (10'°) OPS CNN universal cube can be fabricated with
such universal chips, using 200 x 200 arrays.

There are many applications which call for TeraOPS or even PetaOPS in a
Walkman-size device. Some of these applications include high-speed target recogni-
tion and tracking, real-time visual inspection of manufacturing processes, intelligent
vision capable of recognizing context sensitive and moving scenes, as well as appli-
cations requiring real-time fusing of multiple modalities, such as multispectral images
involving visible, infrared, long wave infrared, and polarized lights.

In addition to the immense image and video processing power of the CNN universal
chip, we can exploit its unique brain-like architecture to implement brain-like informa-
tion processing tasks which conventional digital computers have found wanting. Such
brain-like processing operations will necessarily be non-numeric and spatio-temporal
in nature, and will require no more than the accuracy of common neurons, which is

Introduction

less than eight bits. Since the computation is a non-iterative wave-like process, the
input—output accuracy is not constrained by the iterative digital process. The CNN
universal chip is therefore an ideal tool for developing and implementing brain-like
information processing schemes. It is this vision of brain-like computing via the CNN
universal chip that makes the publication of this textbook both a timely and historic
event, the first undergraduate textbook on this new computing paradigm.

The textbook

Cellular Nonlinear/neural Networks (CNN) is an invention with rapid proliferation.
After the publication of the cited original paper by Chua and Yang in 1988, several
papers explored the rich dynamics inherent in this simple architecture. Indeed, many
artificial, physical, chemical, as well as living (biological) systems and organs can be
very conveniently modeled via CNN. Hence, the book is written in such a way that no
electronic circuit knowledge is needed to understand the first 14 chapters of this book.
Indeed, it is our teaching experience, at Berkeley and in Budapest, that undergraduate
students from different backgrounds and with a modest knowledge of mathematics and
physics taught in engineering, physics, and chemistry departments, as well as biology
students from similar backgrounds can understand the book.

In Chapter 2, the basic notations, definitions, and mathematical foundation are
presented. The standard CNN architecture is introduced. The cell, the interconnection
structure, the local connectivity pattern, the canonical equations and some useful
notations, and the biological motivation are described. The importance of the local
interconnection “synaptic weight” pattern, the cloning template, or gene, is empha-
sized. Indeed, these templates, mostly defined by 19 parameters, define the complete
array dynamics, which generate an output “image” from an input “image.”

In Chapter 3, after two examples, a simple technique for determining array dynam-
ics, based on cell dynamics, is introduced and explained. Next, 11 useful templates are
shown with examples and rigorous mathematical analysis.

Chapter 4 is devoted to the digital computer simulation of CNN dynamics. Nu-
merical integration algorithms, digital hardware accelerators, as well as the analog
implementation are discussed. An accompanying simulator CANDY is provided in
the Appendix.

In Chapter 5 the characterization of the simplest form of a CNN is explored and
the binary input binary output case is described. It is quite surprising that even this
very basic form with a 3 x 3 neighborhood template could implement 23!2 ~ 10134
different local Boolean functions.

Uncoupled CNN templates constitute a simple class of CNN. Their unified theory
and applications described in Chapter 6 provide a thorough understanding of this class
of CNN.

Introduction

In Chapter 7, we begin the introduction of the CNN computer represented by the
CNN Universal Machine architecture. We emphasize the need for local analog and
logic memory, a global clock and global wire, as well as a local logic unit. It is shown,
for example, that every local Boolean function can be realized by using these simple
elements in each cell processor.

In Chapter 8, “Back to Basics,” the mathematical analysis of the stability of CNN
in terms of cloning templates is presented. It turns out that, in most cases, simple
conditions are available to test the templates defining completely stable CNN.

The complete architecture of the CNN Universal Machine is shown in Chapter
9. Moreover, the computational infrastructure consisting of a high-level language, a
compiler, operating system, and a development system are introduced. An example
describing all the elementary details uncovers the basic implementation techniques.

Chapter 10 presents template design and optimization algorithms. The use of a
simple program TEMPO for template optimization and decomposition is prepared and
provided in the Appendix.

Many two-dimensional linear filters can be represented by CNN. These techniques
are shown in Chapter 11 which also introduces the discrete space Fourier transform.

Once we allow spatial coupling, the dynamics of the CNN becomes not only much
richer, but also exotic. The coupled CNN is described in Chapter 12 with a design
method for binary propagation problems. In particular, it turns out that the global
connectivity problem, long considered impossible by locally connected arrays, can
be solved by a quite simple coupled CNN.

Nonlinear and delay type synaptic weights and their use are introduced in Chapters
13 and 14, respectively. These types of CNN are typical in modeling living neural
networks as well as in solving more complex image processing problems.

In Chapter 15, we show the basics of the CMOS analog and digital implemen-
tation of the CNN Universal Machine. Indeed, the first visual microprocessor and
its computational infrastructure are described. A computing power comparison is
really breathtaking: about three orders of magnitude speed advantage for complex
spatio-temporal problems on the same area of silicon.

Finally, in Chapter 16, the surprising similarity between CNN architecture and
models of the visual pathway is highlighted. Models and some measurements in living
retina are compared.

In addition to the many examples in the text, exercises at the end of the book help
both students as well as lecturers to make practical use of the textbook.

The Appendices, provided via the Internet, contain a CNN template library
(TEMLIB), a simple yet efficient simulator (CANDY), and a template design and
optimization tool (TEMPO/TEMMASTER). These design tools provide for a working
environment for the interested reader as well as for the students to explore this new
field of modeling and computing. The text can be taught, typically, as a one-semester
course.

Introduction

New developments

More than 1000 reviewed papers and books have been published since the seminal
paper by Chua and Yang on CNN technology. Recently, the scope has started to
broaden in many directions. Various new forms of physical implementations have
started to emerge. Optical implementation is already emerging using molecular level
analog optical memory (Bacteriorhodopsine or polymer materials) and atomic® and
molecular® level implementation of the CNN array as well as of the CNN Universal
Machine may become feasible; the Analogic Cellular Computer represents a new
platform for computing. However, this notion of computing contains brand-new
elements and techniques, partially reflecting some forms of nature-made information
processing.

Nature-made information processing has several different manifestations. On the
molecular level this means the protein structures or interacting molecules on a two- or
three-dimensional grid; on the neuronal level it may mean the many sensory organs
and subsequent neural processing. On the functional neuronal level it may mean the
information representation in spatio-temporal memory, the functional laterality of the
brain, as well as the parallel processing places and functional units learned via PET,
NMR, fNMR, etc. On the mathematical-physical level it may mean several dynamic
spatio-temporal processes and phenomena represented by different nonlinear partial
differential equations (PDEs). Autowaves, spiral waves, trigger waves are just a few of
these exotic waves.

In modern image processing, PDE-based techniques are becoming the most chal-
lenging and important new directions. For the analogic CNN computer these are
the native, elementary instructions like the multiplication, addition, XOR, NAND,
etc. in digital computers. A new understanding about computing itself is emerging.
The striking intellectual and scientific challenge is how to combine these diverse
phenomena in useful algorithms running on a standard spatio-temporal computer,
based on the CNN Universal Machine.

The analogic cellular visual microprocessors, embedded in a complete program-
ming environment,” offer surprising system performance. Two types of tasks are
becoming tractable:

Class K: Kilo real-time [K r/t] frame rate class.

The frame rate of the process in this class is in the order of about a thousand
times faster than the real-time video frame rate (30 frames per second). A typical
experiment is where a pattern classification with more than 10,000 frames per
second was tested (more than 0.33 K r/t). Using current CMOS technology, 1.5
K r/t, that is about 50,000 frame per second, is feasible.

In this Class K, the high frame rate is the key in the computation. Clearly, the sensing
and computing tasks are to be physically integrated. In standard digital technology,

Introduction

there is no time for A to D conversion and to complete the calculation, all within a few
microseconds.

Class T: TeraOPS equivalent computing power class.

Even if the frame rate is small, like real-time video (30 frames per second), the
required computing power (per chip) is enormous. Indeed, a trillion operations per
second are to be — and can be — achieved. These TeraOPS chips are capable of
solving a nonlinear PDE on a grid in a few microseconds. The detection of a moving
inner boundary of the left ventricle in an echocardiogram, via an analogic CNN
algorithm combining several waves, local logic, and morphology operators, took
only 250 microseconds on the ACE4K analogic Visual Microprocessor Chip made
in Seville. These chips hosted 4096 cell processors on a chip. This means about
3.0 TeraOPS equivalent computing power, which is about a thousand times faster
than the computing power of an advanced Pentium processor.

A major challenge, not yet solved by any existing technologies, is to build analogic
adaptive sensor-computers,’ where sensing and computing understanding are fully and
functionally integrated on a chip. Adaptive tuning of the sensors, pixel by pixel, is
performed based on the content and context of the dynamically changing scene under
sensing.

2 Notation, definitions, and mathematical
foundation

2.1 Basic notation and definitions

Definition 1: Standard CNN architecture
A standard CNN architecture consists of an M x N rectangular array of cells (C (i, j))
with Cartesian coordinates (i, j),i =1,2,..., M, j=1,2,..., N (Fig. 2.1).

1 2 3 COljymn N
10000
OO0 0000
0000, [
v OO0 O

Fig. 2.1.
Remark:

There are applications where M # N. For example, a 5 x 512 CNN would be more
appropriate for a scanner, fax machine, or copy machine.

Definition 2: Sphere of influence of cell C(i, j)

The sphere of influence, S, (i, j), of the radius r of cell C(i, j) is defined to be the set
of all the neighborhood cells satisfying the following property

Sei, j) = {Clk,1 k—il |l —jl} < 2.1
@) =1CGk. DI _ max Ak—ill=jl} =r) 2.1)

where r is a positive integer.

Notation, definitions, and mathematical foundation

CGi.j) CG j)
OoO/ooO
HiEpE ooooo
(] | [O0m@EO00
Oooo0oo00
1 O O ooooo

(a) (b)

Fig. 2.2. (a) r = 1 (3 x 3 neighborhood), (b) r = 2 (5 x 5 neighborhood).

We will sometimes refer to S, (i, j) as a (2r + 1) x (2r 4+ 1) neighborhood. For
example, Fig. 2.2(a) shows an r = 1 (3 x 3) neighborhood. Fig. 2.2(b) shows anr» = 2
(5 x 5) neighborhood.

Remarks:

1 In IC implementations, every cell is connected to all its neighbors in S, (i, j) via
“synaptic” circuits.

2 Whenr > N/2,and M = N, we have a fully connected CNN where every cell
is connected to every other cell and S, (7, j) is the entire array. This extreme case
corresponds to the classic Hopfield Net. It is impractical to build any reasonable size
(several thousand cells) Hopfield Net in a VLSI chip. There exists a “commercial”
Hopfield-like chip by INTEL called “ETANN,” type 80170 ($500 in 1995). This
chip has 64 cells which makes it more of an expensive “toy.”

Definition 3: Regular and boundary cells

A cell C(, j) is called a regular cell with respect to S,.(i, j) if and only if all
neighborhood cells C(k,l) € S,(i, j) exist. Otherwise, C(i, j) is called a boundary
cell (Fig. 2.3).

Remark:
The outermost boundary cells are called edge cells. Not all boundary cells are edge
cellsif r > 1.

Definition 4: Standard CNN

A class 1 M x N standard CNN is defined by an M x N rectangular array of cells
C(i, j) located at site (i, j),i = 1,2,...,M, j = 1,2,..., N. Each cell C(i, j) is
defined mathematically by:

1 State equation

Gij=-—xij+ Y, AGjikDyw+ Y, B jikDuu+zj (22)
Ck,)eSy(i,)) C(k,)eSr(i,))

2.1 Basic notation and definitions

Boundary cell (if r=1)

00 Ofm))
22

=000

Q- 00 Ol0

Corner cell

Fig. 2.3.

where x;; € R, yiu € R, ury € R, and z;; € R are called state, output, input,
and threshold of cell C(i, j), respectively. A(i, j; k,) and B(i, j; k, [) are called the
feedback and the input synaptic operators to be defined below.

2 Output equation
1 1
vij = fxij) = Slxij + 1 = Slxij — 1] (2.3)

This is called standard nonlinearity (Fig. 2.4).

b Yij

Fig. 2.4.

3 Boundary conditions
The boundary conditions are those specifying yi; and uy; for cells belonging to S (i, j)
of edge cells but lying outside of the M x N array.

10

Notation, definitions, and mathematical foundation

4 Initial state
x;j0), i=1,...,.M, j=1,...,N 2.4)

Remarks:

1 The input uy; is usually the pixel intensity of an M x N gray-scale image or picture
P, normalized without loss of generality, to have the range —1 < ug; < +1 where
“white” is coded by —1 and “black” is coded by +1. For a still image, uy; is a
constant for all time, for a moving image (video) uy; will be a function of time.
Other variables (x(0), y, z) can also be specified as images.

2 In the most general case, A(i, j; k, 1), B(i, j; k, 1), and z;; may vary with position
(i, j) and time ¢. Unless otherwise stated, however, we will assume they are space
and time invariant.

3 In the most general case both A(i, j; k, 1) and B(i, j; k,) are nonlinear operators1
which operate on xg; (1), yi(t), ug(t), x;j(t), yij(t), and u;;(¢), 0 < t < 1o, to
produce a scalar (A(i, j; k, 1) o yx1)(to) and (B(i, j; k, 1) o ug)(tp), 0 <t < 1p.

4 We may also introduce synaptic laws depending on the states (C template) and on
mixed variables (D template), respectively.

Thatis (C(, j; k, 1) o xk1)(t0) and (D (i, j; k, 1) o (uki, xki, yk1)(10)-

Unless otherwise stated, however, A(i, j; k,l)yy; and B(, j; k, Duy; will denote
ordinary multiplication with real coefficients where they may be nonlinear functions of
states, inputs, and outputs of cells C(i, j), C(k, l) and may involve some time delays
(i.e., they may contain a finite time history, as in the case of having a time delay).

The following are some space and time invariant nonlinear examples chosen from
the CNN catalog of applications (CNN Software Library). See some of them in
TEMLIB (Appendix A).

EXAMPLE 2.1:

A a(yy;)

1__

— >
—0.025] 0.025 Yi

-+ -1

Fig. 2.5.

1 2.1 Basic notation and definitions
|

A(, j; k, 1) = a(y;j): depends on output (from TEMPLATE MajorityVoteTaker)
(Fig. 2.5).

EXAMPLE 2.2:

C(i, j; k, 1) = c(x;;): depends on state (from TEMPLATE LGTHTUNE) (Fig. 2.6).

A c(x;j)
1 +
t -
0f0.2 X;
-3
Fig. 2.6.
EXAMPLE 2.3:

A, ji k, 1) = a(u;j, ug) and B(i, j; k, 1) = b(u;j, ug;): depends on two inputs (from
TEMPLATE GrayscaleLineDetector) (Fig. 2.7).

| a(uij, Uyy) b(uij> Uyp)
1 1

J

| o

—-0.15] 0.15 U — Uy 025 u;—uy

Fig. 2.7.

EXAMPLE 2 .4:

A(, j; k, 1) = a(y;j, yu): depends on two outputs (from TEMPLATE GlobalMaxi-
mumFinder) (Fig. 2.8).

12 Notation, definitions, and mathematical foundation
|

a(¥j Yu)

Yij _T]kl
Fig. 2.8.
EXAMPLE 2.5:
C(, j; k, 1) = c(xij, xk;): depends on two states (from TEMPLATE EXTREME)
(Fig. 2.9).
€ (x>)
1
—0.2 0.2
l l -
I I o
Xij — Xk
-
-2
Fig. 2.9.
EXAMPLE 2.6:

D(, j; k,1) = d(uw, yij): depends on input and output (from TEMPLATE ERO-
SION) (Fig. 2.10).

A d(uy, y;)

t1

1)

0 U — Vi

Fig. 2.10.

Some examples of time-delay operators:

13 2.1 Basic notation and definitions
|

EXAMPLE 2.7:

(A@, j; k,Dyr)(t) = 0.68yi(t — 10): depends on the past of the output (from
TEMPLATE SpeedDetection).

EXAMPLE 2.8:

(B(, j; k, Dug)(t) = —0.25uy;(t — 10), (k,1) # (i, j): depends on the past of the
input (from TEMPLATE ImageDifference Computation).

Remarks:

1 A gray-scale image can be represented pixelwise using a one-to-one map between a
picture element (pixel) and a cell. The luminance value of the pixel would be coded
as: black — +1, white - —1, gray — (—1, +1).

2 It is useful and correct to think of the triple {A(i, j; k, 1), B(i, j; k, 1), zij} as an
elementary CNN instruction (macro), because they specify how an M x N input

image U at ¢ = 0 will be transformed to produce an M x N output image Y (¢) for
allt > 0.

Definition 5: Space-invariant or isotropic CNN

A CNN is space-invariant or isotropic if and only if both the synaptic operators
A(, j; k, 1), B(, j; k,1) and the threshold z;; do not vary with space. In this case,
we can write

Y. AG kD= Y, Y AG—k j—Dyu

Ck,1)eSr(i,j) |k—i|<r |I—j|<r
Y. BG.jikDuy = Z Y. BG—k j—Du
Ck,DES, (i,)) —il=r |l—jl=r
Zij =2 (2.5)

A standard CNN (with linear synaptic operators) has the following state equation
(using the same notation as in (2.2)):

Yij=—xij+), AGjikDya+) BG jikDuu+z
C(k,)eS,(i,)) C(k,l)eS,(,))

+ > Cl.jikbxa+ Y. DG.jik D xu.ya) (2.2
C(k,1)eS, (i,) C(k,)eS,(i,))

14
—

2.2

221

Notation, definitions, and mathematical foundation

Mathematical foundations

Vector and matrix representation and boundary conditions

The system of n = M N ordinary differential equations (ODE) defining a standard (not
necessarily space-invariant) CNN can be recast in the form

xij:hij(iijat)a i=1,2,.... M, j:1,2,...,N (2.6)
where

hij(Xij, t) = —x;j(t) + Z AG, jik, Dy () + si (1)
C(k.DES(0.))

where

Vit = f(xkr)

sij (1) = Z B(i, j; k, Dug (1) + zi;(2)
Ck.)eS, (i j)

X;j is a vector of length (2r + 1)2 whose components include all variables xi; €
S, j), ie.

X lk—=il<r|l—jl<r}

We can cast Eq. (2.6) into the following M x N matrix differential equation which
exhibits a one-to-one correspondence with the CNN architecture

T X2 ... Xy
X21 X2 XonN
XM—11 XM-12 ... XM—1,N
R XM2 ... XMN
hi1(X11) h12(X12) hin(Xin)
ha1(X21) h22(X22) e haon (X2n)
= : : : 2.7
hv—110Xpm-1,1) hv—12&m-12) ... hy— 1 NEpy-1,n)
hyv1(Xp1) hyo(Xp2) e hunXun)

Definition 6: Virtual cells

Any cell C(k, 1), with |k —i| < r, |l —j| <r,and k ¢ {1,2,..., M} and/or | ¢
{1,2,..., N}iscalled a virtual cell, and the associated xi;, Vs, U, and zx; are called
virtual state, virtual output, virtual input, and virtual threshold, respectively.

15 2.2 Mathematical foundations
|

Boundary conditions

Any virtual variable in x;; of Eq. (2.6) must be specified via various boundary
conditions which are the most commonly used for a 3 x 3 neighborhood.

1 Fixed (Dirichlet) boundary conditions

Left virtual cells: yio = oy, uio= P, i=1,2,....,.M
Right virtual cells: ViNtl =02, Uint1=p, 1=12,....M
Top virtual cells: Yo,j = o3, ug,j = P3, j=12,...,N
Bottom virtual cells: yy41,j =4, upms1,j=ps, j=1,2,...,N

where «; and §; are user prescribed constants (usually equal to zero).
Circuit interpretation: Add one row or column along the boundary and force each
cell to have a fixed input and output by batteries (Fig. 2.11).

—|I|H|-
—|I|H|

|H|I}—‘
-

M x N

CNN

"HM—‘
Wi

-|H|I|—
|H|||—

Fig. 2.11. The circuit interpretation of the fixed (Dirichlet) boundary condition.

2 Zero-flux (Neumann) boundary conditions (Fig. 2.12)

Left virtual cells: Yio = Vi1, ui0 = Ui, i=1,2,....M
Right virtual cells: YiN+1 =YiN, UiNt+1=Uin, [=12,...,M
Top virtual cells: Y0,j = V1,j» uo,j =ui,j, j=12,...,N
Bottom virtual cells: yy41,j = ym,j, um+y1,j =um.j, j=12,...,N.

Remark:

This boundary condition usually applies to the case where there is no input, i.e., u;; =
0 for all (i, j). Because any input would cause energy and/or material flow from the
outside making the system an “open system” in the sense of thermodynamics, CNN

16
—

Notation, definitions, and mathematical foundation

M x N

CNN

Xm1 é % AMN

Fig. 2.12. The circuit interpretation of the Neumann boundary condition.

with zero input is called autonomous CNN, and constitutes an important class with
widespread applications in pattern formation and “autowave” generation.

3 Periodic (Toroidal) boundary conditions

Left virtual cells: Yi,0 = Yi,N> Ui, 0 = U; N, i=12,....M
Right virtual cells: YiN+1 =DYil, UinN+1=Ui1, i=12,....M
Topvittualcells: Y0,j = YM,j, up,j =UM,j, j= 1,2,...,N
Bottom virtual cells: yy41,; = y1,j, uUm+1,j =u1,j, j=1,2,...,N.
A B
A B
Mx N
CNN >
D C

Fig. 2.13. The circuit interpretation of the Periodic (Toroidal) boundary condition.

Identify each cell from the top row with the corresponding cell in the bottom row,
identify each cell from the left column with the corresponding cell in the right column.

17
—

2.2 Mathematical foundations

This is equivalent to fabricating a CNN chip on a silicon torus as its substrate.

Vector differential equation
Since virtually all theorems and numerical techniques for solving systems of ODE
are formulated in vector form, we must repack the M x N matrix ODE (2.6) into an
MN x 1 vector ODE. There are many ways to order the variables. We consider three

typical orders:

1 Row-wise packing scheme
2 Diagonal packing scheme
3 Column-wise packing scheme

These packing schemes are shown in Figs 2.14(a), (b), and (c), respectively.

11 12 13 14 IN 11 12 13 IN
|
| |
| |
| |
| |
}k \r | s
| |
| |
| |
| |
] 0—] I
M1 M2 M3 MN
(a) (b) (©)
Fig. 2.14. Three (among many others) possible packing schemes.
After repacking, we obtain a system of n = M N vector systems
Bg X A i 21
X2 =% » 75} 2
. =- . + . + . +
in in 5)’1 ﬁn 2}1
—— —— ———— e e e e N
X X A y B u z
or in vector form
X=—X+ Ay + ﬁu(t) + z(¢)
yi = f(xi) (2.8)
where x = [£], X2, ..., %17 is the state vector with the same order of state variables.

The two matrices A and B are n x n matrices whose nonzero entries are the synaptic
weights A(i, j; k, 1) and B(i, j; k,), respectively, corresponding to the above three

18
—

Notation, definitions, and mathematical foundation

N
q q
> ——————
N
N

Fig. 2.15. The band structure of A and B.

packing schemes. Each matrix is quite sparse (most entries are zero) with the band
structure shown in Fig. 2.15.
For M = N, the band has a bandwidth

w=2q+1

where

qg=N+1 forrow-wise packing schemes,

q = 2N —2 for diagonal packing schemes,

g =2N — 1 for column-wise packing schemes.

The band corresponding to the above three packing schemes can be divided into two
or more diagonal sub-bands, each of which is a sparse matrix.

Remarks:

A and B are very large matrices, e.g., for M = N = 1000 (for HDTV applications),
n = 1,000,000, g = 1001, w = 2003 for row-wise packing scheme, which is only
0.2% of L = 10° (L is the bandwidth of the full matrix). This shows A and B are very
sparse matrices.

2.2.2 Existence and uniqueness of solutions
To motivate the importance of the questions of “existence and uniqueness of solutions”
for a CNN, a question which has never been an issue in linear circuit and system theory,
consider the following three simple nonlinear circuits.

Example 1

Consider the circuit shown in Fig. 2.16(a) whose state equation is given by

t>0 (2.9)

19 2.2 Mathematical foundations

The characteristics of the right-hand side are shown in Fig. 2.16(b). The solution of
Eq. (2.9) with initial condition x(0) = x¢ > 0 is given by

x()=+/x3—t, t>0 (2.10)

and sketched in Fig. 2.16(c). Observe that this circuit has no solution with any initial

state xg > Ofort > T = xg.

1 _ 1 X
= —=— ===
+ + Y 2v 2x A
A
Xo
x Xo
7 > X
o
0 > !
)
_ T=x;
(a) (b) (©)
Fig. 2.16. Example of a circuit which has no solution after a finite time 7.
Example 2
Consider the circuit shown in Fig. 2.17(a) whose state equation is given by
.3
x==x3 (2.11)

2
The characteristics of the right-hand side are shown in Fig. 2.17(b). The solution of
Eq. (2.11) with initial condition x(0) = 0 is given by
0 0<t<T

x(t) = ’

t—=T)Y"2, t>T (2.12)

for any T € R. This solution is shown in Fig. 2.17(c) for different choices of
T =T,Tp,...,Ty.Since T is arbitrary, this circuit has an infinite number of distinct
solutions.

Example 3
Consider the circuit shown in Fig. 2.18(a) whose state equation is given by
X = x? (2.13)
The characteristics of the right-hand side are shown in Fig. 2.18(b). The solution of
Eq. (2.13) with initial state x(0) = 1 is given by

x=—o (2.14)

20

Notation, definitions, and mathematical foundation

x—ixm o
2 A
A
- g
> !
ofr, I, T,
(b) ()

Fig. 2.17. Example of a circuit having infinitely many distinct solutions, all with the same initial
state x(0) = 0.

As shown in Fig. 2.18(c), this circuit has a solution which cannot be continuous
beyond ¢ > 1 because it blows up at ¢+ = 1. This phenomenon is called a finite escape

time.
X
: 2
N PN i=—v2 X=x A '
A |
X, |
|
x - % :
1F | 1 |
> X |
0 1 , > 1
_ — 0 1
(a) (b) (©)

Fig. 2.18. Example of a circuit having a finite escape time.

The examples in Fig 2.18 show that even a simple two-element nonlinear circuit
may not have a solution, and even if a solution exists it may not be unique, or may not
be continued for all times ¢ > 0. How do we determine whether a nonlinear circuit has
a unique solution for all times ¢ > 0. This is of fundamental importance for us since
we will be concerned with asymptotic behavior as ¢t — oo. There is no general method
to answer this fundamental question since any method or theorem must exclude such
simple equations as (2.9), (2.11), and (2.13)! Fortunately, for CNN, we can prove the
following:

Theorem 1: Global existence and uniqueness theorem
Assume the standard CNN described by Eq. (2.2) satisfies the following three
hypotheses:

21

2.2 Mathematical foundations

H1: The synaptic operators are linear and memoryless, i.e., A(i, j; k,)y and
B(i, j; k, D)uy, are scalar multiplications, where A(i, j; k,) and B(i, j; k,[) are
real numbers.

H2: The input u;; () and threshold z;; (¢) are continuous functions of time.

H3: The nonlinearity f(x) is Lipschitz continuous in the sense that there exists a
constant L such that for all x’, x”" € R

If(x)— fFQDI < Lix"—x"| (2.15)
(Note: for the scalar case, the norm is equivalent to the absolute value.)

Then for any initial state x;;(0) € R, the CNN has a unique solution for any 7 > 0 (see
Fig. 2.19).

fx)
7
-L /
N vl
e
|
Lt |
AT
|
4 | ;
v 0 X’ N
By
Fig. 2.19.
Remark:

The standard CNN satisfies all three hypotheses H1, H2, and H3.

Proof:
Hypotheses H1 implies we can recast Eq. (2.1) into the vector form
yp P
%= —x+Ay+Bu@) +zt) =hx1 y=f(x) (2.16)
We show first that h(x, ¢) is Lipschitz continuous with respect to x. Choose any X/,
x" e R", andlety = [f(x1), ..., f(x,)]", so that, y/ = f(x) and y” = f(x").
Ih(x', 1) —h(x",)] = | X+ Ay +x" — Ay’
=X =X + Ay -y
< X" =X| + IAlly -yl (2.17)

22
—

Notation, definitions, and mathematical foundation

Now
f&x) f&x)
., f(x5) ()
ly —y'll = : - :
fx) flxp)

= \/|f(x/1) — FEDPR A+ () — FDP

< \/L2|xi —x{12+ L2|xy — x5 1>+ -+ L2|x}, — x)/|?

(in view of hypothesis H3)

xp —xf

-

_ X2 . X2

X, — X,
=L|x x| (2.18)

Substituting equation (2.18) into equation (2.17), we obtain

Ih(x', 1) —hx",)|l < (1+ LIIAII) Ix" —x"||
= L|Ix — x| (2.19)

where .2 1 + L ||1&|| is a global Lipschitz constant, independent of x and ¢.

Hence, h(x, t) is uniformly Lipschitz continuous with respect to x. Moreover, since
for each xg € R”, h(xg,) is continuous for all ¢, in view of H2, we can find a bound
M o10a (Which in general depends on Xg, fy, and a) such that

Ih(xg, DIl < Mxy. 190 V1 € [to, 10+ a]
Then for all x, such that

Ix —xoll <b, te€][t0,70+al]
Ih(x, DIl < Mygs.a + Lb

in view of the Lipschitz continuity of h(x, 7).
It follows from the Picard—Lindelof Theorem? that a unique solution exists for a

time duration of

) b
min{ a, ——— — | second

Mxo,to,a +Lb

By choosing b large enough and ¢ > 1/ L, one can see that a solution exists for
approximately 1/L seconds where L is independent of X, tg, a, and b. We can use the
same procedure to show a unique solution exists for the next 1/L seconds, etc. So, a
unique solution exists for any time. U

23

223

2.2 Mathematical foundations

Boundedness of solutions

Theorem: Explicit solution bound
For all initial states, inputs, and thresholds satisfying

lxij O <1, Jujj®OI <1, 1z;j (O] < Zmax

the solution x;;(¢) of the standard CNN with linear memoryless synaptic operators
A(i, j; k,1) and B(i, j; k, 1) is uniformly bounded in the sense that there exists a
constant xpmax such that

|Xij ()] < Xmax V220, 1<i<M, 1=<j=<N

where

Xmax = 1 + Zmax + max E (|A(isj;k9l)|+|B(i1j;ksl)|)] (2.20)
1<i<M ..
IS]SN C(k,l)GSr(l,_])

Lemma 1 (Appendix 1)
The complete solution of

X =—-x4 f(@)
x(0) = xo

is given by
t
x(t) =xpe ! +/ e D f(r)ydr, >0
0
In the special case where f(t) = fp where fj is a constant, we have
x(t) =xpe "+ fol—e"), t>0

The equivalent electrical circuit is as shown in Fig. 2.20.

X == 1Q @\ £

Fig. 2.20.

24

Notation, definitions, and mathematical foundation

Proof of Theorem 2:
Gij=-—xij+ Y AGjikDyu+ Y, B jikDug+z; (221
C(k,)eSy(i,)) Ck,)eSy(i,)
i (1) Bij (u())
f®
where o;;(¢) and B;;(¢) are defined for all + > 0 in view of Theorem 1. Applying
Lemma 1,
t

x(1) = x;j(0) e~ + / eIy (x) + Bijw(v) + zij ()] dx (222)

0

Applying triangular inequality

t
x(1) < |xij(0) e + /O e U a;; (T)| + |Bij ()] + |zij (D)1 dT

t
< 131100 | + (@lmax + Bax + Zama) / 79 4y (2.23)
0
where
Qmax = mMax |a;; (1)| < Z |A(i, j; k,)| max y (1) (2.24)
120 Ck,Des, G, j) 120
Bmax = max |B;;(u)| < Z |B(i, j; k,1)| max ug; (¢) (2.25)
! ClkDES (i,)) “
But
t
/ e dr=1—e¢"<1, t>0 (2.26)
0
lu ()| < 1 (2.27)
lx;; (0)] <1 (2.28)

Hence, (2.21)~(2.28) imply

|xij ®] =< |xij 0) e_t| + ®max + Bmax + Zmax
<ltzmx+ Y, JAGjkDI+ Y |BG.jik D)
C(k,l)eS, (i,) C(k,1)eSr(i,))

< I+ Zmax + max E (IAG, js k, DI+ |BG, j; k, l)I)}
1<i<M ..
1<j<N C(k,1)eS,(i,J))

= Xmax

independent of (i, j). O

25

224

2.2 Mathematical foundations

Remarks:
1 For space-invariant CNN, |x;; ()| is bounded by
fmax =1+ zmax+ Y. Y. (IAul+1Byl) (2.29)

1<k<M 1<I<N

2 Theorem 2 imposes a minimum power supply voltage for any CNN circuit imple-
mentation, and is fundamental for designing a CNN circuit.

Space-invariant CNN

Cloning template representation
Since the majority of all CNN applications use only space-invariant standard CNNs
with a 3 x 3 neighborhood (sphere of influence r = 1), it will be extremely convenient
to introduce some concise notations and terminologies for future analysis.

Consider a typical cell C(i, j) € S, (i, j) as follows

Ci—1,j—-D)|CGEi—1,/)|Ci—-1j+1)
Ci,j—1) C@, j) CG,j+1)
Ci+1,j—1)|Ci+1,j)|CGi+1,j+1)

Let us examine the contributions from the two synaptic operators and the threshold
items in (2.21).

1 Contributions from the feedback synaptic operator A(i, j; k,)
In view of space-invariance, we can write

AGjik.Dya= Y. > Ak—il—jyy
Ck,DES, (i,)) lk—i|<1|l—jl=1

=da_1,-1Yi—-1,j—1 +a-1,0Yi-1,j +a-1,1Yi—1,j+1
ao,—1Yi,j—1 +ao,0i,j +ao,1i,j+1
ar,—1Yi+1,j—1 +a1,0Yi+1,j + a1,1Yi+1,j+1
1 1
= > aavivkjtl (2.30)
k=—11=—1

where a,,, = A(m, n)

A a—1,-1 | a-1,0 | a—1,1 Yi—1,j—1 | Yi—1,j | Yi—1,j+1
=| ao,—1 | ao0 | ao1 |®| Yij-1 Vi,j Vi,j+1 |=A®Y; (2.31)
ar,—1 aro ar,l Yi+1,j—1 | Yi+1,j | Yi+1,j+1

where the 3 x 3 matrix A is called the feedback cloning template, and the symbol “®”
denotes the summation of dot products, henceforth called a template dot product. In

26

Notation, definitions, and mathematical foundation

discrete mathematics, this operation is called “spatial convolution.” The 3 x 3 matrix
Y;j in (2.31) can be obtained by moving an opaque mask with a 3 x 3 window to
position (i, j) of the M x N output image Y, henceforth called the output image at
C@, j)-

An element ay; is called a center (resp., surround) element, weight, or coefficient,
of the feedback template A, if and only if (k, [) = (0, 0) (resp., (k, [) # (0, 0)).

It is sometimes convenient to decompose the A template as follows

A=A+ A (2.32)
ol 0]o0

A°=101apo]0
ol 0 |0

a—1,-1 | a—10| a1

A= ao,—1 0 ao.1

ay,—1 ai,0 at,1

where A and A are called the center and surround component templates, respectively.

2 Contributions from the input synaptic operator B(i, j; k, 1)
Following the above notation, we can write

BG, jik,Dyg= Y D Blk—il—jug

C(k,DeS (i,]) k—i|<1|l—j|<1
11
=D D buttitkji (2.33)
k=—11=—1
R b_y—1|b-10|b-11 Wi1,j—1 | Wi—1,j | UWi—1,j+1
=| bo,—1 | boo | bo1 |®| uij1 uj,j uij+1 |= B®Ujj (2.34)
by -1 | bro | b1 Witl j—1 | Witl,j | Witl, j+1

where the 3 x 3 matrix B is called the feedforward or input cloning template, and U;;
is the translated masked input image.
Similarly, we can write

B=B"+B (2.35)
o] o [o

B =0 boo | O
ol o [o

) b1 |b_10]| b1
B=| by 1 0 bo,1
bi,—1 | bio | b1

where B® and B are called the center and surround feedforward template, respectively.

27

225

2.2 Mathematical foundations

3 Contribution from the threshold terms
Zij =2

Using the above notations, a space-invariant CNN is completely described by
Xij=—Xj+A®Y;+B®U;; +z (2.36)

We will usually decompose (2.36) as follows

Xij = —xij +aoo f(xi)) +A®Y;j + BQU;; + 2 (2.37)
g(xij) w;j(t)

where

hij(xij; wij) = g(xij) + w;j(xij, 1) (2.38)

is called the rate function, g(x;;) is called the driving-point (DP) component because
it is closely related to a central concept from nonlinear circuit theory, and

wij(xij,) =A®Y;; +B®U;; +2

is called the offset level.

Three simple CNN classes

Each CNN is uniquely defined by three terms of the cloning templates {A, B, z}, which
consist of 19 real numbers for a 3 x 3 neighborhood (r = 1). Since real numbers are
uncountable, there are infinitely many distinct CNN templates, of which the following
three subclasses are the simplest and hence mathematically tractable.

Definition 7: Excitatory and Inhibitory synaptic weights (Fig. 2.21)
A feedback synaptic weight ay; is said to be excitatory (resp., inhibitory) if and only if
it is positive (resp., negative).

A synaptic weight is “excitatory” (resp., inhibitory) because it makes the rate
function £;;(x;;, w;;) more positive (less positive) for a positive input, and hence
increases (resp., decreases) X;;, namely the rate of growth of x;; (¢).

Definition 8: Zero-feedback (feedforward) class C(0, B, z) (Fig. 2.22)
A CNN belongs to the zero-feedback class C(0, B, z) if and only if all feedback
template elements are zero, i.e., A = 0.

Each cell of a zero-feedback CNN is described by

Xij=—xij+B®U;; +z (2.39)

28
—

Notation, definitions, and mathematical foundation

() C(A,B,2)
W
State X Output Y
(b) Z
—»U a X Vi
B ——()— Jar JiO)
i
A | <
Y

Fig. 2.21. A space-invariant CNN C(A, B, z) with a 3 x 3 neighborhood S (i, j). (a) Signal flow
structure of a CNN with a 3 x 3 neighborhood. The two shaded cones symbolize the weighted
contributions of input and output voltages of cell C(k,) € S1(i, j) to the state voltage of the center
cell C(i, j). (b) System structure of a cell C(i, j). Arrows printed in bold mark parallel data paths
from the input and the output of the surround cells uy; and yy;, respectively. Arrows with thinner
lines denote the threshold, input, state, and output, z, u; 7o Xijs and y; s respectively.

Definition 9: Zero-input (Autonomous) class C(A, 0, z) (Fig. 2.23)
A CNN belongs to the zero-input class C(A, 0, z) if and only if all feedforward
template elements are zero, i.e., B = 0.

Each cell of a zero-input CNN is described by

Xij=—Xxj+A®Y;j +z (2.40)

Definition 10: Uncoupled (scalar) class C(A°, B, 7) (Fig. 2.24)
A CNN belongs to the uncoupled class C(A°, B, z) if and only if a; i = Oexcepti = j,
ie,A=0.

Each cell of an uncoupled CNN is described by a scalar nonlinear ODE which is
not coupled to its neighbors:

xij = —xij +aoo f (xij) + B®U;j +z (2.41)

29 2.2 Mathematical foundations
|

(a) Zero-feedback CNN: C(0, B, 2)
o B -
3L - fx)
Input U Stale X Qutput Y
(b) z [
U X, X V.
s o fr ol fO

Fig. 2.22. Zero-feedback (feedforward) CNN € C(0, B, 7). (a) Signal flow structure of a
zero-feedback CNN with a 3 x 3 neighborhood. The cone symbolizes the weighted contributions of
input voltages of cells C(k,[) € S1(i, j) to the center cell C(i, j). (b) System structure of a cell
C(i, j). Arrows printed in bold denotes the input signal from the surround cells. In this case, there is
no self-feedback, and no couplings from the outputs of the surround cells.

(1) Zero-input CNN: C(A, 0, 2)
: . A .
E . : i
$ '
Input U State X Output Y
(b) Z
.x{-- }-“[..
i - f(-) b

A

_<Jk

Fig. 2.23. Zero-input (Autonomous) CNN € C(0, B, 7). (a) Signal flow structure of a zero-input
CNN with a 3 x 3 neighborhood. The cone symbolizes the weighted contributions of the output
voltage of cells C(k,[) € S| (i, j) to the center cell C(i, j). (b) System structure of a center cell
C(i, j). Arrow printed in bold denotes the signal fed-back from the outputs of the surround cells.
In this case, there are no input signals.

30
—

2.2.6

Notation, definitions, and mathematical foundation

Uncoupled CNN: C’(AO,B, Z

(a)
B -5 = "
—— X n Ay
o .
Yo :
Input U State X Output Y
(b) %
B ——()— [ar - () >
U, PN

a{lﬂ

Fig. 2.24. Uncoupled CNN € C(0, B, z). (a) Signal flow structure of an uncoupled CNN with a

3 x 3 neighborhood. The cone symbolizes the weighted contributions of the input voltages of cells
C(k,l) € S1(i, j) to the center cell C(i, j). (b) System structure of a center cell C (7, j). Arrow
printed in bold denotes the input signals from the surround cells. In this case, the data streams
simplified into simple streams marked by thinner arrows, indicating only a “scalar” self-feedback,
but no couplings from the outputs of the surround cells.

So far, we have not mentioned the details of the physical or biological meaning of
the various terms in the CNN equations. To highlight some of these issues, next we
show a possible electronic circuit model of a cell. In Fig. 2.25, voltage-controlled cur-
rent sources are used to implement various coupling terms. These trans-conductances
can be easily constructed on CMOS integrated circuits. The details will be discussed in
Chapter 15. A very rough sketch of a typical living neuron with interacting neighbors
is shown in Fig. 2.26. A more detailed discussion can be found in Chapter 16.

Synaptic signal flow graph representation

Sometimes it will be more convenient to use a synaptic signal flow graph
representation’ for both the A and the B templates as shown in Figs 2.27 and 2.28,
respectively. These two flow graphs show explicitly the directions of the signal flows
from neighboring cells and their associated synaptic weights ay; and by, respectively.
Except for the symbols {aqgg, ar;} for the synaptic signal flow graph A, and {bog, by}

31 2.2 Mathematical foundations
|

synaptic current sources controlled
by the inputs of surround cells

e N,

\ current summing synaptic current sources controlled
é/ = é}vv\” \:\x\ node by the outputs of surround cells
Ve o> S“V of cell C(ij)
. 0 A\ *
- 7 -
b(),—lbi,j—l b u

|<— = —+

<

i

threshold current
of cell C(ij) - o

| D
input voltage 0 +
of cell C(ij) \ M\ 0 ol

internal core
of cell C(ij) state voltage
of cell C(ij)
output voltage
of cell C(ij)
Fig. 2.25. Cell realization of a standard CNN cell C (i, j). All diamond-shape symbols denote a
voltage-controlled current source which injects a current proportional to the indicated controlling
voltage uy; or yy;, weighted by by; or ay, respectively, except for the rightmost diamond f (x;;) in

the internal core which is a nonlinear voltage controlled current source, resulting in an output
voltage y;; = f(x;;).

32 Notation, definitions, and mathematical foundation
|

sensory
neuron
C(mn)

mn

cell body enclosed
by a membrane

axon y

a synapse from the axon
of a sensory (input) =

neuron (say from the n
“olfactory bulb”) to a . /y QQFQ
dendrite of neuron C(jj) dendrite %y

/

a synapse from the axon
(output) of neuron C(kl)
to a dendrite of neuron

Y CGj)

X 0

Fig. 2.26. A caricature of a typical neuron C (i, j) receiving an input from a sensory neuron on the
left and a neighbor neuron below through respective “synapses.”

for the synaptic signal flow graph B, these two signal flow graphs are identical and
hence easy to remember. Observe that the bold heavy edges indicate signal flowing
into cell C(i, j), whereas the light edges indicate signal flowing out from cell C(i, j).
Observe that each synaptic weight occurs exactly twice in each flow graph, and that
they are always associated with a pair of edges, one bold edge and one light edge, with
arrows pointing in the same directions. For example, the coefficient a_g is associated
with the two edges originating from the North (N) cell and terminating in the South (S)

33 2.2 Mathematical foundations
|

a_1,—1 | a—1,0 | a-11
@ | ao,—1 | aoo | ao:1
ai—1 | aio | ain

i+1, 1

o & ® O

Fig. 2.27. Feedback synaptic signal flow graph A associated with the A template.3 (a) The A
template with self-feedback synaptic weight agg, (b) Signal flow graph A.

cell. This is because the “top” cell C(i — 1, j) is North of the center cell C(i, j), which
is itself North of the “bottom” cell C(i + 1, j). The same observation applies to the
horizontal pairs, and all diagonal pairs of similarly-directed bold-light edges. Observe
also that for each zero coefficient ay; = 0, or by; = 0, two corresponding edges will
disappear from the corresponding signal flow graph. Hence, for templates with only
a few non-zero entries, their associated synaptic signal flow graphs are particularly
simple. It is in such situations where useful insights can be obtained, specially when
two or more such synaptic signal flow graphs are interconnected to form a composite
synaptic system graph.

34 Notation, definitions, and mathematical foundation
|

b_1,—1|b_10|b-11
(@ | bo,—1 | boo | bo,1
bi,-1 | bro | b1

u u .. u ..
i+1, j-1 i+, j i+1, j+1

(b) @ @ @

Fig. 2.28. Input synaptic signal flow graph B associated with the B template. (a) B template with

self-input synaptic weight bqy. (b) Signal flow graph B.

3 Characteristics and analysis of simple CNN
templates

3.1 Two case studies: the EDGE and EDGEGRAY templates

3.1.1 The EDGE CNN

EDGE: binary edge detection template

ofo]o —1[-1]~1
A=[ofofo| B=[-1] 8 [-1] z=[-1]
0ojo]o —1]-1[-1
I Global task

Given: static binary image P

Input: U(t) =P

Initial state: X(0) = Arbitrary (in the examples we choose x;;(0) = 0)

Boundary conditions:! Fixed type, u; ;i =0, y;j = 0 for all virtual cells, denoted by

(U] = [Y] = [0]
Output: Y(t) = Y(oo) = Binary image showing all edges of P in black.

Remark

The Edge CNN template is designed to work correctly for binary input images only.
If P is a gray-scale image, Y(oo) will in general be gray-scale where black pixels
correspond to sharp edges, near-black pixels correspond to fuzzy edges, and near-white
pixels correspond to noise.

II Local rules
static input u;; — steady state output y;;(00)
1 white pixel — white, independent of neighbors
2 black pixel — white, if all nearest neighbors are black
3 black pixel — black, if at least one nearest neighbor is white
4 black, gray or white pixel — gray, if nearest neighbors are gray

35

36 Characteristics and analysis of simple CNN templates
|

IIT Examples

EXAMPLE 3.1: Image size: 15 x 15 (see also Fig. 3.1)

input initial state = 0.0 t=0.5

t=1.0 t=2.0 t=3.0
i)))
-1.0 0.0 1.0

Snapshots are shown in gray scale with 256 levels. Integration time step = 0.1.

transient at pixel A

transient at pixel B

time ¢

Fig. 3.1. Cell transient at three different locations in image of example 3.1. ——: state variable x; ;;
: output variable y;;; ***: output and state are the same.

37 3.1 The EDGE and EDGEGRAY templates
|

transient at pixel C

Fig. 3.1. Continued.

EXAMPLE 3.2: Image size: 100 x 100

input state, 1 = 0.0 t=05

t=10 t=20 t=3.0

EXAMPLE 3.3: Image size: 100 x 100

input final output

38
—

Characteristics and analysis of simple CNN templates

EXAMPLE 3.4: Image size: 100 x 100

—
23

e
A

input final output

IV Mathematical analysis

State and output equation

Xij = g(xij) + wij = hij(xij, wij)

yij = f(xij) 3.1
where
g(xij) = —xij (3.2)
Wij = =14 8ujj —ujq1,j—1 — Wig1,j — Wil j41 — Ui j—1 — Ui j+1 — Ui—1,j—1
—ui—1,j —Ui—1,j+1 — L+ 8u;j — Z Ul (3.3)
k€SI G, /)
ki

We will often refer to the loci I' of h;;(x;;; w;;) associated with the state equation
Xij = hij(x;j; w;;) as the driving-point (DP) plot of cell C(i, j), because this plot has
a special significance in “nonlinear circuit theory”; namely, it is just the driving-point
characteristics of the nonlinear resistive one-port Nr connected across the capacitor

with the port current assumed to be directed away from Ng.

Property 1

For any initial state x;;(0) € R, for any constantinputu;; € R, the circuitis completely
stable in the sense that all trajectories, independent of initial conditions, tend to an
equilibrium point of Eq. (3.1). In particular, y;;(00) = lim;_, » y;;(t) € R. Moreover,
ifu;j € {—1, 1}, then y(c0) € {—1, 1}.

Proof:
Consider the DP plot I' defined by h;j(x;;; w;j) = —xij + wjj in Fig. 3.2. Since any
trajectory (i.e. solution) of the state equation x;; = h;j(x;;; w;;) originating from any

39 3.1 The EDGE and EDGEGRAY templates
|

Xy = hiy(xy W) Xij = hi(xigswi) Xy = hig(xy, wy)
1

—_

=
/
c% W

Ay
4—1—‘},)’Qz =]_
_>'<. T-1 Xjj
r, Q
(a) (b)

Fig. 3.2. The dynamic route corresponding to the edge detection template. (a) w;; < —1;
(b) —1 < wij < 1; (c) wij > 1.

initial state must move along I' in accordance with the direction indicated, the directed
loci Ty in Fig. 3.2 is called the state dynamic route. The intersection Q of ', with the
horizontal axis is called an equilibrium point. Observe from the three dynamic routes
in Fig. 3.2 that all trajectories originating from any initial state tend to the equilibrium
xij = xQ. The output y;; can be obtained from the associated output dynamic route
I'y. It follows from I'y, that

w,-j, if|wij| <1
y(o) =1 1, ifw;; >1 (3.4)
-1, ifw[j < -1

O
Property 2 (Local rule 1)
If u;; = —1, then y;;(c0) = —1, independent of uy; € {—1, 1}, k,1 € 1@, j).
Proof:
Since —8 < Y xies, i, j) Uk < 8, it follows that
kiij
wij=—1+8(-1)— > ug=-I (3.5)
kleS;(i,)

ki#ij
Egs (3.4) and (3.5) = yi;(00) = —1. 0

40

3.1.2

Characteristics and analysis of simple CNN templates

Property 3 (Local rule 2)
Ifu;j =1and uy; = 1forallk,/ € $1(i, j), then y;j(c0) = —1.

Proof:
Since Zkle& @,J) U] = 8
klij
wij =—1+81)— > uu=-1 (3.6)
kleSi(,j)
kiij
Egs (3.4) and (3.6) = y;j(c0) = —1. 0

Property 4 (Local rule 3)
If u;; = 1 and if uqg = —1 for some C(a, B) € S1(i, j), then y;j(c0) = 1.

Proof:
Since) es, i, j) Uk < 6
kl#ij
wi; =—148(1) — Z up =1 3.7
kleSi (i,)
klij
Egs (3.4) and (3.7) = yjj(00) = 1. .

Property S (Local rule 4)
Ifu;j € [—1,11and uy € [—1, 1], k, 1 € S1(i, j), then y;;(o0) € [1, 1].

Proof:

Since) kies, . j) ki € [—8, 8] and this sum is not an integer in general, it follows
kl#ij

that w;; € [—17, 15] and is in general not an integer. (Il

The EDGEGRAY CNN

One objection to the Edge CNN template in Section 3.1.1 is that it works well
only for binary input images. For gray-scale input images, the output may not be a
binary image. Our next CNN template called Edgegray will overcome this problem by
accepting gray-scale input images and always converging to a binary output image.
Any imperfection in the input which we called “noise” will also converge to a binary
output. One application of this CNN template is to convert gray-scale images into
binary images, which can then be used as inputs to many image-processing tasks which
require a binary input image. From an efficient information-processing point of view,

4 3.1 The EDGE and EDGEGRAY templates

gray-scale images contain too much redundancy and require many more “bits” than

binary images. Consequently, in most image-processing systems, the gray-scale input

image at the front end is quickly converted into a binary image which contains only

the relevant information to be extracted, the most important of which being the binary
edges.

EDGEGRAY: gray-scale edge detection template

ofo]o —1[-1]-1
A=[o0[2]0| B=[-1] 8 [1] z=[-05]
ofo]o —1 -1
I Global task

Given: static gray-scale image P

Input: U(t) =P

Initial state: X(0) =0

Output: Y(t) = Y(oo) = Binary image where the black pixels correspond to pixels

lying on sharp edges of P, or to fuzzy edges defined roughly to be the union of gray
pixels of P which form one-dimensional (possibly short) line segments, or arcs,
such that the intensity of pixels on one side of the arc differs significantly from the
intensity of neighbor pixels on the other side of the arc.

Remarks

1

Some “edges” in the output may arise due to poor input image quality, or to artifacts
introduced by sensors due to reflections and improper illuminations. Since the
black pixels resulting from these situations are not edges, they must be regarded
as noise.>

The above template B is an example of an important class of input templates,
called a Laplacian template, having the properties that all “surround” input synaptic
weights are inhibitory and identical, i.e., by; = b < 0, but the center synaptic

weight is excitatory and the average of all input synaptic weights is zero; i.e.,
Z/d?g() bkl + bOO = 0.

II Local rules

N A~ W N =

U;;(0) — yij(00)

white pixel — white, independent of neighbors

black pixel — white, if all nearest neighbors are black

black pixel — black, if at least one nearest neighbor is white

gray pixel — black, if the Laplacian VzUij 2B® U;; > 0.5and x;;(0) =0
gray pixel — white, if the Laplacian V>U; 7 <0.5and x;;(0) =0

42 Characteristics and analysis of simple CNN templates
|

black, if the Laplacian = 0.5 and x(0) > 0
white, if the Laplacian = 0.5 and x(0) < O
if the Laplacian = 0.5 and x(0) =0
in this case, y;;(00) = 0 is unstable.

6 gray pixel —
07

IIT Examples
EXAMPLE 3.5: Image size: 15 x 15 (shows the transient waveforms at pixel A, B, and C)

t =0, input t =0, state t=5

E|

t=10 t=20 t=30
o R S ST S e =
T : :
o -
- - i :
i R IO SRR, R S - SRRRR— RN =
kS . ! :
o]]
§2rf--- e dseeeeaee e &
o A . oo . — i
0 1 2 2 4 5 6
m : E
T R o
= ' '
0 | |
5 e e
= A deeronassis e b Tions: Eerieriee erererieie —
kS ! :
= - S i
2 : :
4 5 6

time ¢

Fig. 3.3. Cell state and output transients for 30 steps at three different locations in the image of
example 3.5 represented by bold and thinner lines, respectively.

43 3.1 The EDGE and EDGEGRAY templates
|

transient at pixel C

Fig. 3.3. Continued.

EXAMPLE 3.6: Image size: 100 x 100

final output

44 Characteristics and analysis of simple CNN templates
|

EXAMPLE 3.8: Noisy image, image size: 100 x 100

input final output

IV Mathematical analysis
State and output equations

Xij = g(xij) + wij = hij(xij; wij)
yij = f(xij) (3.8)

where

g(xij) = —x;j + aoo f (xij)
= —xjj + 2 f (xij)

= —xij + |xij + 1] = |xi; — 1] (3.9)
wij = =054 8ujj —wit1,j—1 — Uit1,j — Uig1,j+1 — Ui j—1
— Ui jpl T U] o1 T Ui T Ui
=—05+8u;;— Y ug (3.10)
kLS, j)
kii]
Property 6

For any initial state x;;(0), for any constant input u;; € [—1, 1], the CNN is completely
stable in the sense that all trajectories of Eq. (3.1) tend to some equilibrium point
whose location in general depends on the initial state x;;(0), i = 1,2,..., M, j =
1,..., N. In particular

y,'j(OO)=1, ifwl'j >Oandw,~j;£1
=-1, ifw;; <O0and w;; # —1 (3.11)

45

3.1 The EDGE and EDGEGRAY templates

if w;; =0, then

yij(00) =1, if x;;(0) € (—o0, =2) U (0, 2]
yij(00) = —1, ifxij(O)G[—Z,O)U(Z,OO)
=0, if x;;(0) =0 (3.12)

In this case, the equilibrium point Q_ is unstable.

if wij = 1, then

y[j(OO) = 1, ifx,-.,-(O) > —1
3.13
=1, ifx;(0) < -1 (3.13)
if wij = —1, then
yij(oo) = —1, ifx,-j(O) <1 (3 14)
=1, ifx,-.,-(O) >1 '

In this case, the equilibrium point Qg is unstable.

Proof of Property I and Rules 4—6:

The first step is to examine the internal DP plot given by Eq. (3.2). Although this can
be easily sketched directly from the explicit equation given in Eq. (3.2), it is instructive
for our future analysis of more complicated CNNs to construct this curve graphically
by adding the two components —x;; and 2 f (x;;) as shown in the upper part of Fig. 3.4.
Now since

wij =—-05+B®U;
and assuming the Laplacian
VU, 2B®U; =05
it follows that the offset level w;; = 0 and hence
hij(xij; wij) = gij(xij)
In this case, the state dynamic route Iy is identical to the internal DP plot g;; (x;;),
except for the addition of arrowheads which indicate the direction a trajectory from any

point on I, must follow. It follows that of the three equilibrium points {Q_, Qo, Q+},
only Q_ and Q. are locally asymptotically stable.

To determine the asymptotic output y;;(00) 2 lim;_, 0 y;; (), we simply sketch the
output dynamic route I"y directly below I', with the vertical axes aligned with each
other, as shown in Fig. 3.4.

46
—

Characteristics and analysis of simple CNN templates

—X;; h;(x;, 0)

i

2/(x)

Central
segment
(linear region)

Left segment

Right segment

8ij (xzj)

Negative saturation region

Fig. 3.4. State and output dynamic routes for the special case of zero offset level (w;; = 0).

Since T, in Fig. 3.4 corresponds to the case VZU; i = 0.5, Local rule 6 follows
directly from this dynamic route. For future analysis, it is crucial to note here that
whenever the equilibrium point lies on the left segment, where x;; < —1, or on the
right segment, where x;; > 1, the output safurates and is always equal to y;;j(0c0) =
—1, or y;j (00) = +1, respectively.

Now for w;; # 0, the external DP plot defined by /;; (x;;; w;j) = g;j(xij) +w;; can
be simply obtained by using the internal DP plot g;;(x;;) from Fig. 3.4 as a drafting
template and translating it along the vertical direction upwards (resp., downwards) by
an amount equal to the offset level w;; if w;; > 0 (resp., w;; < 0). This geometrical
interpretation is quite general and extremely useful — this is the reason for calling w;;
the offset level. Since x;; = h;j(x;;; w;j), the dynamic route I'y associated with the

47
—

3.1 The EDGE and EDGEGRAY templates

hij(x[j’ W[/')

hij(xij’ Wij)

+2 (000, wy)

|
(b w;=-

)

1
(,(0), ;)
|

T
0

(xij(o)’ Wij)

() 1<w; <o

(© —1<w;<0

Fig. 3.5. State dynamic route for w;; # 0.

rate function h;;(x;;; w;;) for each of the six mutually exclusive cases (which covers
the entire range of w;; # 0) is shown in Figs 3.5(a)—(f), respectively.

Observe that any trajectory originating from any point on the upper (resp., lower)
half plane must move towards right (resp., left) and settle on the right (resp., left)
segment. Hence, at equilibrium the output is always binary: y;;(c0) = +1, or —1.

Now since w;; = —0.5 + VzUl-j > 0, if VZU,-j > (.5, then the associated state
dynamic route is given by Figs 3.5(d)—(f), where all trajectories originating from
x;j(0) = O tend to Q.. Since x;;(Q4) > 1, we have y;;(c0) = 1, which implies Local
rule 4. Similarly, Local rule 5 (which corresponds to VU ;i < 0.5, or equivalently
w;; < 0) follows from the state dynamic routes shown in Figs 3.5(a)—(c). O

48 Characteristics and analysis of simple CNN templates

Proof of Local rules 1-3:
Ifu,-j = —1, then

wij =—05+8(-1)— > wy <0, foralluy e[—1,1].
k€S (i,)
kiij
Hence, Local rule I then follows from Eq. (3.8), since the trajectories move to Q_.
Ifu;; =1,and uy; = 1, forall kI € $1(i, j), then

wij =—-05+8(1)— > uy=-05<0
kleSi (i,)
klij
Hence, Local rule 2 then follows from Eq. (3.8), since the trajectories move to Q_.
If u;; = 1, and there exist uog = —1, then

wij =—05+8)+1— Y uy>=15 foralluy e[—1,1].
kleS)(i,})
klij klap

Hence, Local rule 3 then follows from Eq. (3.4). O

V Basins of attraction

Fig. 3.5 shows that the EDGEGRAY CNN has a unique equilibrium point Q_ if
w;;j < —1 (Fig. 3.5(a)), or Q4 if w;; > 1 (Fig. 3.5(f)). In these cases, all trajectories
x;j(¢) will tend to a unique equilibrium point, independent of the initial states x;; (0).
A CNN operating under this initial-state-independent condition is said to be globally
asymptotically stable, or monostable for brevity, and the associated equilibrium point
is called a global point attractor Q. The union of all initial states B(Q) whose
corresponding trajectories tend to Q is called the Basin of attraction of Q. In the above
case we have simply B(Q_) = B(Q4+) = R, the real line.

Consider next the two typical cases w;; € (—1,0) and w;; € (0, 1), as shown in
Figs 3.5(c) and 3.5(d), where there are two locally stable equilibrium points Q_ and
Q. respectively. However, unlike the monostable case, which of the two equilibrium
points the trajectory will converge to depends on the initial state x;;(0). In both Figs
3.5(c) and 3.5(d), the basin of attraction of Q_ is given by all points lying to the left
of the unstable equilibrium point Qp; namely, B(Q-) = {x;; : —00 < Xj; < xQ,}-
Similarly, the basin of attraction of Q4 is given by B(Qy) = {x;; : xg, < xij <
oo}. In this case, the unstable equilibrium point Qg separates the set of all initial
states x;;(0) € R into two basins of attraction and the CNN is said to be bistable.
Observe that the initial state X(0) = 0 which we have prescribed for the EDGEGRAY
CNN guarantees that the trajectories corresponding to any input gray-scale image will
converge to the correct output image.

Finally, consider the two singular cases w;; = —1 and w;; = 1, as shown in Figs
3.5(b) and 3.5(e), where there are only two equilibrium points. In these cases, only one

49

3.2

3.2 Three quick steps for sketching the shifted DP plot

equilibrium point is locally stable; namely, Q_ in Fig. 3.5(b) with a basin of attraction
B(Q-) = {xij : —00 < xjj < xq,} and Q4 in Fig. 3.5(e) with a basin of attraction
B(Q4) = {xij : xg_ < x;; < oo}. The equilibrium points Q in Fig. 3.5(b) and Q_
in Fig. 3.5(e) are said to be semi-stable because they lie on the boundaries of these
basins so that arbitrarily small perturbations will cause the trajectories to diverge away
from the basins. Since “noise” is inevitable in any hardware realization, or computer
simulation, these two semi-stable equilibrium points are not observable in practice and
are, therefore, practically speaking, unstable.

Three quick steps for sketching the shifted DP plot

Since the most useful tool for studying the nonlinear dynamics of any uncoupled CNN
is to analyze its state dynamic route ', it is essential that we develop the skill to
quickly sketch the shifted DP plot I', (w;;), which, in general, depends on both the
threshold z;; and the inputs uy € S,(i, j) of all cells belonging to the sphere of
influence S, (i, j). The following three simple steps are all that is needed:

Given: threshold z;; and inputs uy; € S, (i, j).

Step 1: Calculate the slope of the middle segment so0 = ago — 1 and the offset level
wij = zij + B ® Ujj.

Step 2: Draw a straight-line segment with slope equal to sqp at the point x;; = w;; on
the vertical axis and ends at x;; = —1 and x;; = 1, respectively. The two end
points are the left and the right breakpoints of the shifted DP plot.

Step 3: Draw a half line with slope equal to —1 starting from each breakpoint, and
tending to infinity in each direction.

Left saturation region Y Central linear region

P’ (Right breakpoint)

slope = sp,=a,,— 1

slope = -1
(Left breakpoint) Right saturation region

Fig. 3.6. A typical shifted DP plot I'y (w;;).

50
—

Characteristics and analysis of simple CNN templates

Some other useful templates

Our object in this section is to select a gallery of CNN templates which can be
analyzed mathematically and explained. Some are specially developed to illustrate a
particular property — mainly for pedagogical values — and are not necessarily the best
choice for the intended tasks. These templates will be analyzed in the order of their
tractability and complexity. Each CNN is carefully chosen to illustrate either a new
paradigm, mechanism, or application. For ease of reference, we will always follow a
consistent style: each CNN will be identified by a code name (which may not be very
meaningful) copied from the CNN template library, together with an expanded name
which suggests the task it is designed to implement. This will be followed by a listing
of (A, B, 7) templates, and the following standard sections:

I Global task

A non-technical description will be given of the input—output image transformation at
the complete image level.

II Local rules

A precise recipe of how an input pixel transforms into an output pixel. Ideally, these
local rules must be complete in the sense that each output pixel can be uniquely
determined by applying these rules to the state and input of all pixels within that sphere
of influence. The local rules may sometimes be redundant if they help to simplify the
interpretation of the recipe, provided they are consistent (do not contradict each other).

The local rule may be more general than needed to specify the global task. For
example, it may apply to a gray-scale input even if the global task specifies only binary
inputs.

IIT Examples

Several examples will be given. The first example will include:

(a) The input picture U and initial state X(0).

(b) Several consecutive snapshots in time until the transient settles down to a static
output image Y (o0) at t = f«,, Where #o, is called the transient settling time.

(c) Time waveforms of both state x;;(¢) and output y;;(t) at several strategically
identified points on the output image Y (#) will be given. The time axis is labeled
in units of the CNN time constant tcnn. For current VLSI technology, 30 ns <
TcNN < 200 ns (ns: nanosecond). The transient settling time can be read off
directly from these waveforms by multiplying ¢, with TcNN-

(d) The first example will be repeated for a scaled-up array (usually ten times larger
in each direction) in order to compare their settling times.

IV Mathematical analysis

Ideally, a rigorous mathematical proof will be given for each local rule. Whenever this
is not available (either because a proof has not yet been developed, or the rules do not

51 3.3 Some other useful templates
|

always hold and therefore need modification) an intuitive proof, often supplemented

by various numerical studies, will be given.

3.3.1
0|00
A=(0]210
0|00
I Global task

B =

CORNER: convex corner detection template

—1[-1]-1
—1] 8 [-1] z=[-85]
—1 | —1] -1

Given: static binary image P

Input: U(t) =P

Initial state: X(0) =0

Output: Y(t) = Y(oco) = Binary image, where black pixels correspond to convex
corners in P (where, roughly speaking, a black pixel is a convex corner if it is part

of a convex boundary line of the input image).

II Local rules

uij(0) — yjj(c0)
1 white pixel — white, independent of neighbors

2 black pixel — black, if and only if it has three or fewer black nearest neighbors (or

equivalently five or more white nearest neighbors)

IIT Examples

EXAMPLE 3.9: Image size: 15 x 15

u u
n |
input initial state output, r=0.2
]] |] l\]
||] ||] u h]
t=04 t=0.6 t=1.0

Normalized time unit t, = TCcNN-

52 Characteristics and analysis of simple CNN templates
|

EXAMPLE 3.10: Image size: 100 x 100

ooo@ooan 1 0 0t O e 1
oooooano))
ooo@ooan = o B 1 e R
oooooan i = 0 B <
ooo@ooan | g, [E
oaooooan [EEE C
input initial state output, =0.2
t=04 t=0.6 t=10

EXAMPLE 3.11: Realistic scene (100 x 100)

P

input final output

EXAMPLE 3.12: Corner template for image containing pixel level textures (50 x 50)

input final output

53 3.3 Some other useful templates
|

transient at pixel A

R LR T

[
i
P
A
n
o

i
|
1
'
1
1
1
1
1
1
1

g SRS
|
'
1
1
1
1
1
1
1
1

S BRI
'
1
1
1
1
1
1
1
1
1

transient at pixel B

o - - -

S oo oo oo o)

transient at pixel C

o - - -

time ¢

Fig. 3.7. Cell state and output transients for 30 equidistant time steps at three different locations in
the image of example 3.9. : state variable x;;; ——: output variable y;;.

IV Mathematical analysis

Since the EDGEGRAY and the CORNER CNN have the same A template, their
internal DP plots g;; (x;;) are identical, as already derived earlier in Fig. 3.5(a) (for the
EDGEGRAY template). Moreover, since they have the same B template, the output of
the CORNER CNN is also given by Eq. (3.4) of the EDGEGRAY CNN; namely

y,'j(OO)ZI, ifw,-j >Oandwij7é1

3.15
=_1, ifwij <0andwl~j7é—1 ()

54

3.3.2

Characteristics and analysis of simple CNN templates

where in this case

wij = —8.5+8ujj — g (3.16)
kleS1(,j)
klij

Now, since u;; = —1 implies w;; < 0 independent of uy;, it follows that any white
input pixel must map into a white output pixel (Local rule 1).

It remains to analyze the case where u;; = 1 (black). In this case, Eq. (3.16)
becomes
wij = —0.5 = (pb — pw) (3.17)

where py, and py, denote, respectively, the fotal number of black and white surround
(nearest neighbor) pixels of the center cell C(i, j). Since pp + pw = 8, Eq. (3.17)
implies

wij = —0.5— 2pp —8) =7.5—2pp
= —0.5— (8 —2py) = —8.5 + 2py (3.18)

It follows from Eq. (3.18) that

w;j;j < 0, ifpb24(01', PW§4) (3.19)
>0, if ppb <3 (or, py >5)
Hence, a black input pixel will map to a black output pixel if and only if it has three
or less black surround cells, or it has five or more white surround cells (Local rule 2).
It is interesting to observe that the nonlinear dynamics of the CORNER CNN tend
to extract one pixel-wide horizontal and vertical edges which form the boundary of a
square (e.g., see output image at t = 0.4). In other words, the CORNER CNN seems
to exhibit some intelligence in self-organization by programming itself to carry out
the prescribed global task in two steps: (1) extract horizontal and vertical edges at the
perimeter of a square, and (2) extract the extreme “end” pixel of these edges. This
fascinating self-programming phenomenon can be explained by examining carefully
the time evolution of the transient process.

THRESHOLD: gray-scale to binary threshold template

0/0(0 0/0(0
A=(0]2]|0| B=|0|0|0| z=|—-2"|,
0(0]0 0700

55 3.3 Some other useful templates
|

I Global task
Given: static gray-scale image P and threshold z*

Input: U(t) = arbitrary or default to U(r) =0
Initial state: X(0) =P

Output: Y(t) = Y(oo) = binary image when all pixels P with gray-scale intensity
pij > 7" becomes black.

II Local rules
Xij(0) — y;ij(00)
1 x;;(0) < z* — white, independent of neighbors
2 x;j(0) > z* — black, independent of neighbors

3 x;j(0) = z* — z*, assuming zero noise
IIT Examples

EXAMPLE 3.13: Image size: 63 x 63

input initial state output, r = 0.1
t=0.2 t=03 t=0.5

Normalized time unit #,, = TcNN, 2F = —0.4.

56 Characteristics and analysis of simple CNN templates
|

EXAMPLE 3.14: Image size: 63 x 63

. &

input output, z*=0.8 output, z* =04

output, z* =0.0 output, z* =-0.4 output, z* =-0.8

EXAMPLE 3.15: Image size: 128 x 128

output, z*¥=0.0 output, z*=-0.5

57 3.3 Some other useful templates
|

EXAMPLE 3.16: Image size: 100 x 100

output, z*¥=0.0 output, z*¥=-0.5

Observe that the last two examples show that any image P can be transformed into
a completely black image by a THRESHOLD template with z* = —4, or a completely
white image by choosing z* = 4. Since these two transformations are quite useful
for many image-processing tasks, we have recognized their importance by classifying
them as separate CNNs in the CNN template Library under the names FILBLACK and
FILWHITE, respectively, which we reproduce in Section 3.3.3.

IV Mathematical analysis (for THRESHOLD)
Since by = 0, w;j = —z*, there is only one shifted DP plot for each threshold z*, as
shown in Fig. 3.8, independent of the inputs of the neighbors (which is arbitrary for
this template).
It follows from the dynamic route shown in Fig. 3.8. that

vij(00) = —1, ifx;;(0) < z* (Local rule 1)

=1, if x;;(0) > z* (Local rule 2)

=z* ifx;j(0) =z* (Local rule 3)
Observe that y;;j(c0) = z* when x;;(0) = z* because x;; = z* in Fig. 3.8 is

an equilibrium point (Qg). However, since Qq is unstable, any “noise” Ax would
eventually drive the “theoretical” gray-scale output to either black (if the noise

58 Characteristics and analysis of simple CNN templates
|

slope = -1

L -1

Fig. 3.8. Shifted DP plot I'x (w;;) and its dynamic route.

Ax;j(0) > 0), or white (if the noise Ax;;(0) < 0). Hence, in practice, the above
THRESHOLD CNN will always give a binary output image, assuming one waits long
enough for the transients to settle down.

3.3.3 FILBLACK and FILWHITE templates

FILBLACK: Gray-scale to black CNN

000 000
A=[0[2]0| B=[0o]0|0]| z=[4]
000 000
I Global task

Given: static gray-scale image P

Input: U(t) = arbitrary or default to U(¢) =0

Initial state: X(0) = P

Output: Y(t) = Y(o0o) = black image (all pixels are black)

II Local rules

xij(0) = yij(00)

Arbitrary x;;(0) € (=00, 00) — y;j(00) =1

59 3.3 Some other useful templates
|

IIT Example
EXAMPLE 3.17: Image size 128 x 128

Input Output, z=4.0

FILWHITE: Gray-scale to white CNN

ofofo ofofo
A=[0]2]0] B=[0|0[0]| z=|-4]
olo]o olo]o
I Global task

Given: static gray-scale image P

Input: U(t) = arbitrary or default to U(z) =0

Initial state: X(0) = P

Output: Y(t) = Y(00) = white image (all pixels are white)

II Local rules
xij(0) — y;j(00)

Arbitrary x;;(0) € (=00, 00) — y;j(00) = —1

IIT Example
EXAMPLE 3.18: Image size 128 x 128

Input Output, z=-4.0

60 Characteristics and analysis of simple CNN templates
|

3.3.4 LOGNOT: Logic NOT and set complementation (P — P = P¢) template

o[ofo o[0o
A=[o[1]0]| B=[0|—2]0]| z=/[0]
ojo]o o] 0o
I Global task

Given: static binary image P

Input: U(t) =P

Initial state: X(0) =0

Output: Y(t) = Y(oco) = binary image where each black pixel in P becomes white,
and vice versa. In set-theoretic or logic notation: Y(co0) = P¢ = P, where the bar
denotes the “Complement” or “Negation” operator.

IT Local rules
Xij(0) = yij(00)
1 black pixel — white pixel, independent of initial states
2 white pixel — black pixel, independent of initial states

III Example
EXAMPLE 3.19: Image size: 15 x 15

input initial state output, =0.1

t=0.2 t=0.3 t=0.5

Normalized time unit 7, = fcNN-

IV Mathematical analysis (for LOGNOT)
Since sop = app — 1 = 0, and w;; = —2u;;, where u;; € {—1, 1}, only the two shifted
DP plots shown in Figs 3.9(a) and 3.9(b) need to be considered. The above dynamic
routes show that the LOGNOT template gives rise to a globally asymptotically stable

61
—

3.3.5

3.3 Some other useful templates

— ————

(a) u@/‘zlﬁ W,j:—z (b) MU:_1:>W@f22

Fig. 3.9. Shifted DP plots for the cases u;; = 1 and u;; = —1.

(monostable) CNN provided the inputs are binary. Local rules 1 and 2 follow directly
from Figs 3.9(a) and 3.9(b), respectively.

Remarks

Note that since the middle segment of the shifted DP plot in Figs 3.9 is horizontal, an
ambiguous situation can occur if the inputs are not binary. In particular, when u;; = 0,
the horizontal segment coincides with the closed unit interval [—1, 1] of the x;;-axis,
which implies that all points x;; € [—1, 1] are equilibrium points. Moreover, this
continuum of non-isolated equilibrium points possesses a weaker form of stability
in the sense that if we perturb any equilibrium point on the interior of [—1, 1] by
a sufficiently small amount so that it remains within [—1, 1], then the state of this
CNN will assume this new position, unlike the previous semi-stable case where the
trajectory eventually moves to another point outside of [—1, 1]. In other words, y;; (c0)
can assume any gray-scale value —1 < y;; < 1.

Although the above singular situation rarely occurs in practical CNNs, the possibil-
ity of such weird phenomena can greatly complicate the derivation of a rigorous proof
of many quite general mathematical properties. Even worse, it can make some such
seemingly reasonable properties incorrect. Consequently, it will often be advisable,
if not necessary, to add the reasonable hypothesis that the class of CNNs being
considered for a rigorous mathematical proof has only isolated, and hence a finite
number' of equilibrium points.

LOGOR: Logic OR and set union U (disjunction \/) template

ofofo ofofo
A=[0[3]0] B=[0][3]0] z=]2]
olo]o 0o(o]o

62 Characteristics and analysis of simple CNN templates
|

I Global task
Given: two static binary images P and P
Input: U(t) =Py
Initial state: X(0) = P,
Output: Y(t) = Y(oo) = binary output of the logic operation OR between P and P;.

In logic notation, Y(co) = P; Vv Py, where V denotes the “disjunction” operator. In
set-theoretic notation, Y(oo) = P; U P,, where U denotes the “set union” operator.

IT Local rules
u;;j(0) xij(0) — yij(00)
1 white pixel white pixel — white, independent of neighbors
2 white pixel black pixel — black, independent of neighbors
3 black pixel white pixel — black, independent of neighbors
4 black pixel black pixel — black, independent of neighbors

IIT Examples

EXAMPLE 3.20: Image size: 15 x 15

input initial state output, t = 0.1

t=0.2 t=0.3 t=0.5

Normalized time unit #;, = fCNN-

63
—

3.3 Some other useful templates

EXAMPLE 3.21: Image size: 100 x 100

AT L

. -:k.".":- 5 A - :
I* ﬁ ﬁ'

input initial state output, =0.1

L e S e S e
i
ES==N i =

B . B . i .
2 B st [h) i st| [h i e
t=02 t=0.3 t=0.5

IV Mathematical analysis (for LOGOR)

Since this is our first template which belongs to the domain of “Boolean algebra,” or
“switching logic circuits,” where the numbers {0, 1} are used not in a numeric sense,
but in a symbolic sense, it is particularly important to translate any logic truth table
represented in Boolean variables into an equivalent CNN truth table represented in
numerical values before any numerical calculation is made. The reason we will use
both logic truth tables and CNN truth tables in this book is to avail ourselves of
the large body of results in the literature on Boolean functions and their numerous
combinatorial properties. To illustrate the importance of distinguishing these two
equivalent truth table representations, let us consider the logic truth table 3.1(a) and its
equivalent CNN truth table 3.1(b) for defining the LOGOR CNN.

Let us now derive the dynamic routes associated with the LOGOR templates. Since
soo0 = apo — 1 = 2 and w;; = 2 + 3u;j, only the two shifted DP plots shown in
Figs 3.10(a) and 3.10(b) are needed.

Consider first the case u;; = —1 (white) so that the dynamic route is given by
Fig. 3.10(a). In this case, if:

1 x;;(0) = —1 (white), then y;;(c0) = —1 (white), which is Local rule 1.

64
—

3.3.6

Characteristics and analysis of simple CNN templates

Table 3.1. Two equivalent representations of the LOGOR template.

(a) Logic truth table (b) CNN truth table
for OR operation. for OR operation.
U X(@0) Y(oc0) U X(0) Y(0)
0 o 0 0 0 -1 -1 —1
1 0 1 1 1 -1 1 1
2 1 0 1 2 -1 -1 1
3 1 1 1 3 1 1 1

Xij
@u;=-1=>w;=-1 ®u;=1=>w;=5
Fig. 3.10. Dynamic routes of the LOGOR CNN.
2 x;;j(0) = 1 (black), then y;;(00) = 1 (black), which is Local rule 2.
Consider next the case u;; = 1 (black) so that the dynamic route is given by

Fig. 3.10(b). In this case the CNN is globally asymptotically stable and y;;(c0) = 1,
regardless of the initial conditions, which implies Local rule 3 and Local rule 4.

LOGAND: Logic AND and set intersection N (conjunction V) template

0] 010 0} 010
1.5/]0] B= 1.5
0} 010 0} 010

o
N
Il
|
_
W

A=

o
(e}

65 3.3 Some other useful templates
|

I Global task

Given: two static binary images P and P
Input: U(t) = P
Initial state: X(0) = P,

Output: Y(t) = Y(oco) = binary output of the logic operation “AND” between P; and
P;. In logic notation, Y (co) = P; AP,, where A denotes the “conjunction” operator.
In set-theoretic notation, Y(co) = P; N P,, where N denotes the “intersection”

operator.

II Local rules
u;;j(0)
1 white pixel
2 white pixel
3 black pixel
4 black pixel

IIT Examples

x;j(0) = yij(00)

white pixel — white, independent of neighbors
black pixel — white, independent of neighbors
white pixel — white, independent of neighbors

black pixel — black, independent of neighbors

EXAMPLE 3.22: Image size: 15 x 15

input

initial state

EEEEEER EEEEEER EEEEEER
EEEEEER EEEEEER EEEEEER
EEEEEER EEEEEERN EEEEEER
EEEEEER EEEEEERN EEEEEER
EEEEEER EEEEEER EEEEEER
t=03 t=0.5 t=0.8

Normalized time unit 7, = fcNN-

Characteristics and analysis of simple CNN templates

EXAMPLE 3.23: Image size: 100 x 100

BN &

P T
G ..r" ARALY

P
BTe ..r" ARALy
BH =

—

Yy

Wy

=T %F 5 %? 54 %?
45 P s [l Bk | |45 Pt |
input initial state output, = 0.2

AT
BTe ..r" AL -
ﬂ%%
e f (2]

AT
BTe ..r" AL -
ﬂ%%
e f (2]

AT
BTe ..r" AL -
ﬂ%%
e f (2]

i

'\-c; _,
h f:

? eyl [0

'\-SF_,

? oyl [0

'\-SF_,

¥ s

1=04 1=0.6 t=1.0
IV Mathematical analysis (for LOGAND)
The logic and CNN truth tables for the LOGAND CNN are shown in Tables 3.2(a) and

3.2(b), respectively.

Table 3.2. Tiwo equivalent representations of the LOGAND template.
(a) Logic truth table (b) CNN truth table

for AND operation. for AND operation.
U X0 Y(© U X0 Y(©
0 O 0 0 0 -1 -1 -1
1 0 1 0 1 -1 1 -1
2 1 0 0 2 1 -1 -1
3 1 1 1 3 1 1 1

Let us now derive the dynamic routes associated with the LOGAND templates.
Since 500 = apop — 1 = 0.5 and w;; = —1.5 + 1.5u;;, only the two shifted DP plots
shown in Figs 3.11(a) and 3.11(b) are needed.

Consider first the case u;; = —1 (white) so that the dynamic route is given by

67
—

3.3 Some other useful templates
X Y
-1 QO Q+
| X | | X
I ij T T ij
| 2 Q 0o 1
|
I slope = -1
|
|
slope = 0.5
(a) Ujj= 1= w,;j=—l.5 —-15=-3 (b) Ml:]«: 1= W,;,»=—l.5 +15=0

Fig. 3.11. Dynamic routes of the LOGAND CNN.

Fig. 3.11(a). In this case, the CNN is globally asymptotically stable, and y;;(c0) = —1
(white), regardless of the initial condition, which implies Local rule I and Local rule
2.

Consider next the case u;; = 1 (black) so that the dynamic route is given by
Fig. 3.11(b). In this case, if:

(@) x;;(0) = —1 (white), then y;;(c0) = —1 (white), which is Local rule 3.
(b) x;;(0) =1 (black), then y;;(0c0) = 1 (black), which is Local rule 4.

Remark
In our original CNN template library, and previous publications, the threshold value
for the LOGAND template was assigned the value z = —1. While both computer

simulations and measurements made on an early version of the CNN universal chip?
had verified the correct operation of this template, the dynamic routes shown in
Fig. 3.12 corresponding to z = —1 show that this threshold value was a poor
choice (see Fig. 3.12(b)), and could lead to incorrect operations in practice. In
particular, if the initial state x;;(0) = —1, then the output y;;(co) in Fig. 3.12(b)
coincides with the semi-stable equilibrium point at Q_(x;; = —1). The following
two situations in practice could occur and lead to an incorrect output y;;(c0) = 1
(black), thereby violating Local rule 3. First, any positive perturbation in the state
Ax;; > 0in Fig. 3.12(b) (to the right of Q_) would cause the trajectory to move to
Q. where y;;(00) = 1. Second, due to manufacturing tolerance in the chip fabrication
technology, it is virtually impossible to guarantee for the left breakpoint to be exactly
located as shown in Fig. 3.12(b). If this breakpoint is slightly displaced upward so
that only one equilibrium point (Q) remains, then the trajectory would converge to

68
—

Characteristics and analysis of simple CNN templates

@uy=-1=w;=-1-15=-25 G u;=1=w;=-1+15=05

Fig. 3.12. Dynamic routes for the threshold value z = —1.

Q.. Since these two scenarios are quite common, it is astonishing to recall that our
previous computer simulations and actual measurements on a physical chip based on
this flaky design did not expose this potentially disastrous problem. One explanation
could be that the perturbations due to the inevitable numerical or physical noise are
small enough to require a longer “observation time” than had been given.

The above remark clearly points to the usefulness of our dynamic route approach
for analyzing the validity and reliability of CNN templates, and for optimizing their
reliability by finding more robust template coefficients.

3.3.7 LOGDIF: Logic difference and relative set complement (P, \ P, = P; — P,)
template
0(0]0 0| 010
A=[o[1]o| B=[o][-1]0]| z=[~1]
0/0]0 0] 0|0
I Global task

Given: two static binary input images P; and P,

Input: U(t) =P,

Initial state: X(0) = Py

Output: Y(t) = Y(oo) = binary image representing the ser-theoretic, or logic
complement of Py relative to Pj. In set-theoretic or logic notation, Py \ P; EY
P, - P 2 {x e Pr : x € Py}, Y(0c0o) = P;\ Py, or Y(00) = P — P, ie.,
Py minus P5.

69 3.3 Some other useful templates
|

IT Local rules
u;;j(0) x;;(0) — ij(00)
1 white pixel € P, white pixel € P; — white
2 black pixel € P, white pixel € P; — white
3 black pixel € P, black pixel € P; — white
4 white pixel € P black pixel € P; — black

IIT Examples
EXAMPLE 3.24: Image size: 15 x 15

input initial state output, =0.2

t=04 t=0.6 t=1.0

< : !
R s
0 ' 1 1 i
g —
= | | | |
& : :] |
m] 1 1 1
s T T 0 R T L T R, R I T OTAEITIEIT AL § PR AL AT RCY A
= : : : : : : :
i A I oo — T e ——
0 05 1 15 2 25 3 a5 4
time (T)

Fig. 3.13. Cell state and output transients for 40 equidistant time steps (0.1) at three different
locations in the image of example 1. The origin (0, 0) is the lower left corner. The pixel locations:
A(1,7), B(5,3), C(7,8). Normalized time unit #, = fCNN-
variable y; ;; *#*: output and state are the same.

: state variable X;j; —: output

70 Characteristics and analysis of simple CNN templates
|

o : : i i i i
T e e s T T, S 7]
= ' ' i ! ! ' ;
& ' : : ' ' H :
E B e e &
o : E i i j 5 :
R i B e e R
0 05 1 15 2 25 3 315 4
2.U T T B T ¥ T T
<1 R T N O N N A
= | ; i : : | 1
o] [} [[i [} [}
B L o B o S S o ot S o S SR
45 .' : i ! : :]
e e R e R e
1] 05 1 425 2 25 3 5 4

time (1)

Fig. 3.13. Continued.

EXAMPLE 3.25: Image size: 100 x 100

oy ¥] [0 i e

initial state output, =0.2

Lo - -

t=04 t=0.6 t=10

n
—

3.3 Some other useful templates

IV Mathematical analysis (for LOGDIF)

Since sogp = agp — 1 = 0 and w;; = —1 — u;j, u;; € {—1, 1}, only the two shifted DP
plots shown in Figs 3.14(a) and 3.14(b) need to be considered.

N

-1 0

—
<
L

@u;=-1=w; =0 ® uy=1=w;=-2

Fig. 3.14. Shifted DP plots for the LOGDIF CNN for agg = 1 where u;; = —1 and u;; = 1,
respectively.

Consider first the case when u;; = —1 (i.e., pixel in P, is white). It follows from
the dynamic route in Fig. 3.14(a) that if:

(@) x;;(0) = —1 (white), then y;;(c0) = —1 (white), which is Local rule 1.
(b) x;;(0) =1 (black), then y;;(00) = 1 (black), which is Local rule 4.

Consider next the case when u;; = 1 (i.e., pixel in P; is black). It follows from the
dynamic route in Fig. 3.14(b) that if:

(@) x;;(0) = —1 (white), then y;;(c0) = —1 (white), which is Local rule 2.
(b) x;;(0) =1 (black), then y;;(00) = —1 (white), which is Local rule 3.

Remarks
Unlike the preceding LOGNOT CNN where both equilibrium points are locally stable
(for binary inputs) in the usual sense, the left equilibrium point x;; = —1 in the
LOGDIF CNN is locally stable in an “unusual” sense, even for binary inputs (in this
case, for u;; = —1). Here, any perturbation of the initial condition towards the origin
will cause the output to be in gray scale (i.e., —1 < y;;j(c0) < 1). This is because
any point x;;(0) on the unit interval [—1, 1] is an equilibrium point of this CNN when
u;j = —1, and will therefore remain dormant wherever the initial state x;;(0) lies, so
long as x;;(0) € (-1, 1).

To overcome this “sensitivity-to-initial-condition” drawback, we only need to
enlarge the center feedback synaptic weight from agy = 1 to any value satisfying

72 Characteristics and analysis of simple CNN templates

I
1 < ago < 3. Observe that this CNN will not function correctly if agg > 3 because in
this case the shifted DP plots in Fig. 3.15, drawn for agp = 4.0, would violate Local
rule 3.

This analysis demonstrates that the shifted DP plot can be used not only for studying
the nonlinear dynamics of the CNN, but it can also be used to determine its “failure”
boundary, as well as to engineer a “cure,” thereby designing a much more robust if not
optimal CNN for carrying out the same task.

A A
X Xij
@u; =-1=w;=0 O u;j=1=w=-=2
Fig. 3.15. Shifted DP plot for the case agy = 4.
3.3.8 SHIFT: Translation (by 1 pixel-unit) template
0(0]0 b1 |b10]| b1
A=[0[1[0| B=[bo_1 | boo | bos | z=[0]
0100 bi,—1 | b1o | b1
where the input template B is chosen from one of eight possibilities corresponding to
the eight compass directions shown in Fig. 3.16.
I Global task?

Given: static binary image P

Input: U(t) =P

Initial state: X(0) =0

Boundary conditions: yy; = —1, ug; = —1 for all boundary “virtual” cells C (k, [).

Output: Y(t) — Y(00) = P(x — a, y —) = translation of the input image P by one
pixel unit along one of eight compass directions (&, 8), where o, § € {—1,0, 1},
and (x, y) denotes the Cartesian coordinate of any pixel of P.

73 3.3 Some other useful templates
|

0o[o]o o[o]o o[o]o
BNW)=[0|0|0| BmM)=[0l0]0| BNE)=[0]0]0
001 o[1]0 1/o]o

N

NWTNE

0(o]o0 NS 0o(ofo
BW)=[0]0]1 We— — >t BE)=[1/0]0
0ojo]o sv/l\SE 0ojofo

S
001 0[1]0 1]o]o
BSW)=[0[0]0 BS)=[0]0]0 BSE)=[0/0]0
0/o]o0 0/o]o 0/o]o

Fig. 3.16. Input templates for translating an image by one-pixel unit along the indicated directions.

IT Local rules
u;ij(0) — yij(o0)
1 arbitrary (=1 or 1) — 1 (black) if u; o j4p =1
2 arbitrary (—1 or 1) — —1 (white) if u; ¢ j+5 = —1.
IIT Examples
EXAMPLE 3.26: Image size: 15 x 15

fr =" o
-:*!.I-
LA

input initial state output, £ =0.1

= g
i b -:'I-i

[:0_4 [=0.8 Z=1'O

74
—

Characteristics and analysis of simple CNN templates

EXAMPLE 3.27:

fF
R

BN

EXAMPLE 3.28:

EXAMPLE 3.29:

L L | I (L S S
R R
e R I N

i b

Input

Output

75 3.3 Some other useful templates
|

EXAMPLE 3.30:

i 'I-
s
[BOW) | [BN] m

|
[BW) | =5 % H— [0 |

- -
} = 7 h

IV Mathematical analysis (for SHIFT template)
Observe that the middle segment of the shifted DP plot is horizontal because sog =
apo — 1 = 0. Since by; = 0 except when kl =i + «, j + 8, we have
wij =0+ Z O X upr + Uita, j+p = Uita, j+p (3.20)

C(k,)eS1(i,))
kii+o, j+B

-

Hence, for binary inputs, only the two shifted DP plots shown in Fig. 3.17 are
possible. In Fig. 3.17(a), y;j (0c0) = —1 (white) if u; ¢, j+g = —1 (white), regardless of
the neighborhood pixels (Local rule 2). Conversely, Fig. 3.17(b) shows that y;;(0c0) =
1 (black) if #; 4, j+p = 1 (Local rule 1).

Remarks

1 For binary inputs, the SHIFT CNN will operate correctly for arbitrary initial states.

2 The eight templates in Fig. 3.16 are not found in the original template library.
They were “synthesized” here for pedagogical purposes, using the shifted DP plot

76
—

Characteristics and analysis of simple CNN templates

Xy
slope = -1 I
|
1
-1
(@) Uirgjrp = =1 = wy=-1 (b) thisjup = 1= w; = 1

Fig. 3.17. Two possible shifted DP plots of the SHIFT CNN.

techniques. Indeed, one of the objectives of this book is to illustrate how new CNN
templates can be invented to accomplish a prescribed task in a systematic way.

The following design considerations are therefore rather instructive.

Observe that many distinct templates for implementing the same task can be synthe-
sized. For example, any threshold value z* satisfying 0 < z* < 1, or —1 < z* < 0,
would yield the same results. Hence, this example illustrates that there are lots of
“plays” within the threshold range of |z*| < 1, all of which are acceptable in principle.
However, observe that if |z*| is too close to 1, then imperfections in chip manufacturing
technology, or aging, could inadvertently yield a shifted DP plot above the horizontal
axis, as in Fig. 3.18(a), or below the horizontal axis as shown in Fig. 3.18(b), thereby
resulting in operating failures. Consequently, our choice of z* = 0 represents an
optimal choice in so far as robustness with respect to variations in z is concerned.

Let us investigate next the robustness issue with respect to the value of the self-
feedback synaptic weight agg. Consider first the case where apg < 1, as shown in
Fig. 3.19(a) for #; 14, j+p = —1, and in Fig. 3.19(b) for u; 14, j+p = 1, respectively.
Observe that the CNN will still operate correctly in the case where 0 < agp < 1.
However, when agp < 0, the left equilibrium point Q_ in Fig. 3.19(a), or the right
equilibrium point Q. in Fig. 3.19(b), lies inside the unit interval (—1, 1), and hence
the output is no longer binary since |y;;| = |x;;| < 1 in this case.

Consider next the shifted DP plots shown in Figs 3.20(a) and 3.20(b) where agp > 1.
In this case, the CNN will still operate correctly so long as agp < 2. However, observe
that when agp > 2, the CNN becomes bistable and a spurious initial condition could
cause the trajectory in Fig. 3.20(a) to switch to Q., or in Fig. 3.20(b) to switch to Q_,
thereby causing an incorrect operation in either case.

3 The 3 x 3 SHIFT CNN template in Fig. 3.16 can translate an input image by only

77 3.3 Some other useful templates
|

X
)'c,-/- |
|
| |
| | '
-1 0 1 X
_1!
7¥=1.0
| e
/ N 4=08
*=0
(a) Shifted DP plot for z*€ (0,1] (b) Shifted DP plot for z*e [-1,0)
lies inside the shaded area. lies inside the shaded area.

Fig. 3.18. Shifted DP plots for u; 4 j+g = —land uj 1y j1p = 1.

0< ag<1

(a) Uit jtp = -1

Fig. 3.19. Dynamic routes for z* = 0, agg < 1.

78 Characteristics and analysis of simple CNN templates
|

(b) Uira,j+p = 1

Fig. 3.20. Dynamic routes for z* = 0, agy > 1.

one pixel unit. In order to translate by » > 1 pixel units, it would be necessary to
choose a (2r + 1) x (2r + 1) template. For example, the 5 x 5 template shown
in Fig. 3.21(a) is necessary to shift P in a NE direction by two pixel units. In this
case, observe that we can achieve a higher resolution in the translation angles. For
example, the B template shown in Fig. 3.21(b) will translate the input image P along
a direction approximately halfway between the south and the southwest directions.

79 3.3 Some other useful templates
|

N
NE w
- SW
S
oloflofo]o oloflo|1]o
oloflo]o]o oloflofo]o
olojofo]o oloflo]o]o
olofo]o]o oloflo]o]o
1jfojojo]o ojlojo|o]oO
(a) (b)

Fig. 3.21. Two 5 x5 B templates for shifting P by two pixel units to north and west and by two
pixel units to south and one pixel unit to west, respectively.

3.3.9 CONTOUR-1: Contour detection template

0/0(0 b|b|b
A=|0|2|0| B=|b|0|b| z=|47
0/0|0 b|b|b

b is defined by the following nonlinear function b(-) of Au = u;; — uy (due to
symmetry of Au we can write uy; — u;; equivalently):

0.5

—0.45 0.45

Y

A
Au = w;—uy

Fig. 3.22.

80 Characteristics and analysis of simple CNN templates
|

I Global task
Given: static gray-scale image P

Input: U(t) =P

Initial state: X(0) =0

Output: Y(t) = Y(oco) = binary image, where black pixels correspond to the
sharper edges in P

II Local rules
uij(0) = yij(c0)

1 arbitrary [—1, 1] — black, if the pixel has more than two surrounding pixels of
significantly different gray levels (a pixel uy; is significantly different from u;; if the
absolute difference |Au| = |u;; — uy| is greater than the threshold value where the
nonlinear function b(-) has a nonlinearity (0.45 in the present example)

2 arbitrary [—1, 1] — white, if at most two of the neighboring pixels are significantly
different

IIT Examples

EXAMPLE 3.31: Contour detection (image size: 15 x 15)

input initial state output, t=0.2

t=04 t=0.6 t=10

3.3 Some other useful templates

81

> OO

45
45
45

95
5

3

2

.
time ¢

& & 8 8

& & 4 &
& & 9 8

o [axid 18 usIsLED g jexid 12 JUuaisuE o |axid 18 usIsLE

3
3
Fig. 3.23. State and output transients for 50 equidistant time steps at three different locations in the

image of example 3.31.

EXAMPLE 3.32: Image size: 100 x 100

initial state output, t=0.2

input

82 Characteristics and analysis of simple CNN templates
|

<> < >
P P 2
<r Tp <
< LTr < <
< 0 O

iR eleRe

t=04 t=0.6 t=1.0

Normalized time unit t, = TcNN-

EXAMPLE 3.33: Image size: 100 x 100

EXAMPLE 3.34: Realistic scene

final output

final output

83 3.3 Some other useful templates
|

IV Mathematical analysis (for CONTOUR-1 template)
State and output equation

. A
Xij = 8ij(xij) + wij =hij(xij; wij)
wij = f(xij)
where
8ij (xij) = —Xij + aoo f (xij)
= —xij +2f (xij)
= —x;j + |x;; + 1+ |x;; — 1
wij = 4T+ b(uij —uit1,j-1) +buij —uit1,j) +buij — uit1,j+1)
+bij —ujj—1) +bij —uijr1) +buij —ui—1,j-1)
+0@uij —ui—1,j) +buij —ui-1,j+1)
=4.7— @8 — pa) +0.5p4
Hence
wij = —33 + 1.5pq (3.21)
where
ps = number of approximately similar pixels (i.e., |Au| < 0.45)

pa = number of significantly different pixels (i.e., |Au| > 0.45)

The shifted DP plots corresponding to the two most stringent situations are shown in
Fig. 3.24. Since the shifted DP plot for the case of three or more significantly different

slope = -1

Fig. 3.24. Two shifted DP plots corresponding to py = 3 (w;; = 1.2) and py = 2 (w;; = —0.3).

84

3.3.10

Characteristics and analysis of simple CNN templates

gray pixels is obtained by simply translating the upper DP plot of Fig. 3.24 upwards, all
trajectories must converge to the globally asymptotically stable equilibrium point Q.
thereby resulting in a black output pixel (Local rule 1). For two or less significantly
different gray pixels, the shifted DP plot is obtained by translating the lower DP plot
of Fig. 3.24 downwards. In this case, all trajectories originating from x;;(0) = 0 must
converge to the “left” equilibrium point Q_, thereby resulting in a white output pixel
(Local rule 2).

Remarks:

A comparison of the output image from Example 3.34 (noisy image) with the output
image obtained by our earlier EDGE template, or EDGEGRAY template (for the same
input image) shows a significantly superior result with the CONTOUR-1 template.
Observe that most of the annoying “noise” pixels from our earlier examples have
been eliminated. Hence, the CONTOUR-1 CNN is capable of not only extracting the
sharper edges from an image, but also simultaneously “filtering” out the “noisy” pixels.
This is our first example which illustrates how “nonlinearity” can be used to achieve
superior image-processing tasks found wanting by classical techniques.

EROSION: Peel-if-it-doesn’t-fit Template
0(0]0 b_1—1|b_10]|b-1,
A=[0[2|0| B=| bo—1 | boo | bo1
0/0/0 bi,.—1 | bio | b1
where by; = 0 or 1 (not all zeros), zg = 0.5 — p1, and p; = total number of 1s in the
B template, p; > 0.

I Global task

Given: static binary image P and a 3 x 3 black and white (checkerboard) pattern
called the structuring element Sg, whose black pixels coincide with those in the
B template (black = 1). Sg, represented in this way, is also called the structuring
template

Input: U(t) =P

Initial state: X(0) = 0 (i.e., all entries are 0s)

Boundary conditions: yy; = —1, ug; = —1 for all “virtual” boundary cells C (k, [)

Output: Y(t) = Y(oco) = binary image where each pixel (i, j) = black, if the
translated structuring template Sg (i +«, j 4 B) fits inside P after translating Sg to
any pixel (i, j), with the center of Sg anchored at C (i, j) (i.e., Sg(i+a, j+8) C P)
Here, o and B are the relative local coordinates of S = white, otherwise.

For future reference, let us introduce the above erosion operation of the input picture
by the structuring set Sg by the symbol &. Using this notation, we can define the
global task exactly via the following set-theoretic identity

Y(c0o) =P8 Sg={x:Sg+x CP} (3.22)

85 3.3 Some other useful templates
|

where
Sg+x={p+x:peSg} (3.23)

is the translation of the set Sg to x € Sk.

II Local rules
uij(0) — y;j(00)
1 arbitrary (black or white) — black if Sg(i +«, j +8) C P
2 arbitrary (black or white) — white if Sg(i + «, j + B8) ¢ P (i.e., the translated
structuring template does not fit completely inside P)

IIT Examples
Since the input template B of the EROSION CNN is defined via the structuring
template Sk, and, since there are 2° distinct combinations of 3 x 3 Boolean (black-and-
white) patterns, there are 2° distinct 3 x 3 structuring elements, and hence 2° distinct
EROSION templates. Since many of the templates are quite useful for morphological®
image-processing applications, we will give several such templates and illustrate their
“sculpturing” properties. In particular (e.g., when the center pixel of Sg is black), the
output image Y (oco) of an EROSION CNN will be a proper subset of the input image
P, obtained by “peeling off” one or more black pixels (i.e., change black to white)
located on the boundaries of P. Which pixels to peel off are determined by “Sg”;
hence the reason for the name structuring element. Indeed, it is useful to think of Sg
as a “scalpel” which can be used to “chip” away selected pixels of a given pattern,
thereby changing its shape. It is this “scalping” property of the structuring template
that makes the EROSION CNN a powerful morphological tool in nonlinear image
processing. The following examples of EROSION B templates, coded by B[E;] for
future reference, constitute a basic scalping toolkit for morphological image sculptors.

EXAMPLE 3.35: Image size: 15 x 15

E ol1]o

Sel BEl]=| 0] 1]1

input initial state output, = 0.05

86 Characteristics and analysis of simple CNN templates
|

LB

LE

LB

t=04

t=0.6

Image size in the following examples: 15 x 15

EXAMPLE 3.36:

-

(a) Sez
input
) 5o
input

Normalized time unit #;, = TCNN-

t=0.8

B[E2] =
0
output
0
BI[E2] = 0
0

87 3.3 Some other useful templates
|

EXAMPLE 3.37:

.t

SES

input

EXAMPLE 3.38:

-k

Sis

input

EXAMPLE 3.39:

"

SES

input

01010
BE3]=[0[1]0
01110

output
1Jo]1

BE4]=[0]0]0
1[o]1

Olltpllt

oJ1]o

BES]= [L][O0]1
of1]o

output

88 Characteristics and analysis of simple CNN templates
|

EXAMPLE 3.40:

+

‘SEG

input

EXAMPLE 3.41:

1k

SE 8

input

EXAMPLE 3.42:

i

SE()

input

0[11]0
BE6I=| L [1]1
0[11]0
output
1{0]0
B[E8]=10[0]0
0]1]0(1
output
0101
B[E9]=[0]1]0
11010
output

89 3.3 Some other useful templates
|

EXAMPLE 3.43:
o
SElOa
input
(b)
Skiob

input

EXAMPLE 3.44:

ik

SEII

input

0]0]0
B[E10a]= [0 |0] 1
0[1]o0

output
0JoJo
B[EIOb]= [O | 1] 1
0[1]o0

output
0]1]0fO0
BEII]=[0]0]1
0]1]0f0O0

output

90
—

Characteristics and analysis of simple CNN templates

IV Mathematical analysis (for EROSION)

Observe first that since so9 = agp — 1 = 1, the central segment of the shifted DP plot
has a positive unit slope.

Consider the case when the set of black pixels in the 3 x 3 neighborhood of pixel
C(i, j) of the input image P contains all p; black pixels of the structuring template
Sk as a subset. In this case
wij=ze+ Y, buug=0.5-p)+1(p) =05

kle{—1,0,1}
independent of the number p; of black pixels in Sg. The shifted DP plot in this case
is shown by the upper curve in Fig. 3.25. It follows from the associated dynamic route
that all trajectories starting from x;; (0) = 0 must converge to Q.. Hence, y;;(c0) = 1
whenever the translated structuring template Sg (i +«, j + B) fits inside P (Local rule
1).

For the case when at least one black pixel of Sg coincides with the white pixel in P
we have
wij=ze+ Y. buug=0.5-p)+Lpp) —1(p1) <15

kle{—1,0,1}
where p; denotes the number of coincident black pixels in P and Sg, p; is the number
of coincident white pixels in P and Sg. Since p, < pj in this case (by assumption)
and p; > 1, hence p, — p1 < —l and for 1 < p;, <9, it follows that w;; < —1.5.
The lower dynamic route in Fig. 3.25 represents, therefore, the most stringent case that

needs to be considered. Hence, we have y;;(co) = —1 (Local rule 2).

______ L 25

Fig. 3.25. Dynamic routes for the case Sg (i + «, j + 8) C P (upper curve) and the case
Sep(i +«, j+ B) ¢ P (lower curve).

91 3.3 Some other useful templates

For some values of p1, pp, and pi, we show the values of w;; below in Table 3.3.

Table 3.3.

Number of Coincident
black pixels pixels in P

inSg Sg Stable
P1 Pb D1 Wij state Q0 Local rule number
3 3 0 0.5 Q+ 1
2 1 -15 Q- 2
1 2 -35 Q- 2
0 3 =55 Q- 2
2 2 0 05 Qi 1
1 1 -15 Q- 2
0 2 =35 Q- 2
3.3.11 DILATION: Grow-until-it-fits template
0010 b_1,_1|b_10|b-11
A=|01]210 B = b(),_l b(),o b(),l Z=\|ZD
0/0]0 bi—1 | bio | bia
where by = O or 1, zp = p; — 0.5, and p; = total number of 1s in the B template,
p1 > 0.
I Global task

Given: static binary image P and a 3 x 3 black and white (checkerboard) pattern called
the structuring element or its 0—1 representation of the structuring template Sp. The
structuring template is related to B by a 180° rotation with respect to the origin.

Input: U(t) =P
Initial state: X(0) = 0 (i.e., all entries are 0s)
Boundary conditions: yy; = —1, ug; = —1 for all “virtual” boundary cells C (k, [)
Output: Y (t) = Y(o0o) = binary image generated as follows:
step 1. To each black pixel Cp(ij) € P located at coordinates (i, j) translate the
structuring template Sp and anchor it at Cp (i j). Denote this translated set of black
pixels by Sp(ij).
step 2. Take the set-theoretic union of Sp(ij) over all black pixels Cj (i) of P:
Yoo = |J Splj

all (ij) such
thatu,-jzl

92

Characteristics and analysis of simple CNN templates

Remarks 1:

For future references, let us denote the above dilation operation of the input picture
P by the structuring set Sp by the symbol @. Using this notation, we can define the
global task via the following set-theoretic identity:

Yoo)=P®Sp= |J (Sp+x:xeP) (3.24)
overallxe P

where

Spt+x={p+x:peSp} (3.25)

is the translation of the set Sp to x € Sp.

Observe that if we code the pixels of the set Sp by “black = 1” and “white = 0,”
then, having the structuring template Sp, the resulting B template is a reflection of Sp
with respect to the origin, i.e., by a 180° rotation. Hence Sp and B are related by a
180° rotation.

II Local rules

uij(0) = y;j(00)
1 black — black if all eight nearest neighbors of C(i, j) are black

2 black — black if bgg = 1 (equivalently, if the central pixel of the structuring
template Sp is black)

3 arbitrary — black, if there is at least one nearest neighbor C(i + «, j + B) of
(=1 or 1) C(i, j) whose color is black and if the color code of the corresponding
pixel byg of the B template (at the same relative position («, 8)) is also black, i.e.,
Uity j+p = 1 and byg =1

4 arbitrary — white, if there is no nearest neighborhood of (—1 or 1) C(ij) with the
above property

93 3.3 Some other useful templates
|

IIT Examples
Image size in the following examples: 15 x 15.

EXAMPLE 3 .45:
L :

BD11=|1[1]0

Soi U= 1%

input initial state output, = 0.05

= N L b

[:0_4 l=0.6 t=0'8
EXAMPLE 3.46:
(@) oJo]o
éE B[D2] = 1110
D2 00O

input output

94 Characteristics and analysis of simple CNN templates
|

(b) E 800

B[D2] =

—
—

Spe ofofo

input output

Normalized time unit #, = TCNN-

EXAMPLE 3.47:
E oj1]o0
BD31=0]1]0
Sps (D3] 0loo

input output
EXAMPLE 3.48:
ﬁ 1{o]1
B[D41=10]101]0
Spa D4 1 {01

input output

95 3.3 Some other useful templates
|

EXAMPLE 3.49:

e

Sps

input

EXAMPLE 3.50:

+

SD 6

input

EXAMPLE 3.51:

ik

8D7

input

ofl1]o
BD5]=|1]0]1
oltfo

output
0 0
B[D6] = | 1 1
0 0

output
ofoJo
BD7]=0]0]0
1JoJo
output

96 Characteristics and analysis of simple CNN templates
|

EXAMPLE 3.52:

gf

S

D8

input

EXAMPLE 3.53:

i

Spo

input

EXAMPLE 3.54:

(@)

-

SDIOa

1100
BD8]=10[0]0
0[0]1

output
0[O0 1
BD9]=|0]1]0
110[0

input

output
0 0
B[D10a] = | 1 0
0 0

output

97 3.3 Some other useful templates
|

(b) of1]o
gﬂ B[DIOb]= | 1| 1]0
D10b olo]o

input output

IV Mathematical analysis (for DILATION)
Observe first the central segment of the shifted DP plot has a positive unit slope.
If ;;(0) = 1 and uy; = 1 for all kI € {-1,0, 1}, then, since p; > 0 (by
assumption), we have

wij=zp+ Y, bumu={p1—05+ > by
kle{—1,0,1) ke(—1,0,1)

=(p1—0.5)+ p
—2p1—05>15

It follows from the dynamic route upper curve in Fig. 3.26 that y;;(c0) = 1 (Local
rule 1).

If u;j(0) = 1 and by = 1, i.e., both cell C(ij) and the central pixel of Sp are
black, then by anchoring Sp at cell C(i, j), the translated set Sp(i + «, j + B) has
a black pixel at the location (i, j). Hence y;;(c0) = 1, since the set union operation

Fig. 3.26.

98

Characteristics and analysis of simple CNN templates

of Sp(i + «, j + B) with other translated templates will only add more black pixels
(Local rule 2).

Consider the DP plot of Fig. 3.26.

It remains to prove Local rules 3 and 4. Let the number of 1s in B (and hence also
in Sp) be denoted by p;. If upon examining a typical B template, we found no black
pixels of P coincide with any black pixels of B at corresponding locations, i.e., if
Uita,j+p - bap = 0 forall (a, B) € {—1,0, 1}, then since B has p| non-zero entries,
where p; > 0,

wij=zp+ Y buu=(p1—05)+ pi(=1) =—05.
kle{—1,0,1}

Hence, in this case, starting from x;;(0) = 0, the dynamic route (lower shifted DP
plot) shown in Fig. 3.26 must converge to Q_. Consequently, C(ij) becomes white.
This proves Local rule 4.

On the other hand, if there is at least one coincident black pixel in both P and B
within the 3 x 3 neighborhood of C(ij), then

wij = (p1 —0.5) + pp + p1(=1)

where pj denotes the number of coincident black pixels, p, > 1, and p; denotes

the number of non-zero entries of B which do not have coincident black pixels in P.
Clearly, since p; = p1 — pp, we have

wij = ((p1—05)+p,—p1+pr=2p,—05=>15.

Now since p, > 1, by assumption, the minimum of w;; is 1.5, as is evident
from Table 3.4 showing a few sample relationships among p1, py, p1, w;; and the
equilibrium point where a trajectory originating from x;; = 0 must converge.

Table 3.4.

rt pp P owj Q
0 3 =05 Q-

31 2 15 Q4
2 1 35 Q4
0 4 —-05 Q-

4 1 3 15 Q4
2 2 35 Q4

Observe that in all cases, we obtain y;;(c0) = 1, which implies Local rule 3.

99
—

3.3 Some other useful templates

1 2 3 4 5 6 bfl,fl
1
2
3 b 00
4
5
6 511
(a) (b) (©)

Fig. 3.27. (a) Py: a part of image P; (b) the B template; (c) the structuring element. A typical
situation satisfying Local rule 3.

Remarks 1:
Our above proof only shows that the Local rules 14 are a consequence of the dilation
template. It is not obvious that the output image Y(oco) generated by applying these
local rules, or from the template directly by solving the associated ODEs, is identical
to the original set-theoretic definition of the DILATION operation specified in the
Global task. To show that they are indeed identical, let us consider the typical situation
shown in Fig. 3.27, and pick a cell C(ij), identified by “x” in Fig. 3.27(a), located at
i = 3, j = 4. Suppose now that there exists a nearest neighbor (o, 8) € {—1,0, 41}
such that u; 14 j+g = 1 and bug = 1. A typical situation satisfying these conditions
is shown in Fig. 3.27(a), where only a part Py of the input image P is shown with the
relevant rows and columns relabeled from 1-6 for ease of reference, and where the
relevant black pixel at (2, 3) is shown (the other pixels can be black or white). Here,
i=3j=4a=—-1,=—1,u3 =u;—1,j—1 =1,and b_y | = 1, as stipulated.
Suppose the 3 x 3 input sub-pattern identified by rows {2, 3, 4} and columns {3, 4, 5}
in Fig. 3.27(a) contains a black or white center pixel at location (3, 4). Since B is
obtained by a 180° rotation of the structuring template, and, since b_1 _1 = 1, the
“reflected” pixel S11 shown in Fig. 3.27(c) must be black. Now since, by assumption,
pixel (2, 3) of Py C P in Fig. 3.27(a) is black, we can anchor the central pixel Sgg of
the structuring template Sp of Fig. 3.27(c) at pixel location (2, 3) in Fig. 3.27(a). This
is redrawn in Fig. 3.27(c) as the “dash” window Sp(2, 3) overlapping a part of the
3 x 3 (shown in bold lines) input sub-pattern whose central element “x” is located at
position (3, 4). Observe that in this case the “black” pixel Si; of Sp(2, 3) is located at
the same position as the “black or white” center pixel (3, 4) in Fig. 3.27(c). Hence, the
“black or white” pixel “x” must map into a “black” pixel after applying the dilation
operation in view of its set “union” property, and the fact that pixel S;; of Sp is black.
Since the same proof above applies if the black pixel is located at any one of the
seven other nearest neighbor positions, pixel (3, 4) must map into black in each case
(Local rule 3).

Il

4.1

100

Simulation of the CNN dynamics

Introduction

There are many ways the CNN dynamics can be analyzed and simulated or solved:

e mathematical analysis of qualitative behavior and numerical methods to calculate
the quantitative results, i.e. the signal values at well-defined time instances (usually
at equidistant time sequences),

e software simulators using one of the numerical methods for solving the set of ODEs
of CNN dynamics,

e multi-processor (DSP) digital emulators, hardware accelerator boards, to speed up
the software simulators,

e continuous-time physical implementation of the CNN dynamics in the form of
programmable analog VLSI chips,

e living organs which reflect the CNN dynamics (e.g. the retina or other parts of the
retinotopic visual pathway).

In this chapter we will briefly review them, except the last area to be discussed in
Chapter 16.

Integration of the standard CNN differential equation

The standard class 1 CNN dynamics with space-invariant templates is described by

r r r r
Gij=—xij b Y D ikt Y Y butivk i +2

k=—r l=—r k=—r l=—r
yx) = f (xkr)
x;(0) = x;j0 4.1)
where a and b are the elements of the space invariant template matrices A and B,

respectively. We want to simulate the solution of these differential equations on a
standard digital computer, like a PC with a Pentium microprocessor.

101 4.2 Image input

In general, a differential equation

x =h(x;w)
x =x(1)
x(0) = xg “4.2)

can be solved by standard numerical integration methods; the simplest one is the
forward Euler formula which calculates the value of x (¢ + Af) from x(¢), At being
the time step

x(t + A1) = x(t) + Ati(t) = x(t) + Ath(x(1); w) (4.3)

(4.3) is qualitatively correct and accurate enough if we use a At time step small enough
(in CNN we know in advance the range of dynamics of the state and its time derivatives

as well).

Using (4.3) and (4.1), and using an equidistant time step sequence 0, Az, 2At, .. .,
mAt, ... forx(t) (x(0), x(1),x(2), ..., x(m),...), we get from x;; (m) the next value
Xij (m—+1).

xij((m+ DADZx;j(m + 1)

r r
= (1= ADx;j(m) + At Y > auyik.ji(m)

k=—r l=—r

r r
+ ALY btk i (m) + Atz

k=—rl=—r

y(m + 1)) = fQu(m+1)) (4.4)

where At and ¢ are defined in normalized time units, #,; this time unit is tcnn (the
“CNN time constant™).

Observe that we extended the use of the integration formula (4.3) from the scalar
case to the matrix case. This can easily be done since the CNN equations are very
sparse. In general, a universal integration formula may not necessarily be accurate
enough or even converge. Our CNN dynamics, in most practical cases, is very “mild,” a
At = 0.1 choice usually yields an accurate and convergent solution. In some complex
cases, the “implicit” integration formula

x(t+ Ar) = x(t) + Atx(t + Ar) 4.5)
will always be stable.

4.2 Image input

There are several ways to input an image to the simulators. In case of the human eyes,
each tiny cell has its own photoreceptor (light sensor). Similarly, in the cP400 CNN

102 Simulation of the CNN dynamics

I
microprocessor chip (22 x 20 cells) each cell has its own light sensor. However, an
electrical input is also provided (to interface to CCD cameras via a frame grabber, or
a special on-chip interface). Using PCs or workstations, usually, the camera — frame
grabber — software file is the way a given image is loaded on to a simulator.

In each case, we need a lens system to project the sharp image with appropriate
illumination and size. Sometimes the transparency can directly be put on to the surface
of the chip when illuminated by a lamp.

A pixel illumination level is coded in the following way: black is 41, white is —1,
gray-scale values are in between. Hence, input, state, and output images can be coded.

I
4.3 Software simulation
The SimCNN! software simulator program (for multiple layers) running on a PC has
the following main functions:
e calculates the CNN dynamics for a given template using (4.4),
e displays the input and output pictures, either by a gray-scale code or a color,
e simulates the CNN dynamics for a given sequence of templates (this option will be
described later).

This simulator has its own

e template library (*.TEM files),
e subroutine library (*.CSD files), and
e picture library (*.BMP and *.IMG files).
EXAMPLE 4.1:

Image Template SimCNN Application Demo Communication Options View Window Help

SEE]]| s 2lal@] slw]s] wn (] e|-| @m0 nmeE] el

103 4.3 Software simulation
|

In addition to the main functions, several special services are available. SImMCNN
and other CNN design tools are used via the Visual Mouse Software Platform called
VisMouse. VisMouse has a CNN specific window menu shown in Example 4.1. Input,
state, output, and other images are shown in different windows; only one is active
(highlighted) at a time (in Example 4.1, the one in the lower position).

To run a simulation using a single template placed in the template library, we have
a simple, special way. We will illustrate this in the following examples.

Examples
We want to calculate the edges of a black and white image. Running the simulation for
calculating the CNN dynamics for the EDGE template, first, we select the functions
shown here in boxes. This means:

e we first download an image from a picture library;

e select a template from the template library;

e run the simulation with the well-defined parameters;

e show the resulting input, state, and output images at various time instants and at
the end of the transients. These steps are shown sequentially on the display outputs
shown in Examples 4.2-4.5.

EXAMPLE 4.2: The image “DIAMOND” is downloaded from the picture library.

+ DAMOND BMP (S:- L:- M) (15 x 15 x B BPP)

st | M Ewcuod || s IFE i

104 Simulation of the CNN dynamics
|

EXAMPLE 4.3: The output in the middle of the transient process (on the right-hand side).

" ZRIAMOMO AR R -1 -4 (s 1G5 FFY

EXAMPLE 4.4: The output at the end (¢ = 5) of the transient.

105 4.3 Software simulation
|

EXAMPLE 4.5: The original downloaded image (left) and the input, state, output at the end of
the transient (upper, middle, lower images on the right-hand side).

At the end of the simulation the sequence of the snapshots of the transient can be
played back (and forth). The various signals can also be displayed graphically.

In these simulations the following default values are set: time step is 0.1 (forward
Euler), time duration is 5.0 (50 steps), boundary is fixed at —1.0, and the initial STATE
is the same as the INPUT.

If we want to change these default values or run a sequence of templates we have
to write a CNN Script Description (CSD or simply Script language) program. A
sample program showing the description of the above simulation is shown in Table 4.1.
Reading the comments (right from the % sign), you can start writing your own
program. Indeed, this sample program is stored as a default and you can just edit and
save it.

The template activation is described in the part shown in a box. In our previous
example for the EDGE template (in Chapter 3), we loaded different images to input
and initial state. Here, we used the same input and initial state. If they are different, we
can use the PicFill instruction as mentioned in the comment.

A few templates in the template library can be found in Appendix A. A more detailed
summary of the use of SIMCNN can be found in Appendix B.

106

Simulation of the CNN dynamics

Table 4.1. The description of the simulation for the edge template in CSD (Script) language.

{START: SimCNN}

Initialize SIMCNN CSD
WinLayout 3
AssignWinPart 1 INPUT
AssignWinPart 2 STATE
AssignWinPart 3 OUTPUT
WinSetTitle 1 “INPUT”
WinSetTitle 2 “STATE”
WinSetTitle 3 “OUTPUT”

TimeStep 0.1
IterNum 50
OutputSampling 1
Boundary —1.0

% start SIMCNN

% number of windows to be displayed
% assign output to the first window
% assign output to the first window
% assign output to the first window

% in relative time unit

% number of iterations

% re-sampling rate of the output
% fixed boundary condition

TemplatePath PLATFORM % set the current template library path
SendTo INPUT % send the active image to the INPUT
PicCopy INPUT STATE % copy input to state

TemLoad edge.tem

% PicFill STATE 0.0 would fill the state
% with 0.0 values, this is not used here
% load template

RunTem % start simulation
Display INPUT

Display STATE

Display OUTPUT % display the results
Terminate % stop SIMCNN

{STOP: SimCNN}

Next we will show three examples to illustrate the role of choosing the correct time

step (At), initial condition, and boundary condition. Unless otherwise stated the time
step is set at a default value of 0.1.

107 4.3 Software simulation
|

Examples
In these examples, we show the role of the time step. We used a horizontal connected
component detector template. The boundary condition (called also “frame” in the
simulator) is fixed at [0] (default).

EXAMPLE 4.6: The input picture (far left) and the output and state pairs for three different
time steps: 0.1 (upper pair), 0.2 (middle pair), 2.0 lower pair).

- |Ojx H_LETTERS... !Elﬂ

| . H_LETTER.S... [H[S1EA [H_LETTER S .. [ETET |

The input image is shown on the far left part in Example 4.6 (it is also placed on

the initial state). Three pairs of images are shown on the right-hand side. The pairs
are: the output (left) and the state (right) in Example 4.6. The three different results
in the consecutive rows represent the final results at the end of the transients for three
different time steps. In the case of the first two time step values, 0.1 and 0.2, correct
results are calculated. For the third, the time step is 2.0, the result is wrong. Moreover,
it starts to oscillate.

Generally, a time step smaller than 0.5 leads to correct results.

108 Simulation of the CNN dynamics
|

EXAMPLE 4.7: The results of a less robust edge detection template with various initial
conditions (41, 0, —1 at the top, middle, and lower rows, respectively).

1L. 1L.

In this example, we show the dependence of the outputs on the initial conditions
(boundary condition is the default [Y] = [U] = [0]). We used a less robust edge
template.

The same pattern is applied three times as the input image. The initial conditions are,
however, different, +1, 0, and —1 (black, gray, and white for all cells), respectively.
The input and the three pairs of output and state are shown in Example 4.7.

Observe that the correct solution is calculated when the initial state is full black
(+1) or zero. If the initial state is white (—1), then the output is wrong.

109 4.3 Software simulation
|

EXAMPLE 4.8: The effect of the boundary conditions. At different fixed values of boundary
conditions, 0, —1, 41, the resulting output and state pairs are shown in the top, middle,
and lower rows, respectively.

In this example, we show the role of the boundary conditions. The input image is
placed on the initial state (far left on Example 4.8). A horizontal connected component
detector template is used with three different boundary conditions. In the first case the
boundary condition (frame) is fixed to zero, i.e. [Y] = [U] = [0]. The output and
state are correct as shown on the upper image pair in Example 4.8. Next, the boundary
conditions are set to —1.0 and 1.0. The results are shown in the middle and lower
image pairs. In the latter case, the output is wrong. When the boundary conditions are
set to zero flux or periodic, the results start propagating.

110
—

4.4

Simulation of the CNN dynamics

Digital hardware accelerators

The continuous valued analog dynamics when discretized in time and values can be
simulated by a single microprocessor, as shown above. However, we may assign,
in principle, a digital multiply-and-add unit to each cell. Next, we briefly show an
intermediate solution when a DSP is assigned for a part of the cells. In a way we
emulate the analog dynamics by digital hardware accelerators.

Emulating large CNN arrays needs more computing power. A special hardware
accelerator board (HAB) was developed for simulating up to one-million-pixel arrays
(with on-board memory) with four DSP (16 bit fixed point) chips. Using the HAB,
large arrays can be simulated with cheap PCs.

In fact, in a digital HAB, each DSP calculates the dynamics of a partition of the
whole CNN array. Hence, one physical processor is assigned to several CNN cells as
shown in Fig. 4.1, using four DSPs.

L
—
— Bl T
} }]]
| 1% i
o| DSP ||| DSP ||| DSP ||| DSP
S]]
=]
% :l | | I:l I I |:| I I |:|
& } }]]
|]]
|]]
| 1% i
|]| il Ll
250 250 250 250

Fig. 4.1. The assignment of physical digital processors for many virtual CNN cells.

Actually, the DSP is a reduced instruction set (RISC) processor used for calculating
CNN dynamics. Why do we use only four DSPs on a PC add-in-board? Because the
board cannot host more due to area constraints. In a dedicated unit, in a PC-size box,
16-32 DSPs can be placed. New DSP packages host 4-8 DSP processors in a chip.
Hence, the processor numbers are 4-8 times higher. Since for the calculation of the
CNN dynamics a major part of the DSP is not used, special purpose chips have been
developed (see the “CASTLE” architecture in Chapter 15).

111
—

4.5

4.5 Analog CNN implementations

Analog CNN implementations

In a CNN analog chip we can place more than 1000 processors (cells). This is because
this special “analogic” (analogic: analog and logic) processor is much smaller than a
DSP, and there is no discretization in time and signal value. Here, physics does the
“numerical integration” in time, in a “single flow” (transient). There is no iteration.
This implementation will be studied later in detail in Chapter 15.

To make a fair comparison, we have to define the equivalent computing power of an
analog CNN chip related to the digital counterpart.

For the calculation of spatio-temporal dynamics, using a digital computer during
one time constant elapsed time

e 10 time steps are taken and 20 multiply/add operations are to be performed (in a
linear system, using forward Euler steps) per cell

This means 200 multiply/add operations per cell.

e Hence, for a 10,000 cell system, this means two million equivalent digital opera-
tions per one time constant elapsed time

In a CNN Universal chip, for a nonlinear array, using 0.5 micron single poly triple
metal technology, the same task on a 100 x 100 cell chip could be implemented with
a 100 ns time constant, hence, this means

e 20 trillion equivalent operations per second, i.e. 20 TeraOps
e Present operational chips: 22 x 20 cells, 30 mm?, 280 ns, 0.8 micron, hence, 50 x 50
cells per 2 cm?, i.e. 1 TeraOps

Table 4.2 shows some comparison of computing time for different simulators,
emulators, and the first fully stored programmable analogic CNN Universal chip with
optical input. It is obvious that for those problems which can be solved by the analog
(analogic) chips, the analog array dynamics of the chip outperform all the software
simulators and digital hardware emulators. Comparisons in running time of analogic
CNN algorithms and more advanced CNN Universal chips can be found in Chapter
15.

It is important to emphasize that the analogic CNN technology is an emergent
technology, complexity and speed is doubling sometimes within half a year.

Another type of comparison of the different architectures is shown in Table 4.3 (the
emulated digital chip is not considered here). As a typical operation, an A template is
considered (e.g. Laplace).

Although, the CNN Universal Machine architecture has not been formally intro-
duced, we can say that it is a stored programmable array computer for implementing
sequences of template operations with local analog and local logic memory.

112 Simulation of the CNN dynamics

Table 4.2. Comparison of standard digital and analogic image processing technology. Computing
time in Us (data transfer included) Image size: 128 x 128.

Pentium II TMS 320 6X CASTLE CNN chip 0.8 pum,
(MMX) 0.25 pm, Emulated digital TcNN: 250 ns
0.25 pum, 200 MHz 0.5 pm, 66 MHz 22 x 20 cells/
233 MHz 8 processors 12 processors optical input
3 x 3 convolution
B templates 1,000 427 32 8/14.5°
6TCNN or 1 iteration 2.34 31 125/69
Erosion/dilation
apo + B templates 500 300 2.7/324 8/14.5b
6TCNN or 1 iteration 1.7 185/16% 63/35
Laplace
A + B templates 15,000 6,414 480 10.3/16.8b
157cNN or 2.3 31 1456/892

15 iterations

Notes: “binary/gray-scale

b optical input and electrical output/electrical input and output.
Italic values indicate the speed advantage compared to the digital
processors in the first two columns.

The first fully functional CNN Universal chip is considered only,
more advanced CNN Universal chips are reviewed in Chapter 15.

Table 4.3.
Number of Analog

“Hardware” processors Discretization Discretization Speed Stored or
/“wetware” /size space in time ns/cell* programable digital
Pentium PC
software 1 Y Y 1,000 Y D
DSP 4-16 Y Y 500— Y D
emulator 2,000
Intel 80170 64 Y feed-forward: N ~20 N A
neurochip feed-back: Y
CNNU chip

cP 400 400-4,000 Y N 2.5-0.1 Y A

cP 4000 (10,000) (0.05)
Human
retina, 10,000,000 Y N ~1 Limited A

single layer

Note: * calculated as: settling (computing) time/number of cells.

113 4.6 Scaling the signals
|

It is remarkable that a single operation of a single layer in the retina has, in this very
simple model, the same computing power as the superfast analog chip.

I
4.6 Scaling the signals
We define an input scale:

white —1 +—+— 1 black
0

an output scale:

white —1 +—+—+ 1 black
0

and a state scale:

—Xmax —F+—+ Xmax
0

where

r r
Xmax = L4121+ Y) 1Aul + Byl (4.6)

k=—r l=—r

M

For example, for the binary EDGE template

ofofo —1[-1]-1
A=[olofo| B=[-1] 8 [-1] z=[-1]
ofo]o 1| —1] -1

Xmax =1+ 1416 =18
M =16

We can also calculate the maximum values of x;; (and X;;)

Xmax = 1+ z| + M +|z| + M =1+ 2|z]| + 2| M| 4.7)
—
Xmax

For the binary EDGE it is 35.
The bounds can be used to design a fixed point simulator. A 16 bit fixed point
representation is specially useful for many CNN analyses. The reason is this:

16 bit =~ 64,000 values, i.e., = 32,000 numerical units.

114
—

4.7

Simulation of the CNN dynamics

If the unit signal value (e.g., 1 v or 0.5 v) is represented by 1,000 numerical units
(i.e., 1 mV or 0.5 mV resolution) then the allowed dynamic range (xmax) is 32 units of
signal value. It means xpax = 32. This is a practically reasonable choice. Indeed, this
is the reason why a cheap 16 bit fixed point DSP (Texas TMS 320C25) was used in
the Hardware Accelerator Board.

Discrete-time CNN (DTCNN)

If we use Ar = 1 then we get from (4.4)

r r r r
xijm+ 1) =" Y auyipkjum+ Y > buttipkj1(m) + 2

k=—r l=—r k=—r l=—r

Y (m 1) = f(xpr (m + 1)) (4.8)

This discrete-time recursive equation is called the discrete-time CNN (DTCNN)
equation. If f(-) is not the standard nonlinear function (unity gain piecewise linear
saturation function), but it is a so-called hard limiter f,(-) (either between +1/—1 or
+1/0, see Fig. 4.2) then equation (4.8) is a DTCNN with hard limiter.”

Let us emphasize that at At = 1 the DTCNN equation is not necessarily convergent.
In principle if Af¢ is small enough, the discrete-time equation converges to the
continuous-time solution. There are several different physical implementations for
DTCNN, including software, digital hardware, and special purpose VLSI.

Fig. 4.2.

I
9

5.1

115

Binar_y CNN characterization via Boolean
functions

Binary and universal CNN truth table

Our objective in this chapter is to show that every space-invariant binary (black-and-
white) CNN belonging to the uncoupled class C (AO, B, z) with a 3 x 3 neighborhood
(r = 1) which maps any static binary 3 x 3 input pattern U into a static binary 3 x 3
output pattern Y(co) can be uniquely defined by a Boolean function C of nine binary
input variables'

T
u;;j = [uy, uz, u3, ug, us, ue, u7, ug, U9 5.1

where u; € {0, 1} denotes one of the nine pixels within the sphere of influence of cell
Ci; as shown in (a) below. Note that we have opted for a “single” rather than a “double”
subscript notation to avoid clutter. Note also that u;; has a subscript (ij) and is set in
a bold face type in order to distinguish it from the input u;; (set in light-face type) of
cell C;;. Although we can code the nine pixels uy;, kI € {—1, 0, 1} by any combination
of u;, we have chosen the coding scheme shown in (b) below for pedagogical reasons
that will be obvious later. A simple mnemonic to reconstruct this code is to remember
the subscript “5” always refers to the input g, corresponding to the center cell Cj,
whereas the subscripts {8, 4, 2, 6} refer to the surround cells in the N - E — S —
W clockwise compass directions, and the remaining subscripts {7, 9, 1, 3} refer to the
surround cells in the NE — NW — SE — SW clockwise compass directions.

(@ |u_1,—1 |u_10|u-1, (b) |ug | us | ug
up,—1 uo,0 | uo,1 = Ue | Us | Ug
ui—1 | U0 | Uil usz | up | uj

Now given any static binary input pattern U, the color (black or white, since the
CNN is assumed to be binary) of any output pixel is determined uniquely by only a
small part of U exposed to a 3 x 3 transparent window centered at cell C;;, because the
sphere of influence S (i, j) is assumed to be a 3 x 3 neighborhood. Hence the color
{0, 1} of the output pixel y;;(c0) is uniquely determined by the binary value (0 or 1)
of the nine pixels u1, us, ..., ug exposed by the 3 x 3 window. This unique answer is

116 Binary CNN characterization via Boolean functions

obtained by solving the system of M x N ODE having the prescribed CNN templates
(A% B, z), and prescribed initial state x(0). Now even though there are infinitely many
distinct templates (recall the coefficients of AC B, and z can be any real number,
which is uncountable), there will be only a finite (albeit very large) number of distinct
combinations of 3 x 3 “checkerboard” patterns of black and white cells, namely, 29 =
512.

Fig. 5.1 shows how a single binary input is represented.

9

olllsllf 7 873
654:>€654j

% 3 ||l 21|[1 q

=\ Slil8(|716ll5]l4]]3] 2] 1] Positen
AU S S N I AR AR

o bt 2 2 2 P Binaycose

Example:

HEN
L
\’
HE N
|

- HNE N .

A PSP S s S P U

> 1-2%40- 2 - 2541 2212740 222740 2 T+ O

= 25 +0+64 +32 + 16 + 0 + 4 + 0 + 1

Fig. 5.1. Representing a single binary input.

117
—

5.1 Binary and universal CNN truth table

CNN
Program CNN Program Code
NAME 512[511]510[500][508] 507 [508 /17 Js 5 Ja Ta]2 Tn
Filwhite |0 [0 [0 [0 |O |0 |O |' o o [o o Jo o Jo
1 o lo]o oo o [o \ o [o [o |o Jo Jo |1
2 olo|o|ololo]o \ o o [o [o o [1 o
3 o|lofloflo]o|o o | o [o [o |o Jo [1v |1
4 ololololo]o |o \)' o o lo |o |1 [o |o
5 o|lolofo]o|o|o] /1o [o Jo o [t Jo |1
B o |lolo oo o |o } L o o [oe o [T [t Jo
] ——~ .
‘-'-'_—-ﬂp_‘] = [———
Gameoilife O |0 [0 [1 [o |1 |o / /o o [o [o [o |1
Edge Detector [1 [0 [1 [1 [1 [t [1 [\ \Jo Jo Jo Jo Jo Jo Jo
N =
) \—v-'-'-'-
—
i—1 w—

__,_-a-—""—-_'-.‘-—- \ (“-— [e —
o512 R EEEEEE] \ 1 v v e |y
2Mip N Y L

Fill Black I ERE 'BEERE 1 \ \ 1T [

Total Number of Distinct CNN Programs =

12 % 1.34078X10°

Fig. 5.2. CNN program code of nine variable binary input.

Since each such pattern can map to either a “0” or a “1”, there are exactly?

Q222 = 2512 1 13408 x 10'% > 1015

distinct Boolean maps of nine binary variables. These maps can be ordered in a table

as shown in Fig. 5.2. Each row shows a different binary nine input one output map.

Let Cq, denote the universe of all such maps. Now since Cg, is the maximal set, by
definition, the Boolean map generated by each member of the standard CNN universe

C(A%, B, z) must be a member of Cg.3 Hence

C(AY,B, 7) C Cq

We have just proved the following fundamental result:

118 Binary CNN characterization via Boolean functions
|

Table 5.1. Truth table for defining any Boolean functions of nine variables.

Binary
pattern Input variables output
number ij(00)
ug ug U7 Ug U5 U4 U3 Uy U]

510
511

Theorem 1: Binary CNN truth table

Every binary standard CNN with template (A", B, z) and prescribed initial state X(0)
is a member of the universe Cq of all Boolean functions of nine variables and is
therefore uniquely characterized by the CNN truth table shown in Table 5.1, consisting
of 512 rows (one for each distinct 3 x 3 checkerboard pattern), nine input columns
(one for each binary input variable u;), and one output column whose value (0 or 1)
corresponds to y;;(00).

Theorem 1 gives us the most rigorous method for characterizing a space-invariant
binary CNN, and is therefore of fundamental importance. Since this table will in
general exceed the length of a typical page, let us divide it into 16 component truth
tables each one containing 32 rows. For example, the 16 component truth tables
which characterize the Edge templates are given in Examples 5.1(a)—(p). To clarify
our notation, in the first component table shown in Example 5.1(a), each entry for the
input variables is coded by a “0” or a “1”, instead of our earlier notation of “—1”
and “1”, in order for us to exploit the extensive theory and literature on Boolean
functions, which are almost universally couched in “zeros” and “ones.” Observe
that we have ordered the binary values in the truth table in the same order for
enumerating the binary number 0, 1,2, 3, ..., 511, consecutively. Since it is usually
more pleasing for the eye to decode a table of black-and-white cells than a table of
“zeros” and “ones,” we will henceforth code our CNN truth tables by black and white
cells.

To construct the truth table for any binary CNN C (AO, B, z) with the prescribed
initial state x(0), simply solve the associated system of differential equations for each
input of 512 distinct binary patterns listed in Table 5.1 and fill in the corresponding
calculated output, either black (1) or white (0). Since the 512 binary patterns are
fixed, each corresponding to a nine-bit binary expression of an integer N, N =
0,1,2,...,511, it is easy to write a computer program to generate the truth table
automatically, given any templates (A”, B, z) and the prescribed initial condition x(0).

119

5.1 Binary and universal CNN truth table

In particular, simply assume a 3 x 3 CNN array (M = N = 3) and find the solution
of the center cell Cy.

The truth table for the edge CNN calculated by the above procedure is shown in
Example 5.1, decomposed into 16 components. Clearly, except for displaying a few
of these truth tables for analysis and pedagogical purposes, it is impractical to list the
truth table of all useful CNNs. They can, however, easily be stored on a diskette, to be
retrieved only when needed. Displaying the truth table on a computer screen has the
advantage of showing a continuous table when any part of the table can be scrolled
into entire view.

The alert reader will have already realized that the truth table format of Example 5.1
contains a great deal of redundancy. Indeed, in each of the 16 components shown

EXAMPLE 5.1: Edge CNN

(a)

ElE HEIEIEIR |
T (C) ED T (g)
1 5 TCT
2 T
3 [1]
4 [
5 0]
5 ECH (/] [
7 Eall 101 []
& £ (] (] [
8 EEH (] Cmi [
i N (] [[
il 75 00 CIC [
i 00 O]
iE Fr OO Cim| L]
ikl 2 (] [N
15] 1
[1E Ol

o|olo[o]o[o]o[olo[o]o]o]o[o]o[o]o[o]o[o]o[o]o[o]o[o[o[o]o]o]olo]S]

clalalolelel=[ala|cl=la]elo]el=]=[=]c]s]==]=l=]=]=] = =]l =] = =]w=]
BEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEE R
BB R EEE B E R R BB EEEE R
alale[clelele[ala[c]=la]a[a]e[a]==]c]a]==]==]=]=]=[=]c]=]=]=]=]
Sl =[al=[=]=]=[a[cl=]=]alalala]=]==]=|=]=|=]|=|a|=|=c|c]=]=[=]=
Sl =[alalelelal=[==l=alalalal=[= ===l el === [=]c]=]=[=]=]
lal=lel=lal=la=[cl=l==al=]==[==[=]=al=a]=]=]=a]=]=]=[=]=

S = e L e el el el e e e e e e e o ol ol =l o
E

IR |

(o)))) o e o

AR OOOOOOoOO
I])]]]

HEIF
JICICIC]

(h)

Ol=
-
CIE

(d)

(]
L]
]
]

(]
]]
(]) O

I =

[0)) T T
{0 o))) e o I

]
]

[0) D e

1 T T

o
il
() T T

L]
]
L]
]
]
]
L]
L]
]
L]
]
L]
]
]
(]
[l
U
U
U
[l
U
U
U
U
[l
U
U
U
U
[l
L]

5l
o
]
()]]

120
—

Binary CNN characterization via Boolean functions

(k) (m) (0)
) (n) = ()
Ol
CIC]
(]))
om0
) [] ()
o sk
(] [L]
&l ani
- -
w0 mo
TMm maj
BEL] oojm|
Cm{m O]
)) O (]
| []
00| I]
) L]
)))]
000 oog
]) []
] [CIm|m|
]) w1
000 majn|
] []
i W
] oCm
in Example 5.1, the domain of the binary input variables uy, us, ..., ug, which

constitutes the bulk of the space of each table, remains unchanged. Hence, we only
need to record the last column of each of these 16 component tables. Since each
column has 32 cells, we need only store 16 x 32 = 512 pixel values (0 or 1) for
each binary CNN C(A°, B, z) with prescribed initial conditions and will be able to
reconstruct these 16 component tables. For maximum space efficiency, we can pack all
16 columns from Example 5.1, each with 32 entries, into 16 rows, next to each other
to form a grid containing exactly 16 x 32 = 512 cells, as shown in Example 5.2. Since
this table contains the same information as those of Example 5.1, we have achieved
an immerse amount of data compression. Indeed, since this table contains only 512
entries, one for each input pattern, it is a minimal representation. We will henceforth
refer to Example 5.2 as minimal CNN truth table.

121
—

5.1 Binary and universal CNN truth table

Corollary to Theorem 1

Every space-invariant binary CNN with a 3 x 3 neighborhood and specified by
templates (A%, B, 7) and a prescribed initial state X(0) is associated with a unique
minimal CNN truth table.

EXAMPLE 5.2: Minimal CNN truth table

[]
11/
L]

Remarks:
1 The uniqueness assertion in the above corollary is with respect to a given template

(A%, B, 7) and initial state X(0). It is not unique with respect to a given “global task”
since a given task in general can be implemented by many distinct CNN templates
(infinitely many indeed).

The above corollary only asserts that for every CNN template (A, B, z) and initial
state, there corresponds a minimal truth table, or equivalently, a Boolean function
of nine variables. However, the converse is not true, i.e., given a Boolean function
B € Cq, or its associated minimal truth table, there may not exist a CNN template
and an initial state X(0) which yields this truth table. However, we will prove later
that every member of Cg, i.e., every Boolean function of nine variables, can be
realized by a CNN universal machine to be studied in depth later. We will prove

0134 such Boolean functions of nine variables that can

later that there are more than 1
be programmed by a single CNN universal machine. This immensely large number
is greater than the volume of the universe (103 cm?, calculated as a sphere with a

diameter of 10 thousand million light years)!

122
—

5.2

Binary CNN characterization via Boolean functions

Boolean and compressed local rules

Every CNN with a 3 x 3 neighborhood or its generalization, the CNN universal
machine, to be presented later, which maps a static binary input image into a static
binary output image, has a unique CNN truth table representation consisting of 512
rows, each one mapping a Boolean expression involving nine Boolean variables into a
“0” or a “1” digit

(dy,da, ...,do) — {0, 1} (5.4)

where d; € {0, 1}. We can now define rigorously our earlier heuristic notation of a
local rule:

Definition 1: Complete set of CNN Boolean local rules
Each row of the CNN truth table is called a Boolean CNN local rule. Every CNN with
3 x 3 neighbors is rigorously defined by a complete set of 512 Boolean local rules.

Definition 2: Compressed Boolean local rules
Any other rule which can be used to derive one or more Boolean local rules is called a
compressed local rule, or simple local rule if the usage is clear.

The motivation for devising compressed local rules is simply to reduce the large
number (512) of Boolean local rules to a smaller number. They are usually derived by
heuristic methods and may not be adequate in view of the following reasons:

1 While some local rule may correctly reproduce a large subset of Boolean local rules,
it may contradict some others. In this case, we say it is an inconsistent local rule. If
the inconsistency occurs only for a few rare input patterns, it may still be useful for
pedagogical purposes, especially if the local rule compression ratio

VLR 2 humber of correctly reproduced

Boolean local rules divided by 512

is sufficiently large, y1r < 1. In this case the errors may be acceptable for
pedagogical reasons, especially if this local rule makes it possible to visualize or
identify the main features of the input image that are to be extracted, modified, or
transformed.

2 The set of compressed local rules are incomplete in the sense that some Boolean
local rules cannot be deduced from them.

Definition 3: Complete set of compressed local rules
A set of compressed local rules is said to be complete if and only if no member of this
set is inconsistent and if all 512 Boolean local rules can be deduced from this set.

123
—

5.2 Boolean and compressed local rules

Definition 4: Minimal set of compressed local rules
A complete set of compressed local rules is said to be minimal if no member of this
set can be eliminated and still achieve completeness.

Computer-aided method for proving local rules

Given a CNN template (A?, B, 7) and initial state X(0), there is presently no systematic
algorithm to derive a complete set

SR = {51, 52, ..., Sp} (5.5)

of local rules which are sufficient to map any binary input patterns into the prescribed
output patterns obtained by solving the associated system of ODEs. In most cases,
only a subset S C SLr may be found. On rare occasions, a superset SfR D Sir
may be found. On few occasions, some local rules may be redundant, in the sense
that for some input patterns they predict the same output. It is also quite possible that
two or more local rules may contradict each other’s prediction and hence are said to
be inconsistent. Finally, given a complete set of local rules, does there exist a proper
subset which is also complete? If so, is it possible to find a complete set of local rules
which are minimal in the sense that no other complete set exists which contains a
fewer number of elementary local rules? We will now show that all of these questions,
except the last one, can be easily resolved with the help of the CNN truth table, or
equivalently, its associated minimal truth table. We will give a constructive solution to
each question (except the last one) raised above in the form of an algorithm.

Algorithm 1: Checking whether a local rule candidate S; is consistent

1 Use the prescribed template (A%, B, 7) and initial state X(0) to derive the associated
CNN truth table 7.

2 Apply the local rule S to each of the 512 input patterns. In general, S§; may
not be applicable (NA) for some patterns (due to inadequate or overly simplistic
assumptions). In this case, the output cell will be denoted by NA, or simply coded
in gray scale. For those input patterns where S| is applicable, there are three
possibilities for the output cell: (i) Output is black (coded by Boolean number 1)
and agrees with the corresponding output in the truth table. In this case, the output
will be printed “black.” (ii) Output is white (coded by Boolean number 0) and agrees
with the corresponding output in the truth table. In this case, the output cell will be
printed “white.” (iii) The output is black (resp., white) but the corresponding cell in
the truth table is white (resp., black). In this case, the output cell will be denoted by
a cross X, thereby indicating S; is inconsistent and is not a valid local rule.

3 The local rule S is proved to be valid if and only if it is not inconsistent.

Algorithm 2: Checking whether aset S = {5, S», ..., Sk} is complete
1 Derive the CNN truth table 7, as in Algorithm 1.

124

Binary CNN characterization via Boolean functions

2 Apply Algorithm 1 to each §; € S. If any §; is inconsistent, stop. Otherwise, go to
3.

3 If each output cell is predicted to be either black or white by at least one local rule
S; € S, then S is complete. In this case, we have a rigorous proof of the validity
and completeness of the set of local rules.

Algorithm 3: Given a complete set Sir of local rules, find a smallest proper

subset which is also complete

1 Delete S; from Spr and apply Algorithm 2 to the remaining set. If it is complete,
delete the first two elements S; and S, from Spr and repeat Algorithm 2. Continue
the same “pruning” procedure until the remaining set is no longer complete. In this
case, the immediately preceding remaining set of local rules constitutes the smallest
complete set with respect to the order where the elements of Sy g are deleted.

2 Repeat step 1 to all permutations of the ordering of the members of StR.

3 Any complete set resulting from steps 1 and 2 having the smallest number of
elements is a minimal complete set, relative to Sig.

Remarks:

1 The above choice of minimal complete set may not be unique, since there may exist
several complete sets all containing the same smallest number of elements.

2 The “minimality” derived from Algorithm 3 may not be global in the sense that
there may exist an entirely different set Spr of complete rules in which Algorithm
3 would yield a minimal complete set having fewer elements than that determined
from Spr. The difficulty in deriving a global minimal complete set is that there is
no obvious algorithm to guarantee all distinct sets of complete local rules have been
exhausted. A further difficulty lies in the criterion to be used for certifying which
local rule is qualified as elementary. For otherwise, one could combine several local
rules into a single but more complex local rule. Hence it is necessary to define
“elementary” in the sense that no decomposition into two or more simpler local rules
is possible. The algorithms are contained in the TEMPO program (Appendix C).

53

Optimizing the truth table

Recall that once a CNN template is specified a unique truth table can be easily
generated by a simple computer program, say by solving a system of nine ODEs a
total of 512 times, one for each distinct Boolean pattern of nine input variables, or
by some explicit formula that applies only to some specific subclass of CNNs, e.g.,
the uncoupled class. One can examine each of the 512 3 x 3 binary input patterns
and determine whether the output (black or white) of this CNN is “correct” from the

125

5.3 Optimizing the truth table

user’s perspective. The next tables (Examples 5.3—-5.13) show the minimal truth tables,
the truth tables and the window truth tables of the CORNER template. However, for
example, among the 32 input patterns shown in Example 5.7 (corresponding to the
Boolean local rules no 96-127) and the 32 input patterns shown in Example 5.8
(corresponding to the Boolean local rules no 160-191) for the CORNER CNN, we
found the “black” output of this CNN for input patterns no 114, 116, 176, 177, 178,
180, and 184 to be “incorrect” in the sense that the center black pixel in each of these
seven input patterns do not look like “corners,” from the perspective of the human
visual system. Similarly, we also disagree with this CNN’s classification (white; i.e.,
not corner) of input pattern nos 115 and 121, because the black center pixel in these two
patterns really look like “corners.” Hence, we would consider these nine classifications
made by the CORNER CNN to be “incorrect.” It is important to note that this does not
mean the CORNER truth table is incorrect, as every truth table is an exact and hence
correct representation of the CNN having the prescribed template. Indeed, from the
perspective of a robot, or some creatures having a different visual system, the above
classifications may be completely acceptable.

From the human perspective, however, it would be desirable to reclassify the above
nine Boolean local rules to obtain an optimized CNN truth table.3 Once this is done,
our next task is to design a CNN template (which may not exist) having this optimized
truth table. If no such template exists, we will show later that a CNN universal
machine can always be used to realize this optimized truth table, or any other truth
table.

EXAMPLE 5.3: Minimal truth table of CORNER template

R [
L (T Y

126 Binary CNN characterization via Boolean functions
|

EXAMPLE 5 .4:

[IE]
i 064]]
] = (W
i) = (W
g 067 |
o4 =] (]
5] (]
i3 70|
a7 il [
08 07z
) 0737
10]
[07s |
B 076 |
13 L (W
T4 o7& |
15 STE] (W
16 050]]
7 =T (W
18 =
[053]
z0 = (]
H] 085 |
2z = (W
73 057 |
24 =] [
= =] (W
26 L] [
27 =T (I
] A (]
3 093]
30 094 |
3 =

[[
32 056
33 057 |
34 058 |
35 055
36 [
a7 o]
L] 0Z|]
33 03[
40 04[]
] 05|
4z 106 |]
43 07|
a4 108]]
45 103|]
46 110]]
47 O 0
45 11z
43] [l
50] 114]0
51 11 15|00
52 [118]0
53] 7|0
54 1 &[0
55 1] 130
56 [[
57] 121]0
58) 1z|0
58 11 [
0 O] 2]
61 (]| [LI/
2 B T2E [
GE 1] 27 [R

130 @DDDDD
T ([]

255 3 I

127 5.3 Optimizing the truth table
|

EXAMPLE 5.5:

)

COmOE wn
m

W
mE s

LJC I L
LI

B
]

I
]

(]
%)

T
Lo

L]
=
@
il

o
DEDIEI_IDI

BBBDEEBD
"

339 EjI_JDITE

]
L]

=
B
2
[]
]
[]
]

NRHE08EHA)

L]
o
o
=

—DEEEEEEEDEE@EDE@

S01 []
502

503]

504

505

505

07]

508 D
1 Cim 508 1]

446 DDDDDE jI:Jj O] 510 []

R | [e Eil

128 Binary CNN characterization via Boolean functions
|

EXAMPLE 5.6: Tables of input—output patterns for CORNER template (1, 2)

input O

outpuk 24

input 32

outpat BiE:

input 1:

output 25:

input 33:

output 57

input 2

outpt 26:

input S

outpt 5i3:

input 3

outpak 27

input 35:

outpat B3

input 4: input B

output 28:

input 36:

autput 37

input E:

autput 33

input 45

input 4E:

output BO;

output B71:

outpat B2

input 7

output 31

input 39:

output B3

129 5.3 Optimizing the truth table
|

EXAMPLE 5.7: Tables of input—output patterns for CORNER template (3, 4)

input B input B5: input BE: input B7: input B8: input B3: input 70 input 71:

output 101: | output 102

input 103: input 110:

output 103; f output 17 0:

input 117: input 118:

autput 117 | output 178:

input 125: input 126:

outpat 120: § outpat 127: f output 122: @ oatpat 123; f outpur 124 @ oatpat 125: § outpat 126 f oatpat 127

130 Binary CNN characterization via Boolean functions
|

EXAMPLE 5.8: Tables of input—output patterns for CORNER template (5, 6)

input 128: input 129 inpt 130: input 131: input 132 input 133 input 134: input 135:

[([
(]

outpat 133

outpat 152 B output 152 f output 154: B outpat 155 f outpur 156: B oatpat 157 B outpar 158: f oatpat 153

input 160: input 1671: input 162: input 163: input 164: input 165: input 1EE: input 1E67:
LI
(]
[]]

output 160: i output 1671: : : | output 164 B outpat 165: f output 18E:

O

input 163: input 163: : : input 172: input 173: input 174:
O] § D (][]
LN § (R LI
OO0 § (CCm []]

aurput 168 outpur 163: : Cf outpue 172 @ outpur 173 outpur 174

(]

input 17E: input 177: : : input 180; input 1871: input 182:

outpat 134 § output 125: f output 126: § outpat 187 @) outpur 128 B oatpat 133; § outpat 130 @ ootpoat 137

131 5.3 Optimizing the truth table
|

EXAMPLE 5.9: Tables of input—output patterns for CORNER template (7, 8)

input 192: input 193: input 194: input 195: input 196: input 197: input 198: input 193:

O § [
LIL oy L L[]

: Dutput 198: output 199:

inpt 206: input 207:

input 228:

/|
(o]]
][]

i output 228 B output 229:

O

input 2:36: input 237:
]
[Im]
[]]

;| outpur 236

output 243 B output 249; B output 250: @ oatpat 257; @) outpur 252 @ ootpoat 253; B output 254 @ oatpat 255

132 Binary CNN characterization via Boolean functions
|

EXAMPLE 5.10: Tables of input—output patterns for CORNER template (9, 10)

input 25E:

outpat 280

input 283:

outpat 312

input 267:

output 2871

input 289:

output 313

input 258:

outpat 282

inpat 290;

output 314

input 253;

outpat 283

input 25971:

output 315:

input ZE0;

output 284:

input 292:

output 316:

input 2671:

output 285;

input 293:

input 2E2:

outpat 286

input 294;

output 317

outpuat 318

input 2E3:

output 287

input 295:

output 319:

133 5.3 Optimizing the truth table
|

EXAMPLE 5.11: Tables of input—output patterns for CORNER template (11, 12)

input 320: input 321: input 322 input 323 input 324 input 325: input 326: input 327

O § ECe (e

: f outpur 358:

input 3EE:

: | outpur 366

input 37d:

output 376§ output 377 output 373§ outpat 373; @) outpur 2200 @ oatpat 387 § output 282 f oatpat 383

134
—

Binary CNN characterization via Boolean functions

EXAMPLE 5.12: Tables of input—output patterns for CORNER template (13,

input 384

outpat G0

input 385:

input 3EE:

input 387

input 38E:

: f output 412

input 420:

(I 1]
(o]]
][]

: | outpur 420

O

input 428:

]
[l |
][]

-l outpur 423

input 4:36:

output 447l output 442 @8 oatpoat 443

input 389:

output 4271:

inpat 3E0;

autput 422

input 423:

autput 423

input 4:30;

autput 430

output ddd:

input 437:

output 45;

input 4:38:

output d4E:

output 447

135 5.3 Optimizing the truth table
|

EXAMPLE 5.13: Tables of input—output patterns for CORNER template (15, 16)

input 443: input 443: inpt 450; input 451: input 452 input 453:

mm | mun | Een | mee | e |
oool | oog | oog | oog | Gog | oo
ooo) | oom | om0 | Oem | mO0 | @OE

outpt deE: outpt 450

(] (]

input 456: inpt 458:

output 449

(]

input 457:

output 4571

(]

input 459:

output 452

O

input 480

output 453

(]

input 4E61:

: | output 47E:

input 454:
LI
(]
[]]

: | outpur 484

O

output 435

input 454:

input 492:
LI
[Im]
[]]

. | outpur 4392

input 493:

outpuat S04

output BO5: f output 506: @ outpat 507 f outpur 502: @ oatpat S03:

outpuat 510:

input 455:

output 511

136 Binary CNN characterization via Boolean functions
|

EXAMPLE 5.14: Corrected minimal truth table of CORNER template

[(11 IC I IC IO ICC L

o o [[[T 1[@ ([[][]

1o o[[1[I] []

[T)
e o [__[[@ /@[[][Il

A [T
A (T
L [T

QO squares correspond to corner misclassification (they should be white)

X squares correspond to non-corner misclassification (they should be black)

EXAMPLE 5.15: Optimized minimal truth table of CORNER template

(o)) o 1T IC AL LI LI IC QI]
30T |0 I
0T |1 o 1 1]
0 o 11 e
0 o1 1]
) e e e
o)A e e
) e e
(1 o1

(o o o e
(T T
(T
(T
OO0 OO0 OO OO0 OoC0c
OO0 OO OO0 OO OO0 OoC0c
T T

137 5.3 Optimizing the truth table

As an example, all misclassified input patterns by the CORNER CNN are designated
in the minimal truth table shown in Example 5.14 by a white hole pixel if this pixel
should be reclassified as white, and by a crossed pixel if this pixel should be reclassi-
fied as black. The resulting optimized CORNER CNN is shown in Example 5.15.
Examples 5.16 and 5.17 show the binary and decimal code for the CORNER and
optimized CORNER templates, respectively.

EXAMPLE 5.16: Binary code for CORNER template (512 bits)

00000000,00000000,00000000,00000000,00000000,00000001,00000000,00000000

,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000
,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000
,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000
,00010111,01111111,00000000,00000000,01111111,11111111,00000000,00000000

Decimal code for CORNER template (140 digits)

47,634,102,646,527,572,675,971

,460,498,910,645,354,219,674,273,748,634,236,474,670
,546,006,561,432,941,907,354,541,093,642,727,873,594
,350,604,011,030,198,552,062,948,695,326,343,495,680

EXAMPLE 5.17: Binary code for optimized CORNER template (512 bits)

,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000
,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000
,00000000,00000001,00000000,00000000,00000000,00000101,00000000,00000000
,00000000,01010101,00000000,00000000,00000001,01010101,00000000,00000000
,00000000,00000001,00000000,00000000, 00000011,00000011,00000000,00000000
,00000000, 00010001,00000000,00000000,00000011,00110011, 00000000,00000000
,00000000,00000111,00000000, 00000000,00000111,00001111,00000000, 00000000
,00000000,01011111, 00000000,00000000,11111111,11111111, 00000000,00000000

138 Binary CNN characterization via Boolean functions

Decimal code for optimized CORNER template (150 digits)

204,586,913,041,142, 969,522,351,928,009,830

,941,404, 290,185,269,210, 065,083,499,186,859,428,943
,804,165, 897,630,843,608,945,882,697, 576,708,597,045
,469,082,137,675,717, 688,639,024,082, 912,326,647,808

6

Uncoupled CNNs: unified theory and
applications

6.1

139

The complete stability phenomenon

Our main objective in this section is to derive and prove a general theorem which
unifies all of the CNN templates presented in the preceding chapter, and numerous
others, under one umbrella. In particular, the mathematical analyses presented for all
templates in Chapter 5 could be greatly simplified. We did not present this fundamental
theorem earlier for pedagogical reasons: it is essential for the uninitiated students of
CNN to understand and appreciate the fundamental notion and power of the shifted
DP plots and their dynamic routes.

We have been thoroughly exposed to these rather simple concepts and have learned
to exploit the dynamic routes not only for the analysis of the nonlinear dynamics (i.e.,
transient and asymptotic behaviors), but also as a highly intuitive and potent design
tool for deriving optimum and robust CNN templates.

The alert students who have gone over the previous chapter would have recognized
that, except for a degenerate case, no matter what the initial conditions are, the solution
always converges to a globally asymptotically stable and hence unique equilibrium
point (monostable case), or to one of two locally stable equilibrium points (bistable
case). Although this latter “convergence” property is rather unusual for nonlinear
dynamic circuits having multiple equilibria,! it is a gift that nature (i.e., the physical
laws) has endowed upon an important class of CNNs on which all current nonlinear
information processing applications are based. Let us first define this crucial CNN
property which provides the raison-d’etre of its existence.

Definition 1: Completely stable (convergent) CNN

An M x N CNN C(A, B, 7) is said to be completely stable, or convergent, iff every

solution x(7; xo) with initial state xo converges to an equilibrium point Q(xg), which

in general depends on xg € RM*N

140
—

Uncoupled CNNs

Explicit CNN output formula

We are now ready to state and prove our long-awaited main theorem which holds for
any uncoupled CNNs. Let C(A°, B,) denote any space-invariant*> CNN with a sphere
of influence S, (i), a feedback template A° with all feedback synaptic weights a; =0
except i = j = 0, an input (feedforward) template B with arbitrary input synaptic
weights by; € R, where |k —i| <r, |l — j| <r, and an arbitrary threshold z € R.

Theorem 1: Completely stable CNN theorem
Every uncoupled CNN C(A°, B, z) with static binary inputs (ug; = —1 or ug; = 1) is
completely stable. Moreover, the solution waveform x;; (t) increases monotonically to
an equilibrium point Q if x;;(Q) > 0, or decreases monotonically to an equilibrium
point Q if x;;(Q) < 0.

Moreover, except for two degenerate cases which correspond to a semi-stable or a
non-isolated equilibrium, the asymptotic (i.e., steady state) output solution

A .
yij(00) = tl_lglo yij (1)

can be calculated by the following explicit algebraic formula which depends only on
the initial state x;;(0), on the offset level

wij =27+ Z Driu 6.1)
k€S, (i, /)

of only the neighbor cells C(k/) within the sphere of influence S, (ij) of radius r of
cell C(ij), and on the value of the self-feedback synaptic weight ago, of which there
are four cases:

Case 1: Strong positive self-feedback case: agp > 1
In this case, the CNN output is always equal to “1” or “—1” (i.e., binary) for arbitrary
ug; € R, and is given by (assuming |x;;(0)| < 1 and |w;;| # ago — 1)

yij(00) = sgn[(ago — 1)x;;(0) + w;;] (6.2)

where sgn(-) denotes the signum function.?
In addition, the CNN is

1 bistable, if |w;j| < app — 1,
2 monostable,* if |wij| > apo — 1,

3 semi-stable, if |w;;| = agp — 1.

141

6.2 Explicit CNN output formula

In the semi-stable case, we have

y,-j(oo)zl, ifxij(0)>—1 andwijzaoo—l >0
or ifx,‘j(()) > 1 and wij = —(agp—1) <0
=—1, ifx;(0) <land w;; = —(agp—1) <0

orif x;;(0) < —1 and w;; =agp— 1 > 0

Case 2: Unity-gain self-feedback case: agp = 1
In this case, if w;; # 0, then the CNN is monostable with a binary output which does
not depend on x;;(0), and is given by

yij(00) = sgn[w;j] (6.3)
If w;; = 0, we have the degenerate case of a non-isolated equilibrium where

yij (00) = x;;(0) (6.4)

Case 3: Weak positive self-feedback case: 0 < agy < 1

In this case the CNN is monostable whose output does not depend on x;;(0) and is
given by:

I If |lw;j| > 1 — ago, then the output is binary and is given by

yij(00) = sgn[w;; — (1 — ago)] (6.5)
2 If Jw;j| < 1 — ago, then the output is given in gray-scale value by
wl'j
Yij(00) = xjj(00) = T o (6.6)
— aoo

3 If lwij| =1 — ago, then
Yij(00) = sgn[w;j] 6.7)
Case 4: Negative self-feedback case: apy < 0

In this case the CNN is monostable and the output does not depend on x;;(0), and is
given by

1 If lw;j| > 1 — ago, then the output is binary and is given by

yij(00) = sgn[w;; — (1 — ago)] (6.8)
2 If |w;j| < 1 — ago, then the output is given in gray-scale value by
Wi
yij(00) = xjj(00) = 1 . (6.9)
— aopo

3 If |lwij| =1 — ago, then

yij(00) = sgnlw;] (6.10)

142
—

6.3

Uncoupled CNNs

Proof of completely stable CNN theorem

Since a;; = 0 for all (ij) # (0, 0) in an uncoupled CNN, the associated state equation
is given by
Xij = hij(xij; wij) (6.11)
The rate function is defined by

hij(xij; wij) = gij(xij) + wij (6.12)
where
8ij(xij) = —xij + aoo f (xij)

= —x;j + 0.5ap0|x;j + 1| — 0.5ap0|x;; — 1| (6.13)
is the internal DP plot, and

wij=z+ Y. buun (6.14)
KIES, (.)

is the offset level. The dynamics of Eq. (6.11) is completely determined by the shifted
DP plot

hij(xij; wij) = wij — xij + 0.5a00|x;; + 1| — 0.5ap0|x;j — 1] (6.15)
The equilibrium points of Eq. (6.11) are obtained by solving the piecewise-linear
equation

w;j — xij + 0.5ap0|xi; + 1] — 0.5ap0|x;; — 1| =0 (6.16)

Equation (6.16) can be solved by plotting the shifted DP plot A4;;(x;;; w;;) via the
graphical method from the previous chapter and then finding its intersections with the
horizontal axis. However, since ago and w;; are parameters, and not numerical values
as in the previous chapter, let us solve Eq. (6.16) algebraically in each of the four
linear regions — henceforth called the piecewise-linear solution method.

Region I1: x;j +1>0,x; —1>0
In this region, Eq. (6.16) reduces to the linear equation

wij — Xjj + 0.5a00(x;; + 1) — 0.5ap0(x;; —1) =0 (6.17)
whose solution is

Xij = wjj + aoo, assuming Xij > —1 and Xij > 1 (6.18)

143

6.3 Proof of completely stable CNN theorem

Region 2: x;j +1 <0, x;; —1 <0
In this region, Eq. (6.16) reduces to the linear equation

wij — xij — 0.5a00(xij + 1) + 0.5a00(x;; — 1) =0 (6.19)
whose solution is
Xjj = w;j —app, assuming x;; < —landx;; <1 (6.20)
Region 3: x;j +1>0,x; —1 <0
In this region, Eq. (6.16) reduces to the linear equation
w;j — xij +0.5apo(x;j +1) + 0.5app(x;; — 1) =0 (6.21)
whose solution is

—w;;

Xij = o _] , assuming x;; > —l and x;; < 1 (6.22)

Region4: x;jj +1 <0, x;; —1>0
Since these two inequalities cannot be satisfied simultaneously, the region where a
solution of Eq. (6.16) lies is the empty set.

Hence, Eq. (6.11) can have at most three equilibrium points whose locations are
summarized in Table 6.1.

Table 6.1. Possible equilibrium points of uncoupled CNNs.

Region Validating inequalities Location Equilibrium point
1 xij > —landx;; > 1 x;5 =w;j +ag Q4+
2 xij <—landx;; <1 x;; =w;j —ago Q-
3 xij > —landx;; <1 Xij = — Wiy Qo
apo — 1

It is important to observe that since the three equilibrium points in Table 6.1 are
derived from Eqgs (6.18), (6.20), and (6.22) by assuming first that a solution exists in
the corresponding linear region, it is necessary to check the validity of each of these
solutions for a given numerical value of agy and w;; via the two validating inequalities
which each “candidate” solution must satisfy. If a particular equilibrium point x;; (Q)
violates one of the inequalities, then Q is not a valid solution and will henceforth be
called a virtual equilibrium point. To find the conditions that must be satisfied in order
for a CNN to have three equilibrium points, simply substitute the expression for each
equilibrium point x;; = x;;(Q) at Q = Q4, Q_, and Qo from Table 6.1 into the two
corresponding validating inequalities in column 2 and obtain the following results:

144

Uncoupled CNNs

(@w;; > —(apo — 1) (6.23)
(b)w,'j < apy — 1

Observe that if inequality (a) in Eq. (6.23) is violated so that w;; < —(agp — 1),
then inequality (b) would also be violated, and vice versa. Hence, for these two cases,
the CNN has only one equilibrium point. There are two other possibilities where not
all inequalities in Eq. (6.23) are satisfied, namely, when w;; = —(ago — 1), or when
w;j = (app — 1). In these two degenerate cases, the CNN has two equilibrium points.

Since Theorem 1 must hold for all parameters apy € R and w;; € R, it is necessary
for us to examine all possible combinations of agyp and w;; which give rise to one, two,
or three equilibrium points, and to investigate their local stability or instability.

A careful examination of all possibilities in the w;j—aoo parameter plane reveals that
there are only 21 regions in the w;j—ago parameter plane having different behaviors
with respect to the number (3, 2, or 1), qualitative nature (locally stable, semi-stable,
or unstable), and robustness of the equilibrium points, and therefore warrant a separate
analysis. Since the values aggp = 1 and agp = 0 are found to separate many regions
having different behaviors, it is logical to arrange these 21 regions into four contiguous
groups corresponding to agg > 1, ap90 = 1,0 < agg < 1, and agg < 0, respectively.
Each of these groups can be further subdivided into regions separated by two straight
lines w;; = ago — 1 and w;; = —(app — 1), respectively. Under these subdivisions the
w;j—aoo parameter plane is partitioned into 21 non-overlapping regions. We will show
shortly that all uncoupled CNNs having their w;j—aoo parameters belonging to any one
region must have similar dynamic routes, and hence must exhibit the same qualitative
dynamic behaviors. The following five tables (Tables 6.2—6.6) specify the area in the
w; j—app parameter plane corresponding to each of the 21 regions, along with a figure
number which identifies which one among the following seven figures (Figs 6.1-6.7)
contains the associated dynamic routes. These 21 regions partition the universe of all
uncoupled CNNs into 21 subclasses of qualitatively similar CNNs, as shown in the
sub-divided w;j—ago parameter plane Fig. 6.8.

Since all w;j—ago parameters are represented in Fig. 6.8(a) and (b), it follows
that the qualitative behaviors of the universe of all uncoupled CNNs are completely
characterized by the 21 dynamic routes shown in Figs 6.1-6.7. Since from any
initial state x;;(0) the solution trajectory from x;;(0) must either flow in one and the
same direction along the dynamic route until it arrives at an equilibrium point, or
it must remain stationary if the initial state is itself an equilibrium point, it follows
that every trajectory converges to an equilibrium point monotonically, i.e., using the
jargon of engineers, there are no “ringings.” This proves that every uncoupled CNN is
completely stable.

It remains for us to derive the explicit formula (6.1)—(6.10) for the four cases listed
in Theorem 6.1. Since the 21 regions in the subdivision diagram of Fig. 6.8 cover
the entire w;j—ago parameter plane, it suffices for us to examine the corresponding

145

6.3 Proof of completely stable CNN theorem

Table 6.2. Parameter range: agpg > 1.

Qualitative behavior

Region Dynamic route
0< Wij <a00—1 Fig. 6.1(a)
—(agp — 1) <w;j <0 Fig. 6.1(b)
wij >app—1>0 Fig. 6.1(c)
wij < —(agp— 1) <0 Fig. 6.1(d)

Bistable at Q— and Q4+
Bistable at Q_ and Q-
Monostable at Q-
Monostable at Q_—

Table 6.3. Parameter range: agppy > 1.

Region Dynamic route Qualitative behavior
w;ij = app — 1 Fig. 6.2(a) Semi-stable at Q_—
wij = —(agp — 1) Fig. 6.2(b) Semi-stable at Q4

Table 6.4. Parameter range: apy = 1.

Region = Dynamic route Qualitative behavior

wij >0 Fig. 6.3(a) Monostable at Q-

wij <0 Fig. 6.3(b) Monostable at Q_—

wij =0 Fig. 6.3(c) Continuum of equilibria: —1 < x;; < 1

Table 6.5. Parameter range: 0 < agpg < 1.

Qualitative behavior

Region Dynamic route
wij > 1—agy >0 Fig. 6.4(a)
wij < —(1 —agp) Fig. 6.4(b)
0 <wij <1 —ay Fig. 6.4(c)
aopg — 1 < wij < 0 Fig. 64(d)
Wij = 1— aopg > 0 Fig. 6.5(a)
wij = —(—ap) <0 Fig. 6.5(b)

Monostable at Q-
Monostable at Q_—

Monostable and gray-scale: 0 < x;; < 1
Monostable and gray-scale: —1 < x;; <0
Monostable at Q+ (x;; = 1); very sensitive

Monostable at Q— (x;; = —1); very sensitive

Table 6.6. Parameter range: agpp < 0.

Region Dynamic route Qualitative behavior

wij > 1 —ago Fig. 6.6(a) Monostable at Q-

w;ij < —(1 —apy) < —1 Fig. 6.6(b) Monostable at Q_—

0 <w;j <1—aq Fig. 6.6(c) Monostable and gray-scale: 0 < x;; < 1
—(1 —agp) < wj; Fig. 6.6(d) Monostable and gray-scale: —1 < x;; <0
wij =1—agy > 1 Fig. 6.7(a) Monostable at Q4 (x;; = 1); very sensitive
wij = —(1 —ag) < —1 Fig. 6.7(b) Monostable at Q— (x;; = —1); very sensitive

146 Uncoupled CNNs
|
Wi+ (agy—1) 1% slope = ag,—1>0
slope = -1 ! /
é Y
agp—-1>0 I slope = -1
- W; > 0 I /
ag— 1 ' |
1 x;
Q -1 Q, 0 Il 1 Q, '
| () 0 < w, < ag — 1 (bistable) i
slope = -1 | % I
/ I Y w;+ (aO(L -1)
| Pl A
]
L a—1>0 Il
F -1 0 11 %
Q |) Q, I Q)
lope = -1
_ | s
ag—1 \ w,; <0 | Ve
|
slope =ap—-1>0 |
|
I (b) —(ap—-1)<w;<0 (bistablle)
_ | . |
slope = -1 I Xy |
I gy — 1 I slope = -1
| N
agy— 1 I
w;>ag— 1> IO
XOpe:aoo—l>O I
| | X,
-1 0 i 0 g
| (c) w;>ag—1>0 (monostable) *
slope = -1 |) :
¥ I % |
3 0 T Y
Q. I (
I ag —1
|
ago— 1 \\ij<‘(aoo— 1)<0 slope = -1

slope =ay,—1>0

(d) w;<—(agy—1) <0 (monostable)

Fig. 6.1. Four generic dynamic routes for case 1: agg > 1.

dynamic routes in Figs 6.1-6.7. Moreover, in view of our standing assumption that

|x;;(0)| < 1, all initial states are located on the central linear region —1 < x;; < 1 and

147 6.3 Proof of completely stable CNN theorem
|

slope = -1 i

¥

slope =gy, — 1>0

i = dgo— 1
X;
‘ _ 1 0 | y
& :
|
| |
semi-stable \ }
equilibrium point } () wy=ag~1 |
| |
\ \
| |
\ \
| |
| Ty ! :
I | semi-stable
} } equilibrium point
| |
| 1
‘ Py X
0 1 Y
agy— 1 Q,
ago— 1 N wy=—(dgo— 1) /Slope =-1
slope = agy—1>0

() Wi = —(ag—1)
Fig. 6.2. Dynamic routes for two degenerate situations from case 1: agg > 1.

hence we only need to examine the dynamics of a trajectory starting from any point on
the middle segment of each shifted DP plot in Figs 6.1-6.7. This corresponds to Region
3 whose associated linear differential equation can be obtained from Eq. (6.21)

Xij = Wij — Xij + aooXij (6.24)
Case 1: Strong positive self-feedback case: agy > 1

It follows from Eq. (6.24) and the dynamic routes shown in Figs 6.1(a)-6.1(d) and in
Fig. 6.2 that

(aoo — Dx;j(0) +w;; >0 = ;1) - Qy
(app — Dxij(0) +wi; <0 = yij(t) = Q- (6.25)

provided |x;;(0)| < 1in Fig. 6.1 and |x;;(0)| < 1 in Fig. 6.2. Since x;;(Q4) > 1 and
x;j(Q-) < 1inFigs 6.1 and 6.2, it follows from Eq. (6.25) that

(aoo—l)xij(O)—l—w,-j >0 = yij () — 1

148
—

Uncoupled CNNs

(C) Wij =0

Fig. 6.3. Two generic (w;; # 0) dynamic routes and a degenerate (w;; = 0) dynamic route from
case 2: agg = 1.

(apo — Dxij(0) +w;; <0 = y;;(1) > —1 (6.26)

Equation (6.26) can be recast into the explicit formula in Eq. (6.2), which holds not
only for Figs 6.1(a)-6.1(d) when |x;;(0)| < 1, but also for Figs 6.2(a) and 6.2(b) when
|xij (O)| < 1.

149 6.3 Proof of completely stable CNN theorem
|

/ X
slope = -1 \ slope = -1 <ayp—-1<0
l-a |
o) | /
| y
I 1 —ay>0
|w,-j>l—a00>0 —
1 0 1 B
I IQ+ slope =-1
I | /
| (@ w; >1-agy I
| : |
| i |
/ | |
| |
t t X
slope = -1 | -1 0 |1
|
l_amI | /slope=|—l<a00—l<0
| |
| |
I 0 I 1 1-ay>0
| | -
slope = -1
|y <=1~ ago) | e p
| |
I (b) w; <—(1=agy) I
| . |
| x[j |
/ | |
| |
slope =-1 0< wy<1-ay
l-ap| | / |
(
— 0 1 1-ay>0
lI / Q, 00
slope=-1<ay—-1<0 |
I I / slope = -1
I (©) O<w; <1-ay I
| |
I X; ! slope =-1<qayp—1<0
/ | |
slope = -1 I I
f
| |) 1 —ay X
T 0 17y ij
4 Q
1-ay,

ag—1< w;<0

(d) ap—-1<w; <0

Fig. 6.4. Four generic dynamic routes from case 3: 0 < agg < 1.

slope = -1

¥

150 Uncoupled CNNs
|

w;=1-a4>0

i =

slope=-1_°
\ =an,—
| —ay, // slope =ay—1<0 -
(sensitive but

locally stable

|
|
| [
~ 4o : equilibrium point
X;;
-1 0 10 i
| Pt slope = -1
| |
| N
I (@ wy=1-ayp>0 :
| |
| |
slope = -1 % |
/ | |
| |
| |
| |
| ! i
1) v
) 0] 1-ay
sensitive but f
locally stable I 1 —ay
equilibrium point
w;=—(ag—1)<0 slope = -1
(b) w;=—(1-ag)<0
Fig. 6.5. Dynamic routes for two sensitive situations from case 3: 0 < agg < 1.
Observe that when x;;(0) = —1 and w;; = ago — 1 > 0, or when x;;(0) =1
and w;; = —(agp — 1) < 0, Eq. (6.2) is indeterminate since its argument is zero.

A separate formula, however, can be easily derived directly from Fig. 6.2, and listed
under the semi-stable (degenerate) case.

Finally, under Case 1, it follows immediately from Fig. 6.1 that an uncoupled CNN
is bistable if and only if agp > 1 and |w;;| < agp — 1. This corresponds to the righ-
angle wedge in Fig. 6.8, anchored at agg = 1 and bounded by two half lines having
slopes of £1. Similarly, an uncoupled CNN under Case [is monostable if (agy, w;;)
lies in either one of the two wedges adjacent to the bistable region.

151
—

6.3 Proof of completely stable CNN theorem

(@ w;>1-ag>1

(b) wy <—(1 —agy) <-1

©) O<w;<1~-ay

(d) —(1 —ag) <w; <0

L —slope =agy— 1 <-1

—W;>1—ay>-1

| X

ij
 slope =-1

X

1—ay
\

1 —agy

0T1 ¥
L1l

‘/:rslopezaoo—l <-1
‘rw,.j<_(1 —ag) <1

o Slope =-1

5
—
slope = -1 /slope =ag—1<-1
G J
O<w;<l-ay y
| 1—ay .
“TO[XY i
Q slope =-1
X
—
slope = -1
X

1-agy

1-ay

I i
b (1 —ag) <w; <0

+/— slope = agy — 1< -1

» slope = -1

Fig. 6.6. Four generic dynamic routes for case 4: agy < 0.

152 Uncoupled CNNs
|

slope = -1

1-agy

| — slope=ay-1<-1

w;=1-ag>1

1—ay

e

sensitive but
locally stable
equilibrium point

-1

Q.

(@ wy=1-ay>-1

slope = -1

(b) w;=—=(1—-ag) <-1

slope = -1

Fig. 6.7. Dynamic routes for two sensitive situations for case 4.

Case 2: Unity-gain self-feedback case: agp = 1
The dynamic routes in Fig. 6.3 show that an uncoupled CNN with agg = 1 is globally
asymptotically stable for all inputs such that w;; # 0. In particular

xij(t) = x;(Q4) > 1,
xij () = x;(Q-) < —1,

ifwij >0

(6.27)

ifwij <0

153
—

6.3 Proof of completely stable CNN theorem

g
%

Fig. 6.8. (a) The primary CNN mosaic consists of a partitioning of the w; j—ag(parameter plane into
21 distinct subclasses of qualitatively similar uncoupled CNNs.

independent of the initial state x;; (0). Eq. (6.3) then follows directly from Eq. (6.27).

For the degenerate case w;;j = 0, the dynamic route in Fig. 6.3(c) shows that every
point x;; € [—1, 1] is an equilibrium point. In this case, any initial state x;;(0) €
[—1, 1] gives rise to a stationary output

yij(00) = x;;(0)

Such a CNN is still completely stable by definition. Observe that this degenerate
uncoupled CNN corresponds to exactly one point, namely, (ag, wij) = (1,0) in
Fig. 6.8. This makes a lot of sense since this point is where all “wedges” of distinct
dynamic behaviors intersect, a clearly singular situation!

Case 3: Weak positive self-feedback cases: 0 < agg < 1
Consider first the dynamic routes in Figs 6.4(a) and 6.4(b) corresponding to the cases
w;j > 1 —agpp and w;; < —(1 — agop), respectively. Observe that

xij(t) - xij(Q+) > 1, if wij > 1 —apo

xij(t) = x;;(Q-) < —1, ifw;; < —(1—apo) (6.28)

154 Uncoupled CNNs
|

Wij ¥
N
) L8Ny
é-@y Monostable Qr
Sy yii(e2) = sgnlw;; — (ago — D] N
o
“%,,7 S
e B
_ &
= 5
S ~7
Gray 5 N
Scale - K Bistable
yii(oo) = Wij B ¥ii(*°) = sgnl(ago = Dx;(0)] + wyl
Y I-agy =
[[a00=1: vy = 2,0] oo
0
Gray
Scale = (=) = sgn[(agy — Dx;(O)] + wy]
5 .
\ (oo) = Vi = Bistable
Yij T—ag e
I 2
N 0 e,
Q\N\W\ } \\d’
&,
& 0 %I;V
¥ Monostable "4,
' Yij(e2) = sgn[w;; — (ago — 1] 0)/,%
s

Fig. 6.8. (b) Primary CNN mosaic (with output formulas).

independent of the initial state x;;(0). Equation (6.5) then follows directly from

Eq. (6.28).

Consider next the dynamic routes in Figs 6.4(c) and 6.4(d) corresponding to the
cases 0 < w;; < 1 —apo and agp — 1 < w;; < 0, respectively. Observe that, in this

case, the equilibrium point lies inside the middle segment, so that

x,'j(t)—>x,-j(Q+) <1, if0<u)l-j <1 —ag
xij(t) — x,-j(Q_) >—1, ifl —agp < wij < 0

where the coordinate of x;; at Q4 or Q_ is given by Eq. (6.22); namely

wij Xij(Q+), if 0 < wij < 1 —ag
1 —apo xij(Qo), ifagp—1<w;<0

(6.29)

(6.30)

Since y;; = x;; when |x;;| < 1, Eq. (6.6) follows from Eq. (6.30). Observe that the

output in this case is in gray scale, and not binary.

Finally, consider the dynamic routes shown in Fig. 6.5 corresponding to the limiting
cases wj; = 1 —app > 0and w;; = —(1 —agp) < 0, respectively. In this limiting case,

the gray-scale output tends to a binary output, as specified explicitly by Eq. (6.7).

155

6.4

6.4 The primary CNN mosaic

Case 4: Negative self-feedback case: apy < 0

Consider first the dynamic routes shown in Figs 6.6(a) and 6.6(b) corresponding to
the cases w;; > 1 —agp > 1 and w;; < —(1 — agp) < —1. In this case we have
binary outputs as specified by Eq. (6.8) as in case 3. When 0 < w;; < (1 — aqo),
or —(1 — agy) < w;; < 0, the dynamic routes shown in Figs 6.6(c) and 6.6(d) show
that the output is in gray scale and is given explicitly by Eq. (6.9). Finally, in the
limiting cases where w;; > 1 —ago > 1, or w;; < —(1 — ago) < —1, the gray-scale
output tends to a binary output specified by Eq. (6.10). This completes our proof of
Theorem 1.

The primary CNN mosaic

Theorem 1 is truly fundamental not only because it yields explicit algebraic formulas
for determining the output y;;j(co) of any uncoupled CNN without solving the
associated nonlinear differential equation, but also because it gives us a bonus in the
form of a mosaic-like panel, where every wedge in the panel corresponds to a particular
dynamic route, or qualitative behavior. In order to call attention to the fundamental
significance of Fig. 6.8, as well as for ease of future reference, we will henceforth
call this partitioned w;j—aoo parameter plane the primary CNN mosaic. Each of the 21
regions in this mosaic will be called a CNN mosaic wedge, or simply a CNN “wedge.”
Each one-dimensional line segment which forms the boundary of two adjacent CNN
wedges is called a CNN mosaic spine.

Observe that only wedges separated by bold radial spines in Fig. 6.8(a) differ sig-
nificantly in their qualitative behaviors. For example, the two wedges corresponding to
Figs 6.1(a) and 6.1(b) are separated by a thin spine because they both represent bistable
CNNs. Observe that the primary CNN mosaic is made up of “12” two-dimensional
“wedges” and “9” one-dimensional bold “radial spines.”

It is sometimes instructive to lump together two or more adjacent wedges in the
primary CNN mosaic which are not separated by a bold radial spine into a single
CNN sector because all CNNs located on the wedges in the sector exhibit the same
“functional,” though not “dynamic,” behaviors. For example, it is logical to combine
the two bistable wedges into one bistable sector. Similarly, the four gray-scale wedges
can be combined into one large gray-scale sector. Observe that the bistable sector and
the gray-scale sector in the primary CNN mosaic are mirror images of each other.
Observe also that two “bilateral” wedges which are mirror images of each other in
the primary CNN mosaic tend to share some common features. For example, the
wedges corresponding to Figs 6.1(d) and 6.4(a) both represent a monostable binary
CNN having Q4 as their global asymptotically stable equilibrium point. Similarly,
the two bilateral wedges corresponding to Figs 6.1(c) and 6.3(b) both represent a

156 Uncoupled CNNs
|

monostable binary CNN, having Q_ as their global asymptotically stable equilibrium

point.

A closer examination of each of the 21 regions in the primary CNN mosaic and the
associated formulas reveals the following general properties:

1 With the exception of the semi-stable case corresponding to the two dynamic routes
shown in Figs 6.2(a) and 6.2(b), there are only four distinct output formulas for
uncoupled CNNis:

Bistable output formula
yij(00) = sgn[(app — Dx;;(0) + w;;]
Monostable output formula
j(00) = sgn[w;; — (ago — 1)]
Y s (6.31)
Gray-scale output formula
Wi j
Yij(00) = 1=
Co-dimension 1 output formula
Yij(00) = sgn[w;j]

The last formula pertains to all uncoupled CNNs having parameters lying on the
six bold straight lines through the point (1,0) in the primary CNN mosaic. The
term “co-dimension 1” is taken from “Bifurcation theory,” and means the number
of “constraints,” or equations needed to specify a particular region. In our case, we
have only one equation, either w;; = |ago — 1| (corresponding to Figs 6.2(a), 6.2(b),
6.5(a), 6.5(b), 6.7(a), and 6.7(b)) or agy = 1 (corresponding to Figs 6.3(a) and 6.3(b)).
For future reference, we have redrawn the following primary CNN mosaic which
emphasizes only these output formulas (Figures 6.8(a) and 6.8(b)).

2 The output formula for the semi-stable case (Figs 6.2(a) and 6.2(b)) reduces to
ij(00) = sgn[w;;], provided |x;; (0)| # 1.

3 The most degenerate case occurs at the point (ag, w;;) = (1, 0) (Fig. 6.3(c)). This
is a co-dimension 2 bifurcation point because it is identified by two equations agy =
1 and w;; = 0. The output formula for this case is simply y;;(c0) = x;;(0).

I
6.5 Explicit formula for transient waveform and settling time

An inspection of the 21 cases shown in Figs 6.1-6.7 shows that, except for the
degenerate cases shown in Figs 6.3(c), 6.5 and 6.7, all dynamic routes from any initial
state x;; (0) starting from the central region contain two linear segments. Hence, except
for the unity gain (app = 1) case, where the central region s is horizontal, the state
equation within each linear segment has the form

Xij = mqQxij +xq (6.32)

157

6.5 Transient waveform and settling time

where mq = m(s_), m(sp), m(s1) denotes the slope of the left, central, or right
segment, henceforth denoted by s_, 5o, and s, respectively; namely

m(s—) =—1
m(so) = apo — 1 (6.33)
m(sy) = —1

and xq denotes the coordinate of the three equilibrium points Q_, Qp, and Q4 given
in Table 6.1, namely

xQ(s-) = x(Q-) = w;; — apo
x0(50) = x(Qq) = ——2 (6.34)

agy — 1
xQ(s4) = x(Q4) = w;j +apo

The solution of Eq. (6.32) is given by
xij (1) = xq + [x(t) — xQle”™ ™), 1 >4 (6.35)

where x(is given by Eq. (6.34). This formula holds for each of the three segments s_,
s0, and s, regardless of whether any of these segments intersect the horizontal axis.
In other words, one or two equilibrium points may be virtual in the sense that they
do not intersect the horizontal axis, as in Figs 6.1(c), 6.1(d), etc. Nevertheless, their
linear extension will always intersect the horizontal axis at the coordinates given by
Eq. (6.34). The time “#;” in Eq. (6.35) denotes either the initial time #y = 0, or the time
t =ty (resp., t = t_) when the solution converges to the breakpoint at x;; = 1 (resp.,

x;j = —1), respectively. We can solve for z, and z_ from Eq. (6.35) upon substituting
tj =0, x() = x(0) and x;;(¢) = 1 or x;;(t) = —1; namely

1 1 —x(Qy) }
ty = In (6.36a)
T a1 [xij 0) — x(Q4)

1 1 —x(Q-) i|
- = In (6.36b)

apo — 1 [Xij(o) —x(Q-)

Substituting Eqgs (6.36a)—(6.36b) and (6.34) into Eq. (6.35), we obtain the following
explicit formulas depending on whether the dynamic route moves to the right (i.e.,
x;;(0) > 0) or to the left (i.e., x;; (0) < 0).

Case 1: x;j(0) — x(Q4) (i.e, x;;(0) > 0)
%ij (1) = x(Qo) + [xi;(0) = x(Qo)] @~V 0 <7 <1y (6.372)
xij () = x(Q4) + [x:j(0) —x(Q)] e ™) 1y <t <00 (6.37b)

The solution waveform corresponding to the dynamic route of Fig. 6.1(a) is shown in
Fig. 6.9(a).

158 Uncoupled CNNs
|

0.63[x(Q) —1]

I
|
|
|
|
|
Breakpoint — I
|

|

|

|

i grows exponentially towards oo
I W}th exponent equal to ay, —1 >0
|

|

[l

T

|
|
'.
T
initial state . 241 341,
|
x;(0) }
PRe normalized settling time |
g |
_—— 1
==t - x(Q) > -1 @
x;;(0)
—s;;:: —————— r X(QO) <1 ‘
~
\\\ normalized settling time 1
x,(0) |
initial state |
L I+t 2+t 3+t
————t— r
0 | | |
I\ |
dives exponentially towards | vﬁ’ normalized time constant = 1
—oo with exponent apy— 1 >0 I I I
I | |
T 1 0.631-1 - x@))]
Breakpoint — I | |
x(Q_) ______ - e —__ __ __ __ ___
(b)

Fig. 6.9. Solution waveforms for agy > 1 corresponding to the dynamic routes in Figs 6.1(a) and
6.1(b). Observe that over a time period equal to “one” normalized time constant, an exponential
waveform rises by 63% of the distance between the breakpoint and the equilibrium value.

Case 2: x;j(0) — x(Q-) (i.e, x;;(0) < 0)

xij (1) = x(Qo) + [x;;(0) — x(Qp)] e~ D" 0 <r <1 (6.38a)
xij (1) = x(Q4) + [xij(0) —x(Qp)] e ™) - <t <00 (6.38b)

159

6.5 Transient waveform and settling time

The solution waveform corresponding to the dynamic route of Fig. 6.1(b) is shown in
Fig. 6.9(b).

Equations (6.37)-(6.38) hold for all cases except for the dynamic routes in Figs 6.3,
6.5, and 6.7, which are given separately as follows:

(a) Unity-gain case: agg = 1

Case 1: x;j(0) — x(Q4) (i.e, x;;(0) > 0)
In this case, define

1 —x;;(0

g =170 o< (6.39)
ij

x,-j(t)le-j(O)—{—w,-jt, Oftfljr (6.40a)

xij (1) = x;;(Q4) + [1 —x(Q]e ' 1 <t <00 (6.40b)

The solution waveform corresponding to the dynamic route of Fig. 6.3(a) is shown
in Fig. 6.10(a).

Case 2: x;j(0) — x(Q-) (i.e., x;;(0) < 0)
In this case, define

t = M, lxi; (0)] < 1
xij (1) = xij(0) + wijt, 0<t<t" (6.41a)
xij(1) =x(Q) + [-1 —x(Q)]e) 1<t <0 (6.41b)

The solution waveform corresponding to the dynamic route of Fig. 6.3(b) is shown in
Fig. 6.10(b).

(b) For the dynamic routes of Figs 6.5(a) and 6.7(a), the solution waveform consists of
the single exponential

xij (1) = x(Qo) + [x;;(0) — x(Qq)] @0~V ¢ >0 (6.42)

(c) For the dynamic routes of Figs 6.5(b) and 6.7(b), the solution waveform consists
of the single exponential

x;ij (1) = x(Qo) + [x;;(0) — x(Q-)] @0~V ¢ >0 (6.43)

Observe from Fig 6.10 that the “exponential” waveform starting from the breakpoint
xjj = 1, or x;j = -1, tends to the equilibrium point x(Q4), or x(Q-), in
approximately three “time constants,” which in this case is equal to 3 since the

160
—

Uncoupled CNNs
x;(H)
Breakpoint
xig) [T -
|
[0.630@) - 1]
) |
|
!
slope =w; >0 normalized tlime constant = 1
\ |
|
|
1
} t
T l
0 241 3+1]
initial state |
xij(o) - I
normalized settling time |
1
1
()
x;;(1)
— initial state
x(0) slope =w; <0
/ £ 1+t 241 3+f
1
I
0 |
I
|
|
-1
x(xqg)
normalized settling time
1
1

(b)

Fig. 6.10. Solution waveforms for agy = 1 corresponding to the dynamic routes in Figs 6.3(a) and
6.3(b).

“normalized” time constant is assumed to be equal to unity throughout this book.
Consequently, we can calculate the normalized settling time t; of an uncoupled CNN
explicitly

w=3+1 (6.44)

where t; = ty,t_, t\, or t_ corresponding to Eqs (6.37), (6.38), (6.40), and (6.41),
respectively. Hence, given the initial condition x;;(0), the normalized settling time can

161
—

6.6 Boolean functions realizable by uncoupled CNNs

be calculated directly from Eq. (6.44). The actual settling time is then simply obtained
by multiplying the circuit time constant tcyn with the normalized settling time. We
will see in Chapter 7 that the actual settling time is a crucial piece of information
essential in the operation of a CNN universal chip.

6.6

Which local Boolean functions are realizable by uncoupled CNNs?

We have seen in the preceding chapter that there are 22’ = 2512 distinct Boolean
functions of nine variables and that 2312 is an enormous number, larger than the volume
of the universe. Since the class C(A°, B, z) of uncoupled CNNs represented only a very
small, albeit very powerful subclass of all CNNs, it is important to identify exactly
the subset of these local Boolean functions® which can be realized by an uncoupled
CNN. Since all input and output Boolean variables are binary (i.e., {—1, 1} or its
corresponding Boolean code {0, 1}), we can exclude the gray-scale sector made up of
the four wedges in the primary CNN mosaic which correspond to Figs 6.4(c), 6.4(d),
6.6(c), and 6.6(d), and are represented by Eqs (6.6) and (6.9). Moreover, since the
term (ago — 1)x;;(0) in Eq. (6.2), or the term (I — ago) in Egs (6.5) and (6.8), are
constants, parameterized by ago and/or x;;(0), they play the same role as the threshold
z in Eq. (6.1). Hence, without loss of generality, for the purpose of this section, we can
assume these constant terms to be zero. This assumption is automatically satisfied if
we choose agg = 1, which corresponds to the unity-gain self-feedback case. We have
therefore just proved the following important result:

Theorem 2: Local Boolean function realization theorem
A local Boolean function B(xy, x2, ..., x9) of nine variables is realizable by every cell
of an uncoupled CNN if and only if 8(-) can be expressed explicitly by the formula

B = sgn[(a, x) — D] (6.45)

where (a, x) denotes the dot product between the vectors®

a= [al,ag,...,ag] (6.46)
and
X = [x1, XDy ouny X9] (6.47)

where a; € R is any real number, b € R and x; € {—1, 1} is the ith Boolean variable,
i=1,2,...,9.

162

6.7

Uncoupled CNNs

Proof of Theorem 2:
Without loss of generality, let us choose agyp = 1 so that the output of the CNN is given
by Eq. (6.31) and which we rewrite as follows

¥ij(00) = sgn [> buu + z:| (6.48)
kleS(ij)

Observe that Eq. (6.48) is identical to Eq. (6.45) if we identify a by a vector whose
components are by, X by a vector whose components are uy;, and b = —z. O

Remarks:

We add the adjective local to Theorem 2 in order to emphasize that our uncoupled
CNN realizes not only one Boolean function, which could easily be done by standard
logic circuits. Rather every cell of our uncoupled CNN will simultaneously implement
the same Boolean function. For example, a 100 x 100 CNN array for implementing
a local Boolean function would simultaneously implement 10,000 identical Boolean
functions, each one taking its input only from its “local” neighbors located within its
sphere of influence S, (ij), where r = 1 (3 x 3 neighborhood) in most cases.

Definition 2: Linearly separable class
The class of all Boolean functions which can be expressed by Eq. (6.45) is called the
linearly separable class.

Corollary

The class C(A”, B, z) of all uncoupled CNNs with binary inputs and binary outputs is
identical (with respect to Boolean input—output maps) to the linearly separable class
of Boolean functions.

Geometrical interpretations

It is instructive to interpret the geometrical meaning of Eq. (6.45). For two Boolean
variables, Eq. (6.45) can be rewritten in terms of the CNN input variables u; and uy
and output variable y as follows
y=1, %fa1u1+a2u2>b (6.49)
y=—1, ifaiu;+auy; <b
Since u1, up € {—1, 1}, we can represent any one of the 16 truth tables associated
with Eq. (6.49) by identifying the four “input combinations” (—1, —1), (-1, 1),
(1, —1), and (1, 1) as the four “corners” of a unit square, and by coding the output
B = 1 by a black pixel, and the output 8 = —1 by a white pixel, respectively.

163 6.7 Geometrical interpretations
|

uy uz ¥ up Uz
-1 -1 -1 -1 -1 1
1 1 1 —1 1 -1
1 -1 1 -1 1
1 1 1 1 1 1
(a) CNN truth table for y; (b) CNN truth table for y;
u, u,
L1 1 11 1
(I, D (1, 1)
(-1,0.2) L0 /-0.5,1
ul u
-1 0 1 -1 0 !
_ (1,-1)
-1,-D (0, -1.3) -1,-1) (1,-1)
4L, uy=-15u,-13 L:uy=2u+2
(©a=15,a,=1,b=-13 (da,=15a,=1,b=-13

Fig. 6.11. Geometrical interpretation of two linearly separable Boolean functions of two variables.

For example, using this “corner coordinate” coding scheme, the two CNN truth
tables shown in Figs 6.11(a) and 6.11(b) are coded in Figs 6.11(c) and 6.11(d),
respectively.

Now observe that the Boolean function defined by the truth table in Fig. 6.11(a)
belongs to the linearly separable class because we can choose, among infinitely many
others, a; = 1.5, a» = 1, and b = —1.3 in Eq. (6.45) so that this Boolean function is
expressed explicitly in the form of Eq. (6.45), namely

B1 =sgn[1.5x1 + x2 + 1.3] (6.50)

Similarly, by choosing a; = —2,a, = 1, and b = —2, the CNN truth table of
Fig. 6.11(b) can be expressed by

B2 = sgn[2x| + x2 + 2] (6.51)

Consequently, B is also a linearly separable Boolean function.
Observe that the “separating” straight line L defined by

aix; +axxy —b =0 (6.52)

164

Uncoupled CNNs

represents the loci of all points (x1, x2) € R? where the argument of the signum
function sgn(-) is zero. Observe also that in Figs 6.11(c) and 6.11(d) all “black” pixels
lie on one side of the separating straight line Ly, and all “white” pixels lie on the other
side of L.

Consider next a Boolean function of three variables defined by the CNN truth table
shown in Fig. 6.12(a). By identifying each corner of the unit cube in Fig. 6.12(b) as
one of the eight combinations of (11, uz, u3), we can use the same corner coordinate
coding scheme as in Fig. 6.11 to code this truth table in R>, as shown in Fig. 6.12.
The truth table of Fig. 6.12(a) represents also a linearly separable Boolean function
because we can choose, among infinitely many others, a; = 0.5, a; = 0.125, a3 =
—0.3, and b = —0.125 in Eq. (45), namely

B3 = sgn[0.5u1 + 0.125u7 — 0.3u3 4 0.125] (6.53)

Observe that the separation plane Ly defined by
ajuy +axuy +azuz —b =0 (6.54)

represents the loci of all points (u1, up, u3) € R? where the argument of sgn(-) is
zero. Observe once again that all “black™ pixels in Fig. 6.12(b) lie on one side of the
separating plane L; and all “white” pixels lie on the other side.

It should now be obvious that any Boolean function of “n” variables can be coded by
placing “black” or “white” pixels at each corner of an n-dimensional unit hypercube,
where each corner is identified by n coordinates (uy, us, ..., uy), u; € {—1, 1}. Using
this corner coordinate coding scheme, a Boolean function of n variables is linearly
separable if and only if there exists an (n — 1)-dimensional hyperplane

ajuy +axuy + - +ayu, —b =0 (6.55)

which separates all “black” corner pixels from the “white” corner pixels.

We close this section by showing a simple example of a Boolean function of
two variables which is not linearly separable, and hence can not be realized by an
uncoupled CNN. This example is the XOR (Exclusive OR) function whose CNN truth
table is given in Fig. 6.13(a). The corresponding unit square representation is shown
in Fig. 6.13(b). Observe that it is impossible to draw any straight line L in the u1—u;
plane which would separate the “black” corner pixels from the “white” corner pixels.

This is equivalent to saying that the CNN truth table of Fig. 6.13(a) cannot be
expressed by the explicit formula of Eq. (6.45). It follows from Theorem 2 that it is
impossible to find an uncoupled CNN which implements the XOR Boolean function.?
Fortunately, our next chapter will show that any one of the 2°'2 Boolean functions of
nine variables can be realized by programming a CNN universal chip.

165 6.7 Geometrical interpretations
|

1 -1 1 1

1 1 -1 1

1 1 1 1
(a)

-1, 1,1

(1T -1, 1)

g BT
.

” (b)
Separating plane Ly : 0.5u1 + 0.125u7 — 0.3u3 = —0.125

Fig. 6.12. Geometrical interpretation of a linearly separable Boolean function of three variables.

166
—

Uncoupled CNNs

M2
1
-1, 1) (L, 1)
uj 12%) y
-1 1 "
0 0 0 1
0 1 1
1 0 1
1 1 0 1
_— (=1,-1) - (L,-1)
(a) CNN truth table for 5, (b) unit square representation

Fig. 6.13. Geometrical interpretation of a Boolean function (XOR) which is not linearly separable.

6.8

How to design uncoupled CNNs with prescribed Boolean functions

Given any Boolean function y(u1, us, ..., ug) of nine binary variables, there exist
algorithms for determining whether y(-) is linearly separable. If it is not, Theorem 2
asserts that no uncoupled CNN can be found which has y(-) as its truth table. If y(-) is
found to be linearly separable, then there exist some vectors a € R and some b € R
such that the eight-dimensional hyperplane

auy + axuy + azusz + aqug + asus + agug + aju + agug + agug —b =0 (6.56)

separates all “black” corner pixels of a nine-dimensional unit hypercube from the
“white” corner pixels. In fact, in general, there are infinitely many (a, b) that qualify.
Using standard optimization procedures, an optimum choice (a*, b*) can be chosen
according to some optimization criterion. For example, for maximum robustness to
parameter variations, it would be desirable to choose (a*, b*) such that L,_; is
positioned approximately half way between those “black™ corner pixels and those
“white” corner pixels which are “nearest” to the separating hyperplane L,_1. The
optimum CNN template in this case having the prescribed Boolean function is given
by

167

6.8 Uncoupled CNNs with prescribed Boolean functions

Observe that the above design procedure is based on a unity-gain self-feedback
CNN (app = 1). From the perspective of robustness with respect to parameter
variations, our choice of agp = 1 is actually an optimum choice, as is clear from
an inspection of the two dynamic routes in Figs 6.3(a) and 6.3(b) corresponding to
w;; > 0 and w;; < 0, respectively. However, for other design criteria, say a minimum
“transient settling time” criterion, a higher value of agy should be chosen, as we will
show in the next section. In fact, we will see that agg = 1 is the “worst” choice if
“speed” is our design criterion.

If we pick ago # 1, then Eq. (6.2) must be used in our design; namely

yij(00) = sgn[(apo — 1)x;;(0) + w;] (6.57)

In this case, the CNN must be parameterized by a prescribed value of x;;(0). We will
usually choose x;;(0) = O unless there are reasons to choose a non-zero value. The
advantage for choosing x;;(0) = 0 is that Eq. (6.57) then reduces to Eq. (6.48) and
hence the same template given by Eq. (6.56) holds without modification. In this case, it
is important to remember that, whereas an arbitrary initial state may be chosen for the
agpo = 1 case, the prescribed initial state x;;(0) used in deriving the (a, b) vector must
be used in actual operations in order to guarantee that the correct Boolean function is
implemented.

One situation where it would be necessary to choose a non-zero value for x;;(0) is
when the CNN is designed to implement a Boolean function of “10” variables or when
each cell C(ij) has two external self-inputs u;; and u; i This generalization is possible
if we choose x;;(0) € {—1, 1} to be the 10th Boolean variable. In this case, Eq. (6.56)
becomes

9

Zaixi +ajpxio—b =0 (6.58)
i=1

where x1¢ 2 x;j(0) and a9 = agp — 1. Hence, we must choose
apo = ao + 1 (6.59)

as the self-feedback synaptic weight for the A template in Eq. (6.56), instead of agy =
1, assuming that ajg > 1 for the hyperplane equation. If aj9 < 1, then one must
verify that the resulting CNN will not operate in the gray-scale sector in the primary
CNN mosaic; namely, for all inputs u; € {—1,1},i = 1,2,...,9, we must ensure
that Eq. (6.6) of case 3 and Eq. (6.9) of case 4 cannot occur.® In particular the correct
Boolean function will be implemented only if

xijl =) buun+z> —an (6.60)
KIES) (if)

is satisfied forall u; € {—1,1},i =1,2,...,9.
Let us now illustrate the above ideas by some actual design examples.

168 Uncoupled CNNs
|

Design Example 1: Two self-input AND gate

x1 x2 B ur uy oy
0 0 0 -1 -1 -1
0 1 0 -1 1 -1
1 0 0 1 -1 -1
1 1 1 1 1 1
(a) Boolean truth table for (b) CNN truth table for
Logic AND function Logic AND function
U
optimal Lz u, =—u; + 1 1, Ll ty=—05u, + 1.6
0, 1.6)
P>~ (LD

(3.2,0)
I I I T T I ul
4 -3 2 -l 0 1 2 3 4
\\
\\,
-1
_1,-1 1,-1
1,-1) © @D
U
uy
1,-n I (1D

(d) unit square representation

Fig. 6.14. Truth table and unit-square representation of Boolean AND function and acceptable
candidate for separating lines.

Recall the LOGAND template presented in Chapter 5 for implementing the Boolean
AND function of two variables. We will now apply the above systematic procedure to
design an optimized CNN for performing the same task. Let us begin as always with
our most basic representation; namely, the CNN truth table? (where YES =1, NO =
—1) corresponding to the Boolean truth table (where YES = 1, NO = 0), as shown
in Figs 6.14(b) and 6.14(a), respectively. Using the corner coordinate coding scheme,

169

6.8 Uncoupled CNNs with prescribed Boolean functions

the first three rows of the CNN truth table are coded by a “white” pixel at (—1, —1),
(—1, 1), and (1, —1), respectively. The 4th row is coded by a “black” pixel at (1, 1).

To determine whether an uncoupled CNN can be designed to implement the logic
AND function, one must find a straight line L1 which separates the black pixels from
the white pixels. Since we have already studied an earlier template (LOGAND) which
realizes this function, we know such a straight line must exist (Theorem 2).

The equation of the separating straight line L can be derived from the synaptic
coefficients of the template LOGAND, which we reproduce below for convenience

0] 010 0] 010
A={0(15]|0] B=|0|15|0| z=|-15 (6.61)
0} 010 0} 010

From Eq. (6.61), we identify agg = 1.5, bggp = 1.5, and z = —1.5, from which we
obtain

app — 1 =0.5, Wi =Z—|—b()0u,'j =—1.5+1.5ul~j

and
Vij (00) = sgn[0.5xlj 0) + 1.514,']' —1.5] (6.62)
Let us choose (arbitrarily) u1 = x;;(0) and uy = u;; as the two self-inputs to cell

C(ij). The equation of the separating line L; associated with Eq. (6.62) is therefore
given by

05u;1+1.5u, —1.5=0
or

1
uy = —§u1 +1 (6.63)

This line passes through the points (3.2, 0) and (0, 1.6), as shown in Fig. 6.14(c).
Note that L; indeed separates the black pixel from the white pixels, as expected.
Observe, however, that L is quite close to the black pixel so that a small perturbation
of the slope and/or intercept of L could fail to separate the points. For example, a
34% increase in the nominal designed values of agg = 1.5 and bgg = 1.5 plus a 7%
increase in the nominal designed value of z = —1.5 would result in the following
perturbed template

ofofo ofo]o
A=[0]2]0] A=[0]2]0] Z=[-16] (6.64)
ojofo ofo]o

The corresponding output equation and straight line L) are given by

Yij (OO) = sgn[x,- (O) + 214,']' — 1.6] (665)

170

Uncoupled CNNs

and
1
Uy = —5u1 + 1.6 (6.66)

The straight line corresponding to Eq. (6.66) is shown by the dashed line L) in
Fig. 6.14(c). Observe that L has moved above the black pixel and hence this CNN
fails to operate correctly!

Since no template parameters can be realized exactly in practice, it is important that
the CNN template be designed to be as robust as possible. Clearly, there are many other
straight lines that are acceptable. Observe that the straight line in L/ Fig. 6.14(c) does
not have this “separation” property because part of L} overlaps with the nonshaded
area above and to the right of the black pixel at (1, 1). An analysis of the shape of
the shaded area in Fig. 6.14(d) shows that for maximum robustness with respect to
perturbations in the “slope” and “intercept” of the separation line L, we should choose
L to lie approximately half way between the nearest “black™ and “white” pixels. The
optimal line satisfying this “robustness” criterion in this case is the bold line L} shown
in Fig. 6.14(c), which is described by

ur = —uy +1 (6.67)
To implement the CNN truth table for the logic AND function, we must have
xij(0)+uij—1>0 = y,-,-(oo):l

xij(0) +ujj—1<0 = yj0)=-1 (6.68)

Equation (6.68) is equivalent to the single CNN output equation
yij(00) = sgn[x;; (0) +u;; — 1] (6.69)
Comparing Eq. (6.69) with Eq. (6.57), we identify
ap—1=1 = ap=2 (6.702)
and
w;j =z + boouij + Z brjugy

kI#(0,0)
z=-1
= Zzg _ f (6.70b)

b =0 ki % (0,0)

It follows from Eqgs (6.70a) and (6.70b) that the optimum CNN template for
implementing a Boolean AND operation on two self-inputs x;;(0) and u;; is given by

ofofo ofofo
A*=l0[2][0] B*=[0[1]|0]| z"=[-1] (6.71)
ojojo ofo]o

This completes our Design Example 1.

171
—

6.8 Uncoupled CNNs with prescribed Boolean functions

Design Example 2: Two-neighbor input AND gate

Consider next the case where each cell C(ij) has only one input u;; and a logic AND
operation is to be applied to the respective inputs either between cell C(ij) and one
neighbor C (kl), or between two neighbors C(kl) and C(k'l’). There are two cases to
consider, each one involving several subclasses:

Case 11 (uy, u2) = Witk j+1, Uitk j+r), ki and gy € {—1, 1} (6.72a)
Case 2: (w1, uz) = (uij, uiyk,j+1), k €{=1,1} (6.72b)

Our optimal design follows directly from the preceding example upon choosing
the corresponding input variables from Eq. (6.72a) or (6.72b) for u; and u,. Since
the initial state x;; (0) is not considered to be an input in this case, unlike that of the
Example 1, we can set x;;(0) = 0 and choose the same optimal template A* and
threshold z* as in Eq. (6.71). The output equation corresponding to Eq. (69) is then
given as follows

Case 11 yjj(00) = sgnlujk,j+1 +uitk' jr — 11, wandpy € {=1,1} (6.73a)
Case 2: y;j(00) =sgnlu;j +up — 1], ne€{-1,1} (6.73b)

The optimal B* templates corresponding to Eqs (6.73a) and (6.73b) are collected in
Tables 6.7 and 6.8, respectively. In each table, the positions of the two non-zero entries

in the B* templates correspond to the two cells where the logic AND operation is to
be applied to their inputs.

Table 6.7. Optimal B* template for case 1 (not an exhaustive list).

0/0(0 0110 1100 0101
T=/1]/0|1] B5=/0|0[0| B5;=|0|{0|0| B;=[0|0]|0
0/0/0 0[1]0 0/0]1 1100

Table 6.8. Optimal B* template for case 2.

0[o]o0 ofofo of[1]o ofofo
Bi=[1[1]0] Bt =[0[1[1] B =[0[1][0] Bf =[0[1]0
000 000 000 o[1]0
1[o7o 0of[ofo ofof1 ofofo
Bi=|0[1|0] Bfy=[0[1|0] B,=[0[1|0] BL=[0[1]0
ofo]o] ofof1] ofofo] 1]ofo]

172
—

Uncoupled CNNs

Design Example 3

Examples 1 and 2 show that once the optimal separating line L* is found which
separates the “black” pixels from the “white” pixels, the optimal CNN template
follows trivially from Theorem 2. Hence, the fundamental problem in the design of
an optimal uncoupled CNN to implement any prescribed linearly separable Boolean
function is simply to find the equation of the optimal separating line L7.

In the above examples, this equation is derived geometrically by placing the line
L1 into an optimal position which separates those “black™ pixels nearest to L by
approximately equal distances to L. Unfortunately, when there are more than two
inputs, the above geometric approach is no longer applicable and it would be necessary
to develop a strictly computational approach based on methods for solving systems
of linear inequalities. This is the classic linear programming problem in operation
research where several effective computation algorithms for solving the problem are
available.

In order to obtain some insights on how this can be done, let us return to the above
examples and analyze the computational nature of the problem.

Suppose we wish to find the coefficients a1, ap, and b such that the CNN output

vij(00) = sgnlaju + apuy + b] (6.74)

would implement the CNN truth table for the Logic AND Boolean function given
earlier in Fig. 6.14(b). Substituting the values of (u1, u», y) from each row of this
truth table, we obtain the following system of four linear inequalities

—a1—a+b <0 (6.75a)
—ar+a+b<0 (6.75b)
ai—ar+b<0 (6.75¢)
ar+a+b>0 (6.75d)

Our first goal is to find three numbers (a1, ap, b) which simultaneously satisfy the
above four inequalities. If no such numbers are found to exist, the Boolean function
is not linearly separable and we can conclude that no uncoupled CNN can solve the
problem in view of Theorem 2. If a solution is found, however, there are in general
infinitely many possible solutions. This brings up then the second problem on how
to pick one solution which is optimal with respect to some prescribed criterion. If
our criterion is to optimize the “robustness to parameter variations,” then the optimal
solution already derived above is (af, a3, b*) = (1, 1, —1). For more than two inputs,
however, a systematic algorithm must be developed. This would constitute a very good
and useful project.

173

6.9 Non-separable local Boolean functions

Without loss of generality, let us assume that either agp = 1 or x;;(0) = 0, so that
the initial condition does not contribute anything to the outcome of the CNN output
equation for a 3 x 3 neighborhood (r = 1):

¥ij(00) = sgn[(aoo —Dxj O+ > buu + b} (6.76)
|k—i|<1
lI—jll=1
In this case, our problem is simply to solve and to possibly optimize the following
set of ten coefficients

A
a=(aj,az,...,a9) = (b_1,—1,b_1,0,b_1,1, bo,~1, bo,0, bo,1, b1,—1, b1,0, b1,1)
b=z (6.77)

Since a Boolean truth table with ten variables contains 1024 distinct Boolean

10

expressions (i.e., local rules), in the worst case,’” we need to solve the following

system of 1024 linear inequalities involving only “1,” “—1,” or “0” as coefficients

arjja) +oppar + -+ +oj9ag +z >0

azi1a) +oxpar + -+ +oxag +z >0
) (6.78)

ayia) +oan2az + -+ +oygag +z >0

where N =210 = 1024, o;; € {—1,0, 1}.

We will henceforth refer to Eq. (6.78) as the fundamental CNN inequalities. There
are several well-known algorithms and software packages for solving Eq. (6.78), the
most widely used being the simplex algorithm. Typically, such software packages
are designed for solving linear programming problems which frequently arise in
economics and operation research problems where a very large number (greater than
100) of variables are to be solved. Fortunately, in our case, we have at most ten
variables to solve. Consequently, it is relatively straightforward to solve Eq. (6.78)
with a computer. Moreover, since the coefficients «;; of Eq. (6.78) can only assume the
value 1, —1, or 0, it is possible to develop special dedicated computer programs that
are extremely efficient. It is therefore possible to derive templates for all uncoupled
CNNSs. Optimizing them remains an important yet untackled problem whose solution
is also within reach, because of the low dimensional nature of the problem.

6.9

How to realize non-separable local Boolean functions?

We have already seen an example of a Boolean function which is not linearly separable;
namely, the XOR function. It follows from Theorem 2 that it is impossible to imple-
ment this function using an uncoupled CNN. Although numerous non-separable local

174 Uncoupled CNNs
|

X
0, 1) (1, 1)
x1 x2 B
0 0 0
0 1 1
1 0 1

T xl

Fig. 6.15. Boolean truth table for the XOR function.

Boolean functions have been realized by CNNs having non-zero feedback synaptic
coefficients, i.e., a;j # 0 for at least one i # j, presently no theory exists which
allows one to determine whether an arbitrary Boolean function is realizable by a CNN.
However, if we are allowed to “hard wire” two or more CNNs so that the output of
each cell C(ij) of an uncoupled CNN C, can be connected in parallel or in series to a
corresponding cell C(ij) of another uncoupled CNN Cp, then any one of the 22 =512
local Boolean functions can be realized. Before we prove this general assertion, we will
present first a “constructive proof” which shows that the non-separable Exclusive OR
(XOR) Boolean function presented earlier in Fig. 6.13, can be realized by applying
first the input simultaneously (i.e., in parallel) to two elementary uncoupled CNNs
Cq and Cp, called minterm CNNs or maxterm CNNs, and then feeding their respective
outputs simultaneously into a LOGOR CNN analyzed earlier in Chapter 5.

Consider the CNN truth table and its unit square representation for the XOR
function presented earlier in Fig. 6.13 which we recast in Fig. 6.15 in terms of
the Boolean variables x1, x» € {0, 1}. We revert to the Boolean variables x, x, €
{0, 1} here because the proofs to be given in this section are based on some classic
theorems from Boolean algebra which were invariably couched in Boolean variables
(x; = 1 (TRUE) or x; = 0 (FALSE)) having no numerical significance. The reader
should note that all “operations” in this section are Boolean operations involving
the complementation (LOGNQOT) operation x; of x;, the conjunctive (intersection,
LOGAND) operation x] A x> between x| and x7, and the disjunctive (union, LOGOR)
operation x| V xp between x| and x;, respectively. In particular, no arithmetic or
algebraic operations are involved.

We will show that the Boolean truth table of XOR in Fig. 6.15 can be realized as
shown in Fig. 6.16 using only two elementary Boolean functions 1 and $, and an OR
operator; namely

B(x1, x2) = B1(x1, x2) V Ba(xy, x2) (6.79)

175
—

6.9 Non-separable local Boolean functions

x1 x2 P
o o o | g
0 1 1
1 0 0
. 1o ﬁ Rl e
L > | 0 0 0
OR >~ —— 0 1 1
-~ 1 0 1
i X1 X2 B2 X2 1 1 0
0 0 0
0 1 0
1 0 1 | p
1 1 0
Fig. 6.16. Minterm realization of the XOR function.
Using the truth tables for §; and 8, defined in Fig. 6.16, we obtain
B(0,0) = B1(0,0) v 2(0,0) =0v0=0
0,1) = 0,1)v 0,H)=1v0o=1
B0, 1) = B1(0, 1) v B2(0, 1) (6.80)

B(1,0) =B1(1,0) vV (1,00 =0v1=1
B, =411, 1)V 1)=0v0=0

which is precisely the truth table for XOR.

Observe that the two truth tables 81 and S in Fig. 6.16 have only one TRUE
statement, i.e., their outputs are “0” except for one combination of x; and x3. Such
Boolean functions are examples of an elementary class defined as follows:

Definition 1: Minterm Boolean function
A Boolean function 8(x1, x3, ..., X,) of n variables is said to be a minterm if its output
column in the truth table consists of all “0”s except for one entry having a “1.”

Definition 2: Minterm CNN
A CNN which implements a minterm Boolean function in each cell is called a minterm
CNN.

Since there are 2" rows in a truth table of “n” Boolean variables, there are 22 = 512
distinct minterm Boolean functions of nine variables. For n = 2, there are only four
minterm Boolean functions, two of which are defined by 81 and B, in Fig. 6.16. In
the context of information theory, a minterm Boolean function contains the minimum
amount of information; namely, 1 “bit,” hence the name “minterm.”

Now consider an arbitrary Boolean function B(xy, x2, ..., x9) of nine variables
where the output column in its truth table has exactly N < 512 non-zero entries (i.e.,
“1”). To each row of B having an output S(xi, x2,...,%9) = 1 we can define an

176 Uncoupled CNNs
|

X1 x2 x9 fi
0 0 0 0
0 0 1 0
' .1 B
0
0
0
X1 x2 x9 fa
0 0 0 0
0 0 1 0
. B
] | OR [~
0 .
0
X1 x2 x9 By
0 0 0 0
0 0 1 0
: Bn
0
1
0
0

Fig. 6.17. Minterm realization of an arbitrary Boolean function of nine variables. Each of the
N < 512 rows, nine inputs and one output. The OR operator has N inputs and one output.

associated minterm truth table. Hence, we can define uniquely N minterm Boolean
functions By, B2, ..., ﬁN.” ORing these N minterms, as shown in Fig. 6.17, we obtain

B(x1,x2,...,x9) =B1 VBV BIV---V BN (6.81)

177

6.9 Non-separable local Boolean functions

Observe that by construction, we have

B(x1,x2,...,x9) =1, if (x1, x2, ..., x9) belongs to one
and only one, of the 512 rows of
Bi,i=1,2,..., N, whose output is “1”
=0, otherwise

which gives the prescribed truth table of S.
We are now ready to prove the following theorem:

Theorem 3: CNN minterm realization theorem
Every local Boolean function of nine variables can be realized by ORing at most 512
uncoupled CNNs.

Proof of Theorem 3:

It suffices for us to prove that every minterm Boolean function §; (x1, x2, ..., X9), i =
1,2,..., N <512,in Eq. (6.81) is linearly separable. To avoid clutter, let us first show
that this is true for the two minterm Boolean functions associated with the XOR truth
table in Fig. 6.16, since the generalization for any n > 2 will be obvious. In particular,
we will show that each of the two minterms in Fig. 6.16 has an explicit “Boolean”
output equation; namely

Bi(x1,x2) = X1 Ax2 (6.82)
Ba(x1, x2) = x1 A X2 (6.83)
Substituting the n? = 4 combinations of {0, 1}, namely, (0, 0), (0, 1), (1,0), and
(1, 1), into Egs (6.82) and (6.83), we obtain the corresponding truth tables shown in
Tables 6.9 and 6.10, respectively, which are precisely the truth tables of 81 and 8, in

Fig. 6.16. Substituting next Eqs (6.82) and (6.83) for 81 and B, in Eq. (6.81) forn = 2,
we obtain the following explicit Boolean output equation for the XOR truth table:

B = (X1 Ax2)V (x1 AX2) (6.84)

Table 6.9. Truth table of B = X1 A x».

Xy X2 X1 Axp Bi
0 0 0AO0=1A0=0 0
0 1 OAl=1Al=1 1
1 0 1A0=0A0=0 0
1 1 1A1=0A1=0 0

178

X1

X2

Uncoupled CNNs

Table 6.10. Truth table of By = x| A X».

Xy X2 X1 A X B2
0 0 0A0=0A0=0 0
0 1 O0Al=0A0=1 0
1 0 1A0=1A1=0 1
1 1 1AI=1A0=0 0
X1 -
LOGNOT F1a %2
LOGAND
X2
LOGOR |—— B
X1
LOGAND
LOGNOT X1 %o
X2

Fig. 6.18. Schematic diagram showing that the non-separable Boolean function XOR of two
variables can be realized by hard-wiring two LOGNOT CNNs, two LOGAND CNNs, and one
LOGOR CNN, all of them are linearly separable. The “interface circuitry” is not shown to avoid
clutter.

Since Eq. (6.84) involves only the NOT, AND, and OR operations, it follows that
we can realize Eq. (6.84) in hardware, as shown in Fig. 6.18, using only two LOGNOT
CNNs, two LOGAND CNNG, and one LOGOR CNN.!2

A careful analysis of Tables 6.9 and 6.10 shows that Eqgs. (6.82) and (6.83) can be
easily derived from each row “k” of the truth table of the Boolean function XOR having
a non-zero output: simply apply the complement of the input variable associated with
a “0” in row “k.” Hence, since the values of input variables in row 2 of Fig. 6.15(a)
are (x1, x2) = (0, 1), we must choose x| since the first variable is “0.” Similarly, since
the values of input variables in row 3 of Fig. 6.15(a) are (x1, x2) = (1, 0), we must
choose x5 since this time it is the second variable that is “0.” Observe that this scheme
will always result in an output term equal to 1 A 1 = 1 because the “0” in each relevant
row has been changed to a “1.”

By an obvious generalization of the above minterm decomposition method, it
follows that every Boolean function of nine variables has the following explicit CNN

minterm output equation. '3

o o o o o o
@y, uz, oo ug) = Wi Auy A Aug”) VWt Auy? A Aug”)

VM AU A A ugh?) (6.85)

179

6.9 Non-separable local Boolean functions

where N < 512, and

ug® =i, if x; in the minterm input = 0 6.86)
=u;, otherwise. ’

Finally, observe that Eqs (6.85)-(6.86) can be realized by N < 512 LOGAND
CNNs with nine inputs, one LOGOR CNN with N inputs, and one LOGNOT CNN
for each input variable x; in (x1, x3, . . ., X9) with value x; = 0 in each row of the truth
table having an output equal to “1.” This completes the proof of Theorem 3. Il

Definition 3: Maxterm Boolean function
A Boolean function B(xy, x2,...,x,) of n variables is said to be a maxterm iff its
output column in the truth table consists of all “1”’s except for one entry having a “0.”

Definition 4: Maxterm CNN
A CNN which implements a maxterm Boolean function in each cell is called a
maxterm CNN.

Since there are 2" rows in a truth table of “n” Boolean variables, there are 22 = 512
distinct maxterm Boolean functions of nine variables. For n = 2, there are only four
maxterm Boolean functions, two of which are defined by §; and B, in Fig. 6.19. In
the context of information theory, a maxterm Boolean function contains the maximum
amount of information; namely, 2" — 1 “bits,” hence the name “maxterm.”

Now consider an arbitrary Boolean function B(xy, x3, ..., X9) of nine variables
where the output column in its truth table has exactly N < 512 zero entries (i.e., “0”).
To each row of 8 having an output S(x1, X3, ..., x9) = 0 we can define an associated
maxterm truth table. Hence, we can define uniquely N maxterm Boolean functions
Bi1,B2,..., B N4 ANDing these N maxterms, we obtain

Bx1,x2,...,x90) =B ABABIA---ABN (6.87)
Observe that by construction, we have

B(x1,x2,...,x9) =0, 1if (x1,x3,...,x9) belongs to one
and only one, of the 512 rows of
Bi,i =1,2,..., N, whose output is “0”
=1, otherwise

which gives the prescribed truth table of B.
We are now ready to prove the following theorem:

Theorem 4: CNN maxterm realization theorem
Every local Boolean function of nine variables can be realized by ANDing at most 512
uncoupled CNNss.

180
—

X1

X2

Uncoupled CNNs
x1 x2 B
0 0 0 | g
0 1 1
1 0 1
11 T n B
B 0o o0 o0 |B
ANDf—> —— 0 1 1 >
-— 1 0 1
x1 x2 B X2 1 1 0
0 0 1
0 1 1
1 0 1 B>
1 1 0
Fig. 6.19. Maxterm realization of the XOR function.
Proof of Theorem 4:
It suffices for us to prove that every maxterm Boolean function B;(xi, x2, ..., X9),

i =1,2,...,N < 512, in Eq. (6.87) is linearly separable. To avoid clutter, let us
first show that this is true for the two maxterm Boolean functions associated with the
XOR truth table in Fig. 6.19, since the generalization for any n > 2 will be obvious.
In particular, we will show that each of the two maxterms in Fig. 6.19 has an explicit
“Boolean” output equation; namely

B1(x1, x2) = x1 V x2 (6.88)
Ba(x1,x2) = X1 VX2 (6.89)
Substituting the n? = 4 combinations of {0, 1}, namely, (0, 0), (0, 1), (1,0), and
(1, 1), into Egs (6.88) and (6.89), we obtain the corresponding truth tables shown in
Tables 6.11 and 6.12, respectively, which are precisely the truth tables of 8 and $; in

Fig. 6.19. Substituting next Eqs (6.88) and (6.89) for 81 and B; in Eq. (6.87) forn = 2,
we obtain the following explicit Boolean output equation for the XOR truth table:

B =(x1Vx2) A1V X2) (6.90)

Table 6.11. Truth table of B = x| V x».

Xy x2 xyVvxy B

Ovo=0 0
Ovi=1 1
1vo=1 1
Ivli=1 1

_—— O O
— o = O

181

6.9 Non-separable local Boolean functions

Table 6.12. Truth table of By = X1 V X».

Xy X2 X1 VX B2
0 0 OvOo=1vli=1 1
0 1 Ovi=1vo=1 1
1 0 1v0o=0vi=1 1
1 1 1vi=0v0=0 0
X1
X1 v Xy
LOGOR
X1
X2
LOGAND ——
X1
X2 LOGNOT
LOGOR
LOGNOT}— Hvr
X2

Fig. 6.20. Schematic diagram showing that the non-separable Boolean function XOR of two
variables can be realized by hard-wiring two LOGNOT CNNs, two LOGOR CNNs, and one
LOGAND CNN.

Since Eq. (6.90) involves only the NOT, AND, and OR operations, it follows that
we can realize Eq. (6.90) in hardware, as shown in Fig. 6.20, using only two LOGNOT
CNNs, two LOGOR CNNs, and one LOGAND CNN.

A careful analysis of Tables 6.3 and 6.4 shows that Eqs (6.88) and (6.89) can be
easily derived from each row “k” of the truth table of the Boolean function XOR,
having a zero output: simply apply the complement of the input variable associated
with a “1” in row “k.” Hence, since the values of input variables in row 1 of Fig. 6.15(a)
are (x1, x2) = (0,0), we can choose x| and x;. Similarly, since the values of input
variables in row 4 of Fig. 6.15(a) are (x1,x2) = (1, 1), we must choose x; and x;
since this time both of the variables are “1.” Observe that this scheme will always
result in an output term equal to O vV 0 = 0 because the “1” in each relevant row has
been changed to a “0.”

By an obvious generalization of the above maxterm decomposition method, it
follows that every Boolean function of nine variables has the following explicit CNN
maxterm output equation

y(ui,up, ..., u9) = (u‘i‘ll Vuglz V‘-'Vugl(’)
AUP NV UTEN NV UgP) A

A (u<1¥1v1 v ut;Nz NI, ugN9) (6.91)

182

Uncoupled CNNs

where N < 512, and

ug™ =iy, if x; in the maxterm input = 1

6.92
= u;, otherwise ()
Finally, observe that Egs (6.91)—(6.92) can be realized by N < 512 LOGOR CNNs
with nine inputs, one LOGAND CNN with N inputs, and one LOGNOT CNN for each
input variable x; in (x, x2, ..., x9) with value x; = 1 in each row of the truth table

having an output equal to “0.” This completes the proof of Theorem 4. (I

We close this chapter by pointing out that if a given Boolean truth table has N > 256
nonzero entries (i.e., “1”’s) in the output column, then applying Theorem 4 would
require less than 256 uncoupled CNNs. Conversely, if N < 256, then applying
Theorem 3 would require less than 256 uncoupled CNNs. Hence, we have just proved
the following:

Theorem 5: Uncoupled CNN realization theorem

Every Boolean function of nine variables can be realized by using at most N = 256
uncoupled CNNs having nine inputs and either one LOGOR CNN, or one LOGAND
CNN, with N inputs, in addition to one LOGNOT CNN for each input variable x; in
(x1, x2, ..., x9) with value x; = 0 in each row of the truth table having an output equal
to “1,” or with value x; = 1 in each row having an output equal to “0.”

Remarks:

Theorems 3-5 are mainly of theoretical interest. They prove that every local Boolean
function of nine variables can be realized using uncoupled CNNs as building blocks.
For each prescribed local Boolean function, we can usually derive much simpler real-
izations. No systematic procedure, however, is currently available for such realizations.

7

Introduction to the CNN Universal Machine

183

We have seen in Chapter 6 that not all tasks can be implemented by a single CNN
template; the XOR function is a typical example.

There are many tasks which are solved by applying several templates, or by applying
one template several times. If we consider a template as an instruction with well-
defined input and output, we can define a CNN subroutine or function (as in C-like
languages) when applying several templates. We can build up processes and complete
programs from functions and other instructions.

We define a subroutine by specifying the following items:

o the input/output parameters,

o the global task,

o the informal description of the algorithm,
e the CNN implementation.

In this chapter the CNN implementation is given by three equivalent ways:

the hardware schematics, supposing each CNN template (placed in the CNN Soft-
ware Library) is implemented by a separate device containing discrete hard-wired
cells and additional local (cell by cell) and global devices.

a flow diagram of the CNN algorithm, and

a list of consecutive instructions, henceforth called a program, written in a simple
vocabulary involving the CNN analog and logic operations, henceforth called an
analogic CNN language, or simply “«” language.

An Alpha Compiler is supposed to exist to translate the code into executable
programs on CNN chips. We will describe this process later in Chapter 9.

Indeed, we follow the theory and practice of digital computers. According to the
classic Turing—Church thesis, each algorithm defined on integers or on a finite set of
symbols (e.g., “yes” or “no”) can be equivalently expressed by

e a Turing machine,

e a recursive function (an algorithmic description using a finite set of elementary
operators), and

e aprogram defined on a computer using a language.

184 Introduction to the CNN Universal Machine
I

As to the o language, the key instruction is the CNN template operation defined as

TemplateName(Inputlmage, InitialStatelmage, Outputlmage, Timelnterval,
BoundaryCond)

For example
EDGE(LLMI, LLM2, LLM3, 10, —1)
means that an edge detector template called EDGE is applied with input, initial state,
and output images denoted by/stored in LLM1, LLM2, LLM3 images, the output is
taken at time r = 10 (measured in the time constant of the CNN cell, tny), and the
fixed boundary value is —1.

I

7.1 Global clock and global wire
Definition
A component is called global if its output depends on all cells of the array or its output
affects all cells of the array.

Like in any programmable system we need a clock. To emphasize that within one
CNN template operation there is no clock, we will call our clock a global clock (GCL).
This means that during one clock cycle an entire array of cells implements the same
template instruction.

The global clock is used to control a set of switches (enabling, disabling, latching
functions) which provide that at a given clock cycle only the prescribed signal route is
open.

In many cases we have to decide whether any black pixels remain in the processed
image, i.e. whether it is completely white or not. We call the operation GW(.) which
tests this property (it is called “global white,” “global wire,” or “global line” in the
literature).

GW(.) is defined as follows:

Given a binary image P containing M x N pixels
GW(P) = 1(Yes) if. all the pixels o.f P %re w.hite (-1
—1(No) if at least one pixel in P is black (1)
In some implementations “NQO” is represented by O.
I
Set inclusion

7.2

We want to detect whether

S1C$

185
—

7.2 Set inclusion

S1 and S, are represented by pictures Py and P», respectively. A pixel is black if the
corresponding element is included in the given set. P; C P if and only if all black
pixels defining P are elements of the black pixels representing P;.

Now we define the subroutine or function SUBSET 1¢(., -, -).

SUBSET 1(P1,P2,Y)
P1, P2: binary images of size M x N, the black pixels represent the relevant sets.

Y: logical value, Yes or No, represented by 1 and —1, respectively.

Global task

Determine whether a set S2 defined on a Euclidean plane is a subset of another set S1.

Algorithm
Given P and P5. The algorithm consists of three steps:

P3 := NOT(P1)

P1:=P3 AND P2

IF P1 contains only white pixels THEN
Y :=1(Yes) ELSEY :=—1(No)

Remark:
The NOT and AND operations are acting pixel by pixel.

EXAMPLE 7.1:

s | @ B

set P2 set P1 P1UP2

(

NOT P1 (NOT P1) AND P2

186 Introduction to the CNN Universal Machine
|
EXAMPLE 7.2:
set P2 set P1 P1 uP2=P1
NOT P1 (NOT P1) AND P2
CNN implementation

1: Hardwired components

To implement this algorithm via CNN we need some additional components in each
cell and two global components. Suppose that we hard-wire the components. An
extended cell (type 1) is shown in Fig. 7.1(a), containing a (local) logic memory LLM
with three storage places, the GW, and a clock. The latter two are global elements
operating on the whole cell array.

‘We suppose that we have two different CNN arrays (cells and interconnections), one
for implementing the NOT operation (LOGNOT CNN) and one for the AND operation
(LOGAND CNN). These templates are shown in Chapter 3. The hard-wired solutions
are shown in Fig. 7.1(b).

2: Flow diagram and program
If we place the extended cell in an M x N array, the following flow diagram will
implement the function SUBSET 1(, -, -). In addition, in Fig. 7.2, we show the «
program as well.

As in a digital programming language, our « language uses a few elementary
instructions. Here, in addition to the template activation instruction, we use an

187
—

7.2 Set inclusion

GW [——

LLM TEM1
P, L agy boo z
Pl _ lz u y —
I %(0)
GCL
(@)
TEM1
LLM " Y
p,—— 1, | x
P,—— L ‘L
L
TEM2
u y
x(0)
(b)

Fig. 7.1. (a) The extended cell 1. In addition to the CNN cell we have three new components: a local
logic memory (LLM), a global white tester (GW) and a global clock (GCL); (b) the hard wired
solution for SUBSET 1(-).

instruction for the GW(-) test and memory copying instructions. We declare the
templates to be used in the function by listing them between the brackets of the USE

declaration.

GW

188 Introduction to the CNN Universal Machine
|

FUNCTION SUBSET 1;

USE(LOGNOT,LOGAND);
LLMI1:=P1;
LLM2:=P2;
TEM 1 LOGNOT(LLM1,LLM1,LLM3,5.-1);
13:=NOT 11
TEM 2

LOGAND(LLM2,LLM3,LLMI, 5.-1);
13:=12 AND 13

¢

GW(3) Y:=GW(LLM1);

@ ENDFUNCT;

Fig. 7.2. The SUBSET subroutine as a function. TEM1 is LOGNOT, TEM2 is LOGAND.

7.3 Translation of sets and binary images

We want to translate two-dimensional sets and binary images by a prescribed vector.
This vector is given by its horizontal and vertical coordinates, m and n, respectively.
The set S is represented by the black pixels of an image P. The translated image PT is
given by its black pixels as well. Subroutine TRANSLATE(:, -, -, -) performs this task

TRANSLATE(P, PT, m, n)
P, PT: binary images of size M x N; m, n: integers.
Global task

Translate image P by vector (m, n) (we suppose m, n > 0; if not, simple modifications
can be applied).

189 7.3 Translation of sets and binary images
|

Algorithm
Given P, m, and n. The algorithm is performed in an iteration (a program loop):

PT:=P

FOR i=1 STEP 1 TO m
PT:=SHIFT(PT, EAST)

FOR j=1 STEP 1 TO n
PT:=SHIFT(PT, NORTH)

Here, SHIFT(PT, EAST) and SHIFT(PT, NORTH) are the translating operators with
one unit length to the directions EAST and NORTH, respectively.

EXAMPLE 7.3:

&

input SHIFT(4, 5) SHIFT(4,-5)

CNN implementation

1: hardware components

For the implementation of this algorithm we do not need more components than we
used in the preceding subroutine (SUBSET 1). The controlling mechanism, however,
is more sophisticated. We have to check when to stop the iteration after m and n steps.
This means we need a global control unit which controls the switches and stops/starts
the iteration.

Again, we suppose that we have two different CNN cells (and arrays), one for the
SHIFT to north, one for the SHIFT to east. However, now we need m and n samples of
each CNN component, or we use these two components with a sophisticated control
unit.

190 Introduction to the CNN Universal Machine
|

2: Flow diagram and program

FUNCTION TRANSLATE;
USE(SHIFTE,SHIFTN);
=Pt LLM1:=PT;
IF M > 0 THEN DO

REPEAT I:=1 TOM BY1

0
L

TEM1
HIFTE(LLM1,LLM1,LLM1,10,-1);
11:=SHIFT E(l1) S (’ ’ 10-1;

|
L=I+1

» ENDREPEAT;
Y
@ N Cstor > IF N > 0 THEN DO
Y
1=l REPEAT J:=1 TO NBY 1
| =<
TEM2 SHIFTN(LLM1,LLM1,LLM1,10,-1);
11:=SHIFT N(1)
I:=J+1
<< j : = ENDREPEAT;
NO
ENDFUNCT;

Fig. 7.3. The function TRANSLATE.

7.4 Opening and closing and implementing any morphological operator

Two frequently used morphological operators are the opening and closing.

Opening is defined as: first erosion then dilation.
Closing is defined as: first dilation then erosion.

The difference is in the sequence of the two elementary templates.
We will show here the subroutine CLOSE(P, S, PC) where P is the original image,
S is the structuring element, and PC is the result.

191 7.4 Implementing any morphological operator
|

CLOSE(P, B, PC)

P, PC: binary images of size M x N

S: 3 x 3 structuring element represented in a B template for erosion, the 3 x 3
feedforward template B defined by the structuring element with 1 (black) and 0
(white) for dilation, reflect B (centrally) to get B1 as the feedforward template.

Global task
Given P, first apply a dilation, then an erosion with structuring element represented by
B, defined above.

Algorithm
Given P and S(B). The algorithm has four steps:

Pl1:=P

P2 := DILATION(P1,B1)
P3 := EROSION(P2,B)
PC :=P3

EXAMPLE 7 .4:

CAWL

input output of DILATION operation

EXAMPLE 7.5:

input = output of DILATION operation output of EROSION operation

192 Introduction to the CNN Universal Machine

I
TEM1
ugy boo 2
u y
LLM .
X
P —— |
)
PC I TEM2
oo boo 2
u y
]
Fig. 7.4.
CNN implementation

1: hardwired components
The hardwired schematic is very simple. Figure 7.4 shows it: we have two CNN

components.
FUNCTION CLOSE;
T =p USE(EROSIONB,DILATIONB1);
- LLMI1:=P;
xFill(0,ISTATE);

| 12 := DILATION (11, B1) |
| DILATIONBI1(LLM1,ISTATE,

| L3 := EROSION (12, B) | LLM2,10,-1);
EROSIONB(LLM2,ISTATE,LLM3,
10,-1);
PC::= LLM3;
ENDFUNCT;

Fig. 7.5. The flow diagram and program of CLOSE.

193 7.4 Implementing any morphological operator

2: Flow diagram and program
Mathematical morphology has a calculus. Its deep mathematical foundations are well
documented in textbooks.

Opening of an image A by structuring element B is denoted by

AocB=AOB)®B

where erosion is denoted by O and dilation by @, respectively.
Closing, denoted by o, is defined by

AocB=(A®&B)OB
opening and closing are dual operators.
AoB = (A°0B)°

where ¢ means complement. Hence, replacing A by A® and complementing the result
we get

AoB = (A°OB)f

We can implement this calculus by using a sequence of templates. Next we show a few
examples. An image P is modified by a structuring element S.

EXAMPLE 7.6: Erosion

P POS

A fundamental theorem of mathematical morphology, the so-called Matheron
representation, asserts that a very large class of morphological operators can be
decomposed into a union of erosions with a basis set of structuring elements. The
art is to find the basis.

194 Introduction to the CNN Universal Machine
|

EXAMPLE 7.7: Dilation

EXAMPLE 7.8: Open

Hm
S=]
[|
P P-S
EXAMPLE 7.9: Close
H|m
S= mm

195
—

1.5

7.5 Implementing any prescribed Boolean transition

Implementing any prescribed Boolean transition function by not more
than 256 templates

We have seen in Section 6.6 that the XOR Boolean function cannot be realized by a
simple CNN template: it is not linearly separable. On the other hand, we can realize it
by applying several templates. The truth table is shown in Table 7.1.

Table 7.1.

Input Output
Term uq us y
1 -1 -1 -1
2 1 1 -1
3 1 -1 1
4 -1 1 1

Note: —1: false; 1: true

Using the minterm/maxterm notion, we can group the last two rows for generating
the minterms by selecting those input combinations which yield outputs of logic 1

m(u): uiuy + upiig

i.e., if one of the (now two) minterms is true, the output y = F(uy, up) will be true.
Similarly, for the terms with output of logic 0, the maxterms (M (u)) are given by the
first two rows

M(u): (uy + uz) (g + up)

i.e., if one of the maxterms is false, the output y = F (11 u2) will be false.

Hence, we can generate the XOR truth table by the sequential applications of two
minterms, combining them with an OR function. Since the minterms contain AND and
NOT functions, what we need, altogether, are the building blocks for AND, OR, and
NOT functions. We have shown already the CNN templates for these three Boolean
functions. Therefore, applying CNN operations, with different templates, iteratively,
we can generate the XOR function.

There is a systematic general procedure for implementing any local Boolean
function by the iterative application of different templates. For the CNN logic
representation, we will use the convention: TRUE = 1, FALSE = —1.

Having nine inputs (u1, u3, ..., u9) and one output we have 29 = 512 output
values (1, —1) for all the 512 input combinations. This means that we can generate
any local Boolean function of nine input/one output variables, i.e. a binary truth table
by at most 512 applications of different minterms, each one implemented by a CNN

196
—

Introduction to the CNN Universal Machine

=

A

="

template. Next, we show a simple, extended CNN cell which can be used to implement
this procedure. Before, however, let us describe this procedure in an elementary flow
diagram.

Suppose we want to calculate the output y;; of nine input Boolean function
Y = F(uy,up,...,u9),uy, us, ..., ug are the nine binary values of the cells in the
neighborhood of cell C(ij).

F is given by the minterms, bg, by, ...,by (M < 512). In our simple XOR
example: M = 2, bg and by are the terms, u1u7 and u1u2, respectively. These minterms
can be coded as [1, —1] and [—1, 1] and the procedure is shown in Fig. 7.6.

In words, it means that we calculate the results of all the minterms at the given u
(phase «) and make the ORing (phase). To implement this flow diagram using our
CNN templates we need the following building blocks:

Y = F(u)

Fig. 7.6.

o alogical storage for the given cell’s input u;;,
e the CNN templates (A, B, z) for the minterms,
e an OR logic unit, and

197

7.5 Implementing any prescribed Boolean transition

e another two-place logical storage (memory) with a shift (shift register).

This means that we need an extended CNN cell with the above units, in addition to
the core CNN cell.
The extended CNN cell ij with its neighbors is shown in Fig. 7.7.

Uiy, j1 Ui, j Ui_1,j+1
w(-1,-1) w=10) TEMW w(=1,1)
LLM
Wi w(0,0) 7
Ui j L Ui j+1
X
o—— o <@
w(0,-1) w(0,1
- — =11 sg
— l
E OR -
w(l,-1) w(1,0) w(l,1)
Ui, j-1 Ui, Uit jr1
Fig. 7.7.

In the CNN cell we have an additional local logic unit (LLU): the OR gate. Suppose
the nine Boolean variables (u1, us, ..., ug) are placed on the inputs of all cells in the
sphere of influence S, (ij). We have to find the template (A, B, z) for a given minterm,
then we can solve the problem. Next we will show this process.

A minterm is a linearly separable Boolean function. Referring to our earlier
analysis, it can be shown (as an exercise) that the value of a minterm b,, at a given

(u1,un, ..., uq) combination, u; € {—1, 1} can be calculated by the following CNN
template.

01010 Wol, -1 | W_1,0 | W_1,1
A=|01]110 Bm =| wo,—1 wo,0 wo,1 z7=-8

0/0]0 wi—1 | wio | Wi

g ug uy
Ue Us Ug
uz uz U

where the B template is coded using the minterm b,, in the following way. If in

minterm b,, a variable is presented with its TRUE value, then the corresponding term is
B,.(k,1) = 1,ifitis FALSE, B,,,(k, [) = —1, if a variable does not exist, B,,, (k,) = 0.

198

Introduction to the CNN Universal Machine

This unit can be called the restricted-weight threshold unit since the weights can
take values from a finite limited set of values.
For example, minterm ujuou3i4us is coded by a template

0o 0 O
B,=| 0 -1 -1
1 -1 1

Observe that one extended CNN cell can generate not only any minterm but, using the
local logic unit and local logic memory, the final result of a given Boolean function of
nine variables as well. It is supposed that all input variables have their buffers.

If the number of zero outputs in the nine input one output Boolean truth table are
less than 256, then there are less maxterms than minterms. Hence it is practical to code
the maxterms. This can be done using the same extended CNN cell except the local
cell logic contains a NOT and an AND gate.

There are more efficient ways, of course, of implementing the given binary Boolean
function using CNN. The above procedure, however, is simple and works in case of any
local Boolean function. Hence, the extended CNN cell is universal for implementing
any cellular automaton specified by any local Boolean transition rules.

A more complex, more efficient procedure is shown next.

7.6

Minimizing the number of templates when implementing any possible
Boolean transition function

The next procedure shows a more efficient, slightly more complex procedure. The
number of templates to be used are generally much smaller than the brute force method
described in the previous section.

We use again a restricted-weight threshold unit, however, with more possible weight
variables? in the bias/threshold term z (indeed z = —8, —=7,...,—1,0,1,2,...,8)
and use any specified two-input logic function ®, instead of a single one (OR or AND).

Suppose again the state transition rule to be implemented is the neighborhood
Boolean function Y

Y = F(u17u2’ u37 "'7u9)

i.e., F is a Boolean function of nine variables: it can be defined by the 512 bits (as we
have shown).

We are looking for the solution as a sequence of “ballterms” b®, k =
0,1,2,..., M, implemented with restricted-weight threshold logic (i.e., equivalent
templates) and corresponding two-input logic operations @* which will generate F in
M steps. All the Boolean functions can be defined by a 2V -tuple as a response (TRUE
or FALSE) to all possible N-tuple inputs. In our case N = 9. Hence, F is defined as a

199

7.6 Minimizing the number of templates

512-tuple (there are 2512 ~ 10154 such 512-tuples, hence, different Boolean functions
F).
F is generated as follows

f(O) = pO®
f(l) = f(o)@(l)b(l)
f(z) — f(l)@(z)b(Z)

f(M) — f(M—1)®(M)b(M)

where ®®) € L (one of the 16 two-input, one-output logic functions).
To calculate the consecutive terms b¥)® (k) (and here f ®)) we need a distance
calculation unit of two N-tuples (u and v) where the distance is calculated as follows

N—1
dist(u,v) = Y _ u; ® v;
i=0

where @ denotes the XOR operation.

Clearly, using an XOR local logical unit and a few local logic memory units in a
cell, this distance (dist(u, v)) calculation can be computed in about N steps.

The distance of two Boolean functions, f and g, of N variables can be calculated
similarly

2N 1

distr(f,8) =) fW)@gw); fgeF
u=0

where 2V XOR operations (N =9 — 2N = 512) are needed.

The greedy algorithm defined by the flow chart in Fig. 7.8 calculates the consecutive
b® @ (k) functions. b® are chosen from the set B. Set B contains all the Boolean
functions which can be implemented with the restricted weight values. If N = 9, there
are 118098 = 3° x 6 elements of B (we choose six z values between —8 and +8).

A ballterm b is represented by the nine feedforward template element values and
the z value, denoted by

b(b1b2b3b4bsbebrbgby), z

where the last value is the bias value and the order is the same as shown before (the A
template has a central nonzero element of 1).

The reasoning behind the algorithm is as follows (search algorithms are denoted by
M in Fig. 7.8).

e In the first search algorithm, we find 50 of minimum distance from the prescribed
F.

200 Introduction to the CNN Universal Machine
|

F desired function

b(o) =f(°) = arg min dist (b, F)
forallb € B |

O(k), b(k) + arg mindist (f(k—1)®, b, F)
forall € L,b€ B]
|

f(k) _ f(kfl)@(k) p®

\ 4

Fig. 7.8.

e In the next iterative search algorithm, we test all the possible combinations of the
restricted weight functions (¢ B) and the two-input one-output logic function (€
L) to find the best combination: it will modify the previously composed function
F%=D to £® which will be of minimal distance to F.

It is possible to prove that this algorithm converges and, in the worst case, will not
result in more terms than the minterm (or maxterm) algorithm shown in the previous

section.?

Example: game of life
This famous problem, with a single Boolean output value, is a linearly non-separable
problem. Hence, it cannot be implemented by a single template. The algorithm in
Fig. 7.8 results in just two terms

bO =p(-1,-1,-1,-1,0, -1, -1, -1, —1), +1
bW = b(+1,+1, 41, +1, +1, +1, +1, +1, +1), —4
e = AND

Hence, we can implement the game of life with a cell of Fig. 7.7 containing an AND
local logical unit, and the two templates which implement the “ballterms” b® and bV

201
—

7.7 Analog-to-digital array converter

respectively.

1.7

0 0 -1 -1 -1
1 0|; BO=| -1 0 —1]|;: z=+1
0 0 -1 -1 -1

0 0 | [1 41 1]

1 0 BY =| +1 +1 +1 |; z=-4
0 0 +1 +1 +1

Analog-to-digital array converter

SUBROUTINE ADARRAY(:, -, -)

ADARRAY (P, n, B[O, n — 1])

P: positive image 0 < p;; <1

n: integer, number of bits

B[O, n — 1] : B;;[k]: The value of the kth bit € {0, 1},
k=0,1,2,...,n—1

Global task: array-type analog to digital converter
Given a signal array P at a given time instant #g, i.e., P = P (#)|;=,-

P = [pijl,

i=1,2,....,M; j=1,2,...,N, 0<p;<]l.

Compute the representation of the real (analog) values

pij: Bijlk],

k=0,1,2,...,n—1

The algorithm

The algorithm (a well-known method) is given for a single cell, all cells are computing

fully parallel, without interaction.

Given: p,0 < p;; < I real and n, integer, r: real, b: binary,

let: 7(—1):=p and b(—1):=1
FOR i :=0step l untili < n DO

begin

r@):=2ri—1)—-bi@—-1

202 Introduction to the CNN Universal Machine
|

b(i) ;= sgn(r(i))
B(i) := bconvert(b(i))

end

where “bconvert” (binary converter) is a function with input {—1, +1} and output
{0, 1} which represent logic LOW and HIGH. B(i) are the sequence of the output
bits.

Example
Convert the value p = 0.6875 = % + 41'1 + % + % (i.e., the code B() is: 1011). The
consecutive steps of the algorithm are as follows

r(—=1) =0.6875; b(—-1)=1

i=0
begin r(0) = 2 x 0.6875 — 1 = 0.375
b(0) = sgn(0.375) = 1
B(0) = beonvert(1) =

i=1
begin (1) =2 x 0.375 — 1 = —0.25
b(1) = sgn(—0.25) = —1
B(1) = beonvert(—1) =[0]

end

i=2
beginr(2) =2 x (—0.25) +1=0.5
b(2) =sgn(0.5) =1
B(2) = bconvert(1) =
end
i=3
beginr(3) =2x05-1=0
b(3) =sgn(0) =1
B(3) = bconvert(l) =

end

203

7.7 Analog-to-digital array converter

CNN implementation

1: hardwired components

To implement this algorithm via CNN we need some additional components in each
cell. For the time being, we suppose that each template is implemented by a single
CNN standard cell, as a component, and the whole array is hardwired from the
components. An extended cell (type 2) is shown in Fig. 7.9.

TEM
LAM agy by 2
] —
a; u -y
* BU [—
a
C ol |~ <
SW1
Pe_ | b
CL

Fig. 7.9. The extended cell 2. In addition to the CNN cell which may have a switch, we have two
new components: an analog storage device, a local analog memory (LAM) and a bipolar to unipolar
converter (B/U).

The new components in the extended cell 2 are:

e in some CNN standard cells (type 2), for the time being we consider them as
separate components, there is a switch SW1 which, if it is OFF, sets the value of
the standard nonlinearity of the cell to zero, i.e., if SW1: OFF then f(-) = 0; we
suppose that if SW1 = OFF then the input and output of the cell can be specified
and the value at the state will be the outcome,

e an analog memory unit LAM (local analog memory), in this case with three storage
places,

e a binary converter B/U (denoted by bconvert(-)), converting a bipolar {—1, 1}
analog signal into a unipolar {0, 1} — {LOW, HIGH} logic bit.

Suppose we place the extended cell 2 in a CNN array, then we can design the
flow diagram of the A/D algorithm. This flow diagram is shown in Fig. 7.10. On
the same figure we show, in parallel, the program of the algorithm implementing our
A/DARRAY () subroutine, for a single cell.

204 Introduction to the CNN Universal Machine
|

FUNCTION ADARRAY ;
USE(TEMO);
N=4;

LAM3:= p;
LAMI:=1;

REPEAT i:=0TOnBY 1

ir=i+1

SW1:=OFF;
TEMI 7:=0 TEMO(LAMI,LAM2,LAM3, 5, —1);
ag0:=2; byyi=—1
LAM3:=LAM?2;
x (=1())
SWI := ON;

beonvert (LAM1);

TEM2 z:=0;

al:=y
a9):=2; bygi=—1

TEMO(LAM1,LAM2,LAMI, 5, -1);

y (=b())

@
Y .
B/U converter B[i]:=

END REPEAT;
o~ END

Fig. 7.10.

Here we suppose that this program is hardwired, i.e., the clock signals activate the
subsequent units according to a predefined sequence.

8

Back to basics: Nonlinear dynamics and
complete stability

8.1

A glimpse of things to come

All CNN templates we have investigated so far share the common property that
regardless of the inputs, initial states, and boundary conditions, all transient dynamics
eventually converge to some dc equilibrium state after some settling time kTcnN, Where
TcNN 1s the time constant of a single cell, and k¥ & 5-10. Such CNNs are said to
be completely stable and represent the workhorse of most current CNN applications.
Indeed, almost all current CNN analogic programs are developed under the assumption
that all CNN templates (instructions) called for in the program are completely stable.
However, we will see in the following sections that not all CNNs are completely stable.
Indeed, some CNN templates will give rise to an oscillatory periodic steady state
behavior. Others can even exhibit an eternally transient (not periodic) phenomenon
called chaos.

While the majority of current CNN applications require constant dc (gray-scale)
outputs, future applications will no doubt exploit the immense potentials of the
relatively unexplored terrains of oscillatory and chaotic operating regions. In this
chapter, we will derive several general mathematical criteria for complete stability.
To appreciate the need for such criteria, we will present first a simple example of an
oscillatory CNN in Section 8.2, and a chaotic CNN in Section 8.3.

8.2

An oscillatory CNN with only two cells

205

Consider a two-cell CNN characterized by zero boundary conditions and the following
templates:

o
(e)
o
(e
o
o

A=[gla|-g]| B=[0]0]0]| z=]0]
0

206
—

Back to basics

mEE OO 00

(@) (b)
Fig. 8.1. (a) A 1 x 2 CNN whose virtual boundary cells (shown blank) are clamped to a zero

potential: yo,0 = yo,1 = Y0,2 = ¥0,3 = ¥1,0 = ¥1,3 = ¥2,0 = ¥2,1 = 2,2 = 2,3 = 0. (b)
Corresponding signal flow graph.

Vi

1 +————

Fig. 8.2. The standard CNN piecewise-linear output characteristic.

Using our earlier notations from Section 2.2.6, this M x N = 1 x2 CNN with feedback
synaptic weights ag,—1 = B, ap,0 = o, and ap,; = B can be represented by the signal
flow graph shown in Fig. 8.1.

The state equation for this CNN is given by

X1 =—x1 +ay; — By

. (8.1)
X2 = —x2 +ay2 + Byi

where we neglect the row index for simplicity. Here, the output y; is related to the state
x; by the standard nonlinearity

vi = f(x;) =0.5]x; + 1] — 0.5]x; — 1] (8.2)

which is shown graphically in Fig. 8.2 for convenience.

The solution waveforms of Eq. (8.1) corresponding to « = 2, B = 2, and initial
condition x;(0) = 0.1 and x2(0) = 0.1 are shown in Examples 8.1(a) and 8.1(b).
Observe that instead of converging to a dc equilibrium point as in all of our previous
examples, the state variables x; and x, converge to a periodic waveform, which is
more clearly seen by plotting the associated trajectory on the x1—x; plane, as shown
in Example 8.1(c). Each point along the trajectory, which starts from (xi, x3) =

207 8.2 Oscillatory CNN with only two cells
|

(0.1,0.1) at t = 0 in Example 8.1(c), is parameterized by time but is not shown in the
figure because here we are interested only in the relationship between x1(¢) and x(¢)
as t — oo, namely a closed contour called a limit cycle. Since the trajectory from
(0.1, 0.1) does not converge to an equilibrium (x1,,, x2,), this CNN is not completely
stable.

EXAMPLE 8.1: Periodic solution waveforms of xi(t) and x;(¢#) and the corresponding
trajectory fora = 2, 8 = 2, x1(0) = 0.1 and x2(0) = 0.1.

o H 10 15 20 25 kL] 35 40 “a 5 i 15 20 25 an a5 40

@) ®)

For this simple example, we can prove that all trajectories starting from any initial
state except the origin will converge to a limit cycle. We will present the details of
this proof in order to introduce the uninitiated reader to some elementary aspects
of nonlinear qualitative analysis. The first step in analyzing the dynamics of an
autonomous CNN (i.e., where the time variable ¢ does not appear on the right-hand
side of the state equation) is to find the location of all equilibrium points Q;, i =

208
—

Back to basics

Fig. 8.3. The dynamics of the two-cell CNN in Fig. 8.1 is linear in each region R(i, j).

1,2,...,q, such that x;(Q;) = 0 and x2(Q;) = 0, where x;(Q;) denotes x;(t)
evaluated at x; = xg,. Hence, upon setting Eq. (8.1) to 0, the equilibrium points
of this two-cell CNN are the solutions of

—x1 +2f(x1) = 2f(x2) =0 (8.3a)
—x2 +2f(x2) + 2/ (x1) =0 (8.3b)

Since the piecewise-linear function f(x;) in Example 8.1 has three segments, the x;—
X7 state space can be partitioned into nine rectangular regions R(i, j), i, j = 1,2, 3,
as shown in Fig. 8.3, where the state equation (8.1) reduces to a linear equation in each
region. In particular, the equilibrium equation (8.3) reduces to two linear algebraic
equations in each region R(i, j) and the equilibrium point Q(i, j) can be trivially
calculated. If Q(i, j) falls within region R(i, j), then it is a valid equilibrium point.
If Q(, j) falls outside of R(i, j), it is a “virtual” equilibrium point and is simply
discarded. The above “brute-force” procedure can be easily programmed to find all
equilibrium points of any M x N CNN. However, the computation time would grow
exponentially with M N so that it becomes impractical when M N is large.

In view of the simplicity of Eq. (8.3), the following algebraic analysis can be made
to determine first those regions in Fig. 8.3 which have valid equilibrium points:

209

8.2 Oscillatory CNN with only two cells

Step 1: Central strip |x1| < 1 (regions R(1, 2), R(2,2), and R(3, 2) in Fig. 8.3)

In the strip |x1| < 1, we can write f(x1) = x1 so that Eq. (8.3a) becomes —x| +2x] —
2 f(x2) = 0. Consequently, | f(x2)| = |x1|/2 < 0.5 and hence f(x2) = x;. Equation
(8.3) reduces in this case to

—Xx1+2x1 —2x, =0
—x2 +2x+2x1 =0 (8.4)

Since (x1, x2) = (0, 0) is the unigue solution of Eq. (8.4), only region R(2,2) in the
central strip has an equilibrium point; namely, the origin.

Step 2: Left strip x1 < —1 (regions R(1, 1), R(2, 1), and R(3, 1) in Fig. 8.3)

In the strip x;1 < —1, we can write f(x;) = —1 so that Eq. (8.3b) becomes —x; +
2 f(x2) — 2 = 0. Solving this equation for x», we find x; = —4 for region R(1, 1) the
only solution of Eq. (8.3b) (the other two solutions x, = 2 for region R(2, 1) and x, =
0 for region R(3, 1) are both virtual solutions). But x, = —4 implies f(x;) = —1 so
that Eq. (8.3a) in the left strip gives —x1 — 2 4+ 2 = 0, or x; = 0, which is outside of
the left strip. Hence x; = —4 is a virtual solution for Eq. (8.3). It follows that there
are no equilibrium points in the left strip x; < —1.

Step 3: Right strip x1 > 1 (regions R(1, 3), R(2, 3), and R(3, 3) in Fig. 8.3)

In the strip x; > 1, we can write f(x;) = 1 so that Eq. (8.3b) becomes —x, +
2 f(x2) +2 = 0. Solving this equation for x2, we find xo = 4 for region R(3, 3) is the
only solution of Eq. (8.3b) (the other two solutions x; = —2 for region R(2, 3) and
xp = 0 for region R(1, 3) are both virtual solutions). But x, = 4 implies f(xp) = 1
so that Eq. (8.3a) in the right strip gives —x1 +2 —2 = 0, or x; = 0, which is outside
of the right strip. Hence x, = 4 is a virtual solution for Eq. (8.3). It follows that there
are no equilibrium points in the right strip x; > 1.

Steps 1-3 show that Eq. (8.1) has only one equilibrium point; namely, the origin.
To determine the dynamical behavior near the origin, we examine the associated linear
equation

X1 =x1 —2xp

X2 =2x1 +x2 (8.5)
obtained by setting f(x1) = x; and f(x2) = x2 in Eq. (8.1). Since the eigenvalues of
the above matrix are given by A1 = 1 4+ j2 and A, = 1 — j2, the solution of Eq. (8.5)
has the form

x1(t) = ke' cos(2t + 0)

x2(t) = ke' sin(2t + 6) (8.6)

210

Back to basics

where the constants £ and 6 depend on the initial condition x;(0) and x;(0).
Since the trajectory associated with Eq. (8.6) is an “expanding” spiral, as shown
in Example 8.1(b), and since all solutions of Eq. (8.1) are bounded (in view of
Theorem 2 of Chapter 2), this expanding spiral must necessarily converge to some
limiting closed contour, for otherwise the trajectory would intersect itself since there
is no room for maneuvering on the x;—x> plane. But no trajectory of an autonomous
system of differential equations can intersect itself in view of the uniqueness property
(Theorem 1 of Chapter 2) — otherwise we can choose the self-intersection point as
our initial condition and obtain two different trajectories originating from this point.
The above reasoning can be given a formal rigorous proof and the result is called the
Poincaré—Bendixon theorem, which is a classic result from the theory of differential

equations. !

8.3

A chaotic CNN with only two cells and one sinusoidal input

Suppose we apply a sinusoidal input u11(t) = 4.04sin(5t) to cell C(1, 1) of the
two-cell CNN shown in Fig. 8.1 and choose « = 2 and f = 1.2 as its parameters.
In this case, under the same “zero” boundary conditions as before, the state equation
(8.1) generalizes to the following non-autonomous system of two nonlinear differential
equations

X1 = —x1+2y; — 1.2y, +4.04 sin(%t)
Xy =—x2+1.2y1 4+ 2y (8.7)

where y; = f(x;) is defined by Eq. (8.2). Equation (8.7) is the state equation of a 1 x 2
CNN with templates

00] 0 0lo0]o0
A=[12]2]-12] B=[o[1]0] z=[0]
0 0] 0 0]0]0

zero boundary conditions, a sinusoidal input u1(¢) to cell C(1, 1), and a zero input
uip = 0 to cell C(1,2). The solution waveforms x1(¢) and x;(¢) corresponding to
the initial condition x;(0) = 0.1 and x2(0) = 0.1 are shown in Figs 8.2(a) and
8.2(b), respectively. Observe that, unlike the periodic waveforms shown earlier in
Example 8.1, these two waveforms do not converge to a periodic waveform as ¢t — oo.
The non-periodic nature of x1(¢) and x»(¢) is more clearly seen by examining the
associated trajectory shown in Example 8.2(c). Observe that the trajectory looks like a
never-ending tangle of yarn. To emphasize the non-periodic nature of x;(¢) and x2(¢),
Examples 8.3(a) and 8.3(b) show the numerically calculated power spectra X{(w)
of x1(t) and X,(w) of xo(¢) have a broadband, continuous, noise-like character,

211

8.3 A chaotic CNN

which is quite different from that of a periodic signal, which consists of discrete
lines corresponding to the harmonic components of its Fourier series expansion. From
the theory of the nonlinear dynamics, the noise-like waveforms in Examples 8.2(a)
and 8.2(b) are said to be chaotic, and the associated trajectory is called a strange
attractor because other solutions corresponding to nearby initial conditions will all
be “attracted” and converge to the same trajectory.

EXAMPLE 8.2: Chaotic solution waveforms of x;(t) and x,(¢) and the corresponding

trajectory fora = 2, 8 = 1.2, x1(0) = 0.1 and x,(0) = 0.1.

x1
=)
2
o

o 20 40 &0 80 100 120 140 1é0 1en 200 a 20 40 40 L1 108 120 140 1&0 1B 200
1 1

(a) (b)

Even though the strange attractor in Example 8.2(c) looks extremely messy, it does
possess some orderly geometrical structure, which, in the case of a periodic input,
is best seen by sampling only the points on the trajectory once every period of the
input waveform. The resulting set of points is called a Poincaré cross section, or by
an abuse of language, simply a Poincaré map because it was first introduced by the
famous French physicist and mathematician Poincaré. In this example, the period of
the sinusoidal input is 7 = 4. Consequently, if we plot (x(t), x2(¢)) on the x;—x;

212 Back to basics
|

EXAMPLE 8.3: Frequency power spectra calculated numerically from the chaotic waveforms
x1(¢) and x,(¢) in Example 8.2.

?m' 3
-
10" |
'L
io-z T ‘I ID 1
10° 10 10 10
Frequaney (Hz}
(a)
10
10" E
%m' E
£
10" b
10" —
10 10" 10 10
Frequency {Hz}
(b)
plane only at t = 0,4,8, 12,16, ..., etc., we would obtain the “sampled” strange

attractor in Example 8.4, which is often referred to as a Lady’s shoe attractor.’

A discrete op-amp circuit® for simulating Eq. (8.7) is shown in Figure 8.4. The
experimentally observed strange attractor corresponding to Example 8.2(c) is shown
in Example 8.5(a). The corresponding Poincaré map obtained experimentally by
“blanking” out the oscilloscope beam except at regular intervals of 7 is shown
in Example 8.5(b). It is sometimes instructive to interpret such Poincaré maps as
“strobing” the strange attractor by a stroboscope.

213 8.3 A chaotic CNN
|

EXAMPLE 8.4: The Poincaré map extracted from the strange attractor in Example 8.2(c) is
called the “Lady’s shoe attractor” in view of its striking resemblance to a high-heel
lady’s pump.

Q5

475K 475K 396K
W—W 475K vy
. 475K
— 10n < 28.75K

QT ok Cell 1F

A sin 2xit 475K

—O—W—t

475K 47 5K 28.75 K

W =W 475K —\W—

10 nE 47.5K 396K
v = VXQT 4_775K Ce” 2T

Fig. 8.4. A two-cell CNN circuit driven by a sinusoidal signal.

214
—

Back to basics

EXAMPLE 8.5: (a) Strange attractor obtained experimentally from the circuit in Fig 8.4. (b)

The “Lady’s shoe” Poincaré map extracted experimentally from the attractor in (a).

8.4

Symmetric A template implies complete stability

The preceding examples show that even CNNs with only two cells may not be
completely stable. Fortunately, the following theorem guarantees the complete stability
of an important subclass of CNNs. To simplify the proof of this theorem, we will
assume that the nonlinear function y;; = f(x;;) is bounded, differentiable, and has
positive slope everywhere. There is little loss of generality in this assumption since
our original piecewise-linear function can be approximated arbitrarily closely by such
a smooth function. In fact, any physical realization of f (x;;) will be “smooth” rather
than piece-wise linear so that this assumption is actually more consistent with reality.

215

8.4 Symmetric A template

Complete Stability Theorem 1

Any M x N space-invariant CNN of arbitrary neighborhood size with constant inputs
and constant threshold is completely stable if the following three hypotheses are
satisfied:

1 The A template is symmetric

A, ji k1) = Ak, 1, j) (8.8)
2 The nonlinear function y;; = f(x;;) is differentiable, bounded, and

f'(xij) >0, forall —oo < x;j < 00 (8.9)
3 All equilibrium points are isolated.*
Proof:

Consider the CNN state equation (2.8) from Chapter 2 for constant input u and
threshold z:

X = —x—l—f&y—l—ﬁu—l—z (8.10)
yl:f(xi)7 i:1527-"an=MN (811)

Here, A and B are n x n matrices whose nonzero entries are the synaptic weights
A(i, j; k,1) and B(i, j; k,), respectively. Observe that hypothesis (8.8) and space
invariance imply that

A=AT (8.12)

independent of the packing scheme.
Now, hypothesis (8.9) implies that f(-) is a one-to-one (injective) function and
therefore has an inverse function

xi= o) (8.13)

defined for all y; over the range of f(x;), x; € (—o00, 00). Define the scalar function
[- T Th T

V) =—-y Ay +) F ' wdv| -y 'Bu—y’z (8.14)
2 i=1 L0

where 6 is any number such that f(—o0) < 6 < f(oo).5

A scalar function V (x) is called a Lyapunov function if its time derivative along any
trajectory is non-positive, i.e.,

dv av
TRISICED SRR

Our first goal is to prove that Eq. (8.14) defines a Lyapunov function.

216

Back to basics

Observe that the right-hand side of Eq. (8.14) is a scalar function of x =
[x1, X2, ..., x,]7 since y; = f(x;) via Eq. (8.11). Taking the time derivative of both
sides of Eq. (8.14) we obtain

: | . ~ . Tao

Vo = -G Ay +y'AD) + (Z Fon - yl-) —y'Bu—y'z (8.15)
i=1

Now since yTAy is a scalar and A = A7 in view of Eq. (8.12), we can write

v'Ay = y"Ayp)" =" ATy =y Ay (8.16)

Substituting Eqs (8.13) and (8.16) into Eq. (8.15) and making use of Eq. (8.10), we
obtain

n
V) =y Ay+) xiyi —y Bu—y'z
i=1
= —yT(Ay+l§u—X+z)
=—y'x (8.17)

Observe next that

— @ —
dt .
f/(x1) X1
) dy» f(x2) X2)
i=| 5| = § D =pwx ®18)
d:y £ (xn) Xn
n
L DE(x)

Substituting Eq. (8.18) into Eq. (8.17) and noting that Df(x) is symmetric, we obtain
V(x) = —[Df(x)x]” x

= — %! Df(x)x)

== flai} <0 (8.19)

i=1

Hence, V (x) in Eq. (8.14) is a Lyapunov function. Let M denote the set of all points
X € R" where V(x) = 0, i.e.,
M={x:V(x) =0} (8.20)

Since f’(x;) > 0 (hypothesis 2), Eq. (8.19) implies V(x) = 0 if, and only if, x; = 0,
i =1,2,...,n. It follows that M in Eq. (8.20) consists of the set of all equilibrium
points of Eq. (8.10). Hence

V(x) <0 forallx € R" except at equilibrium points (8.21)

217

8.4 Symmetric A template

Now since x(¢) is bounded in view of Theorem 2 from Chapter 2, we can apply
the LaSalle invariant principle® to conclude that all trajectories of Eq. (8.10) must
converge to the invariant set’ M of equilibrium points.

Now since all equilibrium points of Eq. (8.10) are isolated (hypothesis 3), it follows
that all trajectories of Eq. (8.10) must converge to an equilibrium point.

Remarks

1 If the equilibrium points in M are not isolated,® then our theorem can be relaxed
to assert only that all trajectories must converge to the set M of equilibrium points.
Strictly speaking, this assertion does not imply that every trajectory will converge to an
equilibrium point since there exist (admittedly highly pathological and rare) situations
where every trajectory will approach M at an arbitrarily small rate so that x; — 0 and
yet the trajectory never converges to any particular equilibrium point.

2 To visualize the geometrical ideas behind the above proof, consider the hypothetical
surface V (x1, x) shown in Fig. 8.5. Notice that this surface has five local minima
{Q1, Q3, Qs, Q7, Qo}. Imagine the inside of the surface V as the surface of a rugged
narrow mountain crevice and a small ball is coasting down the surface. One such
hypothetical trajectory I" representing the “track’ made by the ball is shown in Fig. 8.5.
Notice that, due to gravity, a ball originating from any point other than an extremum
point must keep falling down along the steep slope until it settles down at a local
minimum; i.e.

. d
Vi, xg) = 2Vn), x0) <0 (8.22)

for all (x1, x2) # (x1(Qi), x2(Q;)).

An n-dimensional scalar function

V(xi,Xx2, ..., %) : R"”R! (8.23)
is called a Lyapunov function associated with an autonomous system of differential
equations

X = fi(x1, %2, ..., %), i=12...n (8.24)

if and only if, corresponding to any trajectory

(X1, X2, s X0) = (V1(0), y2(0), -, ¥ (1)) (8.25)

of Eq. (8.24), the corresponding scalar function of time

VIO Z V@),). ... ya(0) (8.26)

decreases monotonically with time, i.e., V() < 0.In particular, if V() =0 only
at equilibrium points, then it follows that all trajectories must land at an equilibrium

218 Back to basics
|

V(xy, x1)
A
\
1
T 1
(1100, %,(0)) | \ K | Qs
1 Vi 1 /
1 Vs 1 =
1 / 1 -
1 Q,]
! Q
1
Q /
-—== /_
Q
> X,

X

Fig. 8.5. A hypothetical Lyapunov function V (x1, xp) with five local extrema Q1, Q3, Qs, Q7, Qo,
and a hypothetical trajectory I' converging toward the local minimum Q3.

point Q; and the set B(Q;) of all initial conditions such that corresponding trajectories
converge to Q; is the basin of attraction of Q;. It follows from the above geometrical
insights that one method to prove Eq. (8.24) is completely stable is to find a scalar
function V(x1, x2, ..., x,) which possesses the above properties.9 Unfortunately,
no systematic procedure is presently available for finding such a scalar function,
partly because solutions of most nonlinear systems of differential equations, such as
Eq. (8.24), cannot be found by analytical methods.

Now that the degree of difficulty for proving complete stability of Eq. (8.24) is
understood, the reader would no doubt appreciate how lucky we are in being able to
invent the scalar function V (x) in Eq. (8.14) and prove that it qualifies as a Lyapunov

function.

219
—

8.5 Positive and sign-symmetric A template

8.5

Positive and sign-symmetric A template implies complete stability

In this section we will present another complete stability criterion which depends only
on the “sign,” and not the “value,” of the elements of the A template.

Definition 1: Sign symmetric A template

Let Agp° denote the template obtained by rotating an A template by 180° with respect
to the center of the template. Let ¢;; and a; ; denote the corresponding ijth elements
of A and Agpo. We say a (2r + 1) x (2r + 1) A template, where r is the radius of the
sphere of influence S, (i), is sign symmetric if and only if a;; and a; ; are both positive,
both negative, or both zero, for alli, j = 1,2,...,2r + 1.

The above definition is equivalent to the condition that a;; and a_; _; are both
positive, or both negative, or both zero, for all (i, j) # (0,0), where the double
subscripts correspond to a Cartesian coordinate system the origin of which is located
at the center of the template. As an illustrative example, consider the 5 x 5 A template
shown in Fig. 8.6(a). To determine whether this template is sign symmetric, we first
rotate “A” by 180° (always with respect to the center of the template) to obtain the
associated Agpe template shown in Fig. 8.6(b). We then construct the corresponding
“sign” templates, denoted by sgn[A] and sgn[Agoe], respectively, by assigning the
symbol +, —, or O to each entry g;;, where a;; > 0, a;; < 0 and ¢;; = 0 in A and
Agoe, respectively.

-2 0|75 0 -3 0|8 -6 0
1 6/0|-2|-6 2 60| -3|—-4
A= 0 214 3 0| Aige=| O 314 2 0
—41-310 2 —-6|-21|0 6 1
0| —-618 0| -3 0| -51|7 0| -2
(a) (b)
-1 0|+|-=1]0
+ |4+ 0|—|—
sgn[A] = sgn[Agpe] =| O |+ |+ |+ | O
—=Tol+]+
0/ —|+]0]=
(c)

Fig. 8.6. (a) A non-symmetric 5 x 5 A template (A # AT). (b) Ajgoe obtained by rotating the A
template 180° with respect to the center of the template. (c) The “sign” of corresponding
coefficients of A and A g are identical as depicted in this “sign” template sgn[A] whose entries
consist of 4+, —, and 0’s.

220

Back to basics

Then the A template is sign symmetric if and only if
sgn[A] = sgn[Agp°] (3.27)

Since Eq. (8.27) is satisfied as shown in Fig. 8.6(c), we conclude that the A template
in Fig. 8.6 is sign symmetric. Observe that this template is not symmetric with respect
to the center, i.e., a sign-symmetric A template is, in general, not symmetric, but a
symmetric A template is always sign symmetric.

Each of the following conditions concerning the relative signs of the synaptic
weights a;j of a (2r + 1) x (2r + 1) A template

a_r—r ... a_r, | a—ro a—r ... a—yr

a—r+l,—r -+ Q—r4l,—-1 A—r+10 d—r+1,1 --- Q—r+l;r

A= ap—, ap,—1 ao,1 ao,r

Ar—1,—r ar—1,—1 ar—1,0 ar—1,1 ar—1,r

ar—r ... ar—1 ar.o ar1 ... arr

is called a synaptic weight condition:

Definition 2: Synaptic weight conditions
Synaptic weight condition 1:

ar >0 forall (k,) # (0, 0) (8.28)
Synaptic weight condition 2:

ap >0 forall (k,I) # (0,0) and “even” k
ap <0 forall “odd” k (8.29)

Synaptic weight condition 3:

ap > 0 forall (k,1) # (0, 0) and “even” [(8.30)
ay; <0 forall “odd” [

Synaptic weight condition 4:

ap >0 forall (k,I) # (0,0) and “even” (k +)
ap <0 forall “odd” (k + 1) (8.31)

We are now ready to state our next theorem.

221

8.5 Positive and sign-symmetric A template

Complete Stability Theorem 2!°
An M x N CNN witha (2r41) x (2r+1) A template is completely stable, for arbitrary
B template and arbitrary threshold z, if the following three conditions are satisfied:

1 The A template is sign symmetric.
2 The template satisfies any one of the four synaptic weight conditions.
3 All the equilibrium points are isolated.

The proof of a special case of this theorem will be given in the next section.

Remark

Note that the synaptic weight condition 1 corresponds to an A template with non-
negative coefficients (except possibly the center). Hence the title of this section is a
Corollary of the above theorem.

Corollary to Complete Stability Theorem 2
An M x N CNN with a 3 x 3 A template, for arbitrary B template and arbitrary
threshold z, 1s completely stable if the following three conditions are satisfied:

1 The A template is sign symmetric.

2 The A template possesses any one of the six synaptic weight patterns shown in
Fig. 8.7
where

0 denotes a “zero” synaptic weight,

@ denotes a “positive” or “zero” synaptic weight,
© denotes a “negative” or “zero” synaptic weight,
X may assume any value.

3 All the equilibrium points are isolated.

SAESHES SHEERES SHEESRES.
O| X |©O SHIPINS D | x|
o|o | SHNCRNS SHENSHNS
synaptic weight synaptic weight synaptic weight
pattern 1 pattern 2 pattern 3

o0 |® @06 OO
0|x|0 0] x]0 x| ®
SE e|0]® oo |8

synaptic weight synaptic weight

synaptic weight
pattern 4 pattern 5 pattern 6

Fig. 8.7. Six synaptic weight patterns which satisfy condition 2 of the Complete Stability Theorem 2.

222 Back to basics

Proof:
This corollary follows directly from the above theorem since each of the synaptic

weight patterns 1-3 and 6 satisfies one of the four synaptic weight conditions in (8.28)—
(8.31).

Synaptic patterns 4 and 5 are trickier and we give the following sketch of the
argument. If we rotate synaptic pattern 4 by 45°, counterclockwise, we obtain the
pattern

©,
(.
&

Fig. 8.8.

Looking at the nonzero entries, the center element is connected only to the top,
down, left, and right neighbors. It can be shown that this is similar to the template

0|0

O %X |06

0|l®|0
Fig. 8.9.

which belongs to the class of synaptic pattern 2. The same can be said by rotating
synaptic pattern 5 by 45° clockwise.

Thus the stability of synaptic patterns 4 and 5 can be deduced from the stability of
synaptic pattern 2.

223
—

8.5 Positive and sign-symmetric A template

To illustrate the properties of the synaptic weight patterns in Fig. 8.7, consider the

following set of 12 hypothetical templates:

A =

A =

0]-2|0
2 17| 4
0] 0] O
7 0 | -1
0| 8 0
0]0]O0
010 1
2 314
5 6 | O
-1/ 0 | -2
0| 7 0
=310 1|0

0 |—-2| 7 0 0 0

Ay =|—-4| 7 |-3|, A3=|-2| 9 | -1
7 | -1 0 0 0 0

=71 0 0 0 1 2

As =] 0 2 0|, A¢=|-3| 4 | -5
2 0 | -6 0 0 0

0 0 0 —1|-2|-3

Ag =| —1|-2|-3|, Ag=| 4 5 0
0|-50 0O |[-7]0

-4 5 —2|-1| 4

A= 7 0 8 |, Ap=| 2 3 1
6 2 0 1 |-5|-7

Table 8.2 summarizes the properties of these templates.

Table 8.1.
Template Is template A; Synaptic weight pattern
sign-symmetric? possessed by template A;
Ay no 3
Ay yes 1
Aj yes 1,2
Ay no 5
As no 4
Ag no none
Ay no 6
Ag no 1
Ag no 3
AlO no 2
A no none
App yes none

Observe that since none of the above 12 templates are symmetric, we cannot make

use of the Complete Stability Theorem 1. However, applying the Corollary to Complete

Stability Theorem 2, we can assert that templates A, and A3 are completely stable.

224
—

Back to basics

8.6

Positive and cell-linking A template implies complete stability

In this section we will present yet another complete stability criterion, which substi-
tutes the “sign symmetry” condition from Theorem 2 by a certain condition on the
signal flow graph G4 (M x N) associated with an M x N CNN, where G4(M x N)
denotes a directed graph obtained by associating each cell C (i, j) of the CNN with a
node (i, j) and where each node is connected to its neighbors via the signal flow graph
G4 associated with the A template defined in Fig. 2.17.

Definition 3: CNN signal flow graph G4 (M x N)
For each M x N CNN, we construct a directed graph Ga(M x N) corresponding to
an A template as follows:

1 Draw the signal flow graph G4 associated with the A template. For each non-zero
and non-central synaptic weight ag; # 0 (k % i,[# j) in A, draw a directed branch
from node (k, l) to the center node (i, j), and a similarly directed branch from the
center node (i, j) to the reflected node (k,D); i.e.,node (k,I) is related to node (k,)
by a 180° rotation with respect to the center node (i, j).!!

See Figs 8.10(a) and 8.10(b) for an example.

2 To each cell C(k,I) in an M x N CNN, draw a corresponding node (k, 1), k =
,2...,M,l=1,2,..., N (see Figs 8.10(c) and 8.10(d) for a 4 x 4 CNN).

3 Duplicate the signal flow graph G4 (delete the coefficients a; and the self-loop)
from step 1 at each node (k,[) from step 2. All branches connected to “virtual”
boundary nodes are deleted. The resulting directed graph is called the reduced CNN
signal flow graph Go(M x N). For the 4 x 4 CNN shown in Fig. 8.10(c), we obtain
the 16-node directed graph G4 (4 x 4) shown in Fig. 8.10(d).

Definition 4: Cell-linking CNN

Let Ga(M x N) be the signal flow graph of an M x N CNN associated with an A
template. Then the CNN is said to be cell-linking if and only if for every two distinct
nodes (k1, [1) and (ka, [») in G4 (M x N), there is a similarly directed path'? in G o (M x
N) from node (ky, [1) to node (k2, I2), and a similarly directed return path from node
(ka, I2) to node (k1, [1).

For example, the 4 x 4 CNN shown in Fig. 8.10(c) is not cell-linking because there
is at least one pair of nodes (e.g., from node (2, 1) to node (1, 1)) where no similarly
directed path exists. On the other hand, the 4 x5 CNN shown in Fig. 8.11 is cell-linking
as the reader can verify that there is a similarly directed path from any node (k1, [1)
in the signal flow graph G4(4 x 5) to any other node (k3, l2). For example, to go
from node (2, 2) to node (3, 4), we would travel along the similarly directed path
2,2)—> 3,2)—> 2,3) > 3,3) — 4,3) = (3,4).

225 8.6 Positive and cell-linking A template
|

i-ij-1 G-L)p (i-1,j+1)
]
2.6 1.5 0

o 3. 47 .

A= 0 4.7 0 Gj-1) @ 3.2. Gj+1
0 0 3.2 1.5
] .
(+ij-1 @+1,)) (+1,j+1)
(a) (b)

1,1) (1,2) (1,3 1,4)

@24

(3.4)

4.1 4.2) (4.3) (4.4)

(© (d

Fig. 8.10. Steps for constructing the signal flow graph G4 (M x N) of an M x N CNN: (a) specify
the A template; (b) draw the signal flow graph G4 associated with the A template. Note that for
each non-zero synaptic weight ay; # 0, k # [, there correspond two branches in G4. (c) A4 x 4
(M = N = 4) CNN. (d) The reduced signal flow graph G4 (4 x 4) associated with the A template.

Observe that before one can certify that a particular CNN is cell-linking, Definition
4 requires that one must examine all possible combinations of initial and terminal node
pairs and in each case produce a similarly directed path. This would be a tedious task
unless a computer program is written to do the checking. Fortunately, the following
three cell-linking tests can be used to certify quickly, often by inspection, a large class
of N x N CNNs to be cell-linking.

Cell-linking test 1

An N x N CNN, where N is an odd integer, is cell-linking if and only if there is
a similarly directed path from the center node'? of the associated signal flow graph
Ga(N x N) to every other node of G4(N x N).

Example 1
Consider the 3 x 3 CNN obtained by deleting row 4 and column 4 from the 4 x 4 CNN
in Fig. 8.10(c). The corresponding signal flow graph G4 (3 x 3) is obtained by deleting

226 Back to basics
|

0 -2 0
A= 0 1.5 0 [] [
3 0 -4

(@) (b)

(1,1) (1,2) (1,3) (1,4) (1,5)

2,1) (2,5)

(€N))] (3.5)

4.1) @2 @3 @4 @5
(©) (d)

Fig. 8.11. Example of a 4 x 5 cell-linking CNN.

all nodes, and the branches attached to them, from the last row and the last column in
Fig. 8.10(d). In this case, node (2, 2) is the center node of the associated signal flow
graph G4 (3 x 3). Since there is no similarly directed path going from node (2, 2) to
node (1, 3) in G4 (3 x 3), we conclude that this 3 x 3 CNN is not cell-linking.

Example 2
Consider the 3 x 3 CNN obtained by deleting row 4 and columns 4, 5 from the 4 x 5
CNN in Fig. 8.11(c). The corresponding signal flow graph G4 (3 x 3) is obtained by
deleting all the nodes, and the branches attached to them, from the last row and the
last two columns in Fig. 8.11(d). In this case, node (2, 2) is the center node of the
associated signal flow graph G4 (3 x 3). Observe that there is a similarly directed path
from node (2, 2) to every other node of G4(3 x 3):

2,2) = (1, 1),

2,2) > (1,3) = (2,3) = (1,2),
(2,2) — (1, 3),

2,2) —> 3,2) > (2, 1),

2,2) — (1,3) - (2,3),

2,2)—> 3,2) > 2, 1)~ 3,1,

227

8.6 Positive and cell-linking A template

2,2) - (3,2),
2,2) - 3,2) = (2,3) — (3,3).

It follows from the cell-linking test I that this 3 x 3 CNN is cell-linking.

Proof of cell-linking test 1:
The proof of this test follows from the proof of the following cell-linking test 2, since
the center cell is rotationally symmetric with respect to itself. (Il

Definition 5: Symmetric node-pair
If “a” is a node of the signal flow graph G4(M x N) let a* denote the corresponding
node which is 180° rotationally symmetric (about the center) with respect to a.

Lemma 1
There is a similarly directed path from node a to node b in G4 if, and only if, there is
a similarly directed path from node b* to node a*.

Proof:
We will prove this Lemma by mathematical induction on the length n of the path as
follows:

n = 1: if there is a branch from node a to b then there is a branch from b* to a* in
view of the space-invariance of the templates, as shown in Fig. 8.12.

a*
center
[]

b*

Fig. 8.12. A branch from a to b implies that a branch exists from b* to a*, and vice versa.

A directed path of length n = k + 1 from a to b contains a path of length k from a
to ¢ and a branch from c to b. By the induction hypothesis, there is a path of length k
from ¢* to a* and a branch from b* to ¢*. So there is a path of length k£ + 1 from »* to
a*. See Fig. 8.13. O

Cell-linking test 2
An M x N CNN is cell-linking if and only if there is a pair of rotationally symmetric
nodes!* (k, 1) and (k,) such that there is a similarly directed path from node (k, /)

228
—

Back to basics
c b a*
center
[]
a b* c*

Fig. 8.13. A directed path from a to b implies that a directed path exists from b* to a*, and vice
versa.

to every other node of Ga(M x N), and a similarly directed path from node (k, 1) to
every other node of Ga(M x N).

Example 3

Consider the 4 x 4 CNN shown in Fig. 8.10(c) and its associated signal flow graph
G4 (4 x 4) in Fig. 8.10(d). Observe that for every pair of rotationally symmetric nodes
(k, 1) and (k, I), of which there are many (e.g., (1, 1) and (4, 4), (3, 2) and (2, 3), (2, 1)
and (3, 4), etc.), in G4(4 x 4), we cannot find a pair (k,[) and (k, 1) such that there
exists a similarly directed path from node (k,) (resp., (k, D) to every other node of
Ga(4 x 4). It follows from cell-linking test 2 that the 4 x 4 CNN of Fig. 8.10 is not
cell-linking.

Example 4

Consider the 4 x 4 CNN obtained by deleting column 5 from the 4 x 5 CNN in
Fig. 8.11(c). The corresponding signal flow graph G4 (4 x 4) is obtained by deleting
all nodes, and the branches attached to them, from the last column in Fig. 8.11(d).
Consider the rotationally symmetric pairs of nodes (1, 1) and (4, 4). Observe that there
is a similarly directed path from node (1, 1) to every other node of G4 (4 x 4):

1,1 — 2,1,

1,1H—-@2,1)—> @G, 1),

1,1H)—-2,H—-> @G, 1)— 41,

1,1H)—-@2, D —({,2),

1,1H—-@2,1)—=(1,2) = (2,2),
1,1H-02,D—=(1,2) > (2,2) = (3,2),
1,1H)—-2,H)—>(1,2) > (2,2) > (3,2) > 4,2),
1,1H)—-@2,DH—=(1,2) = (2,2) = (1, 3),

% 8.6 Positive and cell-linking A template
1, -2, 1H)— (1,2 > 2,2) = (1,3) — (2,3),
1,H)—=2,H)—-(1,2) - (2,2) > (1,3) = (2,3) — (3, 3),
1,H-2,H—-1,2)—> 2,2)—> (1,3) > 2,3) > (3,3) > 4,3),
1L —-2,1H)—1,2) > 2,2) > (1,3) —> (2,3) — (1,4),
1,H—->2,DH—-1,2) > 2,2)—> (1,3) »> 2,3) > (1,4 - 2,4),
1Ly —-2,1H)—>1,2) > 2,2) > (1,3) > 2,3) — (1,4 - (2,4) — (3,4),
1,H—->2,H—1,2) > 2,2) > (1,3) > (2,3)
- (1,4 - 2,4 - 3,4 —> 4,4).

A similarly directed path can also be found from node (4, 4) to every other node of
GA(4 x 4). It follows from cell-linking test 2 that this 4 x 4 CNN is cell-linking.
Proof of cell-linking test 2:

If the template is cell-linking, then by definition a and a* have similarly directed paths
to every other cell. Suppose both a and ™ have similarly directed paths to every other
cell. Consider cell ¢ different from a. Then cell ¢* is different from a*. So there is a
path from a* to ¢*. By Lemma 1, there is a path from c to a. Since there is a path from
a to everywhere else, ¢ has a path to everywhere else too. U
Cell-linking test 3

Let C(M; x Np) denote any CNN subset of an M x N CNN, where M| < M and
N < N.Suppose N1 > 1 and M| > 1.If C(M; x Nj) is cell-linking, then so is its
associated M x N CNN.

Example 5

Consider the 4 x 5 CNN shown in Fig. 8.11. Since Example 4 shows that the 4 x 4
CNN subset is cell-linking, it follows from the cell-linking test 3 that the associated
4 x 5 CNN is also cell-linking.

Proof of cell-linking test 3:

The proof is trivial by noting that the signal flow graph of an M| x N; CNN can be
obtained from the signal flow graph of an M x N CNN (M > M|, N > Nj) by
deleting some nodes and the branches connected to them. Thus a path in the smaller
graph is also a valid path in the bigger graph. (I

We are now ready to state our next complete stability criterion.

Complete Stability Theorem 3
An M x N CNN with a (2r + 1) x (2r 4+ 1) A template is completely stable, for
arbitrary B templates and arbitrary threshold z, if the following three conditions are

230

Back to basics

satisfied:

1 The CNN is cell-linking.
2 Any one of the four synaptic weight conditions given by Eqs (8.28)—(8.31) is met.
3 All the equilibrium points are isolated.

Corollary ro Complete Stability Theorem 3
An N x N CNN with a 3 x 3 A template, an arbitrary B template, and an arbitrary
threshold z, is completely stable if the following three conditions are satisfied:

1 The CNN is cell-linking.

2 The A template possesses any one of the six synaptic weight patterns given in
Fig. 8.7.

3 All the equilibrium points are isolated.

Proof:
We will only sketch the proof of this corollary.!?

Let us first prove the above corollary for the synaptic weight pattern 6. The state
equation is

X = —X—I—Af(x)—i—ﬁu—l—z

The Jacobian matrix of the system is
(=1 +AJ)
where [is the identity matrix and

f'(x1)
J =

f,(xn)

The off-diagonal elements of A are the off-center elements of the A template which
are nonnegative. Cell-linking implies the irreducibility'® of the matrix A and hence
—I + AJ is also irreducible. Since the trajectories are bounded and the equilibrium
points are isolated, the conclusion follows from Theorem A.1 in the Appendix of this
chapter.

By using Theorem A.2 in the Appendix, the synaptic weight patterns 1-3 can
be transformed into the synaptic pattern 6. Since “stability” and “irreducibility” are
preserved under these transformations, the corollary is proved. O

Remarks

1 Complete Stability Theorem 3 can be used to prove Complete Stability Theorem 2
since for sign-symmetric templates the signal flow graph can be decomposed into
cell-linking components.

231

8.7

8.7 Stability of some sign-antisymmetric CNNs

2 The “connected component detector (CCD)” template

A=
to be presented in Chapter 12 does not belong to any of the above classes.

To understand the elusiveness of this template, observe that the preceding stability
criteria only make use of the “sign” of the template entries, not the actual values.
In the following section, we will show that by changing the template entries of the
CCD CNN by an arbitrarily small amount we can make it unstable. Consequently, any
stability criterion capable of predicting the stability of the CCD template must include
conditions involving the synaptic weights of the A template.

Stability of some sign-antisymmetric CNNs

We have already given an intuitive reason on why the stability of the CCD CNN is very
difficult to prove. Numerical simulations have shown that the trajectories associated
with the CCD template always converge to an equilibrium point. But, if we change the
template values slightly, the system will oscillate.

In fact, computer simulations show that the parameters of the CCD template

A= 1 | 2 | -1]

lie on a stability boundary in the parameter space. In particular, the slightly perturbed
A template

A=[101 | 2 [-101]

is found to be unstable. This is illustrated in Examples 8.6(a) and 8.6(b).
These templates belong to the class of templates

A=’a*‘2‘a‘,13=’0‘0‘0‘7zzlil

When the parameters a and a* are varied, the corresponding CNN exhibit different be-
haviors. The a—a* parameter plane can be partitioned into eight pairs of symmetrically

spread regions which exhibit the same qualitative behavior.

We have shown earlier that if a and a* are both positive, or both negative, then the
CNN is stable (almost everywhere).

The following theorems can be proved:

Theorem 4
The CNNs in region 1 of the parameter plane in Fig. 8.14 do not possess any stable
equilibrium point and are therefore not stable.

232
—

Back to basics

EXAMPLE 8.6: (a) Stable output waveforms corresponding to template

A=[09 | 2 [-099]

in Region 4 with x1(0) = x2(0) = 0.1.
(b) Oscillating output waveforms corresponding to template

A=[101 [2 [-101]

in Region 1 with x1(0) = x2(0) = 0.1.

CNN’s
T

=
o
=
]
L]
=
=
Ly
£
=
=
L]
E‘_
L+]
R |
= |
vy 1
L \

1

1

1

25| \
Y
N
s
] iy L L, 1 L 1 -l
a H ia 15 20 25 an 35 41
t
(a)

xi (Il](seld] and x2(f(dashad)

180

233 8.7 Stability of some sign-antisymmetric CNNs
|

ymmetric templates

Fig. 8.14. Partitioning of the a—a™ parameter plane into 16 regions. See text for the behaviors of the
CNNs in each region. The CNN at the point “*” is related to the CCD template A =
by a 180° rotation and shares the same functionality as the CCD template except that all pixels
move in the other direction (see Chapter 12).

Theorem 5

The CNNs in regions 2 and 3 of the parameter plane in Fig. 8.14 are completely
stable and any binary one-dimensional pattern corresponds to the output of a stable
equilibrium point.

Theorem 6

The CNNs in regions 5 and 7 of the parameter plane in Fig. 8.14 are completely stable
and all trajectories converge to an equilibrium point with a homogeneous “white”
output for all cells

(W W[W[W[W[WIWIW|W|W]|

where “W” denotes a “white” output, or a homogeneous “black” output for all cells

(B/B|B|B|B[B[B[B|B|B|

where “B” denotes a “black” output.

234

Back to basics

Theorem 7

The CNNs in regions 6 and 8 of the parameter plane in Fig. 8.14 are completely stable
and all trajectories converge to an equilibrium point with an alternating “white and
black” output

(wiB[wW[B[W[B[W|B|W][B]

or an alternating “black and white” output

(B[w[B|W[B[W[B|W|B|W]

Computer simulations show that all CNNs in region 4 behave like a CCD CNN.
Observe that the CCD template

A=[TT2 [T

lies at the common corner boundary point of unstable region 1, stable regions 5 and
6 (everything converges to one of two possible patterns), and stable region 4 (CCD
behavior).

Let us examine next the trajectories of the following two CNNs which lie in two
different regions in the parameter space in Fig. 8.14, but which are very close to each
other:

Observe that the CNN in Example 8.6(a) is stable while the other in Example 8.6(b)
is unstable.

Proof of Theorem 4:
Without loss of generality, let us assume @ < —1 and a® > 1. Suppose there is an
equilibrium point such that |x;| > 1 for all i. Assume x; > 1, then

X|=—x1+2y1+ay=—xi+2+ay=0

Since 2 — x; < 1, we haveay; = —(2 —x1) > —1.If y = 1 then ay, < —1, which
leads to a contradiction. Hence, y; = —1,1i.e., x3 < —1
Similarly

Xo=-x2+2y+a‘ytay3=—-x-2+a" +ay3; =0
—x—24a">1-24+1=0 = ay3<0

If y3 = —1 then ays > 1, which yields a contradiction. So, y3 = 1 and x3 > 1.
Similarly, we find x4 < —1, x5 > 1, etc.
So, we have two possibilities:

Xp—2=<-1, x,—1>1, x,=<-1
or

Xp—2 = 1’ Xp—1 = _1» Xn = 1

235

8.7 Stability of some sign-antisymmetric CNNs

In the first case

Xp=—xp+2y+a*y, 1 =—x,—2+a"=0

x, =a* —2 > —1, which leads to a contradiction.

A similar proof applies for the second case.

So, the equilibrium point for this system with |x;| > 1 for all i does not exist. Hence,
an equilibrium point for this system must satisfy |x;| < 1 for some i. It can be shown
that such an equilibrium point is unstable. ([l

Sketch of proof of Theorem 5

We will only show that any binary pattern is the output of some stable equilibrium
point. Consider a binary output {b1, by, ..., b,} where b; € {—1, 1}. We need to show
that there exists an equilibrium point (xp, ..., x,) such that f(x;) = b;. Stability
follows from the fact that the Jacobian matrix at this equilibrium point is

-1

-1
Since b; € {—1, 1}, this means that |x;| > 1. In this case the state equation can be

written as

X1 =—x1+2y1 +ayy=—x1 +2by+aby =0
x1 =2b1 +aby

Xj = —x; +2y;i +a*yi1 +ayivi
= —x; +2b; +a*bj_1 + abjy1 =0
x; =2b; +a*bi_1 +ab;yy, for2<i<n-—1.
Xp = —Xp + 2y, + a*yn—l
=—x,+2b, +a*b,_1 =0
Xp = 2b, +a*b,_

Now we need to show that f(x;) = b;.

If by = 1then x; = 2 + ab,. Since |a| < 1 = |aby| < 1, it follows that x| > 1.
If by = —1thenx; = —2 4+ aby < —1. Hence, f(x1) = b;.

Consider next 2 < i <n— 1.If b; = 1 then x; = 2 + a*b;—1 + ab;4+;. Since
la| + |a*| < 1, we have |a*b;—1 + ab;+1| < |a| + |a*| < 1, and hence x; > 1.

236 Back to basics
I
Similarly, if »; = —1 then x; < —1. Consequently f(x;) = b;. We can also show
f(xn) = b, so we have found such an equilibrium point which outputs the binary
pattern b;.
Proof of Theorem 6:
We will only prove the case in region 7 where a > 1. Suppose @ > 1 and a* > 0.
Since the template is sign symmetric, we can apply the Complete Stability Theorem 2
to show that it is stable. It remains to show that there are only two stable equilibrium
points, whose output is either
(WIw[w[w[w[w[w|w[w[W]
or
(B/B|B[B[B[B|B[B[B[B|
We know that a stable equilibrium point must satisfy |x;| > 1 for all i.
X =—x1+2y1 +ay; =0
Since a > 1 itis easy to show thatif y, = 1 thenx; > 1.If y, = —1 thenxp < —1,
S0 y1 = y2.
Xy =—x2+2y2+a"y1 +ay;
=—x+Q2+a")y+ay; =0
Again it is easy to show that y = y3,sowemusthave yj =y, =3 =y =--- = y,.
It follows that
(WW[W[W[W]W[W]W|W]|W|
and
(B/B|B[B[B[B|B[B[B[B|
are the output of the only two stable equilibrium points. [l
The proof of Theorem 7 is similar to that of Theorem 6.
The Venn diagram in Fig. 8.15 illustrates the relationship between the various
classes of templates we have discussed so far.
I
A Appendix to Chapter 8

The theorems in this section rely on the convergence results of Hirsch and the
equivalent transformation results of Chua and Roska'” and Chua and Wu.'®

237 A Appendix
|

Universe of all A-Templates Symmetric

Cell-linking

Stable This is the class of Sign-symmetric
ternplates satisfying
the 4 synaptic
weight conditions

Fig. 8.15. Venn diagram illustrating the relationship between classes of templates. The number

corresponds to the regions in Fig. 8.14.

Theorem A.1:[1]"°
Consider the system

x = F(x)

Assume that for each x the Jacobian matrix DF is irreducible®® and its off-diagonal
elements are nonnegative. Suppose all trajectories remain bounded. Then, for all initial
conditions in a full measure set, the corresponding trajectories approach the set of
equilibrium points.

Theorem A.2:[2]'

Consider a CNN with time-invariant input and bias

X=—-x+Af(x)+Bu+z (A8.1)
Let

c

f

i

A =

R A
AN N

Then there exist ﬁl, ﬁz, fi3 and z1, z», z3 such that each of the following three systems

X=—-x+A|f(x)+Bu+z
X = —X—}—Agf(x) —{—Bzu—i—Zz
X = —X+A3f(x) +]§3U+Z3

238 Back to basics
|

is topological conjugate to system (A8.1), where Al, Az, and A3 are given by:

—a b —c —a —-b —c a —-b c
Al=| —d e —f A2 = d e f A3=| —d e —f
—g h —i —g —h —i g —-h i

Roughly speaking, topological conjugacy means that the dynamics are qualitatively
the same. In particular, stability properties are preserved under topological conjugacy.

LaSalle’s invariance principle
Consider the autonomous system

x=f(x), xeR"

Let V(x) be a continuously differentiable function from R”" into R. Let S be an
arbitrary set in R”. Suppose V = VV - f(x) does not change sign in S. Define

E={x:Vx)=0,x€ S}

where S denotes the closure of S. Let M be the largest invariant set in E. Then M is
a closed set, and for all solutions remaining in S for all + > 0, x(¢) approaches the
closed invariant set M, or “o0,” i.e., M U{o0}, where “U” denotes ““set union” and {oo}
denotes the point at co.

]
9 The CNN Universal Machine (CNN-UM)

In Chapter 7, we have shown a couple of generic examples which can be solved by
a sequence of CNN templates. The hardwired CNN implementation using different
CNN components or different templates is, however, totally impractical. In this chapter
we show the architecture of the first spatio-temporal analogic array computer, the CNN
Universal Machine (CNN-UM).

In the examples mentioned above, and in many other examples including physio-
logically faithful models of various parts of the nervous system, especially vision, the
following two completely different types of operations are used to solve a complex
task:

e continuous-time, continuous valued spatio-temporal nonlinear array dynamics (2D
and 3D arrays);
e Jlocal and global logic.

Hence, analog (continuous) and logic operations are mixed and embedded in the
array computer. Therefore we call this type of array computing: analogic.
The CNN-UM architecture, shown subsequently:

e contains a minimum number of component types,
e provides stored programmable spatio-temporal array computing, and
e is universal in two senses:

as spatial logic, it is equivalent to a Turing Machine and as a local logic it may
implement any local Boolean function;

as a nonlinear dynamic operator, it can realize any local operator of fading
memory,! i.e., practically all reasonable operators. Indeed, the CNN-UM is
a common computational paradigm for as diverse fields of spatio-temporal
computing as, for example, retinal models, reaction diffusion equations, math-
ematical morphology, etc.

Remarks:
1 The stored program, as a sequence of templates, could be considered as a genetic
code for the CNN-UM. The elementary genes are the templates; in case of r = 1 it

239

240
—

9.1

9.1.1

The CNN Universal Machine

is a 19 real-number code. This, in a way is a minimal representation of a complex
spatio-temporal dynamics.

2 In the nervous system, the consecutive templates are placed in space as subsequent
layers.

The architecture

The extended standard CNN universal cell

Actually, in Chapter 7, we have shown almost all of the various components we need
in the extended standard universal cell, shown schematically in Fig. 9.1.

We have two elements not yet introduced in Chapter 7.

The local analog output unit (LAOU) is a multiple-input single output analog
device. It has the same function for continuous signal values as the local logic unit
(LLU) for logic values — namely, it combines local (stored) analog values into a single
output. We may have used it for analog addition in Section 7.6, instead of using the
CNN cell for addition.

The local communication and control unit (LCCU) receives the programming
instructions, in each cell, from the global analogic programming unit (GAPU),
namely:

o the analog template values (A, B, and 7),
o the logic function codes for the local logic unit, and

e the switch configuration of the cell specifying the signal paths and some settings in
the functional units (e.g., f(-), LAOU, GW(-)).

This means, at the same time, that we need registers (storage elements) in the GAPU
for these three types of information, namely:

e an analog program register (APR) for the CNN templates,
e alogic program register (LPR) for the LLU functions, and
e a switch configuration register (SCR).

In Fig. 9.1(b) the analog part of a circuit schematic of the cell is shown. We
are keeping in mind an electronic or a physiological model, although, except for a
capacitor, no implementation-dependent elements are shown. An electronic integrated
circuit (VLSI) implementation of these elements will be discussed in Chapter 15.

We assigned separate local analog memory places for the input (u), initial state
(x(0)), threshold (z), and a sequence of outputs (y™), however a single local analog
memory with a few places can also be used for all of these signals/data.

In Fig. 9.1(c) we show the logic part. We have introduced the elements already in
Chapter 7. The “global wire” (GW (-)) operator receives inputs from all cells, their cell

logic outputs are Y;; := Yi(jk), k: specified.

241 9.1 The architecture
|

LCCU:
local communication
and control unit

LLM:

pant CNN local .

local
analog nucleus logic

memory with switches memory

i

LAOU: LLU:
local analog | local logic
output unit unit Extended cell

(a) The main components in the extended cell

L1 |

A

o)

> SO e

programable template Bla T
standard controlled sources possible signal
paths controlled

nonlinearity (A or B) to S, (ij i
() @ convergent sum of by switches

El template controll?d =—program (e.g. template
sources from S, (ij) values) from GAPU
local analog

memory (b) The analog part of a circuit schematic

Fig. 9.1. The extended standard CNN universal cell.

Remarks:

There are other, very useful possibilities related to a “global wire.” For example,
weighted analog outputs of each row may be calculated and added for the whole array.

242 The CNN Universal Machine
|

I, I, I

LLM: local logic memory
analo 1) 2 ® .
part g B/U Y Yii | Y (e.g. shift memory)
Vi
. LLU: local logic unit — Y

—p . EEEE

local logic memory

binary converter programmed local logic
(Bipolar analog to unit program from GAPU
Unipolar logic) (global analogic

programming unit)

(c) logic part

Fig. 9.1. Continued.

9.1.2 The global analogic programming unit (GAPU)

This unit is the “conductor” of the whole analogic CNN universal machine it directs
all the extended standard CNN universal cells.

Fig. 9.2 shows that, in addition to the three registers we already discussed in Section
9.1.1 (i.e., the APR, LPR, SCR), the global analogic programming unit (GAPU) hosts
the main control of the array which is placed in the global analogic control unit
(GACU). Indeed, this is the (digital) machine code of the sequence of instructions
of the given analogic CNN program.

Why stored programmability is possible?
In digital computers, we tacitly assume and take for granted that, for any sequence of
instructions:

(i) all the transients decay within a specified clock cycle, and

(i1) all the signals remain within a prescribed range of dynamics (including dissipa-
tion, slope, etc.).

These conditions are not trivial in digital implementations either. Think about what
would happen if a 75 MHz Pentium processor had a clock speed of 100 MHz. Clearly

243
—

9.1 The architecture

GCL
- GAPU
GAPU
GCL.: global clock
APR: analog programming
GW: global wire instruction register
LPR: logic program
instruction register
@ extended standard CNN SCR: switch configuration
Universal cell register
GACU: global analogic
control unit

Fig. 9.2. The structure of the CNN universal machine.

it would not work because of violating the first condition above. It may even destroy it
due to violating the second condition.

A unique feature of the CNN dynamics and the CNN-UM architecture is that we
can assure conditions (i) and (ii) as well. It is much less trivial here than in the digital
case. Our main elementary instructions are the CNN templates and the local logic
operations. But the CNN templates may induce the most exotic dynamics. The global
clock (GCL) has a faster clock cycle for the logic part than for the analog part.

The global analogic control unit stores, in digital form, the sequence of instructions.
Each instruction contains the operation code (template or logic), the selection code for
the parameters of the operation (the code for the 19 values: A, B, z; or the code of the
local logic function), and the switch configuration. The parameters are stored in the
registers (APR, LPR, SCR).

244
—

The CNN Universal Machine

Fig. 9.3 shows the arrangement of the GAPU from this point of view.

TO ALL CELLS

*

[APR | LPR SCR
T+ = o] — el 11
GACU

Fig. 9.3. The organization of the GAPU.

9.2

A simple example in more detail

In this example we show a complete sequence of various forms of an analogic CNN

program as it is executed on a CNN Universal Machine. The outline and description

of such a program contains the following information.

Global task.

The flow diagram of the algorithm.

The description of the algorithm in high level « language (analogic CNN language)
or in an assembler (the analogic machine code, AMC).

The result of an o compiler in the form of an analogic machine code (AMC) as a
sequence of macro instructions and its binary form (optional).

The physical code generated by the CNN operating system and the controlling CNN

chip “platform” is not shown here.

This example, called Bars-Up, is interesting in itself. The global task is shown

in Fig. 9.4. We have to detect all objects which have bars pointing upwards, and a

continuous (to this bar) middle segment (many animals are responding to these objects

by firing some neurons in their infero-temporal cortex).

245

9.2 A simple example in more detail

The flow diagram of the analogic CNN algorithm is shown in Fig. 9.5 with the
intermediate results. The « language description (version 2.1) is shown in Table 9.1.
We will show later the other codes generated by the o compiler.

The global task is: detect those objects which have bars pointing upwards. A typical
input — output image pair is shown below. The original image is called BarsUpTest,
the output is RESULT.

‘ue' ‘u

1L 1
= AL A,

Fig. 9.4. The global task.

Remarks:

Here, we have a 5 x 5 template. Its actual physical implementation is not considered
here. There are several ways to realize this “large neighborhood” CNN template, for
example, to decompose it into several 3 x 3 templates.

Table 9.1. Visual feature detection («-language, version 2.1).

FUNCTION BARS-UP;
xLoad (LLM1, BarsUpTest);
LLM3:=LLMI;
HOLLOW(LLMI1,LLM1,LLM2,10,—1);
LOGXOR(LLM2,LLM3,LLM1,10,—1);
HORDIST(LLM1,LLM1,LLM2,10,—1);
RECALL(LLM2,LLM3,LLM1,10,—1);
xSAVE(RESULT,LLM1);
ENDFUNCT;

Here, in this function description, we have used two new « instructions:

xLOAD(local memory, file name) and

xSAVE(file name, local memory)

These are the input and output instructions from and to the digital environment.

246 The CNN Universal Machine
|

* * - I Original input image

J_ I L J BarsUpTest

A

. . - 05]-05] 05 o o

R A={05] 2 (05| g=|o0]| 2] 0 2= [3]
I~ N 05| 05|05 0ol o0f o0

Result of HOLLOW template:

Y

i ik
| il | Logic XOR applied to the previous
= n two images

0 0 0 0 0
| 0 0 0 o [0
_ — 10.25 -0.25 10 0 0 =|_

! A_ B 0 0 0 [0 [0 .

0 0 0 0 0
+ Result of HORDIST template:

'L * 05] 05] 05 0] o

— 1 A=[05[405 B=[0[4] 0| z=[21]
A, 05[] 0505 0] 0

Result of RECALL template:

input: original image;

initial state: previous image
Fig. 9.5.

—

9.3 Avery simple example on the circuit level

In the following example, we will explain the functional details of the CNN-UM
operation on the functional circuit level. Even though the example is very simple, it

247 9.3 A very simple example on the circuit level
|

contains the micro steps. At the same time, it is not a transistor level description. Some
transistor level implementation details will be described in Chapter 15.

The task
Detect the horizontal intensity changes on a black and white image (Fig. 9.6 shows an
example).

The steps of the solution
e detect those white pixels which have a black pixel on their direct right-hand side
(detection means to put the detected pixel to the black value, i.e. +1),
e detect those black pixels which have a white pixel on their direct right-hand side,
e apply a pixel by pixel logic OR function.

The flow diagram of the algorithm and the templates
The first step is performed by a template TEM1 and the second step by TEM2. The
two results are combined with a local logic OR operation.
The flow diagram with image fragments representing input, output, and intermediate
results is shown in Fig. 9.6.

| INPUT|

[I
| [TEM1] [TEM2]

| t

o

Fig. 9.6. The flow diagram of the analogic CNN algorithm. Operation is illustrated on a simple test
image fragment.

The templates used in the CNN algorithm are as follows:

000 0 00
TEMI1 (white to black): A= 0 2 0 |, B=| -2 2 0 |, I=-1.5
0 00 0 00

248 The CNN Universal Machine
|

0 0O 00 O
TEM2 (black to white): A= 0 2 0 |, B=| 0 2 -2 |, I=-1.5
0 0O 00 O

The macro code of the algorithm
As an example of the analogic macro code (AMC) description, we show the description
of our very simple algorithm:

LOADTEM >FF80, APR1 ; loading template (TEM1)

LOADTEM >FF60, APR2 ; loading template (TEM?2)

COPY A_M2C, >FF40, LAM1 ; copy Analog image from
; Memory to Chip

RUNTEM APRI1, LAMI1, LAMI1, LLM1 ; run TEMI template operation
RUNTEM APR2, LAMI1, LAMI1, LLM2 ; run TEM?2 template operation

RUNLOG OR, LLM1, LLM2, LLM3 ; run local logic operation OR
COPY L_C2M, LLM3, >FF00 ; copy binary (Logic) image

; from Chip to Memory
END

The syntax of the AMC instructions are simple:

LOADTEM [source], [target];

COPY [typel, [source], [target];

RUNTEM [template], [input], [init. state], [output];
RUNLOG [typel, [op1], [op2], [result].

The memory address is hexadecimal, and the type of the image has a mnemonic
name.

The core of the algorithm, in addition to the image and template downloading and
the output image uploading, is represented by the three consecutive AMC instructions
denoted by italic comments. That is:

e run TEMI (stored in APR1) with input and initial state defined by the original input
image (stored in LAM1) and place the result (after converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM1

e run TEM2 (stored in APR2) with input and initial state defined by the original input
image (stored in LAM1) and place the result (after converting from bipolar analog
representation to unipolar binary one) in local logic memory LL.M?2

e apply the local logic unit (LLU) with a logic OR operation on the two intermediate
results stored in local logic memories LLM1 and LLLM2 and place the result in
LLM3

These three macro instructions will be converted into a series of elementary machine
micro instructions, as shown later.

249
—

9.3 A very simple example on the circuit level

local logic memory: LILM

LLMI1 1:5} @ LLM2
LLM3

LLU
— -
sw4
U; Xij o Y, sw3 /o
-
C SWO\{ Rx loujpm
g Z —_
liUI-‘Ul TCX --— -)
| |
]
\ s \ swl LAMI1| LAM2
] -

local analog memory: LAM

Fig. 9.7. A very simple extended cell with the six switches, sw0, sw1, sw2, sw3, sw4, sw5 and the
logic output (at the output of LLM3). It is supposed that the input image has been downloaded to
LAMI.

We will not go into the details of how the CNN operating system (COS) generates
the machine micro code to be put into the GACU of the CNN Universal Chip (and
how to fill the registers of the GAPU); however we want to show the functional
circuit-level operation of an extended CNN cell. We will show the operations gen-
erated by the machine-level micro instructions in detail. First, we show an extended
cell.

The functional circuit level schematics of an extended cell

An extended cell is shown in Fig. 9.7.

The local analog memory (LAM) has two places, LAM1 and LAM2. The analog
cell contains two auxiliary storage capacitors at the input and at the state, respectively.
The ijppue and ioupue values represent the weighted sums (as currents) from the inputs
(B template) and from the outputs (A template) of the neighbor cells.

The local logic memory has three places, LLM1, LLM2, and LLM3. LLM1 and
LLM2 is implemented as a shift register, the input is stored on LLM1 and every new
input shifts the content by one place to the right (from LLM1 to LLM2, etc.). If we
want to store a LAM value in (LLM1, LLM?2), an automatic bipolar analog to unipolar

250 The CNN Universal Machine

Table 9.2.

Switch configuration; swO swl sw2 sw3 sw4 swS
and corresponding action

sconf0; load input and initial state from LAM1 off on on off off off

sconfl; start transient on off off off off off
sconf2; store the result in LAM?2 on off off on off off
sconf3; store LAM2 in LLM off off off off on off
sconf4; activate the logic operation off off off off off on

and put the result in LLM3

binary converter is applied, shown after sw4. The local logic unit (LLU) in this cell is
an OR function. It has a direct LLM3 output buffer.

In this extended cell we have six switches: sw0, swl, sw2, sw3, sw4, and swS5.
Depending on their positions, ON or OFF, they code different switch configurations.
The sequence of switch configurations is stored in the switch configuration register
(SCR). In Table 9.2, we show five switch configurations (sconfO, sconfl, sconf2,
sconf3, sconf4) which define five actions in each and all cells (fully parallel).

The content of the global analogic programming unit (GAPU)

First we specify the registers. Part of the content of the switch configuration register
(SCR) has already been defined. This will be enough for running the three consecutive
core macro instructions defined above.

The analog program instruction register (APR) contains two templates, i.e. the two
sets of the 19 numbers defined by TEM1 and TEM2, coded some appropriate way in
APRI1 and APR2. The logic program instruction register (LPR) contains the codes for
the logic operations of the local logic unit (LLU). Here we need only the OR operation.
It is stored, and coded in an appropriate way, in LPR.

The sequence of the actions in the CNN Universal Machine with our simple
extended cell, and the registers defined right now, is coded in the Global Analogic
Control Unit (GACU). In our example, for the three macro instructions defined above,
for implementing the core of our algorithms (running the two consecutive templates
and the logic OR operation with the appropriate storage of the intermediate results),
the sequence of macro instructions of the GACU are as follows.

Here, we suppose that the templates, the local logic operator, and the input image
are loaded (TEM1 and TEM?2 in APR1 and APR2, respectively, the OR operation in
LPRI1, and the input image, pixel by pixel, in the LAMI place of each extended cell).
Then the next sequence is applied:

251
—

9.3 A very simple example on the circuit level

loeal logie memory: LM

T Ty e
LLM3

ul N
Cu
T
linpur.
l sw2

LAM2

local analog memory: LAM

Fig. 9.8. Sconf0; load input and initial state from LAM1.

Action code

sconfO;
select APR1;
sconfl;
sconf2;
sconf3;

sconf0;
select APR2;
sconfl;
sconf2;
sconf3;

select LPR1;
sconf4;

Comment

load input and initial state from LAM1

tune the template element values defined by TEM1
start the analog spatio-temporal transient

store the result in LAM?2

store LAM2 in LLM1

load input and initial state from LAM1

tune the template element values defined by TEM?2
start the analog spatio-temporal transient

store the result in LAM?2

store LAM2 in LLM1 (the former LLM1 value will be
automatically shifted to LLM2)

tune to the local logic operation OR
calculate the OR operation and store the result in LLM3

In the first two action groups, the first two actions are also parallel.

The five extended cell configurations corresponding to sconfO, sconfl, sconf2,
sconf3, and sconf4 are shown on Figs 9.8, 9.9, 9.10, 9.11, and 9.12, respectively. The
comments are referring to the last two action groups (activating TEM2 and OR). The

closed switches are shown in bold. Hence, it is easy to detect the active parts of the

circuit.

252 The CNN Universal Machine
|

local logic memory: LLM

AL {S} oy e
LIL.M3
Vi
~

.. Xii V sw3

—1 l 1 +
C sw0 R, Loutput
:? 7
Linput J l TC}\

\ sw2

| £

_—
| fixy) L I-l
LAMI1| LAM2

swl

'—/O—

local analog memory: LAM

Fig. 9.9. Sconfl; start transient.

local logie memory: LM

Ly e
LLM3

Cu
mpur TC/
LAMI| LAM2
\ sw2
| -

local analog memory: LAM

Fig. 9.10. Sconf2; store the result in LAM2.

253
—

9.3 A very simple example on the circuit level

local logic memory: LLM

e il
LILM3

u;; sw3

C

u

::+
Linput e ::_—l"_"'
mpu J l f(xij)

LLAM1| LAM2

\ SW2

local analog memory: LAM

Fig. 9.11. Sconf3; store LAM2 in LLM.

loecal logie memory: T.ILM

B I e
LLM3
VA 4
AW

..U
e -
swd
ul R XiJ R .
- ’ \
c‘u swi ! R’{ 1c>l.1t1::n.1t
::._b 7
linrmr. TCX |i #l—-———

T.AMI1| LAM2

local analog memory: LAM

Fig. 9.12. Sconf4; activate the logic operation and put the result in LLM3.

254
—

The CNN Universal Machine

9.4

Language, compiler, operating system

In the preceding chapters we have learned a few languages of different levels to
describe the analogic CNN algorithms. In Fig.9.13 we summarize the various steps
on how our high-level « instructions code will be translated into a running program on
a physical chip. It shows the main software levels of this process.

Algorithm: flow-diagram,
templates and subroutines

!

[Alpha source code }

y

Alpha Compiler

Script
macrocode
(AMC-like)

v

AMC (analogic macro code)
followed by interpreters

, L !

Simulator Emulated
running on a CNN-UM chip| |CNN-UM chip in digital
Pentium chip in CCPS Engine Board CNN-UM

ina PC

Fig. 9.13. The levels of the software and the core engines.

At the lowest level, the chips are embedded in their physical environment. The AMC
code will be translated into firmware and electrical signals. At the highest level, the «
compiler generates a macro (assembly) level code called analogic macro code, AMC.
The input of the o compiler is the description of the flow diagram of the algorithm
using the o language.

The AMC-like CNN Script Description (CSD) code is used for the software
simulations to control the different parameters of the simulation as well as to specify
the graphical demonstration of the results, as we have shown in Chapter 4. Here, the

255

9.4 Language, compiler, operating system

Table 9.3. Analogic macro code (AMC) description of BARS-UP.

COPY B2C_L2L, >FFCO, 1 * board to chip copy (to LAM1)

LOADT >FFAO, 1 * load templatel
LOADT >FF80, 2 * load template2
LOADT >FF60, 3 * load template3
RUNA 1,1,1,2 * run templatel
RUNTL CXOR,2,2,2 * logic XOR
RUNA 2,2,2,2 * run template2
RUNA 3,2,1,2 * run template3

COPY C2C_L2L, 2, >FFCO * chip to board copy (from LAM2)

syntax:

COPY [type], [source], [destination]

LOADT [source], [destination]

RUNA [template], [input], [init. state], [output]
RUNL [type], [opl], [op2], [output]

All the parameters are chip or board memory addresses, except the [type] parameters.

physical processor is the Pentium microprocessor, controlled by the physical code
running under an operating system (like WINDOWS or UNIX). The simulator can
also be used directly from the o source code via the compiler and the AMC (with
default operating and graphical parameters).

As an example, for an AMC code in assembly format and in hexadecimal format,
these codes for the program example BARS-UP, described in Section 9.2, are shown
in Tables 9.3 and 9.4, respectively.

Consider now the CNN Universal Machine Chip, called CNN-UM chip. We need
the appropriate software levels and a hardware-software environment. This is the CNN
Chip Prototyping System (CCPS). In the CCPS we may also use the AMC code as the
input. In Fig. 9.14 we show the flow diagram of the whole process down to the physical
chip.

In this chip prototyping system the CNN-UM chip is hosted in a separate platform,
connected to a PC. A special purpose add-in board, the Chip Prototyping System Board
(CPS board) is serving as the hardware environment for the CNN Operating System
(COS).

To make the whole CNN computer self-contained we need a CNN Universal Chip
set” and to implement it on an Engine Board.

In single-board or single-chip solutions the CPS board and its software are inte-
grated into the CNN-UM chip or board.

We stop here, not to explain more details. Our aim is to show that when writing
analogic CNN programs in high-level languages (like the « language), the rest of
the familiar computing infrastructure is ready to execute these programs in different

256 The CNN Universal Machine

Table 9.4. Compiled analogic macro code (in hexadecimal format).

hexa binary code

12h 0000 0000 0001 0010 COPY

&h 0000 0000 0000 1000 B2C_L2L
FFCOh 11111111 11000000 >FFCO
1h 0000 0000 0000 0001 1

62h 0000 0000 0001 0010 LOADT
FFAOh 11111111 10100000 >FFAQO
1h 0000 0000 0000 0001 1

62h 0000 0000 0001 0010 LOADT
FF80h 11111111 10100000 >FF80
2h 0000 0000 0000 0010 2

62h 0000 0000 0001 0010 LOADT
FF60h 11111111 10100000 >FF60

3h 0000 0000 0000 0011 3
61h 0000 0000 0001 0001 RUNA
1h 0000 0000 0000 0001 1
1h 0000 0000 0000 0001 1
1h 0000 0000 0000 0001 1
2h 0000 0000 0000 0010 2
61h 0000 0000 0001 0001 RUNL
Sh 0000 0000 0000 0101 5
Sh 0000 0000 0000 0101 5
Sh 0000 0000 0000 0101 5
2h 0000 0000 0000 0010 2

formats and physical implementations. As to the latter, Chapter 15 will describe the
main types and parameters of the physical implementations.

257
—

9.4 Language, compiler, operating system

ALPHA description
of an algorithm

ALPHA
compiler

display

interfaces and - - video
—>
executable image library
program code for PC
template library
ISA bus
or PCI /
<
output of the Image' data and Alzi.allo.gicj ma'cr(()j input of the
CPS board Decision code code, image an CPS board
template data
\ External /
CNN . CNN “Operating System”
Prototyping (COS) running on the
System board TMS320C25
(CPS) TMS3206X \
electrical electrical control,
CNN Platform bus —| output data template, and data
signals signals
CNN T l
Platform | level shifters, sample/hold, multiplexers, ...etc. |
CNN chip optical input

Fig. 9.14. The architecture of the CNN Chip Prototyping System (CCPS).

—
10

10.1 Various design techniques

258

Template design tools

During the first years after the introduction of the CNN paradigm, many templates
were designed by cut-and-try techniques, playing with a few nonzero template
elements, and using a simulator to calculate the CNN dynamics. After a while, some
systematic design methodologies emerged. Today several methods are available for
generating CNN templates or algorithms, even for complex tasks.

The main classes of design techniques are as follows:

e systematic methods for binary I/O function via Boolean description and decompo-
sition techniques using uncoupled CNN (see Chapters 5, 6, 7)

e systematic methods for binary I/O function using coupled CNN (see also Chapter
12)

e global optimization techniques as parameter optimization

e genetic algorithms for designing the template elements/synaptic weights'

e matching with the spatially discrete representations of partial differential equations
(PDEs)

e matching with some neuromorphic models of a living organism, typically the
nervous system, in particular the visual pathway of vertebrates (see Chapter 16)

e fuzzy design techniques?

e neural network techniques?

e matching with existing 2D or 3D algorithms, including techniques in signal process-
ing, telecommunications, adaptive control, nonlinear spatio-temporal dynamical
systems, etc.

We have to emphasize, however, that, in spite of the many design techniques, new
methods are emerging day by day based on the intuition and skill of the designers. A
good example for this is a recent method* using active waves applied for a while and
combining/colliding with other waves, as well as a method in which a wave metric is
used® for complex pattern recognition tasks.

259
—

10.1 Various design techniques

Interactive editing and generating
binary I/O and template data

4— binary data

<4— template data

N\
v v \ 4
Displaying <« Templat . .
truth table emplate Logic function
agy 2 1
Full
Minimal uncoupled? Y
: No Linear separability
Window check
(code book) Y
©s separable | non-separable
; A
Minterm/maxterm Calculating Determining
template optimal uncoupled quasi minimal
sequence template template sequence

v

optimal uncoupled
templates

Fig. 10.1. The outline of the binary I/O CNN template or template sequence design.

In this chapter, referring to the results of Chapters 5,

6, and 7, we will demonstrate

a systematic method for binary I/O functions. The outline of this design process is as
follows (Fig. 10.1). This process is supported by the template design and optimization

program TEMMASTER (Appendix C).

Logic truth tables are given by a {0, 1} code (white and black), however, we can
code binary data as TRUE(1), FALSE(—1) and DON’T CARE(0) as well.

When designing CNN templates to implement a given logic function Fy(-), we are

typically using uncoupled templates with the following

description and coding:

0 0 0 Woi—1 | W_10 | W_11

S

A=|0|agp>1 B wo—1 | Wwoeo | Wol

z (10.1)

0 0 0 wi—1 | wio | wil

260

Template design tools

In the design process we start with logic Boolean functions of nine variables
Fi(uy, ua, ..., ug), supposing a zero valued initial state, keeping in mind the con-
vention

ug ug Uy
Ueg U5 U4
uz uz Uuj

or with the cloning template (A, B, z) or the truth table, especially in its window (code
book) form. The outcome of the design is an uncoupled cloning template with the
parameters

apo, b1, b2, b3, ..., by, z

keeping in mind the convention

by | bg | by
By =|bg | bs | by
by | by | by

or the sequence of templates combined via some local logic functions implemented as
a program on the CNN Universal Machine.

10.2

Binary representation, linear separability, and simple decomposition

The Boolean representation of a local logic function of nine variables can be given in
terms of the nine Boolean input variables F (u1, us, ..., ug).

Given this function as a sum of products, we can directly apply a check to determine
whether this function is linearly separable or not. If not, we have to decompose it into
a sequence of linearly separable templates (see Section 10.3). The simplest method
to generate this sequence, though it does not lead generally to the shortest sequence
of templates, is via the window truth table. In this case, each window represents
a minterm (or maxterm) related directly to an uncoupled template with the coding
convention introduced in Chapter 5. For example, window #3 in Example 10.1 means
a minterm usuqusugug (x means DON’T CARE).

This term is implemented by a CNN with x(0) = 0 and the template parameters
are: ago = 1,z = —4 and by, b, .. ., by are directly coded by window #3.

Hence, window #3

Uy U4 Us Ug Ug

261 10.2 Binary representation

generates the input values

b1 =0, bp=1, b3=0, by=1, bs=—1, bg=1, b7=0, bg=1, bg =0

that is, the variables not appearing in the minterm (the DON’T CAREs) will get a value
of 0 at the corresponding places.

Cascading the minterm Boolean functions Fy(-) represented by the appropriate
templates by AND-ing the consecutive results, the Boolean function F(-) will be
calculated.

EXAMPLE 10.1:

Suppose we have a binary image with one-pixel-wide lines. Detect those pixels
where the line crossings are of 45° or 90°. Two examples are shown in Example 10.2
with few inputs and detected points. Indeed, we started with a blank Window Truth
Table (all-white output) and “clicked” those windows black which contain the desired
configurations to be detected. These are the following six places (simplest cases):

#:124, 186, 214, 313, 341, 403

The selected windows are shown in Examples 10.3—-10.6.

To each configuration, we code a cloning template. For example, for the last one

(#403)
1 j1]-1

aoo:l B=|-1|1]| -1 z=-8
—1]1] 1

By AND-ing the six templates all the desired crossings will be detected.

laces (b).

mg p

detected crossi

ing

(b)

(a) and the correspond

images

|

(a)

Input

Template design tools

EXAMPLE 10.2
EXAMPLE 10.3

262

B (O] (| [y (| [)| (S]] | [
E e (o) |0 o] 1)
o | o] || o] (|] |l (| S
! e = = & [l
OmL (| Ee ||] |] || =]
] (o |))) 1
b=l e] | =]] Y P 1 [miw] |2
=||= 8 = i & fis
=z
Elle [Eiml] (|] ||] | (S () [[| (][]
it | 159 1] (o) | o] o)]) 1 o] |)]]] (o | o]]
g o]) P (1 {11 (1 |) T i 1 | gl 1
I k4 ¥ @ - o 2 El
[1 (o | (]] 1])]) 1 (o (| (]
LIl] [o) | () O o] O) O |)) o | [
— o] (o] (|] (| s || e [] | o] (]
mOCOR§ECON ECONfECORCOCR(§OC0CORINCOCOR g0 00
()] O 0 O O O O I W T
g (]]I | S] (o = [o |) o o |] o) o] g]] |]] ()
= ki b & [=3 = ol
Cm] (| Eg || e |] || R (| =D] EED) (e
[(o 1 (1 O o) O)T) 1 1 T
=000 |f30l0)][|t [| 2] | =] A] | D 1 ()
© = [si < iz} =3 2 B
o] Ol || S || (] || (Sl (|] ||] (] | (-] | 5
o) o) | o) o o o) o o] O o o o O o o) o o o)]
+ i]]] | P [S (o |t o] | P)]] |]]) 2] i 1 =
[A = i i 24 = & =
= =
Giam e || EE (| EEE || e (| S | - () | S
m [(o) |] O])] O 1 1) O O |)
o) 0 B P P i o i o | o o R
— i i =, # I b = i i}
mr W cem (| EEm ||] | S | =SS] S]]]
Tl O o) o O] 1 o] 1 1O) o O o 1o o 1 O 1
= | e (Ao (! || |- S | S (s (|
” = L e} [I3 = 1=
a
= Ceg (| EE || EEE | EEE || EEE (| EEE || =G | RS
o W [(o] | O) O)) T o 1 10 (T
& 1 i T e T (o e 1 | eI
& ==
. EomE (| EEwE || [EEmE (| S (S || (S () S (S
i) [(o) |)] o O)] O |) O o |)
=) o (i T i 1
= I I i3 [k4 E} = o
= oed (| gem (| oeg || peg (| Ee (| EEg || = || = | o
= [o) | () O] O) T O 1
= [(o] = o Pl 1] L1 | e o 1§ 2]) =i 1] 1 e
= < = bl i b3 3 = = i}
5
= [) |]) O) | 1 T 1 1
o)] O 0 O O O | R O I | T
o () o]) o]] o | P] | .)] |] | [(o] _y1uD_H_
= = W 3 I & = |
%., Lo (| e || B2 | EEE || EEE (| R (| E=EE | RS
] (o 1 (1 O o) O) T) 1 1 O 1
=)] | T) o |)]][] |1 (o
o & 2 & & I 5 Il=
=
ﬁ 2 [(o | (o o) O)) 1 1 I
7y O [o [| () O] o] O)] |) O O | O
< I 5] (|]] 1 o 0 o | P o]) o] o Y |] (]
b = i b & k3 I3 5 =
= o
w Ee (| EEd || B | EEE | =S D RS s
= o)) o O O o O o O 5 O o |
o i 8 (] P o o o S P) f] B

10.2 Binary representation

263

EXAMPLE 10.4

B

Window Truth-table

134
T [][m]
=

(mirjmw] || []umici]

Hal

t Coupled Directories

Edit Display Optimize Format

Eile

L
68

" (| Cmg
o] (| [Com|
OO0

Forward

Backward

i
Clu|
ood

] [eEg
oecfiic=o
ooo

174

(e || []amici]

i

' Cm ||
[Sical || @5
B || mEE || EE5H

g [
] |1 (| (|
soflzzcll=achiz=ac
i || [Emis) || EE5
O
]
]

LICIC
e) 1l | e
Cmm) || [
1) Y | T 0
ﬂumm__su__m_m_

e [em
wEC
coof(lzme

13!

] [e
cosficoo
Gl

2
i | o)
=i} || SO

|Bnn\ean function

m] |\ Lm
o=fli=o=
i1 || W]

= 0]

15
[wicy] | [ewfm}

mm]

e
[Cij]
Lm

CICm | C1Cm
[1 | 1

) (| om
mEE

13

] o]]
]
=] (]|

a

Edit{Define

131
|] m]
|

2 [
CCm
Eimim] || WO

o
mEE

o [
sosf|f=o=
snuf|f=co

1

2 2
miCo] || iciic) || (scoic
Dimjm] || EOC)

226

[CIC] (] [Cfwicy || i) [sicic)

128
T]]
][])

S
GiE]
Wl

m | mg [e | e | e e | | g | e [l
mior (| mEa || [EeE || Emod || EE (| Eod || =& || e |] (| &0
sncf(lzcefl=collczsficsclilicosliccol lEzalla=cf|laca

] | 1]

' m (| em (em |) (| (f Ee
conf(ico=fiico=licoshiico=liicon
Giom| || St || S (| o || w5 ||

2
L (][]
[

]] | Ty
comf(lco=flicos
Gicl || [Sisio

o
EEE
Gl

W
O
G0

[l
(minjc)
][]]

]
O
[]

176,

]
] o])
[o])

01
CCim
]]]

‘Nnname

EXAMPLE 10.5

P

Hel
Windowe Truth-table

t Coupled Directories

Display Optimize Format

Edit

File

5
=

Forward

Backward

By
O [
.E E
BOOI0 OO
OEO EEC
-ﬂ 7@
ilula| ilmla|
CEE 0 EEE
EOO0 0 EOO0
EEE || EEE) ([EEE (| EEE
Eo || GEa o) (| Gon (| OEg
D00 [ROT0 wHN) (' E (|
A
CTa| |(EEm ooof(fcooficoo
Cioi| || S] ([[T (| D
gl | Cam0 100 el [l
LS
O || EEa Tn_m_ EED || EEE
ECH | G Sl ([5o (| S
ule] | N0 ol |»EmE) |(ammn
woof| moo | ([| S
wesl| B0 B | G |2
amil | Paal imL] ||-am | 2
Lew, 2
2
ERE || EEE] ([) |3
Eio || GEa boo (| G |
wam] || e |[:f ZHmE |(Hm | o
&
O || Eem W) |([
Cioi| || GEm o] || S
yulnm] | R AN | EE
s
oo || EEa EOO || mET
EoH || CE GO | SE
i | N | <EEm
oo || o= O || @O
EE || EEa B || GEG
oI ||] || e |
Lo, =
EEg || B mOg (| mEE &
Cio || EEa Bog (| Eeg) | =
calam] ([ajmm | (e | S
&
o || Eem W] |([ECE
Cio| || CEm o || CEm
il | =0 HARE] | ~Em
LS
oo || o EOD || o
EloE] | G Elo || SiE
a8 | H IR0 |EE0
I
oo || o= ECH || EoE
B || EEa G || GEE
Zun | cHml EEL] |
I
mm | fmmim mo || mog | e | E
b || oEa o || ool (| oEg || &
an] | im0 100 | 7EmD || cam) | S

264 Template design tools
|

EXAMPLE 10.6:

¢y TEMMASTER MEE

Eile Edit Display Optimize Formal Coupled Directories Help

g [Forward >
Window Truth-table | = e

o
]

407,
jm [

CmL
]
[]
ﬁg

=

IOl

=]

| | mt=
] [
DI
]]
L]
)])
]
Dm0
(m[m]c]

o || oo oo

oo (| S || Sk

O] || CEO] || SR
OoRz
mO0
Oom

b EE-% o
oo
[Cim]
=

| || moE

oo (| S || Sk

OO || CEO] || GEo
.:T|

e || || ool | mEEs|| pEs
caojiccoflicaciificociilcen
O] || Emm || CEm || CEG || E=0

A

im0

500

WS

G

e

| p—-3

B

G

=
=|
=|

=
]]
(o}
[mic|
&
[W[Cw;
Oo0,
(f])

=]
=

a
kA
oog
O
| mo|| moEs
oo (| S || Shm
oo || Eo || G
=
7 &
O
ol
EEES
ooof|jomc
=
CEE-:| OO
(] (| (i)
[mimo| || [m[=C
=

|
|
|

2 oEm
|
O
[
=

3 e ||]| o) mEEs
0] | o O T O (o]
(mimC] || mw] || (e) =

DDI§ &
CmC|
0] | W]
e
OC R ROmO

Hﬁi

e || S || S5
|| EO|| EEE
caofiocoffo=c
O] || E=n || CEE
e || ||
oeoiiocol|lo=
] || s || @

|
|
=
=
|
£ |
|
|
bl

=
OO O m|
(o] T O 1
[o] o 1 o
=
W
=
[WEE | [W]
OOCH | iCO=ECR|RCO
e || =EE || =
=

5|
|
=

|| [
w0
][]

=

Cl
[}

O
][]

(i) || (]
]
1] |

I
[

W
oo

a
[CI/[E 7
oog

=
Wi
Cjalsl
mEm
W
Gl
Dam

=

=
0L
m]

=
5
O
[

=

mm
mmC]
DmC

f O
0

]]
om0
OmC
W £

=

S|

mm]

| mom

]])

Dm0
EOE | EDEE| [
(] || [

Cic || (S

=

m]

w0

=[]

)]

=
=

o | ommél| oeEs| oows| oo
| B | | e e
| et e eeEs|| oo
e | 9 | G | GEe
Oy EEas)| Eos)| oo
(e | (S5 || (] (] [
O O

EDlﬁ

omg

=

i
| ooz
5

=

G|
Ciss|

)

=
=|
il
=
=
=
|
=]
=|
=i
=
=|

1o g I e o S O o)
[] T O 1 T | R] Cf | =E=D
mm{w] (| [sjsfe] || [sjm]=) [0 || (i)

=]

EEE

Gisr
Fool ol fEociEo ool fEoo] |\] | e) |1] [
souf(l=c=fil=c=fl=o=}{{=c=f|=0= o (| =S || S i (| [|| G
Oion] || GOl || =0l || G (| BhE || EoE Ol (| EEE || EG0 Cini] (| O || GG
] | ([] (i | | || |\] (| | i) |] ([[¥
o0 (| TS || mEE (| =og (| &GS || Eg (| &g (| EE || & ceofficzclic=
o0l || OO || R0 (| CEE (| =2EE || G (| = || = || G0 O] (| ®O |f =0

[y — | T — | [— | — | = | e —
v |\] i (i] |] | e (e (i] |] | [] (i e |] | e (s (i e
cof(lccefiico=f|lco=l{lccaliico=lico=llocefiizcalicoollcoolilcoolicocol ficoofilicoclicoo
s=sf(l==cl=o=}||=ocl(io==ic=clioo=}{loochl===4 f==cf{l=o=) l=ool(lo==] io=clioo=§iooo
|Nnname Edit{Defina Boolean function i
—

10.3 Template optimization

Once we get a template like the one just determined we can optimize it for robustness.
Using the method described in Section 6.7, we can optimize a separable binary
template to get a separating hyperplane, which is distanced from the two values
of output (black and white) equally. The template design and optimization program
TEMMASTER (Appendix C) contains this function as well.

In the next two cases, TEMPLATE1 and TEMPLATE?2, we show the starting values
and the optimized values. In the case of TEMPLATEI, which was designed by a cut-
and-try method, indeed, it turned out that the robustness of the original template was
zero (the hyperplane just hit one output vertex).

TEMPLATE 1: EdgeDetector

Initial template

—-0.25 | —0.25 | —-0.25
ap=1 B=|-0.25 2 —-025| z=-15
—-0.25| -0.25 | —-0.25

265
—

10.4 Template decomposition techniques

Optimized template
—1|-1|-1

apo=1 B=|-1| 8 |—-1| z=-1
-1 |-1|-1

TEMPLATE 2: LocalConcavePlaceDetector

Initial template

0] 01O
ap=1 B=| 1 2 1 z=-55
05|—-1]05

Optimized template

0] 0] O
a()():l B=| 2 2 2 z=-7
1 | =2] -1

This template optimization is perfect if the CNN implementation is ideal. In a real
situation with a given VLSI implementation, more complex optimization procedures
are to be applied.

10.4 Template decomposition techniques

If the local Boolean function is not linearly separable then we can apply different
decomposition techniques. Many of these techniques are based on some assumptions
on the template values and the logic functions used for combining the consecutive
templates. A method described in Section 7.6 and another “compact” decomposition
method® are used in the TEMMASTER program (Appendix C). The determination
of the minimal number of templates for any given F(-) is a computationally hard
problem. For the example given in Section 10.2, the six templates of the minterm
decomposition could not be reduced. At the same time, for the game-of-life problem
both methods yielded a decomposition of two templates only. The sequences of the six
templates of our example in Section 10.2 are as follows.

0.0

TEMPLATE 1

00 | 00 | 0.0 —-1.0|-10| 1.0
A=| 00 1.0 | 0.0 B=| 1.0 | 1.0 | 1.0 z=-8
0.0 | 0.0 | 0.0 1.0 |-1.0|-1.0

266 Template design tools
|

XOR: TEMPLATE 2

A =

XOR: TEMPLATE 3

A =

XOR: TEMPLATE 4

A =

XOR: TEMPLATE 5

A =

XOR: TEMPLATE 6

A=

00 | 00 | 0.0
0.0 1.0 | 0.0
0.0 | 0.0 | 0.0
00 | 00 | 0.0
0.0 1.0 | 0.0
0.0 | 0.0 | 0.0
00 | 0.0 | 0.0
0.0 1.0 | 0.0
0.0 | 0.0 | 0.0
00 | 00 | 0.0
0.0 1.0 | 0.0
0.0 | 0.0 | 0.0
00 | 00 | 0.0
0.0 1.0 | 0.0
0.0 | 0.0 | 0.0

-10| 1.0 |-1.0
1.0 | 1.0 | 1.0
1.0 |-1.0|-1.0

-1.0| 1.0 1.0

-10| 1.0 |-1.0
1.0 1.0 |—1.0
1.0 |-1.0|-1.0
1.0 | 1.0 | 1.0

-1.0|-1.0]| 1.0
1.0 |-1.0] 1.0

-10| 1.0 |-1.0
1.0 |-1.0] 1.0
1.0 | 1.0 |-1.0

-10| 1.0 |-1.0

-1.0|-1.0|-1.0

z=-8
z=-8
z=-8
7=-8
z=-8

[
11 CNNs for linear image processing

11.1 Linear image processing with B templates is equivalent to spatial
convolution with FIR kernels
Consider the class of feed-forward (zero-feedback) CNNs C(0, B, z) shown in Fig. 2.22
with zero threshold (z = 0).
The state equation of the CNN corresponding to a (20 + 1) x (20 + 1) B template

is given by
o o
Gij=—Xij+ Y > buttivk
k=—0l=—0
—0 —0
——xl]+ZZb k,—1Ui—Fk, j—I
=0 =0
—0 —0
__xu"’zzhkluz —k,j—l1
=0 =0
—0 —0
= —xij + Zth ket (11.1)
=0 l=0
where
A
hki = bk, i
kil=—-0,—(—1),....,—1,0,1,...,(c —1),0 (11.2)

If we let H denote a template whose entries are /iy, then the H template is simply
related to the B template by a 180° rotation about the central element bgg. For example,
the 3 x 3 (o = 1) B and H templates are as follows

b_1,_1|b_10|b-11 bi1 | bio | b1,

B=| bo_1 | boo | bon H=| bo1 | boo | bo,—1

bi,—1 | bro | b1 b_11 | b1 | b-1,21
Observe that

B = H & B is symmetric

267

268

CNNs for linear image processing

The double summation series on the right-hand side of Eq. (11.1) is a standard
numerical operation in signal processing called the convolution operation between the
impulse response kernel hyy, or the impulse response matrix H, and the input image

0,

U;;, and denoted by an asterisk “«”; namely:

o o
A
HxUj = > Y heattigjo (11.3)

k=—0l=—0

Observe that for a given B template, H is fixed but U;; in general changes since it
corresponds to the part of the input image exposed by a ¢ x ¢ “mask” whose “center”
coincides with the pixel location C(ij). Note that H » U;; is a scalar even though
both H and U;; are o x o matrices. Observe also that we can replace “o” by “00”
in Eq. (11.3), which we will occasionally do to simplify our discussion, by redefining
H to be an infinite-dimensional matrix with zero entries except those associated with
the B template. In terms of the convolution notation (11.3), Eq. (11.1) assumes the
compact form:

Xij = —x;j + HxUj; (11.4)

Theorem 1: Feedforward CNN convolution property

Every feedforward CNN C (0, B,) is completely stable. In particular, for any initial
condition x;;(0), the state x;;(¢) of state equation (11.4) converges to a constant equal
to the convolution between H and the static input image U;;.

Proof:
Since Eq. (11.4) is a first-order linear differential equation, its solution is given by

x,'j(t) :xij(O)e_’—i-(H*Uij)(] —e_t), t>0 (11.5)
Ast — oo, we have

xi(00) £ lim x;j (1) = Hx Uy (11.6)

Corollary:
The state x;j(00) of every feedforward (A = 0) CNN with a symmetric B template
and zero threshold is simply the convolution of the B template with any static input
image.

The preceding theorem and corollary pertain to the stafe x;;(¢) and not the output
vij(t) = f(x;j(t)), where f(-) is the standard nonlinear function shown in Fig. 2.4.
In applications where “convolution” is the desired output, there are two options. For

269

11.2 Spatial frequency characterization

CNN chips, where only the output y;;(¢) is accessible, one can scale the B template so
that

) bl <1 (11.7)

k=—0l=—0

Since by our standing assumption, |u;;| < 1, it follows from Eqs (11.1) and (11.7)
that |x;;(00)| < 1. Consequently,

yij(00) = xjj(00) = H* Uj;

The second option is to add one extra output pin in the CNN chips so that, by an
internal multiplexing circuitry, the state x;;(¢) of every cell is also accessible to the
outside world.

It is important to observe that in feedforward CNNSs, the dynamics is completely
linear, regardless of the magnitude of the state x;;(¢). The nonlinearity comes into
play only in the readout map y;; = f(x;;) given by the standard piecewise-linear
function f(.).

Finally, observe that a feedforward CNN C(0, B, z) is a degenerate special case of
the uncoupled class, which we have completely characterized in Fig. 6.8. In particular,
this class corresponds to the origin in the Primary CNN Mosaic (Fig. 6.8) of Chapter 6
where agp = 0. Observe that the output of such CNNss is given by

- (00) = = Wi
ylj() 1= ag ij

where |wjj| = > 7__, > /__, biuk;| < 1inview of Eq. (11.7).

11.2

Spatial frequency characterization

Since spatial convolution is a linear equation, much insight and many analytical ad-
vantages can be gained by examining its corresponding frequency domain properties.
Since the observable physical variables x;;(t), y;;j(t), and u;; (¢) as well as the synaptic
weights a;j and b;j,i =1,2,...,Mand j = 1,2,..., N, in a CNN are defined only
at discrete points in space, at each instant “z” in time, we will use the notation

fnl,ng(t) < fi(n1, n2)
Xny,ny (1) <> x(n1, n2)
Yny.ny (1) <> yi(ny, n2)
Uny ny () <> ur(ny, n2)
n, .y <> a(ng, ny)

bny ., <> b(ny, n2) (11.8)

270

CNNs for linear image processing

to denote discrete spatial variables or parameters, where “¢t” has been relegated to
the subsidiary role of a subscript in order to emphasize the independent “discrete
spatial domain” variables n; and n,. Observe that “¢” is deleted from the subscript
of a(ny, ny) and b(ny, ny) in Eq. (11.8) because they vary only with space, but not
with time. Corresponding to each “discrete” spatial dependent variable or parameter
fi(n1, ny), let w; and w;y denote the independent “continuous” frequency domain vari-
ables and choose the corresponding capital letter with a tilde superscript Fy (w1, w2) to
denote the Fourier transform of f;(n1, ny); namely

discrete-spatial domain continuous frequency domain

- 11.9
fi(n1, n2) <~ Fi (w1, @) (11.9)

Let us define the relationship between these variables at any fixed time t in the two
domains as follows

o0 o0
Fno)= Y Y filnnpe/om ejom (11.10)
np=—00 ny=—00
1 T T . .
fi(ny,n2) = W/ / Fi(w1, @)e’ " - /2 dwidw, (11.11)
- J—T

We will henceforth refer to Eqs (11.10)—(11.11) as the two-dimensional discrete
Spatial Fourier Transform (DSFT) between f;(n1, ny) and F, (w1,).

To verify that the above definitions are consistent, let us substitute Eq. (11.10) for
Fy(w1, w») in Eq. (11.11):!

1 T T x 0
_2/ / Z Z fi(ny, np)e 1O L eTi@ma gl GJOm gy ey,
2m)* J

- n1=—00 np=—00

1 b b
= fi(n1,n7) |:(ZT)2/ / da)lda)g] = fi(n1,n2) (11.12)

which is identical to the left-hand side of Eq. (11.11).

Observe that the independent spatial variables “n;” and “n,” in the double summa-
tion series in Eq. (11.1) range from —oo to oo which corresponds to the limiting case
of an infinite CNN array where M — oo and N — oo. To avoid clutter, the following
derivations will be based on an infinite CNN array. In most cases of practical interest,
the results to be derived in this section are also applicable to the practical situation
where the CNN array has only a finite number of cells, namely M x N. In such cases,
we simply set f;(n1,n2) = 0forall |n;| > M and |ny| > N.

Observe next that the integration limits in Eq. (11.11) range only from —x to &
because F; (w1, w2) is a 2w -periodic function of w; and w,; namely

Fi(w) +27mp, wy + 27q)

o [e'e]
= Z Z fi(n1, np)e~d@2mpny p=j(@rt2mginy

n1=—00 np=—00

271
—

11.2 Spatial frequency characterization

00 00 . _ _
— E E fi(ni, ny)e I@1m L gmioam ,ej(ZHPn1+27an2)

n1=—00 np=—00

= Fi(w1,), for any integers p and q.
Observe also that if f;(n1, ny) is a symmetric function of n1 and ny , i.e.,

fi(nyi,n2) = fi(—ny, —ny) (11.13)

then its Fourier transform I:",(a)l,a)z) is a real function of w; and w,. Indeed,
Egs (11.11) and (11.12) imply

Fi(w1, m)* = Fi(o), w2) (11.14)

where the superscript “*” denotes complex conjugation. Equation (11.14) is usually
referred to as the zero phase shift property of the Fourier transform even though a
180° phase shift occurs whenever F, (w1, w) < 0.

Observe next that Eqs (11.10) and (11.11) imply the following two useful properties:
dc (average) value property

o0 (0¢]
FO,00= > Y fin,nm) (11.15)
n|=—00 np=—00
offset level property
1 4 b -
f:(0,0) = —2/ / Fi (w1, w)dwidwy (11.16)
Qm)° S Jx

Finally, we state without proof the following standard result
fini,n) * g(ni,n) < Fi(o1, 0)Gi(w), 0) (11.17)
Stated in words, Eq. (11.17) asserts

Convolution in discrete spatial <> Multiplication in continuous
domain frequency domain

Applying the DSFT to both sides of Eq. (11.4) and making use of Eq. (11.17), we
obtain

djél‘(wlaa)z) _ X ﬁ o 11 1
— Y = t(w1, 02) + H(wr, 0)U(wr, w2) (11.18)

Eq. (11.18) is a scalar first-order linear ordinary differential equation in the
transformed state variable 5(; (w1, @), and has the solution

X, (w1, w2) = Xo(w1, w2)e™" +H(wi, @)U, o)1 —e'], >0 (11.19)
Ast — o0, we have

~ A . ~ ~ ~
Xoo(wr,) = tl_l)rgo X (01, w2) = H(w1, w2)U(w1, w2) (11.20)

272

11.3

114

CNNs for linear image processing

where
H(w1, w2) = B(w1, 02) (11.21)

is the DSFT of the space-varying (but time-invariant) B template of the feedforward
CNN, which we assume henceforth to be symmetric.

It is important to remember that unlike in digital signal processing (DSP) where
the DSFT is calculated using a digital processor, the DSFT Xoo(a)l a)z) in a CNN
evolves from the initial DSFT Xo(a)1 @) at t = 0 until it converges to Xoo (w1, wy)
after the settling time of the CNN, which is typically less than 100 nanosecond in a
CNN chip. However, it must be remembered that in a CNN, the output is a spatial
pattern Xoo (n1, n2), and not its DSFT 5(00 (w1, wp). Hence, the results in this section
are mainly for conceptual purposes to help the reader understand the image processing
capabilities of a CNN, and to allow the CNN image-processing designers to exploit the
large body of design tools and techniques from the digital signal processing arsenal.
Indeed, we will see in the next section that every “convolution” or “spatial filtering”
DSP operation can be implemented in a CNN at a much higher speed which depends
only on the settling time of the CNN, and does not depend on the array size.

In general, a speed advantage of 1000 times over conventional DSP image pro-
cessing techniques can be realized by CNN chips using current one-micron CMOS
technology. The extreme high speed, low power, and small size of the CNN makes it
an attractive if not indispensable tool in many real-time signal and video-processing
applications.

A primer on properties and applications of discrete-space Fourier
transform (DSFT)

For ease of reference, the following table lists some of the properties of the discrete-
space Fourier transform derived in the preceding section, as well as others whose
proofs can be easily derived from Eqs (11.10)—(11.11). Reader already familiar with
two-dimensional digital signal processing techniques and principles may skip this
section.

Linear image processing with A and B templates is equivalent to
spatial convolution with IR kernels

It is a well-known fact in digital image processing that the more stringent a filter
specification (e.g., very steep filter characteristics) is, the larger must be the size of
the impulse response kernel, or, in the case of a feedforward CNN implementation,
the larger must be the size of the B template. In particular, many complex filter

273

11.4 Linear image processing with A and B templates

specifications can only be realized by infinite impulse response (IIR) kernels. A
corresponding feedforward CNN realization in this case would require a B template of
infinite extent, i.e., M — oo, N — 00. Our objective in this section is to show that if
we use the general CNN (with non-zero A and B templates) shown in Fig. 2.21, when
z = 0, then even very stringent filter characteristics can be realized with relatively
“small” A and B templates. Since all cells in the CNNs considered in this chapter
for linear image processing are assumed to operate in the central linear region of the
piecewise-linear characteristic y;; = f(x;;), we can substitute y;; = x;; in Eq. (2.36)
of Chapter 2 and write the state equation associated with the CNN C(A, B, 0) with a
o x o (0 =2r + 1) A and B templates, and a zero threshold (z = 0), as follows

Xij = —xij + Z Z Akl Xi+kj+1 + Z Z Driui+kj+i (11.22)

k=—0l=—0 k=—0l=—0
Using the discrete-space notation of Eq. (11.8), we can recast Eq. (11.22) into the
following standard convolution form

d
Ext(nl’ n2) = a(ny, na) x x;(n1, n2) + B(ny, n2) xus(ny, n2) (11.23)

where
a(ny,ny) = Ago — 1, if (ny,n2) = (0,0)
:A—m,—nza 1f|l’l]| <o, |I’l2| <o
=0, otherwise (11.24)

B(ni,n2) = By —n,, ifni| <o, |n2] <o
=0, otherwise

Observe that we have deleted the subscript “¢” from «(n1, n7) and B(n1, ny) because
they do not depend on time.

Under the standing assumption throughout this chapter that both the A and B
templates are symmetric, the parameter «(n1, np) in Eq. (11.23) is identical to the
element A,, ,, of the A template for all (n1, n2) except the central element Agp where
we must subtract “1” from it in order to account for the first term —x;; in Eq. (11.22).
Similarly, the parameter B(n1, n2) in Eq. (11.23) is identical to the element By, ,, of
the B template for all (n1, ny), including n; = ny = 0.

Observe that unlike the state equation (11.1) in the feedforward case, which consists
of a system of M x N uncoupled linear ordinary differential equations, Eq. (11.22)
consists of a system of M x N coupled linear ordinary differential equations. Although
the solutions of Eq. (11.22) can be written explicitly, it is virtually impossible to
analyze the effect of the neighboring cells on the dynamics of any particular cell. This
difficulty fortunately can be overcome by taking the discrete-space Fourier transform
(DSFT) of Eq. (11.23) to obtain the following equivalent system of wuncoupled
first-order linear ordinary differential equations in the frequency domain

d ~ - - - -
Ext(wl, @) = A(wr, w2)X; (@1, w2) + B(wr, @)U (01, w2) (11.25)

274

CNNs for linear image processing

Since Eq. (11.25) applies for each w; € (—00, 00) and w, € (—00, 00), we have in
principle an infinite number of linear ordinary differential equations to solve. However,
unlike the spatial domain differential Eq. (11.22), the frequency domain differential
equations in Eq. (11.25) are not coupled to each other! Moreover, X, (w1, w2),
A(w1, w2), B(w1,), and U (w1, w) are doubly periodic in w; and w, with a period
equal to 2. Consequently, we need only analyze the solution of X, (w1, wn) over the
region —7 < w) <mand -1 < wp < 7.

Assuming a static input image so that f], (w1, wp) = ﬁ(wl , w2) does not depend on
time, the solution of the scalar linear differential Eq. (11.25) in the frequency domain
is given simply by

When A(w1, w2) # 0

X, (w1, wp) = A9 X (w1, wn)

1 . ~ i
— [eA<w"w2>f _ 1] B, 02)U(w. 0) (11.26)
A(wy, w2)

When A (w1, w2) =0
X, (01, 2) = Xo(w1, @2) + 1B(w1, 2)U(w1, w2) (11.27)

where X (w1, wy) is the initial state in the frequency domain at r = 0.
Consider now the important special case where

Ay, w) <0 (11.28)
Under this condition,
eA(wl ,w2)t

-0

after a small sertling time (less than 100 nanoseconds when implemented in one-
micron CMOS technology), so that

- - B(wy, .

Koolon, o) 2 Tim Ko (1, 02) = — | 2222 1G4,) (11.29)
=0 A(wy, w2)

Defining the transfer function

- B(w;,

H(wy, w2) = —M (11.30)
A(wy, w2)

we obtain

Xoo (@1, 2) = H(wy, 02)U(w1, w2) (11.31)

Observe that even though Eq. (11.31) is identical to Eq. (11.20) in the feedfor-
ward case, the transfer function ﬁ(a)l, wy) in Eq. (11.30) is different from that of
Eq. (11.21). Here, I:I(a)l, @) is a ratio of two frequency domain functions. This

275

11.4 Linear image processing with A and B templates

gives us much more flexibility to “shape” the characteristics of ﬁ(wl, wy) using only
relatively “small” A and B templates. In contrast, the inverse transform of H(w1, w»),
namely, the two-dimensional impulse response kernel

h(ni,ny) < H(wr, w) (11.32)

is in general not zero for large n; and n,. In other words, the two-dimensional spatial
domain kernel h(ni,ny) associated with the two-dimensional frequency domain
transfer function ﬁ(wl, wy) is in general infinite in extent and corresponds to that
of an infinite impulse response (IIR) two-dimensional filter.

I
12

276

Coupled CNN with linear synaptic weights

In this chapter we will consider single layer standard CNNs with linear synaptic
weights. The feedback templates, however, could contain off-center nonzero elements
as well. This class of standard CNN may result in more complex or even exotic
dynamics. Two of the typical types of coupled CNN dynamics, a local non-equilibrium
and a propagating wave-like, will be introduced first.

The standard CNN template shown below results in an oscillatory CNN' if there are
three-pixel-wide vertical black stripes on the input and the white separation is at least
three pixels wide (Fig. 12.1).

0 0 0 0 0 0
A=|-15 2 1.5 B=| 3 0 3 z=-—1.5
0 0 0 0 0 0

The so-called horizontal connected component detector template (cited in Chapter 15)
is shown below

0 0 0 0 0 0
A=| 1 2 -1 B=| O 0 0 z=0
0 0 0 0 0 0

This template results in a propagating and then settling wave propagating from left to
right. The process in each row is independent from the other rows. If the initial state is
black and white, the output will result in a few distinct black pixels on the right-hand
side, their number is equal to the number of connected black regions in the given row.
A few initial state and output pairs of a row are shown in Fig. 12.2.

In general, it is very difficult to design coupled CNN templates, partly because of
the enormous variety of the waveforms generated by these templates.

In what follows, to make our systems tractable for simpler design methods, we will
restrict ourselves to the case when agg > 1. This means that the cell cannot be at a
STABLE equilibrium point in the linear region. That is the settled cell states are in
one of the saturation regions, hence the output is 41 or —1. Moreover, we suppose
that the dynamics of a cell is restricted to a switch type operation, i.e. if a cell leaves a
saturation region (Q4 or Q_) then the cell flips to the other equilibrium point.

277 Coupled CNN with linear synaptic weights
|

(@) (b)
Input, state and output transients { layer 1, cell: (6,8)
sl T T T ; T]
— Input
— State
= Output
2 L -
1
I
=
A / \ / Vo
=
=L
At
S
_3 L 1 1 1 1 1)
0 5 10 4 20 25 20

Time [t cnn) { TimeStep =01, Iterhlum = 300]

©

Fig. 12.1. Edge detection via oscillation. (a) 20 x 20 binary input image (u = x(0)), (b) the position
of cell C(6, 8) is marked, it is immediately to the left and right of a left sided edge, (c) state
transient of the cell C (6, 8) — non-edge cells will settle in +1 or —1.

initial states corresponding outputs

(T T CITT T I
HENNNSNEEEEE NN NS
L P Pl LT P PP

Fig. 12.2. A few initial state and output pairs.

278
—

Coupled CNN with linear synaptic weights

Under the above conditions a powerful design method? is available based on the
binary activation pattern.

12.1

Active and inactive cells, dynamic local rules

Recalling the results from Chapters 2 and 3, the governing equation of a cell in a
standard CNN is

dx;j
—F =gt Y auyu £ wi () (12.1)
Sr(ij)
wij =2+) buitk
Sr(ij)

Here we will use the following form

ﬂ zhi' = —X:: +wd"
dt J ij ij
waij = Y auyu®) + Y buun(t) +2
S (i) S (ij)
Recall from our earlier results (Chapter 6, Case I, and Fig. 6.1) that since agyg > 1, the
strong positive self-feedback case, if the CNN is uncoupled then

yij(00) = sgn [(ago — Dxij(0) + wij] (12.2)

Hence, the CNN cells settle in the stable equilibrium points (except the pathological
case when it is semi-stable). They are:

bistable if |w;;| < ago — 1

monostable if |w;;| > ago — 1

(and semi-stable if |w;;| is exactly agg — 1)
However, now we have the effects of the feedback from the neighborhood cells and,
hence, various propagation phenomena could occur.

If we examine Eq. (12.1) we can state that a cell is stable in the positive saturation
region, Q, if

Wyij = Z arjug + wij > +1 (12.3)
KICS, (i)

hence, y;; = 1 and x;; > 1, or in the negative saturation region, Q_, if
waij = Y apu + wij < —1 (12.4)
kICS,(if)

hence, y;; = —1 and x;; < —1. This is clear when we take dx;;/dt = 0 in Eq. (12.1),
since x;;(00) = wyjj, in case of non-oscillatory CNN.

279

12.1 Active and inactive cells

From the above discussions it is also clear that, if agg > 1, a cell can remain stable
only in the saturation region and cannot remain stable in the linear (or active) region.

If all the neighborhood cells of a given cell are stable, then conditions (12.3) and
(12.4) give the conditions for the regions of the stable outputs of the given cell. If,
however, one of the neighborhood cells changes and therefore the changed new value
of wy;; denoted by w;; ; goes to the linear region, then for y;; = 1 and w:{i i< 1 or for
yij = —1and w:{i ;> —1, the cell states will not remain in the saturation region.

Let us examine the case y;; = 1 and x;;(t) > 1 and w:{i ;< 1. This means that
w:{i i< 1 would be the new equilibrium point. But this point is not in the saturation
region, hence, leaving now the Q4 region, x;;(#) and y;;(¢) start decreasing. Since
agp is positive (indeed it is greater than +1), wy;; starts decreasing (the DP plot starts
shifting down) and the cell goes into the negative saturation region. Moreover, we can
prove® that under practically important conditions, ensuring monotonic state transient
property, the cell will really go to the negative saturation region (see Proposition 1).
Hence, once the state of a cell leaves a saturation region it goes into the opposite
saturation region.

A cell is called inactive in a time instant if it is in the saturation region, and its state
is not changing, otherwise it is called active.

Definition 1:
A CNN array has the mono-activation property if cells in Q4 only (respectively cells
in Q_ only) can enter the linear region. Conditions for mono-activation property:

1 if cells can enter the linear region from Q. only, then for those cells that are in Q_
condition wy () < —1 should be satisfied. This condition guarantees that cells in
Q_ never enter the linear region;

2 if cells can enter the linear region from Q_ only, then for those cells that are in Q.
condition wy(#) > 1 should be satisfied. This condition guarantees that cells in Q4
never enter the linear region.

Proposition 1: Monotonic state transient property
Let a CNN be described by a linear template and consider that the following conditions
are satisfied:

1 the CNN array has mono-activation property, i.e. only cells belonging to Q_ (Q.)
can enter the linear region;

2 the A template is non-negative and agg > 1;

3 the initial state values correspond to binary output values.

Under these conditions then, the state of each cell in the linear region is a non-
decreasing (non-increasing) function of time; moreover, all the cells that enter the
linear region change monotonically their state from —1 to +1 (from +1 to —1).

280

Coupled CNN with linear synaptic weights

Proof:
We assume that, due to the mono-activation property, only cells belonging to Q_ can
enter the linear region, whereas cells belonging to Q4 are not allowed to leave the
positive saturation region (the opposite case can be dealt with in a dual way).

The proof is based on a fundamental result due to Kamke, on monotone flows. For
the sake of completeness, we report here a corollary of Kamke’s result that is more
suitable for our purposes. (Il

Kamke’s theorem:

Let F : R — R”" be a continuous map such that F;(x) = Fj(xq,...,x,) is
non-decreasing in x; for all k& # i. Let ®,(x(0)) be the solution of the autonomous
differential equation dx/dt = F(x) for a generic initial condition x(0), such that
@0 (x(0)) = x(0). If x* < x" then for all # > 0 we have ®,(x%) < &,(x).

Proof:
See W. A. Coppel, “Stability and asymptotic behavior of differential equations,” D.C.
Heath, Boston, 1965.

The proof of Proposition 1 proceeds as follows:

1 By assumption, for ¢+ = 0 all the cells are in a saturation region, that is, they belong
to Q4+ U Q_. Due to the mono-activation property, all the active cells must belong
to Q_; we denote the set of the active cells by Q. The inactive cells may belong
both to Q4+ and to Q_: their set, for t = 0, is denoted by Q.

2 Let us denote by x* and x' the vectors containing the state-values of the active (Q%)
and inactive (Q') cells, respectively. There exists #; > 0 such that in the interval
[0, #1] the output voltages y' corresponding to the inactive cells are constants. Hence
the time-evolution of the active cells can be described by the following equation

dx?
dt

= x"+A " +Bu+tu, +z (12.5)

where matrix A, is obtained through the feedback template A by ordering the cells
in some way and by considering only the active cells; matrix B is obtained by the
input template B, u, represents the constant contribution due to the inactive cells,
and z is a vector containing the bias terms. Since for the active cells dx¢/dt(t = 0)
is positive, there exists 1, € [0#] such that x%(t2) > x%(0); due to the fact that
all the non-diagonal elements of A, are non-negative, the dynamical system (12.5)
satisfies the assumptions of Kamke’s theorem; therefore for all 0 < ¢ < #; the
solution x“(¢) is a non-decreasing function of ¢.

3 Due to the mono-activity property, it is not possible that cells belonging to Q. enter
the linear region. However it may occur that some inactive cells, belonging to Q_
(and not to Q%) become active. In such a case there exists a time instant t = 3 > 1

281
—

12.1 Active and inactive cells

for which the state voltages of one or more originally inactive cells cross the value
—1 (the set of these cells is denoted by Q¢, whereas their state voltages are denoted
by x¢). This means that Eq. (12.5) is valid in the whole interval [0 #3] and that there
exists € > 0 such that

x(t3 — 2€) = x(t3 — €) (12.6)

Now let us denote with x?¢ the vector x%¢ = [(x®)" (x¢)']" and with y?° the

corresponding outputs. The time evolution of x“¢ in the interval [0 #4] (t4 > 13)

is described by the equation:

dx(ll)
dt

where matrix A, is obtained through the feedback template A by considering only

= x4+ A +Bu+tug +1 12.7)

the cells whose state voltages belong to x“¢; u,. represents the constant contribution
due to the other cells. Now, since equation (12.5) is valid till # = #3 the following
relationship holds

x%(tz —2€) > x%(t3 — €) (12.8)
From (12.6) and (12.8) we have
x%(t3 — 2€) > x% (13 — €) (12.9)

By applying Kamke’s theorem two facts are readily proved: (a) the state voltages
of the originally active cells (Q%) continue to be a non-decreasing function of time;
(b) the state voltages of the cells (Q¢) that cross —1 at ¢t = #3 are a non-decreasing
function of time for r > ¢3.

By increasing ¢, it is confirmed that no cell can leave the set Q. ; if some cells of
Q_ cross the value —1, then the same arguments used at point 3, can be applied. We
can therefore conclude that: (a) the state voltages of the originally active cells (Q%)
continue to be non-decreasing functions of time for all # > 0; (b) the state voltages
of the cells that cross —1 at a certain instant #; are a non-decreasing function of
time for ¢+ > ¢;. It turns out that in the linear region the cell state voltages are a
non-decreasing function of time. Since agp > 1, the linear region exhibits at least
one eigenvalue with positive real part and therefore it is unstable; hence with the
exception of a set of initial conditions of measure zero, all the cells that enter the
linear region change monotonically their state voltage from —1 to 41 (from +1 to
—1, if the mono-activation property holds for cells in Q). This proves the thesis of
the proposition.

|

Here we show an example in which one of the conditions of the monotonic state
transient is not satisfied, and the transient will not be monotonic.

282
—

Coupled CNN with linear synaptic weights

Example 1

Templates A and B of (12.10) satisfy conditions (i) and (iii), but do not satisfy
condition (ii) of the proposition. They activate only pixels in Q., but never activate
pixels in Q_. If a cell output is white, then —2 > wy > —8, hence it is stable in the
negative saturation region independently of its neighborhood configuration. Hence,
template (12.10) is of mono-activation type

-1 0 0 00
A=|1 3 0|, B=[000], z=-2 (12.10)
-1 0 0 00

However, the templates (12.10) have some negative values in the A template. We will
show that the state of some cells in the linear region is not monotone increasing.

Trutial State Final cutput
(L1)ji21)
(L,2)
— 33 Hid—g Hid—0 Hid—h — 37
I | |] I I
| | I~]l

Fig. 12.3. Simulation results of Example 1. The initial state and the final output of the array are
shown. The output signal transients of some cells are also given.

Fig. 12.3 shows an example. At ¢ = 0 all the black cells are activated in the third
column. As the time diagram shows, at the bottom the output signals of the cells
in this column start to go toward the white saturation region (their rate of change
differs from cell to cell). After a while, however, some of them turn back to the black
saturation region (cells (3, 3) and (3, 7)). Hence, this CNN array does not have the
mono-activation property.

283
—

12.2 Binary activation pattern and template format

After this example we introduce some formal methods to decide which cell is (or
becomes) active, and which is not.

Dynamic local rules (DLC)

12.2

In a standard CNN with a monotone state transient property the following four local

dynamic rules govern the change of activity:

@

(i)

(iii)

(iv)

xij(t) > 1= y;;(t) = 1 and w;l.j > 1

an inactive cell remains in the positive stable equilibrium (Q4) at x;; = wz{i i
hence the cell remains inactive and its output y;; does not change

xij(t) > 1= y;j(t) =1and w:{l.j <1

an inactive cell in the positive stable equilibrium changes from region Q. to
region Q_, meanwhile it will be active and settles in Q_

xij(1) < =1 = y;j(0) = —land wy; < —1

an inactive cell remains in the negative stable saturation region (Q_) at x;; =
w;{i T hence the cell remains inactive and its output Q. does not change

xij(t) < =1 = y;;(t) = —1 and w;;.j > —1

an inactive cell in the negative stable equilibrium changes from Q_ to Q. region,
meanwhile it will be active and settles in Q..

Binary activation pattern and template format

Now, we are in a position to define the binary activation pattern, which will trigger
unidirectional changes in a propagating wave.

Consider now a standard CNN with agp >> 1, fixed boundary (—1), and a given

initial state and input. At the beginning and all along the possibly propagating transient
process, the inactive and active cells define an activity pattern of the whole cell space.

Suppose the whole propagation process will meet the following conditions:

e At the end, all cells belong to the inactive cell set.

e Atthe beginning, there exist at least one active cell in the active cell set. (Otherwise,

there would not be any change, all the cells would remain in their stable inactive
state.)

e During the transient process, an inactive cell becomes active if at least one of its

neighborhood cells becomes active and the activity pattern of the neighborhood,
called activity configuration, satisfies some conditions (then this configuration is
called activator configuration).

284

12.3

12.3.1

12.3.2

Coupled CNN with linear synaptic weights

Definition 2:

The binary activation pattern is defined within an S, (ij) neighborhood. It consists
of two template-sized patterns, having a black, or white, or don’t care value in each
position. In addition to these two, input related and current output related, local
activation patterns called activator configurations, a limit number (L) is also given.
A cell ¢;; will be activated (go to active state from an inactive state) if the actual local
activity pattern is an activator configuration, i.e. in S, (i) it matches at most or at least
L black-and-white positions of the binary activation pattern (the don’t cares do not
count!). Hence, the local dynamic rule is given by the activator configurations and L.

Definition 3:

If the activation pattern is input independent, that is the input related part contains
don’t cares only, we call this situation unconstrained propagation and the B template
is zero (otherwise it is called constrained propagation).

Definition 4:

The propagation rule, i.e. the activator configuration, is called B/W (black and white)
symmetric if the rule is symmetric to the color (black/white). This means that the role
of black pixels and the role of white pixels are interchangeable. In this case the bias
term of the template, (z), equals zero.

A simple propagating type example with B/W symmetrical rule

In the next example we generate the left to right horizontal shadow of a black object
on a binary image.

Global task

The task can be defined in each row, independently. In a black and white image, in
each row, all the pixels right from the left-most black pixel should become black. An
example is shown in Fig. 12.4.

Local rules and binary activation pattern

In this task, we have to find the left-most black pixel in each row, and change all white
pixels black which are right of it. This can be done by starting a black propagation
front moving right from each black pixel. Hence, the local rules are: (i) a white pixel
where the direct left neighbor is black, change to black; (ii) the rest of the pixels should
be unchanged.

The activation pattern and the local rule are shown in Fig. 12.5.

285
—

12.3.3

12.3.4

12.3 A simple propagating type example

L[
LI

initial state final output

| (o] (W
| (o] (W
M| ()] (]

I [[
[(]

LI/
L]
L]

I [[

I I [

(I (I (I [
|| (][]
W | |
CI] 1)

Fig. 12.4. Example for the left to right shadow generation.

Input Current output ~ Limit number Rule
dependency dependency

B - = | - In the case of two matches the central

- =1 - m| O - 2 white pixel in the output should change to
- =] - - -] - black

Fig. 12.5. Binary activation pattern and local rule (shadow template).

Template type and template form

The propagation is unconstrained, because it is not effected by the input. (It starts from
the left-most black pixel and goes along to the boundary.) It is asymmetric, because
the black objects get shadows, the white ones (here the background) do not.

The template form can be derived from the activation pattern and the classifications.
The center element of the A template (agp) is the first free parameter. There is only one
non-zero off-center in the activation pattern, which is the second free parameter. The B
template is zero, because the propagation is unconstrained. The current (z) is the third
free parameter, because the propagation is asymmetric. The template is sought in the
following form:

0 0 0 0 00
A=|b a 0|, B=[0 0 0 |, z=i (12.11)
0 0 0 0 00

System of inequalities and optimal solution

The relation system generation is based on Dynamic Local Rules (DLC). Since two
pixels affect the propagation, we have to examine four cases only. These cases are
shown in Fig. 12.6.

286
—

12.4

Coupled CNN with linear synaptic weights

Local pixel Desired next Cell Relation ref wy
configuration in output remains/becomes case in DLC
the current output active or inactive
ojo| - white inactive —a—b+i < —1(ii)
o|ym|— black inactive a—b+i>1(0)
H m| - black inactive a+b+i>1(01)
m| O - black active —a+b+i>—1(@Gv)

Fig. 12.6. Binary activation pattern and local rule (shadow template).

We do not deal here with the solving of the system of inequalities and the template
optimization for robustness. The optimized final template is the following:

000 000
A=|120]|, B=|000] z=1 (12.12)
000 000

The connectivity problem

The goal here is to delete all pixels which are part of a connected object defined by
black pixels on a white background. Consider Fig. 12.7.

Two binary images are given. The first contains some black objects against a white
background. The second is derived from the first one by changing some black pixels
to white. Those objects are considered to be marked which have some deleted pixels.
Design a template which deletes the marked objects and does not affect the rest of the
image. If we delete a single pixel of a black object and apply this template, all the
black pixels consisting of the object will change to white.

287

12.4.1

12.4.2

12.4 The connectivity problem

Global task

This is a 2D problem. All connected black pixels of the marked objects should change
to white, and the rest of the pixels should remain unchanged. An example can be seen
in Fig. 12.7.

|
N
[
ml |
N

first image second image final output

]] (]]
[O

I O
I [
I O

LI CNCEC]

I) O

]

(]
[
L]
N
O

L]
L]
|
||
[

[

Fig. 12.7. Example for the connectivity template.

Local rules and binary activation pattern

In this task, first, we have to find those pixels which are black in the first image and
white in the second image. From these points we have to start propagation wave-fronts
to all directions. The front should propagate on the black pixels only and change them
to white. Since the wave-front moves on the second image it will be the initial state and
the first image will be the input. Hence, the local rules are the following: (i) change
those black pixels white which have at least one neighboring cell with white output
and black input, and (ii) do not change the rest of the pixels. At the same time, it is
clear from the task specification that if a pixel is black in the second image (current
output), it must be black in the first image (input) also. From this it follows that here
the difference of the output and the input counts instead of simply the output value of
the neighboring cells.

We introduce a new sign in the activation pattern. The delta sign (A) means that the
particular neighbor activates the cell if and only if its output and its input are different.
Note that the definition of the task excludes those situations when the output are black
and the input is white. So, here the delta sign (the match) means that the current output
is white and the input is black in a particular position. A cell becomes active if both
its central input and central current output are black, and if it has at least one matching
neighbor. For simplicity we used four neighborhoods. The activation pattern is shown
in Fig. 12.8.

288
—

12.4.3

Coupled CNN with linear synaptic weights

Input Current output ~ Limit number Rule
dependency dependency

N N N If the central input and central current
AlE|A AR A 1 output are black, and there are one or
N N _ A Z more matches, the central black pixel

in the output should change to white

Fig. 12.8. Binary activation pattern and local rule (connectivity template).

Table 12.1.
Output Input # of Becomes/ Desired Relation
matching remains active output
pixels or inactive
Black (+1) Black (+1) 0 Inactive Black (+1) at+c+1>1
Black (+1) Black (+1) 1 Active White (—1) a—2b+c+i<l1
Black (+1) Black (+1) 2 Active White (—1) a—4b+c+i<1
Black (+1) Black (+1) 3 Active White (—1) a—6b+c+i<l1
Black (+1) Black (+1) 4 Active White (—1) a—8b+c+i<l1
White (—1) Black (+1) 0 Inactive White (—1) —a+c+1<-—1
White (—1) Black (+1) 1 Inactive White (—1) —a—2b+c+i<—1
White (—1) Black (+1) 2 Inactive White (—=1) —a—-4b+c+i < —1
White (—1) Black (+1) 3 Inactive White (=1) —a—-6b+c+i < —1
White (—1) Black (+1) 4 Inactive White (—1) —a—-8+c+i<—1
White (—1) White (—1) 0 Inactive White (—1) —a—c+i<—1
White (—1) White (—1) 1 Inactive White (—1) —a—-2b—c—i < —1
White (—1) White (—1) 2 Inactive White (—=1) —a—-4b—c+i < —1
White (—1) White (—1) 3 Inactive White (-1) —a—-6b—c+i<—1
White (—1) White (—1) 4 Inactive White (—1) —a—-8 —c+i < —1

Template type and template form

The propagation is constrained, because it can go over the black areas only. It is
asymmetric, because it deals with the black objects, the originally white pixels are
unchanged.

As usual the template form can be derived from the activation pattern and the
classifications. The center element of the A template (agp) is the first free parameter.
The delta operators in the neighborhood affect both the A template and the B template.
A neighbor which has the same input and output (both can be black or white) does not
affect the cell. But if it has black input and white output it activates the cell. Hence, the
second free parameter appears in the neighborhood in both the A and the B template,
but with opposite sign. The center element of the B template is the third free parameter.
Since the propagation is asymmetric, the bias (z) is the fourth free parameter. The

289

12.4.4

12.4 The connectivity problem

template is sought in the following form:

0 b 0 0 —-b O
A=|b a b |, B=| -b ¢ —b |, z=i (12.13)
0 b 0 0 —-b O

System of inequalities and optimal solution

The relation system generation is based on Dynamic Local Rules. Since there are only
three valid binary input—output combinations here, and five matching possibilities,
there are 15 different cases. All cases yield a relation. The relation set is shown in
Table 12.1.

We do not detail the solution of the relation system and the optimization here. The
optimized final template is the following

010 0O -1 0
A=(13 1|, B=| -1 3 -1 /|, z=-4 (12.14)
010 0 -1 0

Fig. 12.9 shows an example for the operation of the connectivity template.

006G ©G

input initial state
snapshot 1 snapshot 2
snapshot 3 final output

Fig. 12.9. Consecutive snapshots of the propagation of the connectivity template.

—
13

Uncoupled standard CNNs with nonlinear
synaptic weights

290

So far, we have studied CNNs with linear synaptic weights (linear templates) described
by the class 1 standard CNN dynamic equations (Eq. (2.2)). This means that the
characteristics of a simple synapse or template element are linear. In many practical
cases, these elements are voltage controlled (gated) current sources (conductances
or transconductances). Indeed, in practice, they are never completely linear. We are
approximating them on a well-defined domain, around an operating region (point).
CNNs with nonlinear templates were introduced in the early years.! Two typical
characteristics are shown in Fig. 13.1. The slopes of the linear approximation (dotted
line) are the template elements (e.g. ax; or by;). In the second case, an offset value (ip)
is also present. These curves are called sigmoid characteristics.

b i=g(v) 4 i=g)
) /_
/7 A l.O

v

v

Fig. 13.1. Two typical synapse/template element characteristics and their linear approximation.

Based on these typical characteristics, some other nonlinear curves, useful in
modeling, are shown in Fig. 13.2. They are a simple linear combination of the original
curves in Fig. 13.1.

Once we use nonlinear templates, the analysis of the dynamics of the CNN becomes
more complex. To keep the study tractable, and to make the modeling or the physical
implementation simpler (e.g. in CMOS or BiCMOS VLSI circuits), the uncoupled
CNN class with nonlinear space invariant synaptic weights is a good compromise. A
simple framework with agg, z, and a nonlinear B template are studied next. In this case,
the DP plot technique described in Chapter 3 can still be used.

291
—

13.1 Dynamic equations and DP plot

13.1

hi=g(v) A= Ai=gW)

([N, e
_J \J v

=V

N

<

(a) (b) (c)

Fig. 13.2. Inverse sigmoid (a), bell-shape (Gaussian) (b), and inverse bell-shape characteristics (c).

Dynamic equations and DP plot

Restricting the class of nonlinear templates, consider the following cloning template:

0] 0]0 by | bg | by
A=[0|ap |0| B=|bg|bs|bs bs = boo
0] 0]0 by | by | by

The B template is, in general, nonlinear. This means that the template elements
(b1, ...,b9) are nonlinear functions of either the inputs or the input differences
(ug; — u;j). Hence, the dynamics is described by the following state equation

ij=—xj+aofxi)+z+ Y, BljikD)-un (13.1)
C(kDeS(i))

where B(ij; kl) - ug; has two types of forms: difference controlled,” i.e. the controlling
variable of a template element is uy; — u;;, or value controlled, i.e. the controlling
variable is u;. Note that in our case the nonlinearity is in the B template only, hence
the state dynamic route I'y and the shifted DP plot I'y(w;;) technique can still be
applied (see Section 3.2). Following this technique, the standard forms of the state and
output equations will be

xij = g(x;j) + w;j = —x;; + apo f (xij) + wij

wij=z+ Y. BGjikl) uy (13.2)
C(kD)es, (i)

vij = f(xij)

When drawing the shifted DP plot, we can determine the values and ranges of the shift
w; ;. The basic structure of the DP plot remains the same as in Section 3.2.

292 Uncoupled standard CNNs
|

Gray-scale contour detector

0]01]0 alala
A=|0(2|0| B=|a|0|a| z=|07
0/0(0
where a is defined by the following nonlinear function (piece-wise linear inverse
bellshape)
a(uy, — ul-j)
05
-
-0.18 0.18 Uy — Uy
-0.5
Fig. 13.3.
I Global task

Given: static gray-scale image P

Input: U(t) =P

Initial state: X(0) =P

Boundary conditions: Fixed type, u;; = 0 for all virtual cells, denoted by [U] = 03

Output: Y(t) = Y(oo) = Binary image where black pixels represent the contours of
the objects in P.

IT Local rules

ug — ujj —> Y;;(00)

White local area (all nearest neighbors) — White

Black local area (all nearest neighbors) — White

White or black central pixel in a black or white neighborhood, respectively — Black
Straight white line with three neighbors against six blacks — Black

Straight black line with three neighbors against six whites — White

AN L AW =

Substantial change in gray level between a central line and neighboring pixels —
Black

Remark:
Substantial change may seem a loose term. However, it is far from trivial, mathemat-
ically. Unlike sophisticated PDE templates and algorithms, this simple template, by

293 13.1 Dynamic equations and DP plot
|

controlling the height and width of the inverse bell-shape (Gaussian-type) nonlinearity,
can give a good estimate for our visual perception of a contour.

IIT Example:

Image name: madonna.bmp, image size: 59 x 59; template name: contour.tem.

IV Mathematical analysis
Suppose

Wij =2+ WijB

Then, in view of agyp = 2, the DP plot with w;; g will be as shown in Fig. 13.4.

Fig. 13.4. The DP plot with wijp =0.

Consider now the six local rules. The values of w;;p to the six cases will be denoted
by wy, wy, ..., we, respectively.
The DP plots for these cases are shown in Fig. 13.5.

294 Uncoupled standard CNNs
|

Fig. 13.5. The DP plots for the six local rules.

Local rule 1
Since all the pixel values of P in the local neighborhood are the same, ug; — u;; = 0
for VC(kI) € S,(ij), thatis b(ug; — u;;) = b(0) = —0.5. Hence, following equation
(13.2)

wijp = w1 =Y B(ij;kl) - ug = 8b(u — uij) = 8b(-) = —4

that is, Qp: white (independent of the initial state).

Local rule 2
Again, all the pixel values of P in the local neighborhood are the same (now black),
hence uy; — u;; = 0, and, as before, wy = —4 = w;. Hence Q; is white.

Local rule 3
(a) If a white central pixel is in a black surround, then uy; — u;; = 2, hence b(uy; —
u;j) = 0.5, therefore w3z, =8 x 0.5 =4.
(b) If a black pixel is in a white surround, then ug; — u;; = —2, hence b(ug; — u;j) =
0.5, therefore w3, = 8 x 0.5 = 4.

In both cases, w3 = w3a = ws3p, = 4. Following the DP plot for w3 = 4, the
equilibrium point Qj3 is black (independent of the initial state).

Local rule 4
An example of a typical configuration referring to Local rule 4 is shown in Fig. 13.6.

295 13.1 Dynamic equations and DP plot

Fig. 13.6.

The straight white line with three neighbors against six blacks could be placed in other
directions as well. In all cases, since byg = 0

wy = Z B(ij; kl) -ug; = 5-b(0) + 3 -b(=2) = 5(-0.5) + 3(0.5) = —1.0
The DP plot for wgy = —1.0 settles in Q4 since the initial state is black (41). Qg is
black (>+1).

Local rule 5
In this case, a typical configuration related to Local rule 5 is shown in Fig. 13.7.

Fig. 13.7.

Hence, the reasoning follows as in Local rule 4,
ws = 5b(0) +5b(2) =5(-0.5)+3-05=-1.0

However, since the initial state is white (—1) the stable state Qs will be white.

Local rule 6
In this case the local rule is given in a fuzzy way: substantial changes occur in the gray
level between the central line and neighboring pixels.
Indeed, this means that basically the DP plot will follow the plots for Local rules
4 and 5. The reason is that the inverse bell-shaped function has the same value if
gy — uij| > 0.18.

-
14 Standard CNNs with delayed synaptic

weights and motion analysis

141

296

Modeling living neural networks, a typical construct is a so-called interneuron. This
means a time-delayed action, sometimes a delayed excitation, sometimes a delayed
inhibition. The introduction of ideal delaying template elements in cellular neural
networks! was motivated by this fact. Later, the synapse delay in general neural
networks became widely used. Although, in the VLSI implementation, the ideal
delay in not easily implemented, and physiologically faithful models of living neural
networks did not contain ideal time delay either, conceptually and logically the delay
template is useful in explaining complex wave-like actions in a simpler way. Moreover,
delayed synapse functions can be and are approximated by both VLSI and living neural
implementations, respectively.

Motion analysis is one typical application. We will show some useful examples as
well.

Dynamic equations

Following the original paper,' and referring to the notations used in Chapter 2, a class 1
standard CNN with space invariant templates with and without time delays is described
by the following state and output equations

L 1
Gij=—XijtzH Y Y @itk o + Y Y buttivk jria

k=—11=—1 k=—11=—1

1 11
+ Z Z Qg Yitk. j+a—) T Z Z btk j+1(t—1)

k=—11=—-1 k=—11=-1
Acaw; AT taf; B by BT by (14.1)

The delayed template values aj;, by, are given in the same way as the A and B
templates (3 x 3,5 x 5,7 x 7, etc. matrices).

There are a few theoretical challenges when introducing delayed templates.> One
can be formulated as follows.

297

14.2 Motion analysis

Suppose, we have two different templates. We are combining them as a non-delayed
and as a delayed template. What would be the function of the combined template?

An example is shown below.

Given a connected component detector and a vertical line detector template, suppose
we are combining them as follows

olo[o
TEMCCD: A.=|1[2|-1] B.=0 z.=0
olo] o
(o[1 o]
TEMVEDGE: A,=[0|—-1|0| B,=0 z,=0
0l 1

The combined template:
A=A; A"=A,; B=B.=0; B"=B,=0; z=2z.+7z,=0

An original image, the output using the CCD template and the output using the
combined template are shown in Examples 14.1(a), 14.1(b), and 14.1(c), respectively.
It is instructive how the two different functions are combined: a CCD-like wave is
vertically stopped at the various vertical edges of the input image.

EXAMPLE 14.1: An original picture (a), the output using CCD template (b), and the result

14.2

when the combined template is applied (c).

(a) (b) (©)

Motion analysis - discrete time and continuous time image
acquisition

Motion detection and estimation is an evergreen problem. In this section we will
consider a special problem and some related aspects. In a famous discovery by Hubel
and Wiesel,? it was shown that if a bar was moving across a particular region of a cat’s

298

Standard CNNs with delayed synaptic weights

visual field in a certain direction and if the speed was around a given value, then some
cortical neurons would fire (detecting this event). How can we imitate this detection
task using a CNN template or a sequence of a few templates? In what follows, a simple
solution will be shown. First, using a standard CNN with conventional templates acting
on a sequence of snapshots; second, using also delay type templates in a continuous
time mode of the image acquisition.*

Problem 1
Given a moving bar with a constant speed in a given direction (horizontal, to right),
detect the object if it moves with a given speed.

Solving Problem 1, suppose that the given velocity is v = Ax/At. Adjust the
sampling rate of this image sequence in such a way that at this velocity the movement
of an object will be one pixel per sample. Now, to solve our problem, first we take the
difference image between two consecutive snapshots and then examine whether the
difference is one pixel wide.

To take the difference picture P; of two consecutive snapshots Py and Py, the truth
table of Table 14.1 is to be realized. P; = Py \ Py.

Table 14.1. Truth table for the subtraction P; = Py \ P

P, P, P,

uij x;j(0) y;j(00)
-1 -1 -1
-1 1 1
1 -1 -1
1 1 -1

A simple template, LOGDIF of Chapter 3, implements the logical difference if u;; =
Py, X(0) =Py, and P; = Y(00)

ofofo o[oo
A=[o[1]o]| B=[0o[-1]0]| z=[-1]
ofofo o[oo

The speed detection means that the difference picture has a one-pixel wide object with
a left neighbor in Py. This means that we have to delete every black pixel in P; which
has no left neighbor in Py. This is the basic idea of direct neighbor detection. The next
template is completing this task

A=[o]21]0] B=[2]0]0] z=[-2]
U=Py; X0 =Py, and Y(c0)=P,

where P; is the output.

299

14.2 Motion analysis

This can be proved, as an exercise, using the DP plot technique.

Suppose that Py and Py, shown is Example 14.2(a) and (b), are the two consecutive
samples of a moving object (taken at fg and #1). v = Ax/At, At = t] — g, Ax is equal
to the pixel size. All the pixels of the difference image P;, shown in Example 14.2(c),
have a left neighbor in Py. If we delete all the black pixels in P, having a left black
neighbor in Py implemented with template DWLB (delete with left black) shown
below, then the resulting screen P will be empty (full white). This detects the event
we are looking for.

EXAMPLE 14.2: The two consecutive snapshots Py (a), P (b), and the difference image P,

(c).

(a) (b) ()

The template DWLB is as follows:

A=[0]2]0] B=[2[0]0] :=[7]

U=Py; X@0)=Py;, and Y(oco) =P

This can be proved, as an exercise, using the DP plot technique.

In some cases, if the object is larger, some pixels might remain in Py, even if
the displacement of the whole image is one pixel. Then, another template, which is,
however, coupled, solves the problem. This template is

Generating the difference picture in continuous time mode

If the image flow is continuous we cannot use the initial state as an independent input
port (in the LOGDIF template). In order to take the difference of the actual sample and
some proceeding sample of the motion picture, without receiving consecutive samples,
we can use a delay-type template.

The simplest possible solution is a combination of a B and a B’ template with only
central elements bgg, and b(’)o, respectively. The output, in the linear domain, is

y(t) = boou;j + biuij(t — 1) (14.2)

300

Standard CNNs with delayed synaptic weights

If by, = —bg, = bo then
() = bo(uij —u;j(t — 1))

If we include a self-coupling (ago) and bias term z, the template calculating the logic
difference will be

A=lawl, B=[bl, A"=[0], B"=[-bol, z (14.3)

It is supposed that the rate of change of P(¢) is significantly slower than the time
constant of the CNN (zcnn)- Likewise, the delay time is also bigger than tenn. For
example, T > 5TcNN-

In most practical cases the extracted difference picture is corrupted by noise, due
to light reflections and slight changes in the environment during motion. Therefore, it
would be useful to combine the difference calculation with noise filtering. We have
learned in Chapter 3 that an averaging type noise filtering can be achieved by a
circularly symmetric template. Hence, we would combine the template in (14.3) with
such an averaging type template as follows

0/00 ala
A=|0|1|0| B=|al|b|a| z
0]01]0
(14.4)
0(0/0 clc|c
AT"=]0/0|0| B =|c|d]|c
0(0/|0 clc|c

As before, we propose that b = —d.

Then, a, b, c, and z are the constants we want to determine. Under this conditions
the transients are monotone in time?2 (prove it as an exercise). This means that each
state variable is strictly increasing or strictly decreasing.

Since A is uncoupled with agp > 1 and A" = [0], the CNN is completely stable.

The truth table of the logical subtraction is shown in Table 14.1. In our case now,
however, the first column belongs to the delayed input image, the second column
represents the actual input image, while the third column represents the output (the
difference image).

The first row of Table 14.1 states that if a certain pixel is white, in both the
actual and the delayed input pictures, then the steady state of the corresponding state
variable should be smaller than —1, independently of the neighboring cells. Due to the
monotonicity property, just mentioned, a negative sign of the slope (x;;) is enough to
fulfill the latter condition.

Since u = u? =1, using the template (14.4), this condition means

%ij(t) = —x;;(t) + yijt) +z—b+8a—d+8 <0

301

14.2 Motion analysis

The terms +8a and 8¢ mean that any combinations of the neighbors are allowed. At
t =0, Xij 0 = Yij 0), hence

z—b+t8a—-d=x8c <0 (14.5)

Due to monotonicity, this condition will ensure the negative slope during the transient.
With similar reasoning, using the third and fourth row in Table 14.1 we get

z—bx8a+d+8 <0 (14.6)
Z2+bx8a+d=+8 <0 (14.7)

The second row of the truth table requires additional investigation. It states that if a
specific pixel is black in the actual input picture and white in the delayed input picture,
then the pixel should be black at the end of the transient. This is the normal operation
for generating the logical difference (subtraction). However, we want to make also
noise filtering. This means that if a pixel in the delayed input has less than two black
neighbors, then it is considered to be noise and the output will tend to be white (even
if all the pixels in the actual neighbors are black). These two cases, that is a zero black
neighbor and one black neighbor in the delayed input, are represented by the following
two inequalities, respectively

z+b+8a—d+8c<0 (14.8)
z+b+8—d+6c<0 (14.9)

Finally, if there are two black neighbors then the state and output turns black and then
the condition will be

z+b+8as—d+4c>0 (14.10)

If ¢ < O, then in case of more than two black neighbors the inequality (14.10)
automatically ensures the condition for turning black.

Now, we have six inequalities (14.5)—(14.10) for four independent parameters
(a, b, c, 7). A suitable choice, inside the polyhedron, is

a=025 b=2, c=-025 d=-2, z=-4.75

This means that our template for taking the difference and, at the same time, making
noise filtering, is

0/0(0 0.25 1 0.25 | 0.25
A={0(1]|0] B=|025| 2 |025| z=-475
0(0(0 0.2510.25] 0.25
(14.11)
0/0(0 —-0.25 | —0.25 | —0.25
A"=[0[0]|0| B"=|-025| —2 | —-025| 7> 5tem

0/0/0 —-0.25 | -0.25 | —-0.25

302 Standard CNNs with delayed synaptic weights
|

The performance of the template on an image flow showing a running clock with a
rotating hand is shown in Example 14.3. Observe that in the center (kernel) part of the
hand there is no change.

EXAMPLE 14.3: Snapshots in processing the image flow of a running clock with rotating
hand. One snapshot of the input flow (a), a calculated difference image without noise
filtering using template (14.3) (b), and the result using template (14.11) with noise
filtering (c).

(a) (b) (©)

]
15 Visual microprocessors — analog and digital

VLSI implementation of the CNN Universal
Machine

303

Digital technology has the key advantage that if a few building blocks are implemented
then any complex system can be built from these by

e wiring and

e programming.

Moreover, most of the digital building blocks are placed in a regular arrangement: a
simple block is repeated many times in a matrix arrangement (e.g. memories, PLAs,
etc.).

The CNN core and the CNN Universal Machine architecture, containing also analog
building blocks, possess the very same properties. Due to their special nature, however,
they have orders of magnitude advantages in speed, power, and area (SPA) in some
standard physical implementations. In many applications, like image flow computing,
this advantage might be mission critical.

As a revolutionary feature, stored programmability can be introduced in the analog
domain as well. This makes it possible to fabricate visual microprocessors.

In what follows, first, we show the building blocks and their simple CMOS
implementation examples, without going into the details of their design issues.! The
emulated digital implementation will be only briefly reviewed. As to this and the
optical implementation, we refer to the literature.?

As a summary: using only six simple circuit building blocks, namely:

e resistor,

e capacitor,

e switch,

e VCCS (Voltage Controlled Current Source),

e logic register, and

e logic gate,

the most complex CNN array computer chip can be built in a VLSI friendly, regular
structure.

304

Visual microprocessors

Next, the visual microprocessor and its computational infrastructure is described.
At first, it seems unusual to combine analog spatio-temporal dynamics with logic,
programmability, and software. Indeed, in the CNN-UM and in the visual micropro-
cessor, when the sensor array is integrated with the CNN-UM array processor, the most
difficult digital task (solving a nonlinear wave equation) is selected as an elementary
instruction. But this is exactly the task a CNN array can solve most easily.

Finally, some realistic measures are shown to compare the computing power of dif-
ferent architectures for array signal processing, especially for image flow processing.

15.1

The analog CNN core
There are only three building blocks in the core cell: a capacitor and a VCCS

(voltage controlled current source) the latter may have a linear and a saturation region
(Fig. 15.1), and a resistor.

. Voltage controlled current source:
Capacitor:

__I_C + v i=kv k
T .

Resistor: —\/\/\/\/_

Fig. 15.1. The three building blocks of the CNN core.

The CMOS implementation of a capacitor is straightforward, though its smallest value
is limited by the stray capacitors (sometimes this is exactly the capacitor of a CNN
cell). The resistor is implemented by a transistor. The VCCS is implemented in many
ways, the Operational Transconductance Amplifiers (OTAs) are the usual solutions
with their many different circuit designs. One possible circuit, the recently invented
“one transistor synapse,” is shown, in its transistor level description, in Fig. 15.2.
Indeed these OTAs, sometimes called synapse circuits, are the protagonists of the CNN
CMOS implementations. The CNN core, is composed of a capacitor, a resistor, and a
VCCS. The cell interactions between the cells are also implemented by VCCS blocks.
The circuit model of such an interacting core cell is shown in Fig. 15.3.

The cell model in Fig. 15.3 is the so-called Chua—Yang model. In some cases, from
an implementation point of view, the so-called full-range model is more convenient.*

In the full-range model, the state and input are connected and the circuit in the
dashed line area is composed of a capacitor, a nonlinear resistor and a current source.
In the CNN universal cell model in Fig. 15.6, the full range cell model is shown.

305
—

15.1 The analog CNN core

Ve i

—> In
o—
Va
nullator
\%"

¥

Va4V,
Iy = B(Va — VL)VG —ﬁ(vT y AL

>)(VA - VL)

Fig. 15.2. A transistor level description of a “one transistor synapse” implementing a VCCS.

DUBG, jik D) uk,& / D AG ji k. Dy, ()
A 4

Fig. 15.3. A circuit model of a standard CNN cell.

The circuit model of a very simple CNN array, a one-dimensional CNN array with
three inner cells and two border cells, having the simplest interconnections, just one to
each neighbor, and self-feedback, is shown in Fig. 15.4.

This circuit has been used sometimes to test the circuit robustness as well as for
implementing the simplest propagating template. In addition to its own useful function,
the CCD template became an ubiquitous CNN test circuit.

It is instructive to show the transient signals in the consecutive cells. Indeed, the
time constant of the cell can be determined, approximately, from the measured delay
time of the propagation along the whole line.

As an exercise, after reviewing the cell transient, we will determine the method of
how to measure the cell time constant of a five-cell CNN (three cells plus the two
border cells).

306 Visual microprocessors
|

Five-cell (three cells plus border cells) CNN with a connected component detector (CCD) template:

0/0] O
A=|1[|2|-1|] B=0 z=0
00 0

1 2 3 4 5
border border
cell cell

g % o

i=kv
u p— v

O O o

Fig. 15.4. The circuit model of a one-dimensional standard CNN with five cells (incl. two border
cells).

The B template is zero, hence the input is omitted, the initial state is the only
independent input information, the bias term is zero as well, and the feedback template
is very simple: only a part of a border cell is shown, normally the border cell is the
same as the intermediate cell.

The number of rows is 1, m = 1, the number of cells is five; we are not
distinguishing here between border and inner cells, hence n = 1, 2, 3, 4, 5.

We show the signal transient of the circuit model for all the five cells im = 1,n =
Iim=1n=2m=1n=3m=1,n=4,andm = 1,n = 5) in Fig. 15.5
(first five parts). There is a wave from left to right. An axonometric view of the signal
transients for all the five cells is shown in the last part of Fig. 15.5.

Observing the cell signals, the fourth cell output reaches the positive saturation value
about 1.6 (in terms of the time constant). Hence, if tf is the measured value of this
time instant in an actual circuit, then the time constant is tj /1.6.

307 15.1 The analog CNN core
|

Initial state: Output:

> [[|

Standard one row view imm=1,n=1)

4.00
""""""""" Output: Yy

State: Xy 3.00
2.00
1.00

0.00 . >
2100 b
—2.00
-3.00
-4.00

Standard one row view (m=1,n=2)

Legend I W

4.00

""""""""" Output: Yy
State: x;; 3.00
2.00

1.00 |,

0.00 1 >
~1.00 ...
2,00
-3.00
4,00

Fig. 15.5. Signal transient of the five cells (first two parts, see the consecutive parts on the next two
pages).

308 Visual microprocessors
|

Initial state: Output:

Standard one row view (m =1, n=23)

4.00
State: x;; 3.00
2.00
1.00 [
0.00

~1.00 K

-2.00
-3.00
—4.00

Standard one row view (m =1, n=4)

""""""""" Output: ¥ 4.00

State: x; 3.00
2.00

100 | g

0.00
-1.00
-2.00
-3.00
—4.00

Fig. 15.5. Continued.

309 15.1 The analog CNN core
|

Initial state:

Standard one row view (im=1,n=15)

""""""""" Output: Vi

***** State: x;;

Standard one row view (m = 1)

""""""""" Output: Yy

***** State: x;;

Fig. 15.5. Continued.

4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
—4.00

Output:

Xy
2.50
2.00
1.50

- 1.00
0.50

310
—

15.2

Visual microprocessors

Analogic CNN-UM cell

If we add a switch, a logic register, and a logic gate to the three building blocks of
the CNN interacting core cell, we can implement the extended CNN cell of the CNN
Universal Machine (CNN-UM). Hence, the following six building blocks, plus wiring,
are enough to build the CNN Universal Machine:

resistor

e capacitor

e switch

e VCCS

e logic register
e logic gate

Since the CMOS implementation of the controlled switch, the logic register and the
logic gate is well known and straightforward, we are not discussing them. The circuit
model of the CNN-UM cell is shown in Figs 15.6 and 15.7 (we have copied them here
from Fig. 9.1, except the full range model of the CNN cell is used). It is not difficult
to implement. The art is in the actual design to make the smallest, speediest, least
dissipative solution. This real art is discussed in the new book referred to earlier in this
chapter.

Most of the elements of the circuit model in Fig. 15.6 can be implemented by CMOS
elements as described above. The new elements here are the Local Analog Memory
cells (LAM cells) and the Local Analog Output Unit (LAOU). The implementation of
the former is made by capacitors, however the switching circuitry around it may be
quite sophisticated due to the leakage effects. These points are discussed in detail in a
paper devoted to the design of an Analog RAM (ARAM).?

The LAOU design is application specific. In the simplest case, it could contain an
adder, a multiplier, or some other simple circuit functions.

Fig. 15.7 shows the logic part with the comparator. This part can be implemented
with standard CMOS design using the simplest gates and signal comparator. It is clear
that with a slight additional silicon real estate a major functionality extension can be
made, fully parallel, for the whole array.

An up-to-date implementation® of such an extended cell in a 4096 processor cell
CNN Universal Machine chip in a 64 x 64 configuration with optical input has the
following main parameters:

Number of LAMs: 4
Number of LLMs: 4
Time constant in the linear domain: 200 nsec

Sphere of Influence, r = 1

31 15.2 Analogic CNN-UM cell
|

Program from

S, (i) -—
1> s . GAPU
Cell nucleus Programmed template =~ bdoeoo 1, ., ..., Possible signal paths
including state controlled sources BwyA controlled by switches
capacitor, etc. (A or B) From template (their configurations
E (e.g. OTA) controlled sources are coded in LCCU)

Local analog

memory

Fig. 15.6. The analog part of the analogic CNN universal cell.

% 1 2 P
Yij Y, Lij Y, Lij Y) Lij
analog part > -
B/U
conv.
\ 2 7 v
local logic unit
B LLU
B/U conv - bipolar/unipolar converter Y, Lij

Fig. 15.7. The logic part of the CNN-UM cell with comparator.

Accuracy of the template elements: <1%
Range of the absolute value of the template elements: 4
Signal dynamics: 200 mV

Details of a former design are described in another paper.” The more sophisticated
design with 64 x 64 extended cells cited above has a special calibration circuit and
other tools to make it accurate and flexible enough. A new design, using 0.25 micron

312
—

15.3

Visual microprocessors

technology, can host 256 x 256 processing extended cells with optical input. A design
with 128 x 128 processors with complex optical sensors has recently been completed

(0.35 micron technology).

In Section 4.4 we have already studied the emulated digital implementation of the
CNN dynamics, in particular when using standard DSPs. We have mentioned that later,
in this chapter, we will introduce architecture, called CASTLE? as a very efficient

design.

Indeed, in the CASTLE architecture, we

bits),

Emulated digital implementation

using the absolutely necessary operators only,

digitally emulate the local analog storage,

digitally emulate some nonlinear operators, and

implement the stored programmable processing.

digitally emulate the analog and logic values by various word lengths (1, 6, 12, ...

digitally emulate the numerical integration of the CNN spatio-temporal dynamics,

l

Image flow
the 1st vertical the 2nd vertical
stripe stripe
Processor Processor ® Processor
unit unit unit
Processor Processor ° Processor
unit unit unit
Global °
control
unit global:command bus []
e
Procgssor PFOC§SSOT P Processor
unit unit unit

Fig. 15.8. M pieces of physical processors are processing a vertical stripe of the image.

313

15.4

15.4 The visual microprocessor

Unlike in the DSP emulator discussed in Section 4.4 and shown in Fig. 4.10, here
many (e.g. M) elementary emulated analogic processors process one vertical stripe of
the image. The building block level schematic is shown in Fig. 15.8.

We suppose that the image flow is from top to bottom and after three horizontal
lines are already read in, the next line of state variables is being read in a sequence
following the move of the convolution window, one at a time (Fig. 15.9).

Since the number of parameters in the template is small, they can be stored in each
processor. The state variables of the convolution terms in the sum related to the A
template are read line by line and step by step as the convolution window is moving
(see Fig. 15.9).

image flow

of a vertical

stripe

[T PP 0]
part of a
horizontal
stripe
—>

Fig. 15.9. One horizontal stripe of 4 lines (in case of a 3 x 3 window) is stored on the CASTLE chip
at a time. The downloading of the new state variable of an image is following the move of the
convolution window. Updated values are shown in dark.

As to the division of labor among the M processors in a vertical stripe, many
strategies can be organized. One possibility is the assignment of one processor per
time step or one processor per stored row in the stripe.

Due to the fully custom-made design, as well as the scalable design, both in technol-
ogy and in cascading many chips, the parameters are quite remarkable. One application
area where this design is unique is the solution of 3D nonlinear spatio-temporal
problems with propagating effects. This is the area where analogic chips, even if they
are packed up on each other in a moderate number of layers in the third dimension,
could not solve big and sophisticated problems, at present.

The visual microprocessor and its computational infrastructure

When the first microprocessor was designed and fabricated at Intel Corporation at the
beginning of the 1970s, the goal was to make a calculator chip. The epoch-making
microprocessor, however, proved to be a universal device. The key feature was:

314 Visual microprocessors

stored programmability. For visual computing, especially when integrated with optical
sensors, a single chip stored programmable device is the CNN-UM chip. The many
types of “smart sensors” are, indeed, optical input CNN chips with fixed templates (or
in some cases the templates are controllable). The qualitative breakthrough comes with
stored programmability, resulting in the CNN-UM chips as visual microprocessors.
The first, fully functional, optical input, analog I/O, fully stored programmable, visual
microprocessor, with 64 x 64 processing cells, developed in Seville (cited earlier), is
shown in Example 15.1.

EXAMPLE 15.1: One of the first fully functional visual microprocessors, code named
cP 4000-0.

Similar to the classical microprocessors, however, stored programmability needs a
complex computational infrastructure — high-level language, compiler, macro code,
interpreter, operating system, physical code — to estimate the physical result and
to interpret it for the human observer. The microprocessor development systems
(sometimes called application development systems or chip prototyping systems) are
doing just these jobs. For the visual microprocessors, the CNN Chip Prototyping
System” (CCPS) has been developed.

The functional overview of the complete system is shown in Fig. 15.10. The CCPS
consists of three parts:

e the compiler and interpreter,

e the CNN Operating System (COS) and standard CNN Physical Interface (CPI)
hosted on a PC add-on board, called CPS board (CNN Prototyping System board),
and

e the Platform, the only CNN-UM chip-dependent part, hosting the actual visual
microprocessor.

315 15.4 The visual microprocessor

A ALPHA
description
of an compiler display
algorithm

| image and video library |

AMC code Video,
interpreter, and framegrabber | «<— Camera,
interfaces CD, etc.

\ - source
software library

C image data, interpreted macro code,
binary decision code image data,
P fields template data
S (output of the CPS board) (input of the CPS board)
CNN . CNN “Operating System”
B Prototyping .
System board (COS) running
o ¥ on the TMS320C25
A NN
R electrical output electrical control, template,
D data signals and data signals (CPI code)
CNN Platform interface bus
CPI bus A ;
CNN-UM Level shifters, sample/hold, multiplexers, ... etc.
Chip 4 Y

PLATFORM ONN-UM chip| ~ Ptcalinput

Fig. 15.10. The functional block diagram of the CNN Chip Prototyping System (CCPS).

Using this computational infrastructure, the visual microprocessors can be pro-
grammed: the programs can be downloaded on to the chips, as in the case of classical
digital microprocessors. Hence, analogic CNN computer software can be developed
without knowing how to make and embed the chips into the systems.

The functional block diagram of the software part (the first part of the CNN Chip
Prototyping System) is shown in Fig. 15.11. Writing a program for an analogic CNN
algorithm is as easy as writing a Basic program. We have used already parts of
the Alpha language code in Chapter 9. When writing a complete source code for
the closing operation (see Chapter 9 for details), the parameters of the actual visual
microprocessor are stored in the Library (like the templates and subroutines). The

316 Visual microprocessors
|

actual source code for the cP 4000 microprocessor with measured input and output is
shown in Example 15.2.
A new, available system is called ALADDIN. !0

Algorithm: flow-diagram,
templates and subroutines

v

[Alpha source code]

N

Alpha compiler

Script
macrocode
(AMC-like)

N

AMC (analogic machine code)
followed by interpreters

S rl " / v v l

imulator i L. Emulated

running on a CNN-UM chip| |CNN-UM chip in digital

Pentium chip in CCPS Engine Board CNN-UM
ina PC

Fig. 15.11. The functional block diagram of the software part of the CCPS.

EXAMPLE 15.2: Result of simulations obtained by using the simulator SImCNN.

= [
i

INPUT (image size: 20 x 22)

= P
M=l

Result of the CLOSING operation

317

15.4 The visual microprocessor

Table 15.1. The Alpha source code and a measured input—output pair for the CLOSE operation.

Alpha code

Description

/* CLOSING.ALF */

PROGRAM closing (in; out) ;

CONSTANT

ONE = 1;

TWO = 2;

WHITE = -1.0;
TIME = 5;
TIMESTEP = 0.5;
ENDCONST;

CHIP._SET simulator.eng;

A_CHIP
SCALARS
IMAGES

iml: BINARY;
im2: BINARY;
im3: BINARY;
ENDCHIP;

E_BOARD
SCALARS

IMAGES
input: BINARY;
output: BINARY; ENDBOARD;

OPERATIONS FROM closing.tms;

PROCESS closing;

USE (erosion, dilation);
SwSetTimeStep (TIMESTEP) ;
HostLoadPic (in, input) ;
HostDisplay (input, ONE) ;

Performs the closing operation on a black and white

image; developed for using on simulator;

two logic names of parameters of the program are
specified;

Definition of constants;

Chip set definition section: the simulator.eng file

serves as a system file for the compiler. It specifies the

workspace;
chip section starts here;

scalar variable definition section (chip);
image definition section (chip);

end of chip section;

board section starts here;
scalar variable definition section (board);

image definition section (board);
end of board section;

definition of analog operation symbol table; the
closing.tms file contains the template names of
templates that will be used in the algorithm;
the core of the algorithm starts here;

the specified templates will be used;

time step specification;
loading the input image;
displaying the input image;

loading the image from board to chip;
executing the dilation template;

318
—

15.5

Visual microprocessors

Table 15.1. Continued.

Alpha code Description

iml:= input;
dilation (iml, iml, im2, TIME,
WHITE) ;
erosion (im2, im2, im3, TIME,
WHITE) ; executing the erosion template using
the result of “dilation”;

output:=im3; the result is copied from chip to board;
HostDisplay (output, TWO) ; displaying the output image;
ENDPROCESS; the core of the algorithm ends here;
ENDPROG; the end of the Alpha code;

Computing power comparison

There are many different types and measures for computing power comparison.
A simple type of comparison for the elementary template types (3 x 3) one-step
convolution or B template, erosion—dilation or agg and B template, and the Laplace
operator or A and B templates). Clearly, the simple B template is the easiest one for a
digital emulation and the last one is the most difficult.

In real life algorithms, several templates are to be computed to solve a complex
problem. In Table 15.2 we show a type of comparison which considers two types
of algorithms defined by a mix of different template types. Algorithm A has only one
difficult template while Algorithm B has the same amount of simpler and more difficult
templates. Clearly, in case of complex algorithms the computing power improvement
is dramatic (about three orders of magnitude or more) in using similar technologies.

The task is to process an image of 128 x 128 pixels, including data transfer. If the
task is complex, the data transfer time in the analogic CNN-UM chip is negligible. If
the chip has an optical input with a capability of processing during image acquisition,
the input data transfer time is even zero. This means, if the data downloading rate from
a sensor is higher than the frame rate of the image flow, the problem is uncomputable
with digital technologies using the standard method of downloading a snapshot and
processing after it.

Table 15.2 shows that CNN computers offer an orders-of-magnitude speed advan-
tage over conventional technology when the task is complex. There are also advantages
in size, complexity, and power consumption. Very recent measurements on a 64 x 64
processor Visual Microprocessor show an 8000 fold speed increase over a 400 MHz
Pentium when a B type algorithm with less erosions is used.

319
—

15.5 Computing power comparison
Table 15.2. Comparison of digital and analogic image processing technology. Computing time in \Ls
(data transfer included). Image size: 128 x 128.
Pentium II TMS3206x CASTLE CNN-UM chip CNN-UM chip
0.25 pum, 0.25 pum, Emulated 0.8 wm, 0.5 um
400 MHz 200 MHz digital CNN tcnN:250ns teonn: 200 ns
8 processors 0.5 pm,
66 MHz
12 processors
3 x 3 convolution
B templates 1,000 427 32 8/14.5 5.6/10.67
6NN or 1 iteration 2.34 31 125/69 89/47
Erosion/dilation
ago + B templates 500 300 2.7/324 8/14.5° 5.6/10.6°
6TcNN or 1 iteration 1.7 185/16% 63/35 89/47
Laplace
A + B templates 15,000 6,414 480 10.3/16.8° 6.5/11.5%
15teNN or 2.3 31 1456/892 2308/1304
15 iterations
Algorithm A
10 convolutions + 30,000 13,648 1,200 40.3/46.80 18.5/23.5"
10 Erosions + 2.2 31 744/641 1622/1277
1 Laplace
Algorithm B
10 convolutions + 165,000 77,788 5,440 74/80.5° 32/37°
10 Erosions + 2.12 31 223072050 5156/4459
10 Laplace

Notes: “binary/gray-scale.
b optical input and electrical output/electrical input and output.
Figures in italic indicate the speed advantage compared to the Pentium II processor in the first column.

When an optical CNN computer is applied,!! B templates can be computed with the
speed of light. Then, the output data transfer is the only limiting factor in calculating
the computing power.

-
16 CNN models in the visual pathway and

the ““Bionic Eye”

320

There is an on-going quest by engineers and specialists: compete with and imitate
nature, especially some ‘“smart” animals. Vision is one particular area computer
engineers are interested in. Terms like “machine vision” and “computer vision”
demonstrate this interest. Recently, modeling the living visual system has become a
focus in science and technology. As the anatomy and physiology of the eye and other
elements of the visual pathway are becoming more and more known, especially in the
retinatopic part (Retina, Lateral Geniculate Nucleus (LGN), and the Visual Cortex),
engineers have been trying to imitate these models. These studies have led to a better
understanding of vision, overcoming the clear deficiencies of earlier, though useful,
principles of computer vision before the mid 1980s.

Based on the ground-breaking studies of Barlow, Dowling, and Werblin on verte-

1,23 3 very simple model* of the retina, a resistive grid, was implemented

brate retinas,
on silicon and demonstrated by simulation studies. In spite of the many “silicon
retinas” built on this simple resistive grid model, it became clear that these models
are too simple to explain even some practical qualitative effects related to higher-order
spatio-temporal interactions in the retina. Attempts to address the more sophisticated
retinal models led to descriptive® and network type® models. In the latter case, not
only the retina, but a lot of other parts in the visual pathway had been first modeled
by using a single paradigm: cellular neural networks. Soon after these results, the
“Bionic Eye” architecture principle was invented,” which defines a formal framework
of vision models and models of other spatio-temporal sensory modalities combined
and implemented on the CNN Universal Machine. A tutorial description can be found

in Werblin et al.® Recently, new discoveries®!%:23

in retinal research have provided a
deeper insight into spatio-temporal functions.

In this chapter, first, key notions, representations, and principles are introduced,
which define the relation between studies of living visual organs and CNN models.
Next, we show a couple of prototype CNN models for elementary functions in the
visual pathway. In the third section, a simple qualitative CNN model of a “typical
vertebrate retina” is introduced stressing the fact that, in general, this is an open

field for research, and this mode is an “engineering understanding” of some facts

321 16.1 Receptive field organization
|

Jo

()

(b)

...Layer 1
B=|b1 |bo | D2 b, by b, i
Q Q ...Layer 2
(©)

?

Fig. 16.1. A neuron with one axonal output and several dendritic synaptic inputs (a). A neuron
network fragment with recurrent synapses and its A template (b). A one-dimensional two-layer
neuron network with dendritic inputs from the preceding layer and its B template (c).

and measured results. A brief description of the “Bionic Eye” concept closes this

chapter.

16.1 Receptive field organization, synaptic weights, and cloning template

A typical anatomical structure of the retina and the visual pathway is the receptive field
organization. A schematic view of a receptive field organization is shown in Fig. 16.1.
Fig. 16.1(a) shows a neuron with one axonal output, which may branch to several other
neurons, and it has several dendritic inputs. The small gaps —o denote the synapses.

322

16.2

CNN models in the visual pathway

We will represent them by, possibly nonlinear and dynamic, template elements. The
small arrows show the direction of signal propagation.

In Fig. 16.1(b) a neuron in the center is receiving recurrent inputs from its neighbors,
placed on the same two-dimensional layer of neurons. Here, a square grid with
4-connectedness is presumed. Triagonal, hexagonal, and other grids can be treated
similarly. In this example the direct receptive field of the central neuron is defined by
the radius of one neighborhood of the affecting neurons. The accompanying feedback
A template is also shown in the figure. Hence, the direct 3 x 3 receptive field is the
sphere of influence S,. In Fig. 16.1(c) a part of a two-layer neuron network is shown
schematically and each layer is shown as a one-dimensional layer (it may represent a
cross section of a 2D layer). The selected neuron, in the center on Layer 2, receives
dendritic inputs from the neighborhood in the input layer (Layer 1). The accompanying
feedforward B template is shown, as well. The direct receptive field is again the sphere
of influence S, (ij) in the input layer. The cloning template represents the receptive
field organization. The elements of the cloning templates are the models of the
synapses. The neuron models are reflecting the biochemical and electrical properties.
In the simplest case, the axonal output voltage is given in terms of the synaptic currents.
These currents are functions of the controlling voltages of the synapses (voltage gated
transconductions). Hence, a CNN type equation is suitable.

For modeling the simplest qualitative interactions of receptive fields we suppose that
the standard CNN cell is appropriate as a neuron model and the synapses are linear.
Slightly more complex cell and synapse models will be introduced in Section 16.3.

Some prototype elementary functions and CNN models of the visual
pathway

In Table 16.1, we list corresponding notions of neurobiology and the artificial CNN
models related to spatio-temporal sensory information processing. This correspon-
dence helps us in “translating” models of neuroanatomy and neurophysiology to CNN
cloning templates.

For a one-dimensional (1D) model, the following cloning template is represented in
Fig. 16.2

x x| x X x | x
A =31 -25| B=|-07(05]15]| z=1
X X X x | x

It is clear from the figure that the elements of matrix A represent the feedback paths
and the elements of B represent the feedforward path. The offset z is a local bias.

323

16.2 Some prototype elementary functions

Table 16.1.
Neuroanatomy CNN model Notations/comments
artificial
neuron/cell analog processor/cell
living

signal signal

: afferent : input

: efferent : output
synapse connection weight

(template element)
: inhibitory 1 <0 >0 <O
+ +
: excitatory >0 >O <
: electrical : without delay >O /O
D

: chemical : with delay 0 KO
signal path connection direction

: feedforward/dendritic : feedforward

: feedback/recurrent : feedback
stratum of neurons layer a 2D sheet of neurons/

lamina/layer

neural net

receptive field with
a given radius r

receptive field organization
(synapse strength pattern)

isotropy

isomorphism

grid (regular geometrical

grid); each node has the
same local connectivity
pattern

neighborhood of size r

cloning template
(CNNgene)

all the off-center elements are

the same in the cloning
template

space/plane invariance of

the cloning template

processing elements

each cell is locally connected
within the neighborhood

the local weight pattern

the local weight pattern is
the same everywhere

324

CNN models in the visual pathway

Table 16.1. Continued.

Neuroanatomy

CNN model Notations/comments

center—surround antagonism

ON-center OFF-surround

OFF-center ON-surround

tonic or phasic processing

orientation

direction

orientation selectivity map
directional sensitivity map

“synapse on”

cloning template sign dichotomy

e.g.

e.g - 4+ - r=1
+ + + + +
+ - - - +
+ - - = + | r=2
+ - - - +
+ + + + +

sensitive to intensity values responsive to slow or fast

or intensity value changes input changes/low-pass or

high-pass filtering

line or object position
direction on a still image

direction of motion of
an object in a moving scene

orientation selectivity map
directional sensitivity map

“effect to”

The triad synapse action

The arrangement of the triad synapse is well known in neurobiology.!! Its function is to
sense changes in time. The arrangement is shown in Fig. 16.3. In the simplest model,
the inhibitory interneuron, in the indirect path of signal transmission, introduces a
delayed signal with sign reversal. The template realizing this action, with a unit time
delay, is as follows.

A=[0] A"=[0] 7=1.0
0010 0 0 [0
B={0|by|b| B=|0|—-byp|0| z=0
0010 0 0 [0

On the right-hand side of Fig. 16.3 an input signal and a corresponding output signal
are shown. It shows clearly how changes in time are detected.

If the delay is not ideal but smooth, due to a first-order capacitive delay with a finite
time constant, qualitatively the same task is solved.

325 16.2 Some prototype elementary functions
|

: : u
~ “
11— 0O 1—> 0O X
A
y

Fig. 16.2. Structure of a CNN model.

out out
Z 1 Z 2

{
\,
+

in

|

t T t

Fig. 16.3. (a) The triad synapse with living neurons. (b) The triad synapse model and its responses
to two different input signals.

Directional selectivity
Directional selectivity is not a single-cell feature in the nervous system. Following its

neuronal organization,'? we have translated this architecture into a CNN architecture

326 CNN models in the visual pathway
|

— %
f1
— e
tN1
 adavas
/
Q Q Q
T
— JL — — %
_ I Y4
— — — i B
_ _ I - 4

Fig. 16.4. (a) Direction-selective neuronal connection scheme. (b) Artificial neural representation of

(a).

shown in Fig. 16.4. Putting reasonable parameters into the nonzero template elements,
the template below was able to demonstrate the directional selectivity. The two input
sequences (to right and left directions, respectively) are shown at the bottom of
Fig. 16.4(b) while the output sequences are drawn on the top. Clearly the left direction
is detected, the right direction is not.

0/01]0 01010
A=[0] A"=[0] B=|0|a|b| B'=|—| 0|0
0/0]0 01010

z=0;, t=1, a,b,c>0

Example:a =c=1.5,b=1

Length tuning
It is known that certain neurons in the Lateral Geniculate Nucleus (LGN) and the
visual cortex give a maximal response to an optimally oriented bar of a certain length.
The response decreases or vanishes when increasing the length of the bar stimulus. A
general “length tuning” mechanism was described!? with the following concept. In a
bigger (5§ x 5,7 x 7, etc.) receptive field or radius of sphere of influence, a cell receives
a moderate (say unity) excitatory (positive) stimulus from the near neighbor cell and a
bigger inhibitory (negative) stimulus from a distant neighborhood. In addition, if there
is a white spot in the center, the detection should also be prohibited. In this way all
bars will be detected which are smaller than or equal to a length of 2r* + 1, where r*

327 16.2 Some prototype elementary functions

is the neighborhood radius in a given direction with positive synapse weights. We also
suppose that the negative weights are properly tuned to prohibit detection of longer
bars. In the case of detecting bars in the basic directions (vertical, horizontal, and the
two diagonals), the template shown in Fig. 16.5 performs the job.

-3 0|-3,0 |3
0] 1 1] 1 0
A=[0]; B=|-3]1 hi 1 |-3] z=-1;, x;=0
0] 1 1|1 0
-3, 0|-3,0 -3

Fig. 16.5.

An input and output picture is shown on Example 16.1.

EXAMPLE 16.1: Length tuning. Detecting horizontal, vertical and diagonal bars with length
not longer than three pixels.

T -
- = s
e S

|-.____I [-
-~ 7]

input picture output picture

328
—

CNN models in the visual pathway

Orientation selectivity

Orientation selectivity is a well-known function in the visual cortex.!3 This means that
light or dark bars with a given orientation will be detected. The uncoupled cloning
template below detects bars with a —45° slope. The geometry of the positive terms in
the B template determines the enhancement of the derivative of the state variable and
the positive feedback brings the values to black and white. The values of the template
elements are determined based on the DP Plot. As a default, the initial state is zero.

0(0]0 02510 O
A=|0|2|0] B=| 0 |0]| O z=-1
0/0(0 0 [0]0.25

An input—output picture pair is shown in Example 16.2. It is clear how easily we can
hide information read out quickly by a CNN template (or, in a more sophisticated case,
by analogic CNN algorithms).

EXAMPLE 16.2: Orientation selectivity. Bars with —45° slope are detected.

input picture output picture

A simple visual illusion

Many, even complex, visual illusions can be reproduced via CNN models.'* !> One of
the simplest is the arrowhead illusion shown in Example 16.3. The effect is simple. On
the input image we see two arrowhead pairs, one is converging (upper row) and the
other is diverging (lower row). The distances between the arrowheads are the same.
Still, we perceive the distance between the arrowheads in the upper row bigger than
in the lower row. Keeping in mind the antagonistic center-surround receptive field
organization, an on-center off-surround B template will eliminate pixels with more
dense positive pixels nearby. Hence, it is not surprising that, if we put this type of B

329 16.3 Simple qualitative ‘‘engineering” model

template in an uncoupled cloning template, the arrowhead illusion will be manifested,

as shown on the output picture of Example 16.3.

-0.1|-0.1|-0.1 | —=0.1 | =0.1

0] 010 -0.1|-0.1|-0.1 | =0.1 | =0.1
A=|0|13/0| B=|-0.1|-0.1 1.3]-0.1|-0.1
0] 010 -0.1]-0.1]-0.1|—-0.1 | =0.1
-0.1|-0.1|-0.1 | —=0.1 | =0.1

Needless to say, many other on-center off-surround-cloning templates can produce the
same effect.

Using separate layers for the three colors, red, green, and blue (RGB), the basic
single-opponent and double-opponent effects of color vision can be modeled'® as well

as some more complex phenomena.!”

EXAMPLE 16.3: The arrowhead illusion. Input picture (a) and the simulated perceived illusion
as an output (b).

", -
- "
. 8
L
(a) input (b) input

16.3 A simple qualitative ‘‘engineering” model of a vertebrate retina

In what follows, using a multi-layer CNN model, we present a qualitative model of a
vertebrate retina. This is an “engineering” model compared to a neurobiology model.
Still, it reflects many of the earlier and recent findings related to morphologically and
physiologically faithful retinal models.?383:9:10.18.19.20.21,23 The aim and scope of this
section is to make simpler CNN models with the same qualitative effects as measured
in some vertebrate retinas.

First, we will introduce cell, synapse, and receptive field organization (template)
prototypes as “Lego” elements for retina models.

330 CNN models in the visual pathway
|

The cell prototype
We usually use a simplified model which is able to take into account the most important
physiology parameters. This is a first-order model of a CNN layer (Fig. 16.6):

. 1
Cxij = —g%ii + Z Bij kiuk + Z Dij ki1g(Xij, Xkl, Yii» ki, Ereviki) + Zij

E,
T = RC; Zij =1L+? (16.1)
u
B
y
T,E, X
Y
[] y
(a)

—>xij

Yij
% c —7— 8(xij,yki, Exevit) Dijiki

(b)

Fig. 16.6. (a) A single cell layer. ¥ denotes a spatial interaction within the receptive field (B is a
matrix with off-center elements as well), u is the input potential (typically from photoreceptors),

x(x;) is the cell membrane potential, y is the output. (b) A simple core cell electrical equivalent
circuit.

In this simplest case, we suppose an input receptive field (S, (ij)) represented by a
B template. All the other interactions are included in the last term (D). t is the time
constant, the product of the membrane capacitor (C) and the membrane resistance (R),
I1 is the leakage current, E, is the resting potential, E.y is the reverse potential, and
x;j is the membrane potential. The last term contains a sum of voltage controlled/gated
transconductances (VCCS: voltage controlled current sources). In this term, we take
into account the voltage controlled interactions coming from the same and other layers.
In the output equation, in its simpler form

yij = f(xij) (16.2)

331 16.3 Simple qualitative ‘‘engineering” model

f(-) may be a simple linear term (e.g. y;; = x;;) or it may also be the various forms
of the ubiquitous sigmoid functions. The unity gain threshold characteristics is:

yij = 3(lxij + 1] = |xij — 1)) (16.3)

By playing with a constant coefficient and changing the saturating signal levels, many
different operation modes can be tuned in. In what follows we will use y;; = x;;.
As default, we use the following relative units: mV, msec, pA, GS2, micron, pF.

Some synapse types (S)
The synapse conductance functions in the term g(-) are functions of the synapse
voltage v; i = g(v) ori = g(v)(Ery — v). The form of g(-) could be linear or
nonlinear. A few of these are shown in Fig. 16.7.

g

S1A linear bipolar: gv)=v

S1B saturated bipolar: glv) = %(Iv+ 1H=1v-1I)

v<0:0
g(v)={

S2A simple rectifier: v v20:v

Fig. 16.7.

The S2A type rectifier curve can be shifted into the g or v direction (S2B).

To get the total synapse contribution, we have to multiply the synapse conductance
function g(-) with the constant synapse weight. This synapse weight is defined as a
template element, or a synaptic receptive field organization.

Receptive field organization types (RF)

The simplest receptive field organization, used mainly for a feedforward transfer to a
layer either from an input (photoreceptor) or from a preceding layer output, is a central

332

CNN models in the visual pathway

gain type with a gain value Gy.

o] 0o
RFO: [0 Go|0]-g
o] o]0

A receptive field organization with Gaussian weight distribution of the weights in
space is given as

G(W2) | G(1) | G2 2
RF1: G(l) G(O) G(l) - g where G(p) — He_(P/U)
GW2) | G() | G(2)

p is the distance of the given cell from the center cell. RF1 is mainly used in interlayer

feedforward interactions; o is a parameter, its default value is 1.

Diffusion-type receptive field organization has spatial weighting defined below.
This is mainly used in intra-layer interactions defining diffusion, by an antagonistic,
OFF-center ON-surround receptive field. We use the following notation for a layer
with diffusion-type receptive field of A diffusion parameter.

®
A
v)
v
Fig. 16.8.
A2/3 1 AZ/3 | A%)2 A2 A | A2
RF2A: | A%2/3 | —8A2/3 | A%/2|-g or RF2B:| A | —6r| A |-g
AZ/3 0 AP/3 | A%)2 A2 A | a2

If the sign of the central element in RF2B is positive, (RF2C) we can generate trigger
waves. As a default, we use RF2A.

General types of ON-center OFF-surround or OFF-center ON-surround receptive
field organizations, even with larger radius (5 x 5, 7 x 7, etc.) or with other sign values
can also be defined term by term.

In general, a receptive field organization is used in defining the templates.

Multilayer CNN for receptive field interactions

Modeling a retina, we need more layers. A transfer operator T),, represents an
interaction from the pth layer output to the gth layer state. This means we have a

333

16.3 Simple qualitative ‘‘engineering” model

state equation for the qth layer in the same form as in (16.1), however, taking into
account the interactions from other layers as well

1
.q q k
Cljj = —pg%ij + , p§ pﬁ Ty * Vp + El 2 TH %y + 2 (16.4)
=Pp1,D2;-- =1,2,...
p#q

where the interlayer transfer template operator T), could come from several other
layers (p = pi, p2,...) and there may be several different intra-layer template
operators, quq (k =1,2,...), e.g. diffusion operators. The term z in the simple case
isz=1;+ E,/R.

If T} is an inter-layer transfer from one layer to another, then T, is typically a B
template

Trg 3= > Bl (16.5)
P74 kleS? (ij)

where S7 (ij) is the sphere of influence in the pth layer. If the pth layer is the generic
input layer, then we get

Tpg *u= Y B uu (16.6)
P74 kleSH(ij)

where S¥ (i) is the sphere of influence in the generic input layer (u).
If T;‘q is an intra-layer transfer, then quq is an A template

T xyg = > A (16.7)
Kklesk i)
=1,2,...
where A4 is the kth A template in the ¢th layer and Sf “(ij) is the sphere of influence
in the gth layer for the kth A template.

Hence, as an example, a simple multilayer receptive field interaction prototype
could be as follows (Fig. 16.9).

Suppose that RFO0 is defined by linear synapses with Go = 2, RF1 is defined by
linear synapses with H = 1 and 0 = 1. RF0 and RF1 are B templates, representing
inter-layer interactions. RF2B is an intra-layer interaction, a diffusion-type A template
with A = 1.5.

The following templates define these receptive field organizations:

oflofo
RFO: B=By=|0|2]0
0/0/0

0.13 1 0.37 | 0.13
RFl: B=B;=|037| 1 |0.37
0.1310.37 | 0.13

334

CNN models in the visual pathway

input
RF0
1,=0 E.=0
_ 1=280
R=5 RF1 L=15 |Layerl
h=0 =03 /A
R=5 T=160 Layer 2
RF2B
output
Fig. 16.9. A receptive field interaction prototype.
0.75] 1.5 0.75
RFl: A=A;1=| 15 |-9]| 15
0.75] 1.5 0.75
Hence, for the two layers the cloning templates are:
Layer 1:
A=[0], B=By, z=IL+E,/R=0
Note that in the state equation T = 80.
Layer 2:
A=A, B=B,, z=IL+E,/R=-0.1
In this state equation T = 160.
Let us now turn to some retinal models.
The structure of a prototype retinal model
Following the on-going and recent research results

modeling3'8’9' 10,18,19,20,21,23

on retinal

, we condense the structure of the model into a

one-dimensional cross section of the two-dimensional (2D) layers in Fig. 16.10 (also

showing, in the middle, the branching of signal flow and later their converging).

The upper part of the model represents the so-called outer plexiform layer (OPL),

the lower part the inner plexiform layer (IPL).

A more structured morphological model of the ON path using two types of amacrine

cells is shown in Fig. 16.11.
A multilayer CNN model is shown in Fig. 16.12.

In this case, E, = 0, and t is controlled holding R = 1. Based on the values of the

335 16.3 Simple qualitative ‘‘engineering” model
|

photoreceptors
(cones and rods)
VAVAVAVAVAVAVAVAN
ON OFF

horizontal cell layer

bipolar cell layer

SNV NSNS AS N\ amacrine cell layer:

narrow and wide field cell nets

WW ganglion cell layer

l output to the optic nerve

Fig. 16.10. A global structure of a retina model.

CONE
HORIZONTAL
& £

BIPOLAR

AMACRIN

GANGLION

Fig. 16.11. An approximate interaction mechanism of the ON-path from a cone to a ganglion cell.

336
—

CNN models in the visual pathway

Cone

=

Cone2

$ 1.2
—1.4

-1

. A=6 -0.5
Horizontal
oizondl /™ | T,
-1
, A=0.5 . A=0.5
Bipolar ON Bipolar OFF
ST T
N A Lo o
el NG el OFF AT,
:1 1 :1
, A=15 1 : ' , A=15
Amacrne . ON \"4N .\ Amacingll. OFF /™ Tao
1 1.
-1 1

=05
Canglon

.<

Ganglion Spike

\"4

% T,

45

Fig. 16.12. A retinal model showing simple interactions. Bold arrows are positive excitatory

interactions, thinner arrows are negative inhibitory ones. Dotted lines represent nonlinear (rectifier

type) synapses. The last layer converts the analog output into a spike train coding.

receptive fields, the CNN state equation of all layers can be specified in the way we

have described earlier. For example, for the horizontal layer we get

A=

0/0(0
01310
0(0]0

B =

3] 6 |3
6|—-36|6
31 6 |3

z=0

Simulating a simple action, the calculated and measured responses were close in their

qualitative behavior, shown as follows.

The input image was a square flash in a gray background illumination (Fig. 16.13).

Measurements have been made in a cross section, that is, in a one-dimensional line of
neurons. The neuron activity is measured in time. For example, in Fig. 16.14 we show

a typical analog 1D output in time.

21

Using the model of Fig. 16.12, two typical outputs, a two-tagged parameter setting,

337 16.3 Simple qualitative ‘“engineering” model
|

Fig. 16.13. The input is a square flash.

X [neuron positions]
| ||
[Il

[N
e

J time [ms]

v

X neuron positions in a horizontal line

Fig. 16.14. 1D dynamics map: intensity is proportional to the darkness.

are shown in Fig. 16.15. Fig. 16.15(a) shows a derivative in space, and Fig. 16.15(b)
shows a derivate in time. These results were in good agreement with the measurements.

338
—

CNN models in the visual pathway

X [neuron positions] [neuron positions]
} HIH_I (e

time [ms]

Tiri

, time [ms]

(a) (b)

Fig. 16.15. Measured responses (a): derivative in space (b): derivative in time.

16.4

The ““Bionic Eye” implemented on a CNN Universal Machine

The CNN Universal Machine (CNN-UM) architecture is ideal in implementing many
spatio-temporal neuromorphic models. In a way, we can program, even stored program
a CNN-UM to mimic different retinas. Program A could mimic a frog retina, Program
B could mimic a tiger salamander retina, Program C a rabbit retina, and Program
D an eagle retina. We can write Program XR, an extended retina program which
could combine these retinas. What is more, we can combine biologically faithful,
neuromorphic models, biologically inspired models, and analogic artificial image
processing algorithms. Implementing all these on the CNN-UM, we are constructing
a “Bionic Eye”.??

Moreover we can combine different spatio-temporal modalities: the multispectral
visual scene, the auditory scene, the somatosensory scene, etc.

Indeed the Bionic Eye concept implemented on the CNN-UM is an algorith-
mic combination of biological and artificial models and algorithms for sensing—
computing-recognizing task in a multimodal, spatio-temporal scene.

Notes

1 Introduction

1

2

EAN

P. Saffo, “Sensors: the next wave of Infotech revolution,” Institute for the Future, Menlo Park,
1999.

L.O. Chua and L. Yang, “Cellular Neural Networks: Theory and Applications,” IEEE Transactions
on Circuits and Systems, vol. 35, pp. 1257-1290, 1988.

T. Roska and L.O. Chua, “The CNN Universal Machine: An analogic array computer,” I[EEE
Transactions on Circuits and Systems, Series II: Analog and Digital Signal Processing, vol. 40,
pp- 163-173, 1993.

S. Espejo, R. Dominguez-Castro, G. Lifidn, and A. Rodriguez-Véazquez, “A 64 x 64 CNN universal
chip with analog and digital I/O,” Proc. 5th Int. Conf. on Electronics, Circuits and Systems
(ICECS-98), Lisbon, Portugal, pp. 203-206, 1998.

A. Csurgay, W. Porod, and C. Lent, “Signal processing with near-neighbor-coupled time-varying
quantum dot arrays,” IEEE Transactions on Circuits and Systems, Series 1, vol. 47, August 2000.
L.O. Chua, “Molecular devices, systems and computers,” Proc. IEEE International Symposium
on Circuits and Systems, ISCAS 2000, Geneva, 2000.

T. Roska, A. Zarandy, S. Z6ld, P. Foldesy, and P. Szolgay, “The Computational Infrastructure of
Analogic CNN Computing — Part I: The CNN-UM Chip Prototyping System,” IEEE Transactions
on Circuits and Systems, Series I, Special Issue on Bio-Inspired Processors and Cellular Neural
Networks for Vision, vol. 46, pp. 261-268, 1999.

T. Roska, “Computer-sensors: spatial-temporal computers for analog array signals, dynamically
integrated with sensors,” J. VLSI Signal Processing Systems, vol. 23, pp. 221-237, 1999.

2 Notations, definitions, and mathematical foundation

1
2
3

There will be, in further chapters, more general nonlinearities.

P. Hartman, ODE, Birkhauser, 1982, p. 8.

The signal flow graph is a classical signal representation tool which is used in a slightly different
context but with similar objectives. In Fig. 2.27, the bold edges coincide exactly with the classical
definition of a signal flow graph. However, the light edges should not be interpreted as a part of
the classical signal flow graph, but rather as a mnemonic aid for showing the degree of influence
of the output of the center cell on its neighbors.

3 Characteristics and analysis of simple CNN templates

339

1

In the following, unless otherwise stated, we use this type of boundary condition.

340

Notes

Some common sources of noise include camera reflections and counting statistics in sensors, such
as image detectors, due to a small number of incident photons, electrons, etc.

3 The finiteness property follows from the piecewise linearity of the shifted DP plot.

Courtesy of Professor Angel Rodriguez-Vazguez, from the University of Seville, Spain.

For simplicity so far, no boundary conditions have been specified in the previous examples since
the features of interest (e.g., edges, corners, thresholds, etc.) are local and static (do not move) in
nature, and hence are independent (except for the boundary cells) of the boundary conditions. The
SHIFT template is our first example where it is essential to specity the boundary conditions.

The word “morphology” is of Greek origin meaning “form” or “structure.” It is a branch of biology
concerned with the study of the “shapes” and “structures” of living organisms and systems. It
is used in image processing applications to denote any transformation or operation concerned
with the “geometrical” shape and structure of patterns. The mathematical foundation is called
mathematical morphology.

4 Simulation of the CNN dynamics

1 To run a simulation on the CANDY system, we use the graphical user interface called VisMouse

Platform and the SimCNN multilayer CNN simulator.

2 Generally, f(-) may be any continuous function. In the literature, the most frequently used

DTCNNS are using the two types of f(-) just introduced (being either a hard limiter or a unity
gain piecewise linear saturation function).

5 Binary CNN characterization via Boolean functions

1 We have chosen here {0, 1} instead of {—1, 1} as our binary codes in order to exploit directly the

immense literature and theory on Boolean functions, which are almost always couched in terms
of “zeros” and “ones.”

2 In order to appreciate how large the number €2 is, compare it to the following universal

benchmarks:

Age of the universe = 1030 picoseconds
Mass of the universe (calculated in units of mass of a hydrogen atom) = 1080

Volume of the universe (calculated as a sphere with a diameter of 10 thousand million light-
years) = 1084 cm?

3 Note that C (AO, B, z) may generate non-Boolean maps as well.

4 This reclassification task is a subjective exercise since not everyone may agree on whether a

particular pixel in fuzzy cases is a corner, or not a corner.

6 Uncoupled CNNs: unified theory and applications

1 Indeed, we will see later that even simple third-order circuits (containing two capacitors and
an inductor) having only three equilibria can exhibit extremely complex oscillatory and non-
periodic behaviors, called chaos.

2 This theorem can be easily extended to space-dependent CNNs as well.

341 Notes
|

3

10

11

13

14

The signum function is defined by:

sgn(x) =1, ifx >0
—1, ifx <O

Although Eq. (6.2) holds for both the bistable and the monostable cases, in the monostable case

Eq. (6.2) can be replaced by the simpler formula

yij(00) = sgn[w;; — (ago — 1)]

which is independent of the initial state x;; (0).

We use the term local Boolean function to emphasize that each one of the 2512 Boolean functions
constitutes a complete set of local rules.

The symbols a, x, and b in Eq. (6.45) are not related to the CNN templates. They are chosen here
in order to conform to the common usage in the Boolean algebra literature.

To construct another example of a Boolean function of two variables which is not linearly
separable, simply take the logic complement of S, i.e., change the pixels in Fig. 6.13(b) from
“black” to “white,” and vice versa. It is easy to verify that the XOR Boolean function 84 and its
complement S5 = B4 are the only two Boolean functions of two variables which are not linearly
separable.

To avoid clutter, we will often revert to a single-index notation u;, instead of uy;, whenever the
context is obvious.

It is essential to use the CNN truth table here, not the Boolean truth table. A very common
mistake, which the authors themselves have occasionally committed, is to apply the Boolean
truth table directly to equations or numerics.

An inspection of the CNN template catalog will reveal that most B templates are sparse, usually
less than five, in which case Eq. (78) consists only 32 linear inequalities.

Observe that the minimal truth table of each minterm CNN contains exactly one black pixel
surrounded by a sea of white pixels. Since the minimal truth table for nine Boolean variables has
512 pixels, there are 512 distinct minterm CNNs, each one characterized by the location of its
one and only black pixel.

In actual realization, it would be necessary to sandwich an interface circuitry for storing the
output of each CNN over a time interval equal to at least the settling time of each CNN before
applying it to the next CNN in the “chain.” While this hard-wired CNN XOR can be mass
produced as an ASIC (Application Specific Integrated Circuit) and sold as a CNN logic array
building block, it would be more practical to “program” a CNN universal chip (to be presented
in Chapter 7) if the application calls for only a small quantity of this component.

. . (673 Ok (0773
We have deleted the AND operators A in the input product terms u,"' Auy > A= Auy A

Fkng . .
<+ Aug - inEq. (6.85) to avoid clutter.
The minimal truth table for each maxterm CNN contains exactly one white pixel surrounded by
a sea of black pixels. Clearly, for nine Boolean variables, there are 512 distinct maxterm CNNs,
each one characterized by the location of the one and only “white” pixel in the minimal truth
table.

7 Introduction to the CNN universal machine

1 E.R. Daugherty, Introduction to morphological image processing, SPIE, 1992.

2 A function b defined by weights wy, wy, ..., wg and is denoted by b(wy, wyp, ..., wg), z.

342 Notes
|

3

K.R. Crounse, E.L. Fung, and L.O. Chua, “Efficient implementation of neighborhood logic for
cellular automata via the cellular neural network universal machine,” IEEE Trans., CAS-I, Vol.
44, 1997, pp. 355-361.

8 Back to basics: Nonlinear dynamics and complete stability

1

10

11

For a rigorous statement and proof of the Poincaré—Bendixon theorem, see P. Hartman, Ordinary
Differential Equations, p. 151.

F. Zou and J.A. Nossek, “A chaotic attractor with cellular neural network,” IEEE Trans. on
Circuits and Systems, Vol. 38, no. 7, 1991, pp. 811-812.

F. Zou, G. Seiler, A.J. Schuler, B. Eppinger and J.A. Nossek, “Experimental confirmation of the
lady’s shoe attractor,” I[EEE Trans. on Circuits and Systems, Vol. 39, no. 10, 1992, pp. 844-846.

An equilibrium point xp of x = f(x) is said to be isolated if and only if there are no other
equilibrium points in a sufficiently small neighborhood of x¢.

In the nonlinearity f we have been using, we can choose 6 = 0, since f(—00) = —1, f(c0) = 1.
For the sake of generality, the hypothesis on f does not require that the values of f lie between
—1land 1.

J.P. LaSalle, “An invariant principle in the theory of stability,” in J.K. Hale and J.P. Salle, Editors,
Differential Equations and Dynamical Systems, Academic Press, 1967.

A set M C R" is called an invariant set of Eq. (8.10) if any trajectory starting from a point
xg € M att = 0 remains in M for all + > 0. Since M in this case contains only equilibrium
points, it is clearly an invariant set.

We have already encountered such a situation in Example 8.1(c) of Chapter 6.
This is, in fact, the only general tool currently available to prove complete stability of Eq. (24).

To be more precise, for theorems 2—4 (and the corollaries to these theorems) in this section,
we should add that the complete stability property, unlike in theorem 1, applies to all initial
conditions except for a set of measure zero. For example, there may exist (possibly rare) such
completely stable CNNs where there is an unstable limit cycle.

In this section, it is useful to think of each directed branch as a one-way street and a node as an
intersection between two or more one-way streets. Hence for each nonzero entry in A (ay; # 0),
there are two connecting one-way streets in the same direction which allows one to travel from
node (k, I) to node (k, [). Two or more such branches in a directed graph are said to be similarly
directed.

As an example, the signal flow graph G4 associated with the A template in Fig. 8.10(a) is shown
in Fig. 8.10(b). Observe that G4 has six directed branches (not counting the self-loop) since
there are only three non-zero non-central entries in the A template; namely, a_; _1 = —2.6,
a_1,0 = 1.5, and a;;; = 3.2. Observe that for each zero entry (ay; = 0,k # I) in the A
template, the corresponding node (k, /) in G4 has no branches attached to it. Observe also that
the “sign” of ay; # 0 is irrelevant in so far as the direction of the associated branch is concerned,
which always goes from node (k, /) to the center node (7, j), and its reflected “twin” branch
always goes from the center node (i, j) to node k, D).

In the signal flow graph G4 shown in Fig. 8.10(b), we also write the synaptic weight ay; next
to the pair of directed branches associated with each entry of the A template where ay; # O.
For completeness, we also draw a self-loop at node (i, j) with the self-feedback synaptic weight
a;j = 4.7 written next to it. For the purpose of this section, however, both the synaptic weights

343 Notes

12

13
14

16

17

20

and the self-loop are irrelevant to the following complete stability theorem and will therefore be
deleted from G4.

A similarly directed path from node (k1, /1) to node (ky, [) is defined as a sequence of directed
branches (one-way streets) which allows one to travel from an initial node (k1, /1) to a destination
node (kp, [2).

Since N is an odd integer, the geometric center of G4 (N x N) is anode of G4 (N x N).

Two nodes (k, I) and (k, I) are said to be rotationally symmetric if and only if the position of
(k, I) coincides with that of (k, /) upon rotating the CNN by 180° about its center position.

For the proof of the complete stability Theorem 3, see L.O. Chua and C.W. Wu, “On the Universe
of Stable Cellular Neural Networks,” International Journal of Circuit Theory and Applications,
Vol. 20, 1992, pp. 497-517.

M.W. Hirsch, “System of differential equations that are competitive or cooperative II: Conver-
gence almost everywhere,” SIAM Math. Anal., Vol. 16, no 3, May 1985, pp. 423-439.

L.O. Chua and T. Roska, “Stability of a class of nonreciprocal Cellular Neural Networks,” IEEE
Trans. on Circuits and Systems, Vol. 37, 1990, pp. 1520-1527.

L.O. Chua and C.W. Wu, “On the universe of stable Cellular Neural Networks,” International
Journal of Circuit Theory and Applications, Vol. 20, 1992, pp. 497-512.

M.W. Hirsch, “System of differential equations that are competitive or cooperative, II: Conver-
gence almost everywhere,” SIAM Math. Anal., Vol. 16, no 3, May 1985, pp. 423-439.

A permutation matrix P is a matrix whose entries consists of 0 or 1 such that each row or column
contains only one “1.” A matrix D is irreducible if there exists a permutation matrix P such that
PDP7 is of the form

e
® | x

“

where “o” denotes a matrix with all zero entries, “x’’ denotes a nonzero matrix, and “®” denotes
any matrix.

9 The CNN universal machine (CNN-UM)

1

2

An operator y(r) = Y (), up(t),...,uy(t)) is of fading memory if Ay(f)l;=;, — O as
Au;(t — t) is bounded and T — oo.

T. Roska, “The CNN chip set, engine board and the visual mouse,” Proc. IEEE, CNNA-96, pp.
487-492, Seville, 1996.

10 Template design tools

1

2

E.g. T. Kozek, T. Roska, and L.O. Chua, “Genetic algorithm for CNN template learning,” I[EEE
Trans. on Circuits and Systems, I: Fundamental Theory and Applications (CAS-I), Vol. 40, No. 6,
1993, pp. 392-402.

E.g. Cs. Rekeczky, A. Tahy, Z. Végh, and T. Roska, “CNN based spatio-temporal nonlinear
filtering and endocardial boundary detection in echocardiography,” Int. J. Circuit Theory and
Applications: Special Issue: Theory, Design and Applications of Cellular Neural Networks, II:
Design and Applications, Vol. 27, No. 1, 1999, pp. 171-207.

344
—

Notes

3 E.g. P. Foldesy, L. Kék, A. Zarandy, T. Roska, and G. Bértfai, “Fault tolerant design of analogic

CNN templates and algorithms, part I: The binary output case,” IEEE Trans. on Circuits and
Systems I: Special Issue on Bio-Inspired Processors and Cellular Neural Networks for Vision,
Vol. 46, No. 2, 1999, pp. 312-322.

Cs. Rekeczky and L.O. Chua, “Computing with front propagation: Active contour and skeleton
models in continuous-time CNN,” Journal of VLSI Signal Processing, Special Issue: Spatiotem-
poral Signal Processing with Analogic CNN Visual Microprocessors, Vol. 23, No. 2/3, 1999,
pp. 373-402, Kluwer.

I. Szatmari, Cs. Rekeczky and T. Roska, “A nonlinear wave metric and its CNN implementation
for object classification,” Journal of VLSI Signal Processing, Special Issue: Spatiotemporal Signal
Processing with Analogic CNN Visual Microprocessors, Vol. 23, No. 2/3, 1999, pp. 437448,
Kluwer.

L. Nemes, L.O. Chua, and T. Roska, “Implementation of Arbitrary Boolean Functions on a CNN
Universal Machine,” International Journal of Circuit Theory and Applications, Vol. 26, 1998,
pp- 593-610.

11 CNNs for linear image processing

1 It follows from Eq. (11.12) that an alternate definition of Eqs (11.10)—(11.11) can be made by

choosing a common scaling factor equal to % in both equations.

12 Coupled CNN with linear synaptic weights

1 C.-W. Wu, T. Roska, and L.O. Chua, “Cellular Neural Networks operating in oscillatory modes,”

Memorandum No. UCB/ERL M94/5, Electronics Research Laboratory, University of California
at Berkeley, 1994.

2 A. Zaréndy, “The art of template design,” International Journal of Circuit Theory and Applica-

tions, Vol. 26, Nov.—Dec. 1998.

3 A.Zaréndy, “On conditions a propagation is of unidirectional change in coupled CNN.,” Technical

Report DNS-11-1998, Computer and Automation Institute, Budapest, 1998.

13 Uncoupled standard CNNs with nonlinear synaptic weights

1 T. Roska and L.O. Chua, “Cellular Neural Networks, with non-linear and delay-type template

elements and non-uniform grids,” International Journal of Circuit Theory and Applications,
Vol. 20, 1992, pp. 469-481.

2 Cs. Rekeczky, T. Roska, and A. Ushida, “CNN based difference-controlled adaptive nonlinear

image filters,” International Journal of Circuit Theory and Applications, Vol. 26, 1998, pp. 375-
423.

3 Zero-flux would be better since this will generate non-existing edges at the boundary.

14 Standard CNNs with delayed synaptic weights and motion analysis

1 T. Roska, and L.O. Chua, “Cellular Neural Networks, with non-linear and delay-type template

elements and non-uniform grids,” International Journal of Circuit Theory and Applications,
Vol. 20, 1992, pp. 469-481.

345 Notes
|

2

3

4

T. Roska, C.W. Wu, M. Balsi, and L.O. Chua, “Stablity and dynamics of delay-type general and
Cellular Neural Networks,” IEEE Transactions on Circuits and Systems-1, Vol. 39, 1992, pp. 487-
490.

D.H. Hubel, and T.N. Wiesel, “Receptive fields, binocular, interaction and functional architecture
in the cat’s visual cortex,” J. Physiology, Vol. 160, 1962, pp. 106—154.

T. Roska, T. Boros, and A. Radvényi, “Detecting moving and standing objects using Cellular
Neural Networks,” CTA, Vol. 20, 1992, pp. 613-628.

15 Visual microprocessors — analog and digital VLSI implementation of the CNN universal machine

1

10
11

The interested reader can consult the many papers on this subject or the new book devoted to
the design of CNN-UM visual microprocessors [T. Roska, and A. Rodriguez-Vazquez (eds),
J. Wiley, 2000, in press].

N. Friihauf, E. Liider, and G. Bader, “Fourier optical realization of Cellular Neural Networks,”
IEEE Transactions on Circuits and Systems, Series 11, Vol. 40, 1993, pp. 156-162.

R. Dominguez-Castro, A. Rodriguez-Vazquez, S. Espejo, and R. Carmona, “Four-quadrant
one transistor-synapse for high-density CNN implementations,” Proc. IEEE CNNA-98, 1998,
pp. 243-248.

A. Rodriguez-Vézquez et al., “Current mode techniques for the implementation of continuous-
and discrete-time cellular neural networks,” IEEE Transactions on Circuits and Systems, 11,
Vol. 40, No 3, 1993, pp. 132-146.

R. Carmona-Galdn, A. Rodriguez-Vazquez, S. Espejo-Meana, R. Dominguez-Castro, T. Roska,
T. Kozek, and L.O. Chua, “An 0.5-pum CMOS analog random access memory chip for TeraOPS
speed multimedia video processing,” IEEE Transactions on Multimedia, Vol. 1, No 2, 1999,
pp. 121-135.

G. Lindn, S. Espejo, R. Dominguez-Castro, E. Roca, and A. Rodriguez-Vazquez, “CNNUC3: A
mixed-signal 64 x 64 CNN universal chip,” Proceedings of Seventh Int. Conf. on Microelectron-
ics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro’99), 1999, pp. 61-68, Granada.
R. Dominguez-Castro et al., “A 0.8 pum CMOS 2-D programmable mixed-signal focal-plane
array processor with on-chip binary imaging and instructions storage, IEEE Solid State Circuits
Journal, Vol. 32, 1997, pp. 1013-1026.

P. Keresztes, A. Zarandy, T. Roska, P. Szolgay, T. Bezdk, T. Hidvégi, P. J6nés, and A. Katona,
“An emulated digital CNN implementation,” Journal of VLSI Signal Processing, Special Issue:
Spatiotemporal Signal Processing with Analogic CNN Visual Microprocessors, Vol. 23, No 2/3,
1999, pp. 291-304.

T. Roska, A. Zarandy, S. Z6ld, P. Foldesy, and P. Szolgay, “The computational infrastructure
of analogic CNN computing, Part I: The CNN-UM chip prototyping system,” IEEE Trans. on
Circuits and Systems, 1, Vol. 46, No 2, 1999, pp. 261-268.

ALADDIN, http://lab.analogic.sztaki.hu

Sz. T8kés, L. Orz6, Cs. Rekeczky, T. Roska, and A. Zardndy, “An optical CNN implementation
with stored programmability,” Proc. IEEE ISCAS-2000, Vol. 2, 2000, pp. 136-139.

16 CNN models in the visual pathway and the ‘‘Bionic Eye”

1

H.B. Barlow, “Sumation and inhibition in the frog’s retina,” J. Physiology, Vol. 119, 1953,
pp. 69-88.

346
—

Notes

J.E. Dowling, The Retina: An Approachable Part of the Brain, Harvard University Press,
Cambridge, MA, 1987.

E.S. Werblin, “Synaptic connections, receptive fields, and pattern of activity in the tiger
salamander retina,” Investigative Ophthalmology and Visual Science, Vol. 32,1991, pp. 459—483.

4 C. Mead, Analog VLSI and Neural Systems, Addison Wesley, Reading, MA, 1989.

10

12

13

15

16

17

18

19

J. Teeters, and F.S. Werblin, “Real-time simulation of the retina allowing visualization of each
processing stage,” SPIE, Vol. 1472, Image Understanding and the Man—Machine Interface III,
1991.

T. Roska, J. Hamori, E. Labos, K. Lotz, L. Orzé, J. Takécs, P. Venetianer, Z. Vidnydnszky, and
A. Zarandy, “The use of CNN models in the subcortical visual pathway,” IEEE Trans. Circuits
and Systems, 1, Vol. 40, 1993, pp. 182-195 (Report DNS-10-1991, MTA SZTAKI, Budapest,
1991).

F.S. Werblin, T. Roska, and L.O. Chua, “The analogic Cellular Neural Network as a bionic eye,”
International Journal of Circuit Theory and Applications, Vol. 23, 1995, pp. 541-569.

E.S. Werblin, A. Jacobs, and J. Teeters, “The computational Eye,” IEEE Spectrum, Vol. 33, May
1996, pp. 30-37.

B. Roska, E. Nemeth, and F.S. Werblin, “Response to change is facilitated by a 3-neuron
disinhibitory path-way in the Tiger Salamander Retina,” J. Neuroscience, Vol. 18, 1998,
pp. 3451-3459.

B. Roska, E. Nemeth, L. Orzé, and E.S. Werblin, “Analysis of retinal space-time patterns reveals
image sharpening,” J. Neuroscience, Vol. 20, 2000, pp. 1941-1951.

J. Hamori, T. Pasik, P. Pasik, and J. Szentdgothai, “Triadic synaptic arrangements and their
possible significance in the lateral geniculate nucleus of the monkey,” Brain Research, Vol. 80,
1974, pp. 379-393.

A.M. Sillito, and P.C. Murphy, “GABAergic processes in the central visual system,” Neurotrans-
mitters and Cortical Functions, R.-W. Dykes and P. Gloor, Plenum Press, 1988.

E.R. Kandel, J.H. Schwartz, and T.M. Jessel, Principles of Neural Science, 3rd edition, Elsevier,
New York, 1991.

T. Roska, J. Hamori, E. Libos, K. Lotz, L. Orzd, J. Takdcs, P. Venetianer, Z. Vidnyanszky, and
A. Zarindy, “The use of CNN models in the subcortical visual pathway,” IEEE Trans. Circuits
and Systems, 1, Vol. 40, 1993, pp. 182-195 (Report DNS-10-1991, MTA SZTAKI, Budapest,
1991).

A. Zarandy, L. Orzd, E. Grawes, and F. Werblin, “CNN based early vision models for color vision
and visual illusions,” IEEE Trans. on Circuits and Systems, I: Special Issue on Bio-Inspired
Processors and Cellular Neural Networks for Vision (CAS-I Special Issue), Vol. 46, No 2, 1999,
pp. 229-238.

L.O. Chua, and T. Roska, “The CNN paradigm,” IEEE Trans. on Circuits and Systems, I:
Fundamental Theory and Applications, Vol. 40, No 3, 1993, pp. 147-156.

T. Roska, A. Zardndy, and L.O. Chua, “Color image processing by CNN,” Proceedings of 11
European Conference on Circuit Theory and Design (ECCTD’93), 1993, pp. 57-62, Davos.

A. Jacobs, T. Roska, and E.S. Werblin, “Methods for constructing physiologically motivated
neuromorphic models in CNNs,” International Journal of Circuit Theory and Applications,
Vol. 24, 1996, pp. 315-339.

K. Lotz, A. Jacobs, J. Vandewalle, F. Werblin, T. Roska, L. Vidnyanszky, and J. Himori, “Cellular
Neural Network realizations of neuron models with diverse spiking patterns,” International
Journal of Circuit Theory and Applications, Vol. 24, 1996, pp. 301-314.

347
—

Notes

20

21

22

23

Cs. Rekeczky, B. Roska, E. Nemeth, and F. Werblin “Neuromorphic CNN models for spatio-
temporal effects measured in the inner and outer retina of Tiger Salamander, Proc. IEEE CNNA-
2000, pp. 165-170.

D. Bilya, B. Roska, T. Roska, and F. Werblin, “A qualitative model-framework for spatio-
temporal effects in vertebrate retinas,” Proc. [IEEE CNNA-2000, pp. 165-170.

E.S. Werblin, T. Roska, and L.O. Chua, “The analogic cellular neural network as a bionic eye,”
Memorandum No UCB/ERL M94/70, U.C. at Berkeley (1994), International Journal of Circuit
Theory and Applications, Vol. 23, No 6, 1995, pp. 541-569.

B. Roska, and E.S. Werblin, “Vertical interactions across ten parallel, stacked representations in
the mammalian retina,” Nature, Vol. 410, 2001, pp. 583-587.

Bibliography

1988-1990

348

Chua, L.O. and T. Roska (1990), Stability of a class of nonreciprocal Cellular Neural Networks,
IEEE Transactions on Circuits and Systems, 37, 1520-7.

Chua, L.O. and L. Yang (1988a), Cellular Neural Networks: Theory, IEEE Transactions on Circuits
and Systems, 35, 1257-72.

Chua, L.O. and L. Yang (1988b), Cellular Neural Networks: Applications, IEEE Transactions on
Circuits and Systems, 35, 1273-90.

Friihauf, N. and E. Liider (1990), Realization of CNNs by optical parallel processing with spatial
light valves, Proceedings of IEEE International Workshop on Cellular Neural Networks and
Their Applications (CNNA’90), pp. 281-90, Budapest.

Konishi, M. et al. (1988), Neurophysiological and anatomical substrates of sound localization in the
owl, in G.M. Edelman, W.E. Gall, and W.M. Cowan (eds.), Auditory Function, Wiley, New
York, pp. 721-45.

Matsumoto, T., L.O. Chua, and R. Furukawa (1990), CNN cloning template: Hole filler, [EEE
Transactions on Circuits and Systems, 37, 635-8.

Matsumoto, T., L.O. Chua, and H. Suzuki (1990a), CNN cloning template: Connected component
detector, IEEE Transactions on Circuits and Systems, 37, 633-5.

Matsumoto, T., L.O. Chua, and H. Suzuki (1990b), CNN cloning template: Shadow detector, IEEE
Transactions on Circuits and Systems, 37, 1070-3.

Mead, C. (1989) Analog VLSI implementation of neural systems, in C. Mead and M. Ismail (eds.),
Analog VLSI Implementation of Neural Systems, Kluwer, Boston.

Rodriguez-Vézquez, A., R. Dominguez-Castro, and J.L. Huertas (1990), Accurate design of analog
CNN in CMOS digital technologies, Proceedings of IEEE International Workshop on Cellular
Neural Networks and Their Applications (CNNA’90), pp. 273-80, Budapest.

Roska, T. (1988), Analog events and a dual computing structure using analog and digital circuits
and operators, in P. Varaiya and A.B. Kurzhanski (eds.), Discrete Event Systems: Models and
Applications, Springer Verlag, New York, pp. 225-38.

Roska, T., G. Bartfay, P. Szolgay, T. Szirdnyi, A. Radvényi, T. Kozek, and Zs. Ugray (1990), A
hardware accelerator board for Cellular Neural Networks: CNN-HAC, Proceedings of IEEE
International Workshop on Cellular Neural Networks and Their Applications (CNNA’90), pp.
160-8, Budapest.

Varrientos, J.E., J. Ramirez-Angulo, and Sanchez-Sinencio (1990), Cellular Neural Networks
implementation: A current-mode approach, Proceedings of IEEE International Workshop on
Cellular Neural Networks and Their Applications (CNNA’90), pp. 216-25, Budapest.

349
—

Bibliography

1991-1992

Chua, L.A. and P. Thiran (1991), An analytic method for designing simple Cellular Neural
Networks, IEEE Transactions on Circuits and Systems, 38, 1332-41.

Chua, L.A. and T. Roska (1992), A two-layer radon transform Cellular Neural Network, /[EEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 39, 488-9.

Chua, L.A. and C.W. Wu (1992), On the universe of stable Cellular Neural Networks, International
Journal of Circuit Theory and Applications, 20, 497-518.

Cruz, J.M. and L.O. Chua (1991), A CNN chip for connected component detection, /EEE
Transactions on Circuits and Systems, 38, 812—-17.

Cruz, J.M. and L.O. Chua (1992), Design of high-speed, high-density CNNs in CMOS technology,
International Journal of Circuit Theory and Applications, 20, 555-72.

Halonen, K., V. Porra, T. Roska, and L.O. Chua (1992), Programmable analogue VLSI CNN chip
with local digital logic, International Journal of Circuit Theory and Applications, 20, 573-82.

Harrer, H. and J.A. Nossek (1992), Discrete-time Cellular Neural Networks, International Journal
of Circuit Theory and Applications, 20, 453-67.

Harrer, H., J.A. Nossek, and R. Stelzl (1992), An analog implementation of discrete-time Cellular
Neural Networks, IEEE Transactions on Neural Networks, 3, 466-717.

Henseler, J. and PJ. Braspenning (1992), Membrain: A Cellular Neural Network model based on a
vibrating membrane, International Journal of Circuit Theory and Applications, 20, 483-96.

Huertas, J.L. and A. Rodriguez-Visquez (1992), Invited lecture: VLSI-implementation of CNN,
Proceedings of IEEE International Workshop on Cellular Neural Networks and Their
Applications (CNNA’92), pp. 141-50, Munich.

Kandel, E.R., J.H. Schwarz, and T.M. Jessel (1991), Principles of Neural Science, Elsevier,
Amsterdam.

Krinsky, V.I., V.N. Biktashev, and .R. Efimov (1991), Autowave principles for parallel image
processing, Physica D, 49, 247-53.

Mahowald, M. and C. Mead (1991), The silicon retina, Scientific American, 264, 76-82.

Nossek, J.A., G. Seiler, T. Roska, and L.O. Chua (1992), Cellular Neural Networks: Theory and
circuit design, International Journal of Circuit Theory and Applications, 20, 533-53.

Roska, T., G. Bartfay, P. Szolgay, T. Szirdnyi, A. Radvényi, T. Kozek, Zs. Ugray, and A. Zarandy
(1992), A digital multiprocessor hardware accelerator board for Cellular Neural Networks:
CNN-HAGC, International Journal of Circuit Theory and Applications, 20, 589-99.

Roska, T., T. Boros, A. Radvanyi, P. Thiran, and L.O. Chua (1992), Detecting simple motion using
Cellular Neural Networks, International Journal of Circuit Theory and Applications, 20,
613-28.

Roska, T. and L.O. Chua (1992), Cellular Neural Networks with nonlinear and delay-type template
elements and non-uniform grids, International Journal of Circuit Theory and Applications, 20,
469-81.

Roska, T., K. Lotz, J. Himori, E. Labos, and J. Takdcs (1991), The CNN model in the visual system,
Part 1: The CNN-retina and some direction and length-selective mechanisms, Research Report
of the Analogic (Dual) and Neural Computing Systems Laboratory (DNS-8-1991), Budapest,
MTA SZTAKI.

Roska, T. and J. Vandewalle (eds.) (1992), Guest editorial, International Journal of Circuit Theory
and Applications, 20(5), 449-51.

Roska, T., C.W. Wu, M. Balsi, and L.O. Chua (1992), Stability and dynamics of delay-type general
and Cellular Neural Networks, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 39, 487-90.

350

Bibliography

Rueda, A. and J.L. Huertas (1992), Testability in analogue Cellular Neural Networks, International
Journal of Circuit Theory and Applications, 20, 583-7.

Slot, K. (1992), Cellular Neural Network design for solving specific image-processing problems,
International Journal of Circuit Theory and Applications, 20, 629—-637.

Slot, K., T. Roska, and L.O. Chua (1992), Optically realized feedforward-only Cellular Neural
Networks, Archiv fiir Elektronik und Ubertragungstechnik (AEU), 46, 158-67.

Teeters, J.L. and E.S. Werblin (1991), Real-time simulation of the retina allowing visualization of
each processing stage, SPIE, 1472.

Vandenberghe, L. and J. Vandewalle (1992), A path-following method for finding multiple
equilibrium points in Cellular Neural Networks, International Journal of Circuit Theory and
Applications, 20, 519-31.

Werblin, E.S. (1991), Synaptic connections, receptive fields, and pattern of activity in the tiger
salamander retina, Investigative Ophthalmology and Visual Science, 32, 459-83.

Wu, C.W,, L.O. Chua, and T. Roska (1992), A two-layer radon transform Cellular Neural Network,
IEEE Transactions on Circuits and Systems, Il: Analog and Digital Signal Processing, 39,
488-9.

Zou, F. and J.A. Nossek (1991), A chaotic attractor with cellular neural networks, IEEE
Transactions on Circuits and Systems, 38, 811-12.

1993-1994

Anguita, M., FJ. Pelayo, A. Prieto, and J. Ortega (1993), Analog CMOS implementation of a
discrete time CNN with programmable cloning templates, IEEE Transactions on Circuits and
Systems, II: Analog and Digital Signal Processing, 41(3), 215-18.

Balsi, M. (1993), Stability of Cellular Neural Networks with one-dimensional templates,
International Journal of Circuit Theory and Applications, 21(4), 293-7.

Bouzerdoum, A. and R.B. Pinter (1993), Shunting inhibitory Cellular Neural Networks: Derivation
and stability analysis, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 40(3), 215-21.

Chua, L.A. and T. Roska (1993), The CNN paradigm, /[EEE Transactions on Circuits and Systems,
I: Fundamental Theory and Applications, 40(3), 147-56.

Chua, L.A., T. Roska, T. Kozek, and A. Zarandy (1993), The CNN paradigm — a short tutorial, in T.
Roska and J. Vandewalle (eds.), Cellular Neural Networks, Wiley & Sons, Chichester, pp.
1-14.

Chua, L.A., T. Roska, and P.L. Venetianer (1993), The CNN is universal as the Turing machine,
IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 40(4),
289-91.

Cimagalli, V., M. Bobbi, and M. Balsi (1993), MODA: Moving object detecting architecture, I[EEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(3),
174-83.

Civalleri, P. and M. Gilli (1993), On dynamic behaviour of CNN with delay, Proceedings of 11
European Conference on Circuit Theory and Design, (ECCTD’93), Davos, pp. 687-91.

Civalleri, P.P. and M. Gilli (1994), Some dynamic phenomena in delayed Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 22, 77-105.

Civalleri, P.P., M. Gilli, and L. Pandolfi (1993), On stability of Cellular Neural Networks with delay,
IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 40(3),
157-65.

351

Bibliography

Crounse, K.R., T. Roska, and L.O. Chua (1993), Image halftoning with Cellular Neural Networks,
IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(4),
267-83.

Dalla Betta, G.F., S. Graffi, Zs.M. Kovics, and G. Masetti (1993), CMOS Implementation of an
analogically programmable Cellular Neural Network, IEEE Transactions on Circuits and
Systems, 1I: Analog and Digital Signal Processing, 40(3), 206—-14.

Forti, M., S. Manetti, and M. Marini, Necessary and sufficient condition for absolute stability of
neural networks, IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and
Applications, 41, 241-4.

Fruehauf, N., E. Lueder, and G. Bader (1993), Fourier optical realization of Cellular Neural
Networks, IEEE Transactions on Circuits and Systems, I1: Analog and Digital Signal
Processing, 40(3), 156-62.

Galias, Z. (1993), Designing Cellular Neural Networks for the evaluation of local Boolean
functions, IEEE Transactions on Circuits and Systems, I1: Analog and Digital Signal
Processing, 40(3), 219-22.

Gilli, M. (1994), Stability of Cellular Neural Networks and delayed Cellular Neural Networks with
nonpositive templates and nonmonotonic output functions, /IEEE Transactions on Circuits and
Systems, 1: Fundamental Theory and Applications, 41(8), 518-28.

Guzelis, C. and L.O. Chua (1993), Stability analysis of generalized Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 21, 1-33.

Halonen, K., V. Porra, T. Roska, and L.O. Chua (1993), Programmable analogue VLSI CNN chip
with local digital logic, in T. Roska and J. Vandewalle (eds.), Cellular Neural Networks, Wiley
& Sons, Chichester.

Harrer, H. (1993), Multiple-layer discrete-time Cellular Neural Networks using time-variant
templates, IEEE Transactions on Circuits and Systems, 1I: Analog and Digital Signal
Processing, 40(3), 191-9.

Harrer, H., Z. Galias, and J.A. Nossek (1993), On the convergence of discrete-time neural networks,
International Journal of Circuit Theory and Applications, 21(2), 191-5.

Heiligenberg, W. and T. Roska (1993), On biological sensory information processing principles
relevant to Cellular Neural Networks, in T. Roska and J. Vandewalle (eds.), Cellular Neural
Networks, Special issue of the International Journal of Circuit Theory and Applications, Wiley
& Sons, Chichester, pp. 201-11.

Jankowski, St, C. Mazur, and R. Wanczuk (1993), Some problems of molecular physics solved by
CNN, Proceedings of International Symposium on Nonlinear Theory and Applications
(NOLTA’93), 1, Honolulu, pp. 17-22.

Joy, M.P. and V. Tavsanoglu (1993), A new parameter range for stability of opposite-sign Cellular
Neural Networks, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 40(3), 204-6.

Kaszkurewicz, E. and A. Bhaya (1994), On a class of globally stable neural circuits, [EEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 41(2), 171-4.

Kozek, T., T. Roska, and L.O. Chua (1993), Genetic algorithm for CNN template learning, IEEE
Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 40(6),
392-402.

Martinelli, G. and R. Prefetti (1994), Generalized Cellular Neural Network for novelty detection,
IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 41(2),
187-90.

352

Bibliography

Nossek, J.A. and T. Roska (eds.) (1993), Special Issue on Cellular Neural Networks, IEEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(3).

Osuna, J.O., G.S. Moschytz, and T. Roska (1993), A framework for the classification of auditory
signals with Cellular Neural Networks, Proceedings of 11 European Conference on Circuit
Theory and Design (ECCTD’93), Davos, pp. 51-6.

Paul, S., K. Hiiper, J.A. Nossek, and L.O. Chua (1993), Mapping nonlinear lattice equations on to
Cellular Neural Networks, IEEE Transactions on Circuits and Systems, I: Fundamental Theory
and Applications, 40(3), 196-203.

Pérez-Munuzuri, V., V. Pérez-Villar, and L.O. Chua (1993), Autowaves for image processing on a
two-dimensional CNN array of Chua’s circuits: flat and wrinkled labyrinths, IEEE
Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 40(3),
174-81.

Prefetti, R. (1993), CNN for fast adaptive equalization, International Journal of Circuit Theory and
Applications, 21(2), 165-75.

Rodriguez-Vizquez, A., S. Espejo, R. Dominguez-Castro, J.L. Huertas, and E. Sdnchez-Sinencio
(1993), Current-mode techniques for the implementation of continuous- and discrete-time
Cellular Neural Networks, IEEE Transactions on Circuits and Systems, 1l: Analog and Digital
Signal Processing, 40(3), 132-46.

Roska, T. and L.O. Chua (1993), The CNN universal machine: An analogic array computer, /EEE
Transactions on Circuits and Systems, I1: Analog and Digital Signal Processing, 40(3),
163-73.

Roska, T., J. Hamori, E. Labos, K. Lotz, L. Orzo, J. Takécs, P. Venetianer, Z. Vidnyanszky, and A.
Zaréandy (1993), The use of CNN models in the subcortical visual pathway, IEEE Transactions
on Circuits and Systems, I: Fundamental Theory Applications, 40(3), 182-95.

Roska, T., C.W. Wu, and L.O. Chua (1993), Stability of Cellular Neural Networks with dominant
nonlinear and delay-type templates, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 40(4), 270-2.

Savaci, FA. and J. Vandewalle (1993), On the stability analysis of Cellular Neural Networks, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(3),
213-14.

Seiler, G. and J.A. Nossek (1993), Winner-take-all Cellular Neural Networks, IEEE Transactions on
Circuits and Systems, II: Analog and Digital Signal Processing, 40(3), 184-90.

Shi, B.E., T. Roska, and L.O. Chua (1993), Design of linear Cellular Neural Networks for motion
sensitive filtering, IEEE Transactions on Circuits and Systems, 11: Analog and Digital Signal
Processing, 40, 320-31.

Szirdnyi, T. and J. Csicsvari (1993), High-speed character recognition using a dual Cellular Neural
Network architecture (CNND), IEEE Transactions on Circuits and Systems, Il: Analog and
Digital Signal Processing, 40(3), 223-31.

Szolgay, P., G. Voros, and G. Erdss (1993), On the applications of the Cellular Neural Network
paradigm in mechanical vibrating systems, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 40(3), 222-7.

Tanaka, M., C. Crounse, and T. Roska (1994), Parallel analog image coding and decoding by using
Cellular Neural Networks, IEICE (Japan) Transactions on Fundamentals of Electronics,
Communications and Computer Sciences (IEICE), E77-A, No. 8, 1387-95.

Thiran, P. (1993), Influence of boundary conditions on the behavior of Cellular Neural Networks,
IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 40(3),
207-12.

353 Bibliography
—
Varrientos, J.E., E. Sanchez-Sinencio, and J. Ramirez-Angulo (1993), A current-mode cellular
network implementation, /[EEE Transactions on Circuits and Systems, 1I: Analog and Digital
Signal Processing, 40(3), 147-55.
Willis, J. and J. Pineda de Gyvez (1993), Functional testing for Cellular Neural Networks, /EE
Electronics Letters (IEE EL), 29(25), 2206-8.
Yang, T. (1994), Blind signal separation using Cellular Neural Networks, International Journal of
Circuit Theory and Applications, 22(5), 399-408.
Zou, F. and J.A. Nossek (1993a), Hopf-like bifurcation in Cellular Neural Networks, Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS’93), 4, Chicago, pp.
2391-2394.
Zou, F. and J.A. Nossek (1993b), Bifurcation and chaos in Cellular Neural Networks, IEEE
Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 40(3),
166-73.
1995-1996

Arena, P., S. Baglio, L. Fortuna, and G. Manganaro (1995), Chua’s circuit can be generated by CNN
cells, IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications,
42(2), 123-5.

Arena, P., S. Baglio, L. Fortuna, and G. Manganaro (1996), Generation of n-double scrolls via
Cellular Neural Networks, International Journal of Circuit Theory and Applications, 24(3),
241-52.

Arik, S. and V. Tavsanoglu (1996), Equilibrium analysis of non-symmetric CNNs, International
Journal of Circuit Theory and Applications, 24(3), 269-74.

Balsi, M., V. Cimagalli, and F. Galluzzi (1996), A proposal to implement optoelectronic CNN
systems by amorphous silicon thin film technology, International Journal of Circuit Theory
and Applications, 24(1), 121-6.

Chua, L.A., M. Hasler, G.S. Moschytz, and J. Neirynck, Autonomous Cellular Neural Networks: A
unified paradigm for pattern formation and active wave propagation, IEEE Transactions on
Circuits and Systems, I: Fundamental Theory and Applications, 42(10), 559-77.

Chua, L.A., T. Roska, T. Kozek, and A. Zarandy (1996), CNN universal chips crank up the
computing power, [EEE Circuits and Devices (IEEE C&D), 12(4), 18-28.

Civalleri, PP. and M. Gilli (1996), A spectral approach to the study of propagation phenomena in
CNN:s, International Journal of Circuit Theory and Applications, 24(1), 37-48.

Crounse, K.R. and L.O. Chua (1995), Methods for image processing and pattern formation in
Cellular Neural Networks: A tutorial, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 42(10), 583-601.

Cruz, J.M. and L.O. Chua (1995), Application of Cellular Neural Networks to model population
dynamics, /IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and
Applications, 42(10), 715-20.

Csapody, M. and T. Roska (1996), Dynamic analogic CNN algorithms for a complex recognition
task — a first step towards a bionic eyeglass, International Journal of Circuit Theory and
Applications, 24(1), 127-44.

Espejo, S., R. Carmona, R. Dominguez-Castro, and A. Rogriguez-Vizquez (1996a), A CNN
universal chip in CMOS technology, International Journal of Circuit Theory and Applications,
24(1), 93-110.

354

Bibliography

Espejo, S., R. Carmona, R. Dominguez-Castro, and A. Rodriguez-Vézquez (1996b), A
VLSI-oriented continuous-time CNN model, International Journal of Circuit Theory and
Applications, 24(3), 341-56.

Forti, M. and A. Tesi (1995), New conditions for global stability of neural networks with
application to linear and quadratic programming problems, I[EEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 42(7), 354—66.

Jacobs, A., T. Roska, and F. Werblin (1996), Methods for constructing physiologically motivated
neuromorphic models in CNNSs, International Journal of Circuit Theory and Applications, 24,
315-39.

Joy, M.P. and V. Tavsanoglu (1996), Circulant matrices and the stability of a class of CNNs,
International Journal of Circuit Theory and Applications, 24(1), 7-14.

Kinget, P. and M. Steyaert (1995), A programmable analog Cellular Neural Network (CMOS) chip
for high speed image processing, IEEE Journal of Solid State Circuits (JSC), 30, 235-43.

Kozek, T., L.O. Chua, T. Roska, D. Wolf, R. Tetzlaft, F. Puffer, and K. Lotz, Simulating nonlinear
waves and partial differential equations via CNN — Part II. Typical Examples, IEEE
Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 42(10),
816-20.

Kozek, T. and T. Roska (1996), A double time-scale CNN for solving two-dimensional
Navier—Stokes equations, International Journal of Circuit Theory and Applications, 24, 49-56.

Liszka, G., T. Roska, A. Zaréandy, J. Hegyesi, L. Kék, and Cs. Rekeczky (1995), Mammogram
analysis using CNN algorithms, Proceedings SPIE Medical Imaging (SPIE Medical Imaging),
2434, pp. 461-470, San Diego.

Lotz, K., A. Jacobs, J. Vandewalle, F. Werblin, T. Roska, L. Vidnyanszky, and J. Himori (1996),
Cellular Neural Network realizations of neuron models with diverse spiking patterns,
International Journal of Circuit Theory and Applications, 24, 301-14.

Nemes, L. and T. Roska (1995), A CNN model of oscillation and chaos in ant colonies: A case
study, IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications,
42(10), 741-5.

Nemes, L., G. Té6th, T. Roska, and A. Radvanyi (1996), Analogic CNN algorithms for 3D
interpolation-approximation and object rotation using controlled switched templates,
International Journal of Circuit Theory and Applications, 24, 409-24.

Nossek, J.A. (1996), Design and learning with Cellular Neural Networks, International Journal of
Circuit Theory and Applications, 24(1), 15-24.

Ogorzalek, M.J., Z. Galias, W. Dabrowski, and A .Dabrowski (1996), Spatio-temporal co-operative
phenomena in CNN arrays composed of chaotic circuits — simulation experiments,
International Journal of Circuit Theory and Applications, 24(3), 261-8.

Osuna, J.A. and G.S. Moschytz (1996), On the separating capability of Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 24(3), 253-60.

Radvényi, A.G. (1996), Spatial depth extraction using random stereograms in analogic CNN
framework, International Journal of Circuit Theory and Applications, 24, 69-92.

Rekeczky, C., A. Ushida, and T. Roska (1995), Rotation invariant detection of moving and standing
objects using analogic Cellular Neural Network algorithms based on ring codes, IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E-78,
1316-30.

Roska, T., L.O. Chua, D. Wolf, T. Kozek, R. Tetzlaff, and F. Puffer (1995), Simulating nonlinear
waves and partial differential equations via CNN — Part I. Basic Techniques, /IEEE

355

Bibliography

Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 42(10),
807-15.

Sargeni, F. and V. Bonaiuto (1996), A 3 x 3 digitally programmable CNN chip, International
Journal of Circuit Theory and Applications, 24(3), 369-80.

Stoffels, A., T. Roska, and L.O. Chua (1996), On object-oriented video coding using the CNN
universal machine, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 43, 948-52.

Suykens, J.A. and J. Vandewalle (1996), Discrete time interconnected Cellular Neural Networks
within NLq theory, International Journal of Circuit Theory and Applications, 24(1), 25-36.

Sziranyi, S. (1996), Robustness of Cellular Neural Networks in image deblurring and texture
segmentation, International Journal of Circuit Theory and Applications, 24, 381-96.

Thiran, P., K.R. Crounse, L.O. Chua, and M. Hasler (1995), Pattern formation properties of
autonomous Cellular Neural Networks, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 42(10), 757-74.

Thiran, P. and M. Hasler (1996), Information storage using stable and unstable oscillations: An
overview, International Journal of Circuit Theory and Applications, 24(1), 57-68.

Vandewalle, J. and T. Roska (eds.) (1996), CTA Special Issue: Cellular Neural Networks II: Part 1,
International Journal of Circuit Theory and Applications, 24(1).

Venetianer, P.L., P. Szolgay, K.R. Crounse, T. Roska, and L.O. Chua (1996), Analogue
combinatorics and cellular automata — key algorithms and layout design, International Journal
of Circuit Theory and Applications, 24, 145-64.

Venetianer, P.L., F. Werblin, T. Roska, and L.O. Chua (1996), Analogic CNN algorithms for some
image compression and restoration tasks, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 42(5), 278-84.

Werblin, F., T. Roska, and L.O. Chua (1995), The analogic Cellular Neural Network as a bionic eye,
International Journal of Circuit Theory and Applications, 23(6), 541-69.

Zarandy, 1., F. Werblin, T. Roska, and L.O. Chua (1996), Spatial logic algorithm using basic
morphological analogic CNN operations, International Journal of Circuit Theory and
Applications, 24, 283-300.

1997-1998

Anguita, M., EJ. Pelayo, F.J. Fernandez, and A. Prieto (1997), A low-power CMOS implementation
of programmable CNNs with embedded photosensors, IEEE Transactions on Circuits and
Systems, 1: Fundamental Theory and Applications, 44(2), 149-53.

Anguita, M., FJ. Pelayo, 1. Rojas, and A. Prieto (1998), Area efficient implementations of
fixed-template CNNs, /EEE Transactions on Circuits and Systems, I1: Fundamental Theory and
Applications, 45(9), 968-73.

Arena, P., S. Baglio, L. Fortuna, and G. Manganaro (1998), Self-organization in a two-layer CNN,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 45(2),
157-62.

Arena, P., M. Branciforte, and L. Fortuna (1998), A CNN based experimental frame for patterns and
autowaves, International Journal of Circuit Theory and Applications, 26(6), 635-50.

Arik, S. and V. Tavsanoglu (1998), Equilibrium analysis of delayed CNNs, IEEE Transactions on
Circuits and Systems, 1: Fundamental Theory and Applications, 45(2), 168-71.

Brucoli, M., L. Carnimeo, and G. Grassi (1998), Heteroassociative memories via Cellular Neural
Networks, International Journal of Circuit Theory and Applications, 26(3), 231-41.

356

Bibliography

Brugge, M.H. ter, J.A.G. Nijhuis, and L. Spaanenburg (1998), Transformational DT-CNN design
from morphological specifications, I[EEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 45(9), 879-88.

Chua, L.O. (1997), A vision of complexity, International Journal of Bifurcation and Chaos, 7, No.
10, 2219-2425, World Scientific Publishing Company.

Csapodi, M., J. Vandewalle, and T. Roska (1998), Invertible operations on a Cellular Neural
Network universal machine — based on the implementation of two-dimensional cellular
automata, International Journal of Circuit Theory and Applications, 26(6), 611-34.

Dogaru, R. and L.O. Chua (1998a), Edge of chaos and local activity domain of FitzZHugh-Nagumo
equation, International Journal of Bifurcation and Chaos, 8(2), 211-57.

Dogaru, R. and L.O. Chua (1998b), Edge of chaos and local activity domain of the brusselator
CNN, International Journal of Bifurcation and Chaos, 8(6), 1107-30.

Dogaru, R. and L.O. Chua (1998c), CNN genes for one-dimensional cellular automata: A
multi-nested piecewise-linear approach, International Journal of Bifurcation and Chaos, 8(10),
1987-2001.

Dogaru, R., L.O. Chua, and K. Crounse (1998a), An extended class of synaptic operators with
application for efficient VLSI implementation of cellular neural networks, IEEE Transactions
on Circuits and Systems, I: Fundamental Theory and Applications, 45(7), 745-53.

Dogaru, R., L.O. Chua, and K. Crounse (1998b), Piramidal cells: A novel class of adaptive coupling
cells and their applications for cellular neural networks, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 45(10), 1077-90.

Espejo, J., A. Rodriguez-Vizquez, R.A. Carmona, P. Foldesy, A. Zarandy, P. Szolgay, T. Szirinyi,
and T. Roska (1997), 0.8 pm CMOS two dimensional programmable mixed-signal
social-plane array processor with on-chip binary imaging and instruction storage, /[EEE
Journal of Solid State Circuits (JSC), 32(7), 1013-26.

Fajfar, L., F. Bratkovic, T. Tuma, and J. Puhan (1998), A rigorous design method for binary Cellular
Neural Networks, International Journal of Circuit Theory and Applications, 26(4), 365-73.

Finger, L. and V. Tavsanoglu (1997), Mapping of one-dimensional Josephon function arrays onto
Cellular Neural Networks and their dynamics, International Journal of Circuit Theory and
Applications, 44(5), 438—45.

Gilli, M., PP. Civalleri, T. Roska, and L.O. Chua (1998), Analysis of time-varying Cellular Neural
Networks for quadratic global optimatization, International Journal of Circuit Theory and
Applications, 26(2), 109-26.

Grimaila, M.R., J. Pineda de Gyvez, and G. Han (1997), Robust functional testing for VLSI
Cellular Neural Network implementation, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 44(2), 161-6.

Hirakawa, S., Cs. Rekeczky, Y. Nishio, A. Ushida, T. Roska, J. Endo, I. Kasem, and H. Nishitani
(1997), Detecting lung cancer symptoms with analogic CNN algorithms based on a
constrained diffusion template, IEICE (Japan) Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, ES0-A. No. 7, 1340-1344.

Ikegana, T. and T. Ogura (1998), A DTCNN universal machine based on highly parallel 2-D cellular
automata CAM2, IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and
Applications, 45(5), 538—46.

Joy, M.P. and V. Tavsanoglu (1998), An equilibrium analysis of CNNs, /IEEE Transactions on
Circuits and Systems, 1: Fundamental Theory and Applications, 45(1), 94-8.

357

Bibliography

Kék, L. and A. Zardndy (1998), Implementation of large neighborhood nonlinear templates on the
CNN universal machine, International Journal of Circuit Theory and Applications, 26(6),
551-66.

Kinget, P. and M. Steyaert (1998), Analog VLSI design constraints of programmable Cellular
Neural Networks, Analog Integrated Circuits and Signal Processing, 15(3), 251-62.

Kozek, T., C.W. Wu, A. Zarandy, Hua Chen, and T. Roska (1997), New results and measurements
related to some tasks in object-oriented dynamic image coding using CNN universal chips,
IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 606-14.

Liu, D. (1997), Cloning template design of Cellular Neural Networks for associative memories,
IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and Applications, 44(7),
646-50.

Majorana, S. and L.O. Chua (1998), A unified framework for multilayer high order CNN,
International Journal of Circuit Theory and Applications, 26(6), 567-92.

Mirzai, B. and G.S. Moschytz (1998), The influence of the boundary conditions on the robustness of
a CNN, /EEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications,
45(4), 511-15.

Mladenov, V.M., D.M.W. Leenaerts, and F.H. Uhlmann (1998), Estimation of the basin of
attractions in CNNs, IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and
Applications, 45(5), 571-4.

Nemes, L., L.O. Chua, and T. Roska (1998), Implementation of arbitrary Boolean functions on the
CNN universal machine, International Journal of Circuit Theory and Applications, 26(6),
593-610.

Paasio, A., A. Dawidziuk, K. Halonen, and V. Porra (1997), Fast and compact 16 by 16 CNN
implementation, Analog Integrated Circuits and Signal Processing (AICASP), 12, 59-70.

Parodi, M., M. Storace, and C. Regazzoni (1998), Circuit realization of Markov random fields for
analog image processing, International Journal of Circuit Theory and Applications, 26(5),
477-98.

Rekeczky, Cs., T. Roska, and A. Ushida (1998), CNN-based difference-controlled adaptive
nonlinear image filters, International Journal of Circuit Theory and Applications, 26, 375-423.

Salerno, M., F. Sargeni, and V. Bonaiuto (1998), A 6 x 6 cells interconnection-oriented
programmable chip for CNN, Analog Integrated Circuits and Signal Processing, 15(3),
239-50.

Shi, Bertram E. (1998), Gabor-type filtering in space and time with cellular neural networks, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 45(2),

121-32.

Shi, B.E., T. Roska, and L.O. Chua (1998), Estimating optical flow with Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 26(4), 343-64.

Slavova, A. (1998), Dynamic properties of Cellular Neural Networks with nonlinear output
function, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 45(5), 587-90.

Sziranyi, T. (1997), Texture recognition using superfast Cellular Neural Network VLSI chip in real
experimental environment, Proceedings of Pattern Recognition in Practice, in Pattern
Recognition Letters Vol. 18, pp. 1329-1334, Vlieland.

Sziranyi, T. and M. Csapodi (1998), Texture classification and segmentation by cellular Neural
network using genetic learning, Computer Vision and Image Understanding, 71(3), 255-70.

358

1999

Bibliography

Szolgay, P., I. Szatmari, and K. Lasz16 (1997), A fast fixed point learning method to implement
associative memory on CNNs, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 44, 362-6.

Venetianer, P.L. and T. Roska (1998), Image compression by cellular neural networks, I[EEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 45(3),
205-15.

Yang, T., C-M. Yang, and L-B. Yang (1998), The differences between Cellular Neural Network
based and fuzzy Cellular Neural Network based mathematical morphological operations,
International Journal of Circuit Theory and Applications, 26(1), 13-25.

Zaréandy, 1., A. Stoffels, T. Roska, and L.O. Chua (1998), Implementation of binary and grey-scale
mathematical morphology on the CNN universal machine, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 45(2), 163-8.

Arena, P, L. Fortuna, and M. Branciforte (1999), Reaction-diffusion CNN algorithms to generate
and control artificial locomotion, IEEE Transactions on Circuits and Systems, 1: Fundamental
Theory and Applications, 46(2), 253-60.

Arena, P., L. Fortuna, and M. Branciforte (1999), Realization of a reaction—diffusion CNN
algorithm for locomotion control in an hexapode robot, Journal of VLSI Signal Processing, 23,
267-80.

Carmona-Galén, R., A. Rodriguez-Vézquez, S. Espejo-Meana, R. Dominguez-Castro, T. Roska, T.
Kozek , and L.O. Chua (1999), An 0.5 pm CMOS analog random access memory chip for
teraOPS speed multimedia video processing, 1(2), 121-35.

Carmona, R., G. Linan, R. Dominguez-Castro, S. Espejo, and A. Rodriguez-Vazquez (1999),
SIRENA: a CAD environment for behavioural modelling and simulation of VLSI Cellular
Neural Network chips, International Journal of Circuit Theory and Applications, 27(1), 43-76.

Cauwenberghs, G. and J. Waskiewicz (1999), Focal-plane analog VLSI cellular implementation of
the boundary contour system, IEEE Transactions on Circuits and Systems, 1: Fundamental
Theory and Applications, 46(2), 327-34.

Chandler, B., Cs. Rekeczky, Y. Nishio, and A. Ushida (1999), Adaptive simulated annealing in
CNN template learning, IEICE (Japan) Transactions on Fundamentals of Electronics,
Communications and Computer Sciences (IEICE), E§2-A, No. 2, 398-402.

Féldesy, P, L. Kék, T. Roska, A. Zardndy, T. Roska, and G. Bartfai (1999), Fault tolerant design of
analogic CNN templates and algorithms, part I: The binary output case, IEEE Transactions on
Circuits and Systems, 1: Fundamental Theory and Applications, 46(2), 312-22.

Hanggi, M. and G.S. Moschytz (1999), An exact and direct analytical method for the design of
optimally robust CNN templates, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 46(2), 304—11.

Hiratsuka, M., T. Aoki, and T. Higuchi (1999), Enzyme transistor circuits for reaction—diffusion
computing, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 294-303.

Keresztes, P., A. Zarandy, T. Roska, P. Szolgay, T. Bezdk, T. Hidvégi, P. Jonds, and A. Katona
(1999), An emulated digital CNN implementation, Journal of VLSI Signal Processing, 23,
291-303.

Kozek, T. and D.L. Vilarino (1999), An active contour algorithm for continuous-time Cellular
Neural Networks, Journal of VLSI Signal Processing, 23, 403—14.

359

Bibliography

Lotz, K., L. B6loni, T. Roska, and J. Hamori (1999), Hiperacuity in time: a CNN model of a
time-coding pathway of sound localization, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 46(8), 994-1002.

Luthon, F. and D. Dragomirescu (1999), A cellular analog network for MRF-based video motion
detection, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 281-93.

Moreira-Tamayo, O. and J. Pineda de Gyvez (1999), Subband coding and image compression using
CNN, International Journal of Circuit Theory and Applications 27(1), 135-52.

Paasio A. and D. Dawidziuk (1999), CNN template robustness with different output nonlinearities,
International Journal of Circuit Theory and Applications, 27(1), 87-102.

Paasio, A., A. Kananen, K. Halonen, and V. Porra (1999), A QCIF resolution binary I/O CNN-UM
chip, Journal of VLSI Signal Processing, 23, 281-90.

Radvényi, A.G. (1999), Structural analysis of sterograms for CNN depth detection, I[EEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 46(2),
239-52.

Radvanyi, A.G., L. Gaspar, and G. T6th (1999), CNNUM stereo architecture and 3D template
design techniques, International Journal of Circuit Theory and Applications, 27(1), 25—42.

Rekeczky, Cs. and L.O. Chua (1999), Computing with front propagation: Active contour and
skeleton models in continuous-time CNN, Journal of VLSI Signal Processing, 23, 373-402.

Rekeczky, Cs., A. Tahy, Z. Végh, and T. Roska (1999), CNN based spatio-temporal nonlinear
filtering and endocardial boundary detection in echocardiography, International Journal of
Circuit Theory and Applications, 27(1), 171-207.

Roca, E., S. Espejo, R. Dominguez-Castro, G. Linan, and A. Rodriguez-Vazquez (1999), A
programmable imager for very high speed cellular signal processing, Journal of VLSI Signal
Processing, 23, 305-18.

Rodriguez-Viazquez, A., E. Roca, M. Delgado-Restituto, S. Espejo, and R. Dominguez-Castro
(1999), MOST-based design and scaling of synaptic interconnections in VLSI analog array
processing CNN chips, Journal of VLSI Signal Processing, 23, 239-66.

Roska, T. (1999), Computer-sensors: Spatial-temporal computers for analog array signals,
dynamically integrated with sensors, Journal of VLSI Signal Processing, 23, 221-37.

Roska, T., A. Zaréandy, S. Zold, P. Foldesy, and P. Szolgay (1999), The computational infrastructure
of analogic CNN computing — part I: The CNN-UM chip prototyping system, [EEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 46(2), 261-8.

Serrano-Gotarredona, T. and A. Rodriguez-Vazquez (1999), On the design of second order
dynamics reaction—diffusion CNNs, Journal of VLSI Signal Processing, 23, 351-371.

Shi, B.E. (1999), Focal plane implementation of 2D steerable and scalable gabor-type filters,
Journal of VLSI Signal Processing, 23, pp. 319-334.

Shi, B.E. (1999), A one-dimensional CMOS focal plane array for gabor-type image filtering, /EEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 46(2),
323-326.

Slot, K., L.O. Chua, and T. Roska (1999), Very low bit-rate video coding using Cellular Neural
Network universal machine, International Journal of Circuit Theory and Applications, 27(1),
153-170.

Szirdnyi, T. and L. Cztni (1999), Image compression by orthogonal decomposition using Cellular

Neural Network chips, International Journal of Circuit Theory and Applications, No. 1,
117-134.

360

Bibliography

Szolgay, P. and K. Témoérdi (1999), Analogic algorithms for optical detection of breaks and short
circuits on the layouts of printed circuits boards using CNN, International Journal of Circuit
Theory and Applications, 27(1), 103-116.

Tetzlaff, R., R. Kunz, and D. Wolf (1999), Minimizing the effects of parameter deviations on
Cellular Neural Networks, International Journal of Circuit Theory and Applications, 27(1),
77-86.

Torralba, A.B. and J. Hérault (1999), An efficient neuromorphic analog network for motion
estimation, IEEE Transactions on Circuits and Systems, 1: Fundamental Theory and
Applications, 46(2), 269-80.

Wang, J-S., Q. Gan, Y. Wei, and L. Xie (1999), Cellular Neural Networks with opposite-sign
templates for image thinning, International Journal of Circuit Theory and Applications, 27(2),
229-40.

Zaréandy, 1. (1999), The art of CNN template design, International Journal of Circuit Theory and
Applications, 17(1), 5-24.

Zarandy, 1., L. Orz6, E. Grawes, and F. Werblin (1999), CNN based models for color vision and
visual illusions, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 229-38.

Additional references can be found at
http://www.ieee-cas.org/~cnnactc
and
http://lab.analogic.sztaki.hu

Exercises

Chapter 2

Exercise 2.1 (Simple morph)
Given: two gray-scale images: P1 and P2

Input: U(z) = P1
Initial state: X(0) = P2
Boundary conditions: white frame

Output: Y(¢) = a transition from P2 to P1.

Task

Design a single template, which implements this transition.

Example

Exercise 2.2 (Hexagonal neighborhood)
The standard CNN definition specifies that the cells form a rectangular grid. Anther feasible form

could be a hexagonal grid.

Task

Give a formula for the side length and the area of a hexagon (measured in cells) in the case of a
hexagonal cell grid, when the sphere of influence equals 7.

361

362 Exercises
|

Exercise 2.3 (Triangular neighborhood)
The standard CNN definition specifies that the cells form a rectangular grid. There are only three

possibilities to cover the plane. These are rectangular, hexagonal, and triangular.

Task
Give a formula for the area of a triangle in the case of a triangular cell grid, when the sphere of
influence equals r.

Chapter 3

Exercise 3.1 (Separate connected objects)
The problem to be solved is to separate connected objects. The example shows a test image where

objects are all similar in size. All objects should be separated but their sizes must be preserved.

Task
Design an algorithm which will separate objects, preserving their original properties, such as width,
height, size, etc.

Example

@ ® o ® :
o..o % o..o' %
®

“‘. 0..3

Input (200 x 200) Desired output

Hint
e The combination of an EROSION followed by a DILATION is called an opening, referring to the
ability of this combination to open up spaces between just-touching objects.

363 Exercises

e The quasi-inverse operation of CLOSE is OPEN. The templates used for erosion and dilation are

sufficient to solve this problem.

e It is necessary to use a mask image which prohibits dilation at boundaries of touching objects.

This mask image is constructed from a skeleton of an inverse binary image of objects.

Exercise 3.2 (EDGE-CORNERDETECTION comparison)

There are two similar templates, the EDGE and the CornerDetection templates. The first one detects

edges on binary images, and the second one detects corners. The templates are of the following form:

0 0 0 -1 | -1 -1
A=| 0 1 0 B=|-1| 8 |-1]| z
0 0 0 -1 |-1| -1
where z = —1 in the EDGE template and z = —8.5 in the CornerDetection template. The

mathematical analysis shows that the final output of a pixel is the sign of w;;, where

wij =z +8ujj —

Ukl

(k.DeS, HInk,DF#, j)

Let pp and py, denote the total number of black and white surround pixels respectively. Let us
consider the case where u;; = 1.

Question

What is the criterion of w;; > 0? What is the role of z?

Example

Input

z=-1(p,<7.5)

364 Exercises
|

:.-" .--h"-\._l
r’ !
I:._\"; I: |_I
-
I ..I-
'.___.--.__._-__.l-_l
7=-3(pr<6.5) 7=-5(pp<5.5)
z=-T7 (pp<4.5) 7=-9 (pp<3.5)

Exercise 3.3 (Main group of points)

Task
Given an image similar to the one below, locate the main groups of points.

Example

Point set segmentation: input and result

Hint

To solve this problem non-local information is needed. We have to use the propagating property of
the A template. Where the average pixel number is large enough there is a group. Apply blurring,
then some kind of thresholding method.

365 Exercises
|

Chapter 5

Exercise 5.1 (Truth table)

Question
What is the difference between the Minimal Truth Table and the Optimized Minimal Truth Table,
and what is the reason for having these two distinct truth tables?

Exercise 5.2 (Boolean function)

Question
Which class of Boolean functions can be implemented by the uncoupled binary CNN?

Chapter 6

Exercise 6.1 (Crossword puzzle endings)

Crossword puzzle is a table, in which white squares represent empty places for the letters, while
black squares denote invalid positions. A word must be written in the white squares vertically and/or
horizontally. There are specifications for the vertical and horizontal words as well. Closed squares
are those squares which are members of one word only. The boundary cells count as black squares.

Task
Design a template which detects the closed squares.

Given: static binary image P
Input: U(z) =P

Initial state: X(0) =0
Boundary conditions: 1

Output: Y(#) — Y(oco) = a binary image, which represents the closed squares.

Example

Input Output

366 Exercises
|

Chapter 8

Exercise 8.1 (Dynamic construction of a grid)

Task
Construct dynamically a grid.

Given: nothing

Input: U(z) =0

Initial state: X(0) =0

Boundary conditions: 1

Output: Y(#) — Y(oo) = abinary image, with a 3 x 3 grid

Example

EEEEEEEEEEEERN

I NN EEEENEEENEER

EEEEEEEEEER

I EEEEEENRERN

I EEEEENRDR

I EEEEER

I EEEEN

EEEEE

I EREN

EEE

[|

[|

|

Hint

The grid grows from the upper left corner to the lower right corner. Use a similarly structured

template.
—a|—a| 0O 0 0 0

A=|—-a| O 0|, B=| 0 0 0| z
0 0 0 0 0 0

Exercise 8.2 (Reaction—diffusion equations)

Task

Design the templates of a double-layer, one-dimensional CNN realizing the following reaction—
diffusion equations

d d’A d?

A dl 1
— =clA 1 Dp—— —gaA d — =c4A Dj— — gl
o —aataltatDaae—gad and - =cadtes+ Do =8

367

Exercises

where x is the coordinate for the one-dimensional space, A and I are the concentrations of the two
so-called morphogens, the Activator and Inhibitor molecules. Parameters c;, g;, and D; are constants.
The equations describe the generation of the so-called Turing patterns.

Start with a random initial state, and, after a periodic pattern appears, increase the size of the cell
array by one and wait for the steady state pattern. Continue increasing the size and look at the steady
state solution several times. How does the periodicity of the pattern change?

Input: U(¢) = not used
Initial state: random
Boundary conditions: periodic

Output: Y(¢#) — Y(0co0) = sine waves with L = 10 periodicity

Example

Fig. 1. Three snapshots of generating Turing patterns in an increasing cell array. The vertical axis
shows the output of the cells. (a) The array of 51 cells has already reached its settled state. (b—)
After increasing the array size to 52, a new peak appears.

Hint
The first layer corresponds to the quantity A, the second one to /. The second-order derivatives with

respect to x must be discretized. The CNN cell equations are

dA;
dt

=aA; +bl; +c+u(Aj—1 —2A; + Ajq1),

ar;
d—t’ =dA; +eli + f+vUi—1 —2I; + I;11)

368

Exercises

where parameters a, b, ¢, d, e, f, i, and v can be easily expressed in terms of ¢;, g;, and D;. The

templates describing the two-layer circuits are

A1 =1I[n @=2pn+1) ul, A1 =[000b0], I1=c
Alio2=[0d 0], Asipp=1[v (e—2v+1)v], and I, = f.

Determine suitable values.

Exercise 8.3 (Surface interpolation)

Task

Design a CNN for surface interpolation. The altitude of the surface is given at some of the grid points;
however, it is unknown in most of the grid points. The v(x, y) interpolated surface must satisfy

8%y 8%y 9%y

V= — +2——+ —
ax4 ax29y2 ay4

=0
Input: U(t) = not used

Initial state: X(0) = 0, if the altitude of the point is not known; 4, if the altitude & of the point is
known

Mask: The cells corresponding to points where the altitude is known, are fixed.

Boundary conditions: Zero fourth-order derivative (practically, other boundary conditions can be
used as well; however, at the edges the result will differ slightly from what we expect).

Output: Y(t) — Y(oo) = the interpolated surface

Example

/I /
Vil \(‘\\ ,'
N
7}

Z
%
L
g
G
G
Lo
Lz

Initial state with three An intermediate state Final state

369 Exercises
|

Hint

Flow diagram
of surface fitting

Loading the altitude of
the known points into
the initial state.

Loading the mask. ‘

v

Running the template.

v

Save the state of the
CNN. It describes the
fitted surface.

Exercise 8.4 (Black pixel count)

Task

In some more complicated tasks it is necessary to count the number of all black pixels in a result, or
the number relative to the full area. This can easily be done through a serial algorithm, but this is not
the most effective CNN application. In such a serial algorithm the principle of full CNN solution is
necessary for implementing this interesting task. Give a simpler, parallel solution.

Given: static binary image P

Input: U(¢) = arbitrary

Initial state: X(0) =P

Boundary conditions: Periodic or O (periodic is supposed to be faster)

Output: Y(r) — Y(co) = uniform gray-scale image, which is equal in value to the rate of the
total number of black pixels relative to the total area.

Hint

It can be carried out through a diffusion, which retains the sum of the state values.

370 Exercises
|

Example

Input

Output

Exercise 8.5 (Second-order oscillator)

Task
Design a simple oscillator, which can be implemented in CNN.

Hint
The simplest differential equation, which can exhibit oscillation must be at least of second order

X1 = ayx1 +apxg
Xy = a1x1 +axnx;

This can be mapped to the CNN. Apply two layers.

Example

Input Initial state

Chapter 9

Exercise 9.1 (Roughness measurement)

Task
Design a simple algorithm which measures the roughness of an object.

371 Exercises

Hint

The basic idea here is to find the concave parts of objects. First the gray-scale image is converted
into a binary image via the threshold operation. Next, pixels which are located at concave places
are driven to black, using the “ConcaveLocationFiller” template. This template turns black all those
white pixels which have at least four black direct neighbors. Next we extract concavities of objects
using the logical XOR operation between the threshold image and the filled image.

Example
The following example shows the detected concave parts of an object.

— -
'ﬂ‘ |
>
/
b " f
INPUT PICTURE OUTPUT_PICTURE

Hint - block diagram of the algorithm

Threshold
51

Hollow
50t

XOR
5t
P
A [l
2 ;
i
Erosion
10t

+ .
-]

372 Exercises
|

Templates can be found in the CNN Software Library v7.1 [1] as Threshold, ConcaveLocationFiller,
and Erosion respectively.

Exercise 9.2 (Local concavity)

Task
Find the local concavities of an image.

Example

Transient of CONCAVELOCATIONFILLER template

Result of XOR

W

ad

Hint
Using the ConcaveLocationFiller template the object gets a convex shape. Taking the logical
difference of the original and the resulting image, one can get the local concave points. The result

can be improved by Erosion. The ConcaveLocationFiller and Erosion templates are available in the
template library.

Exercise 9.3 (Concavity orientation)

Task
Find the local concavities in one certain direction.

Example

Input image ConcaveArcFill | LogicDifferencel
er65 template template

373 Exercises
|

Input image ConcaveArcFill | LogicDifferencel
er125 template template

g)

A
»

o

Hint
Use the ConcaveArcFiller templates, which are similar to the ConcaveLocationFiller template but,
due to symmetry distortion, the wave propagation is direction selective. These templates result in
directed shadows originating from concave locations.

To enhance the results the SmallObjectRemover template can be applied:

Example

SmallObjectRemover

Input image i

4o LI

F Y
*

Exercise 9.4 (Improved concavity orientation)

Task

Improve the selectivity of the direction-selective local concavity templates. Local concavity finder
templates result in many patches over a wide range of angles. In some applications this range should
probably be more precisely defined.

374 Exercises
|

Hint
Use logical AND operation after applying three or four local concavity finder templates.

Example
Input image 3 templates Logical AND of three
image
o
S5 :!'

Exercise 9.5 (Curvature)

Task
Given an image, detect the locations where the curvature is big.

Example

Curvature detection

Original image MM
After diffusion W
.

After the *
Smoothing S W
template N

375 Exercises
|

Hint
This property needs non-local information. Use the diffusion template. The image is brighter where
the average pixel count is less.

Exercise 9.6 (Absolute value)

Task
Write an algorithm which implements the absolute value function of an image.

Hint

The absolute value can be computed using the nonlinearity of the CNN:

abs(lj;) = f(fG; — D+ D= f(fUi;+ D -1

where f(-) denotes the piecewise linear function:

Example

Absolute value function

Original image

SU+1), fU-1)

F(fUa+1)- 1),
SUfA-DH+D

S(fd-D+D)

Two image

subtracted
FUFA+H-1
f(fUI-D+1)

376 Exercises
|

Exercise 9.7 (X and 0 segmentation)
Task

Given a black and white image with two types of textons, segment the image.

Hint
First detect some characteristic points of one of the textons. Then segment based on the resulting
points. To solve this problem non-local information is needed. We have to use the propagating

property of the A template. Use blur, then some kind of thresholding method. In this case the point
set is rather sparse. To enhance the effect of blur, use a fixed state map.

Example

ey
i
tle)
D
o
30
<0

s,

o

o

D{}
o 0ol O

Input image Segmented image

Algorithm frame

Texture segmentation
w X £0g ; & 5
%‘, %E—i 0 Result of the CEY
Original "“}g“}L o 9 Junction .
image - *#O;&D o Extractor 5wy =
-4 template A L
T Ty ¢y
3 o
)&* O e
. , 46 0
Skeletonized NG -
1 O o O
image +* o %
— &
g) k_“jﬂ-c‘
Result of the s Its inverse
Junction * .7 created for
Extractor S = ﬁxed state
template . mask

377
—

Exercises

Blurred
image
created with
fixed state
mask

ueo
o0

G
C:'O

Result
masked with
original

Result of
Smoothing

template

Exercise 9.8 (QCA simulation)

Task
Design a one-dimensional three-layer CNN simulating the behavior of a Quantum-dot Cellular
Automata (QCA) cell line of 30 cells. The equation giving the dynamics of a QCA cell is

J ujj 0 —Erws;,;, 0 ujj
7 Vjj = | Eg wy,; 0 2y |- vjj
wjj 0 -2y 0 wjj

where

wyy; = Ex(wi jo1 +wj j1+wi—1,j +witj
1
_Z(wi—l,j—l FWigl 41+ Wio1,j4+1 + Wit j—1))

Here y and Ej are constants, characterizing the cell, and “hbar” is the Planck constant divided by
27 For simplicity, take y = 0.3, Ex = 1, and “hbar” = 1. The three-element vector (u;;, v;j, w;;)
gives the state of the ith cell.

As initial values for the columns of three layers use:

u: —0.0156, 0,0.0234, 0.703, 0.0234, 0,0, ...,0
v: —0.8047,0.8047, —0.9063, —1.0, —0.8984, —0.8281, —0.8047, ..., —0.8047

w: —0.6094, —0.6016, —0.4375, 0.0234, 0.4453, 0.5703, 0.5938, ..., 0.5938

Input: U(¢) = not used

Initial state: a wave front starting to propagate

Boundary conditions: doubling; the first and the last column are fixed
Output: Y (7): state of the cell line after state ¢

Example

The propagation of a wave front from the left to the right in an array of QCA cells. All the cells
contain the same value in a column, thus only a 1D section is shown. (a) The initial state and (b) an
intermediate state.

378 Exercises
|

1 1
w w

0.5 0.5

v v
0 0
—-0.5| -0.5

u u
-1 -1

0 10 " 20 30 0 10 n 20 30
(@) (b)
Chapter 10

Exercise 10.1 (Template design)

Task

Design a template which can detect one-pixel-wide line endings! Use the TEMMASTER application!

Hint

We restrict the solution to a 3 x 3 neighborhood and a one-pixel-wide line. Possible cases (eight

neighbors):

HEN
_
HEE

Fage
Lli

NN
LN
L]

. AEgE B
H EpN B

HEEQEEE

This problem is linearly not separable, therefore it must be decomposed into a sequence of templates.

These templates must apply to the initial image, then the results must be XOR-ed to get the final

result.

Example

Original image

Line endings
(arrows show the location)

CAN

379 Exercises
|

Chapter 12

Exercise 12.1 (Distance classification)

Task

Design an algorithm which can select those points whose distance from each other is less than a
certain value along a given direction.

Example
: . Lediar Result of pee10
Input image DirectedGrowing ’ =
Shadow0 masked with original

. . Resultof Result of pee145
Input image DirectedGrowing . . .
Shadow45 masked with original

s

Hint

Create growing shadows and then remove the starting points. The remaining points are those which
are inside the shadow. The length of the shadow is proportional to the iteration number. Use the
following templates:

DirectedGrowingShadow(

04]03] 0 o]o]o
A= 1|2]=1], B=[o [14] 0| =z=
04]03] 0 0olo] o

DirectedGrowingShadow
0 0| -1 0 0 0

A= 1 [2]0] B=[o0[14] 0| z=[25]

1 1 0 0 0 0

380 Exercises
|

LeftPeeler
0 0 0
A=| 2 2 0
0 0 0

Other directions can be gained by appropriate rotation. The effect of templates can be seen above.

Exercise 12.2 (Arc detection)

Task

Design an algorithm that selects those arcs for the input image of which concave sides are positioned
face to face horizontally in relation to each other. See the Example for a visual explanation.

Hint

Use the ConcaveArcFiller and DirectedGrowingShadow templates:

DirectedGrowingShadow(

A=

04103 0
1 2 | -1
04103 0

DirectedGrowingShadow 180

0 03|04
A=| 1 2 | -1
0 |03]04
ConcaveArcFiller35
1 0 1
A=| 0 2 0
1 1 0

ConcaveArcFiller—155

A=

0 1 1
0 2 0
1 0 1

B =

1.4

To get the desired result, use the logical AND, XOR operation (or LogicDifferencel template) and

the SmallObjectRemover template to remove small objects. The LogicDifferencel and SmallObject-

Remover templates are available in the template library. The ConcaveArcFiller* templates result in
directed shadows originating from concave locations.

381 Exercises
|

Example

Arc detection result images

a—
. 2C OC
Input image
28D
ConcaveArc D> « o0
Fiileriss yc 3 ||| D€ &
ConcaveArc 2T 2D
Filler3ss
After XOR operation . . -
and Y LY - L]
SmallObject
. »)

Remover femplate

Masked result of

DirectedGrowing$S

hadow0 and
DirectedGrowing$S
hadowl80

templates

€ >C
o€ DO
DTy

The locations

Exercise 12.3 (Detect forks)

Task
Given the following picture, detect the fork.

Hint

We have to find characteristic features of the object and then try to extract them. Such features are arcs
or endings and the position of them in relation to each other. Some post- and intermediate processing
is needed; for example, small object removing.

382
—

Exercises

Object detection result images

Input image

ConcaveArc
Fillere6s
and
ConcaveArc
Filler-65

y
|

|
q

After XOR operation
and SmallObject
Remover template

After
DirectedGrowing
Shadow315 and
DirectedGrowing
Shadow225

The result of logic
AND of the previous 4
image and the result
of PatchMaker

The result of the
SelectedObjects

Extraction femplate
with the previous and
the original image

Use the ConcaveArcFiller and DirectedGrowingShadow templates:

ConcaveArcFiller65

1 0 0
A=| 1 2 0 |,
0 0 2

S

(=]

- =[3]

383 Exercises
|

ConcaveArcFiller—65

1 [o1 o]o]o
A= 1 [2]o] B=[o][1][0] z=[2]
0ol o1 ol o] o

DirectedGrowingShadow315

110 ololo
A=[1]2]0] B=[o0[14] 0] z=[25]
0 0] -1 0olo] o

DirectedGrowingShadow225

0] 1|1 olo]o
A=[o 2] 1] B=[o[14] 0] z=[25]
1ol o ool o

The SelectedObjectsExtraction template reconstructs the image starting from one point. The Small-
ObjectRemover template removes the small objects. The SelectedObjectsExtraction, SmallObject-
Remover and the PatchMaker templates are available in the template library. The ConcaveArcFiller*
templates result in directed shadows originating from concave locations.

Exercise 12.4 (Locate small ellipses)

Task

Design an algorithm which can locate small circles and small ellipses.

Hint

Use the filling property of the local concavity detector template (ConcaveArcFiller*). Fill the objects
on image from two opposite directions. The small objects are filled in both cases. The next step is
to find those objects which are not filled completely in both images and then remove them from the
original image.

384 Exercises
|

Example

Algorithm for detecting small circles and ellipses

Input image

ConcaveArc
Filler-155
and
ConcaveArc
Filler3s

After logic AND of the
previous images and the
ConcaveLocation
Filler template

After local hole filling

The logic difference of the
two previous image, and
applying the
PatchMaker template

Result of
SelectedObjects
Extraction template
applied to the original and
the previous image and its
inverse

The logic difference of the
original and the previous
(inverted) image

Use the following ConcaveArcFiller templates:

ConcaveArcFiller35
1101 0[0]0

A=[o[2]o] B=[o[1]0] =z=[2]

111]0 01010

385 Exercises
—
ConcaveArcFiller—155
0|1 0]0]0
A=[o]2]0o] B=[o[1]0] =z=[2]
1|0 01010
The SelectedObjectsExtraction, ConcaveLocationFiller, HoleFilling, and PatchMaker templates are
available in the template library. The ConcaveArcFiller* templates result in directed shadows
originating from concave locations.
Chapter 13

Exercise 13.1 (Linear morph)

Given: two gray-scale images P1 and P2

Input: U(z) = P1
Initial state: X(0) =

P2

Boundary conditions: —1

Output: Y(¢) = a transition from P2 to P1. The transition has to be linear:

Y(@) =A20OP1+ (1 —Ar(@)P2

Task
Design a D type template which accomplishes a linear transition from image P2 to P1.

Hint
The solution is basically a three-layer model, where the first two layers compute A and 1 — X and

%MORPH
NRLAYERS 3
LAYER 1
Neighborhood: 0
FEEDBACK FROM 1
1

CURRENT —-0.1
LAYER 2
Neighborhood: 0
FEEDBACK FROM 2
1

CURRENT 0.1
LAYER 3
nonlin_d

u#y

1#1

1

nonlin_d

u#y

2#2

1

on the third layer the output image is computed. Try to solve the exercise without looking at the
following solution.

386
—

Exercises

Example

Exercise 13.2 (Parity check)

Parity check is an important task of computing; it is well known that it is used in error detection of
memories. A nonlinear solution already exists in the CNN Software library. Now solve it using a D
type template.

Task

A binary input picture is given. The task is to produce an output picture which represents the parity
of the input picture defined as follows. A particular pixel in the output is black, if an even number of
black pixels can be found at the left of that particular pixel (including the position of the pixel itself).

Given: static binary image P
Input: U(z) =P

Initial state: X(0) = P
Boundary conditions: —1

Output: Y(r) — Y(oco) = a binary image, which represents the row parity calculated from the
left side of the image

Example
H R E OO0 OO0|0 [BEEEN NN BN BN NN BN
RN BN BN NEEREEEN BN | RN REEEN NN NN REEEN |
[BN BN NN RESEREEREEN | | BEENN REERREERERN REE
AN BN NN NN NEEREEEN | Oo/m|O®|O0O0OK N
o/oojojbo|m|m| O3 o/ojo|/ojbo|e|0O|0
H R R R OO O0O mom0Oo0OoOooo
"R OO0 N " OomO00m
ogjojo|m || m| 0O EEEERREERENE BESEE BN |
Input Output

387 Exercises

—
Hint
The applied template realizes the following network equations:
Xij = —Xij +Yi-1)) * Uij
vij = f(xij)
where f is the usual sigmoid function.

Exercise 13.3 (Limit set)

Task
In mathematical set theory the limit point is a well-known notion. Can we define a discrete notion
and detect the limit point of a discrete binary set?

Given: static binary image P

Input: U(z) =P

Initial state: X(0) = arbitrary (0)

Boundary conditions: 0

Output: Y(#) — Y(oco) = binary image, the limit points of the set defined as those white points,
which has at least one black point neighborhood

Example
Input
& c o0 @
o0 0
. ® e o
Output

o 00 O

O OO ()
OOOO

Pictures are taken from the picture library. The last case shows how the template behaves in the
gray-scale case.

Question
This exercise is very similar to the Edge template. Why? What is the difference?

Exercise 13.4 (Chaotic cell)

A chaotic function with one cell and D template.

388 Exercises

Task
Design a template which implements the following so-called “logistic equation” in the range [—1, 1]
as a DT-CNN.

The logistic map is known as f(x) = Ax(1 — x). It is known that the iteration of this function

becomes chaotic if A is greater than ~ 3.56. The discrete iteration is
x(n+1) =xix(n)(1 — x(n))

Example
The following picture shows a transient with starting value x (1) = 0.7.

0.91 J

0.6 1

0.4r 1

0.3r b

0.1r 1

0 20 40 60 80 100 120

Appendices

Appendix A: TEMLIB, a CNN Template Library

Under the name TEMLIB, within the Software Library for analogic cellular (CNN) computers, a set
of fairly standard types of CNN template data are contained. The template names in TEMLIB can be
used in the template and algorithm simulators defined in Appendix B.

Appendix B: TEMPO, template optimization tools

Under the name TEMMASTER, a student version of a program for template optimization and design
is available. It is used mainly for Boolean CNN and for robust template design.

Appendix C: CANDY, a simulator for CNN templates and analogic CNN algorithms

Under the name CANDY (CNN Analogic Dynamics), a student version of a software simulator
system is available. Multi-layer CNN templates as well as analogic CNN algorithms (defined on the
CNN Universal Machine having a one layer, first-order dynamics CNN core) can be simulated. An
easy to use Template Runner program as well as a high-level language compiler (Alpha) help the
user to analyze complex spatial-temporal dynamics easily and with expressive visualization tools.

389

390

Index

A template 278-81

sign-symmetric 225

symmetric 219-37
absolute value 383
ACE4K analogic Visual Microprocessor Chip 6
activator 375

configuration 289, 290
active cells 284-9
activity configuration 289
actual settling time 166
algebraic analysis 215
alpha compiler 188
alpha language 191
alpha program 190
alpha source code 322
amacrine cells 340
analog CNN core 310-12
analog CNN implementations 115-16
analog computing industry 1
analog program register (APR) 246, 256
analog-to-digital array converter 206—10
analogic cellular computer 1
analogic CNN algorithm 253
analogic CNN computing 2
analogic CNN language 188, 250
analogic CNN-UM cell 316-17
analogic machine code (AMC) 250, 254, 261
arc detection 390-1
array-type analog to digital converter 206—10
arrowhead illusion 335
autonomous CNN 16, 28, 29, 213
autonomous system 223, 244

B template 273-5, 278-81
symmetric 274

ballterms 203—4, 206

Bars-Up 250, 251, 261

basin of attraction 49, 224

bifurcation theory 161

bilateral wedges 160

binary activation pattern 284, 289-94

binary CNN characterization via Boolean functions

12043

binary CNN truth table 120-6

binary edge detection template 35

binary images 40

binary input 126, 167, 265

binary output 127, 167, 265

binary representation 266—7

bionic eye 326, 344

bipolar to unipolar converter (B/U) 208

bistable case 144, 155

bistable CNN 49

bistable output formula 161

bistable sector 160

bistable wedges 160

black corner pixels 169, 171

black pixel count 377-8

black pixels 167, 169, 174, 189

Boolean AND operation 175

Boolean functions 178-87, 373
binary CNN characterization via 120-43
realizable by uncoupled CNNs 1667
XOR, truth table 186

Boolean input variables 266

Boolean local rules 126-9

Boolean output equation 185

Boolean transition function, implementation 199-206

Boolean truth table 173, 178, 179

boundary cell 8

boundary conditions 9, 14, 15, 113
zero 216

bounded solutions 216

boundedness of solutions 23-5

B/W (black and white) symmetric rule 290

CASTLE 318, 319
cell-linking CNN 230-2
cell-linking tests 231-5
cellular nonlinear/neural (CNN) networks see CNN
center component template 26
center feedforward template 26
central gain type receptive field organization 338
chaos 211
chaotic cell 398
chaotic CNN with only two cells and one sinusoidal
input 216-19
chaotic solution waveforms 217
chip prototyping system board (CPS board) 261, 320
Chua—Yang model 310
circuit time constant 166
class 1 M x N standard CNN 8-13
class K (Kilo real-time [K r/t] frame rate) class 5-6
class T (TeraOPS equivalent computing power) class 6
cloning templates 27, 327-8, 340
feedback 25

391

Index

feedforward 26
input 26
representation 25
CLOSE operation 198, 322
closed contour 213, 216
closed invariant set 244
closed set 244
CMOS implementation 310, 316
CNN
architecture 7, 14
classes 27-9
fundamental inequalities 178
implementation 188, 190, 194, 196, 208
networks 1
with time-invariant input and bias 243
see also specific types and applications
CNN analog chip 115
CNN array 276, 288, 309-11
CNN chip prototyping system (CCPS) 261, 263, 320,
321, 323
CNN circuit 25
driven by sinusoidal signal 220
CNN core 309
CNN dynamics
simulation 105-19
standard class 1 105
CNN equations 106
CNN instruction (macro) 13
CNN layer 336
CNN operating system (COS) 255, 261, 320
CNN physical interface (CPI) 320
CNN Script Description (CSD) code 110, 260
CNN standard cell 208
CNN subroutine or function 188
CNN technology, new developments 5
CNN templates 51-104, 188, 189, 199-203, 211
characteristics and analysis 35-104
examples 51
global task 51
local rules 51
mathematical analysis 51-2
prescribed 121
robustness 175
see also specific templates
CNN test circuit 311
CNN Universal Chip 2, 3, 116, 169, 255
CNN Universal Machine (CNN-UM) 1, 2, 5, 245-63
architecture 245-9, 309
chip 261
compiler 260-2
example 2501
functional circuit level 252-9
introduction 188-210
language 260-2
operating system 260-2
structure 249
co-dimension 1 output formula 161
co-dimension 2 bifurcation point 161
compiled analogic macro code 262
complementation (LOGNOT) operation 179
complete stability 144, 211-44
theorems 145, 147-60, 220, 227, 229, 235-7
compressed local rules 126-9

computer vision 326
computing power comparison 323-5
concavity orientation 381-2
conjunctive (intersection, LOGAND) operation 179
connected component detector (CCD) template 237,
312
connectivity problem 292-5
consecutive snapshots 304, 305
constant inputs 220
constant threshold 220
constrained propagation 290
continuous time image
acquisition 303-8
discrete 303-8
CONTOUR-1: contour detection template 79-86
examples 81-3
global task 79
local rules 80
mathematical analysis 83—-6
convolution 274-5, 279
convolution window 319
CORNER: convex corner detection template 52—6,
129-30
binary code 142
corrected minimal truth table 141
decimal code 142
examples 52—4
global task 52
input—output patterns 133—40
local rules 52
optimized minimal truth table 141
see also optimized CORNER template
corner coordinate coding scheme 173
CornerDetection template 371
coupled CNN with linear synaptic weights 282-95
coupled linear ordinary differential equations 279
CPS board (CNN prototyping system board) 261, 320
crossword puzzle endings 374
CSD (Script) language 111
curvature 382

data compression 125
dc (average) value property 277
degenerate case 146, 149, 158
delta sign 293
design techniques 264-6, 388-9
difference picture in continuous time mode 305-8
diffusion-type receptive field organization 338, 339
digital hardware accelerators 11415
digital signal processing (DSP) 114-15, 118, 278, 318
digital technology 1
dilation 195-7, 199
DILATION: grow-until-it-fits template 93—104
examples 97-104
global task 93-6
local rules 96
mathematical analysis 96—104
directional selectivity 331-2
discrete op-amp circuit 219
Discrete Spatial Fourier Transform (DSFT) 276-9
discrete spatial variables 276
discrete-time CNN (DTCNN) 119
distance classification 389

392

Index

driving-point (DP) characteristics 38
driving-point (DP) component 27
driving-point (DP) plot 46
see also shifted DP plot
DWLB template 305
dynamic equations 297-304
dynamic local rules (DLC) 284-9, 291-2, 295
dynamic routes 70, 80, 81, 95, 103, 144, 149, 151-9,
162-5

economics 178
edge cells 8
Edge CNN template 35-40, 86, 108, 110, 111, 117,
189, 371
examples 36-7
global task 35
local rules 35, 39-40
mathematical analysis 37-40
EDGE detection 283
EdgeDetector 270
Edgegray CNN template 40-50, 86
basins of attraction 49-50
examples 42-5
global task 41
local rules 41-2, 46-9
mathematical analysis 45-9
emulated digital implementation 318—-19
end point detector test 399-400
equilibrium points 39, 49-50, 63, 144, 148, 158, 162,
212,214, 215, 220, 223, 227, 241, 242
robustness 149
virtual 162, 214
erosion 195-8
EROSION: peel-if-it-doesn’t-fit template 12, 87-92
examples 89
global task 87-8
local rules 88
mathematical analysis 89-92
excitatory synaptic weights 27
exclusive OR (XOR) function see XOR function
extended cell 202, 208, 246-7, 316
configurations 257
functional circuit level schematics 255-6
EXTREME TEMPLATE 12

feedback 9

feedback cloning template 25

feedback synaptic operator 25

feedback synaptic signal flow graph 33

feedback synaptic weights 145, 212

feedback template 145

feedforward cloning template 26

feedforward CNN 27, 29, 273, 278
convolution property 274-5

FILBLACK: gray-scale to black CNN template 60
global task 60
local rules 60

FILWHITE: gray-scale to white CNN template
examples 61
global task 60
local rules 61

FIR kernels, spatial convolution with 273-5

fixed (Dirichlet) boundary conditions 15

flow diagram 188, 190, 195, 196, 198, 251, 253
fork dectection 392

forward Euler formula 106, 372-3

Fourier series expansion 217

Fourier transform 276, 277

frequency domain differential equations 280
frequency domain transfer function 281
frequency power spectra 218

game of life 205-7, 271
ganglion cell 341
Gaussian weight distribution 338
global analogic control unit (GACU) 256
global analogic programming unit (GAPU) 246,
248-50, 255

content 2567
global clock (GCL) 189, 192, 249
global existence 20-2
global point attractor 49
global task 190, 1934, 196, 250-1
global white test (GW) 189, 192
GlobalMaximumFinder template 11
gray-scalel159

contour detector 298

edge detection template 41

images 40-1

output formula 161

sector 160, 172

wedges 160
GrayscaleLineDetector template 11
grid, dynamic construction 374-5

H templates 273-5

hardware accelerator board (HAB) 114, 118

hardware components 194

hardware schematics 188

hardwired components 190, 196, 208

hexagonal neighborhood 369

HOLLOW template 252

HORDIST template 252

horizontal connected component detector template
282

hypercube 169, 171

hyperplane 169, 171

hyperplane equation 172

image flow 308

image input 1067

ImageDifferenceComputation template 13

impulse response kernel 274, 278, 281

impulse response matrix 274

inactive cells 284-9

inequalities 291-2, 295

infinite impulse response (IIR) filter 281

infinite impulse response (IIR) kernels 279
spatial convolution with 278-81

inhibitor 375

inhibitory synaptic weights 27

initial conditions 112-13, 165

initial state 10, 38

inner plexiform layer (IPL) 340

input 9

input cloning template 26

393

Index

input (feedforward) template 145
input images 110-12, 268, 274
input scale 116

input synaptic operator 9, 26

input synaptic signal flow graph 34
integration formula test 371
inverse function 221

inverse transform 281
irreducibility 236, 243

isotropic CNN 13

Jacobian matrix 243
Kamke’s theorem 286-7

Lady’s shoe attractor 218-19
Lady’s shoe Poincaré map 221
language 189
Laplace operator 323
Laplacian template 41
LaSalle invariance principle 223, 244
lateral geniculate nucleus (LGN) 332
length tuning 332-3
LGTHTUNE template 11
limit cycle 213
limit set 397-8
linear image processing 273-81
with A and B templates 278-81
with B templates 273-5
linear inequalities 177
linear morph 395-6
linear programming problem 177
linear separability 266—7
linear synaptic weights 282-95
linearly separable Boolean functions 169, 177
geometrical interpretation 168-71
linearly separable case 167, 171
Lipschitz continuous nonlinearity 21-2
local analog memory cells (LAM cells) 208, 255, 316
local analog output unit (LAOU) 246, 316
local Boolean function 203, 245
non-separable 178-87
realization theorem 1667
local communication and control unit (LCCU) 246
local concavity 382
local logic memory (LLM) 192
local logic unit (LLU) 202, 254
local rules 127
computer-aided method for proving 128-9
LocalConcavePlaceDetector 271
locally stable equilibrium points 49
LOGAND: logic AND and set intersection
(conjuction) template 66-70, 173—4, 179, 183,
187
examples 67
global task 67
local rules 67
mathematical analysis 68-70
LOGDIF: logic difference and relative set
complement template 70-2
examples 71
global task 70
local rules 71

mathematical analysis 71-2
logic AND function 173, 177
logic gate 316
logic program register (LPR) 246
logic register 316
logic XOR 252
LOGNOT: logic NOT and set complementation
template 61-3, 179, 183, 187
examples 62
global task 61-2
local rules 62
mathematical analysis 62-3
LOGOR: logic OR and set union (disjunction)
template 63-6, 179, 183, 187
examples 64-5
global task 64
local rules 64
mathematical analysis 64—6
Lyapunov function 222, 223, 224

machine vision 326

main group points 371

Majority VoteTaker template 11

mathematical foundations 14-34

mathematical induction 233

mathematical morphology 196, 198

Matheron representation 198

matrix differential equation 14

maxterm Boolean function 184

maxterm CNNs 179, 184

maxterm output equation 186

maxterm realization theorem 1847

memory copying instructions 192

MEMS (micro-electro-mechanical system) arrays 1

minimal representation 125

minimal truth table 125-6, 130

minimum power supply voltage 25

minterm Boolean functions 180-2, 267

minterm CNNs 179, 180

minterm output equation 183

minterm realization theorem 182—4

minterm truth table 181

mono-activation property 285, 288

monostable binary CNN 160

monostable case 144, 155

monostable output formula 161

monotonic state transient property 285-6

morphogens 375

morphological image-processing applications 89

morphological operators, opening and closing and
implementing 195-8

Mosaic spine 160

Mosaic wedge 160

motion analysis 303—-8

multilayer CNN for receptive field interactions
339-40, 342

negative self-feedback case 146, 160
neighborhood Boolean function 203
neighborhood cells 285, 289

noise 40, 50, 70, 85, 217, 307
non-linear differential equations 216
non-linear dynamic operator 245

394

Index

non-linear dynamics 144, 211-44

non-linear qualitative analysis 213

non-linear synaptic weights 296-301

non-separable Boolean function XOR 183
schematic diagram 186

non-separable local Boolean function 178-87

non-zero feedback synaptic coefficients 179

normalized settling time 165

normalized time constant 165

offset level 27, 147, 277

on-chip concavity filler test 401-2
on-chip edge test 402

on-chip hole filling test 402

one transistor synapse 311

open 199

operation research 178

operational transconductance amplifiers (OTAs) 310

optimal solution 291-2, 295
optimal uncoupled CNN 177
optimized CORNER template 130-42
binary code 142
decimal code 142
optimum CNN template 171
ordinary differential equations (ODE) 14, 17
orientation selectivity 334
oscillatory CNN 282
with only two cells 211-16
oscillatory periodic steady state behavior 211
outer plexiform layer (OPL) 340
output 9
output dynamic route 39
output equation 9, 176, 178, 337
output formulas 161
output image 26, 110
output scale 116

parity check 397

partial differential equations (PDEs) 5, 264
periodic solution waveforms 213

periodic (toroidal) boundary conditions 16-17
periodic waveform 212

PetaOPS 2

Picard-Lindelof theorem 22
piecewise-linear function 214
piecewise-linear output characteristic 212
piecewise-linear solution method 147

pixel illumination level 107

pixels, detection 267xxx

Poincaré-Bendixon theorem 216

Poincaré cross section 218

Poincaré map 218, 219

prescribed CNN templates 121

Primary CNN Mosaic 158-61, 166, 172, 275
propagation rule 290

quantum-dot cellular automata (QCA) 384-8
simulation 384-8

radial spines 160

rate function 27, 147
reaction—diffusion equations 375
readout map 275

RECALL template 252
receptive field interactions 339-40
receptive field organization 327-8, 338
recursive function 188
reduced instruction set (RISC) processor 114-15
regular cell 8
retina 326
engineering model 33543
prototype model 340-3
right-angle wedge 155
robot 130
robustness
criterion 175
to parameter variations 177
rotationally symmetric nodes 2334
roughness measurement 379-81

scalar function 222-5
scalar nonlinear ODE 28
scaling the signals 11618
sconf0 257
sconfl 257, 258
sconf2 257, 258
sconf3 257, 259
sconf4 257, 259
second-order oscillator 378-9
segmentation 384
self-feedback 145
synaptic weight 172
self-inputs 174
semi-stable case 145, 146, 155
sensor revolution 1
separate connected objects 370
separation plane 169
set inclusion 189-92
settling time 211, 278, 280
explicit formula 161-6

SHIFT: translation (by 1 pixel-unit) template 73-9

examples 75-6

global task 73-4

local rules 74-5
mathematical analysis 76-9

shifted DP plot 50, 59, 62, 79, 85, 87, 144, 147, 152,

297-301

sigmoid functions 337
sign-antisymmetric CNNS, stability 237-42
sign-symmetric A template 225
signal flow graph 230
SimCNN software simulator program 107, 324
similarly directed paths 235
simple decomposition 266—7
simple morph 369
simplex algorithm 178
single binary input 121
single cell layer 336
singular cases 49
small circles location 392-5
small ellipses location 392-5
software simulation 107
solution waveforms 162-5, 212, 216
solutions

boundedness of 23-5

existence and uniqueness of 18-22

395

Index

SPA (speed, power, area) measures 2
space constant 338
space-invariant binary CNN 120
space-invariant CNN 13, 25-8, 145
space-invariant template matrices 105
space-invariant templates 105
spatial convolution 26, 275
with FIR kernels 273-5
with TIR kernels 278-81
spatial domain kernel 281
spatial frequency characterization 275-8
spatial logic 245
spatio-temporal sensory information processing 328
speed detection 304
SpeedDetection template 13
sphere of influence of cell C(i, j) 7-8
stability 63, 144
sign-antisymmetric CNNs 237-42
see also complete stability
stability boundary 237
standard CNN 13, 21
architecture 7
cell C(i, j) 7-8, 31
with delayed synaptic weights and motion analysis
302-8
standard nonlinearity 9
standard numerical operation 274
state 9
state dynamic route 39
state equation 8-9, 13, 212, 214, 220, 273, 297, 339,
340
trajectory of 38
state image 110
state scale 116
stationary output 158
stored programmability 2, 248-9, 319, 320
strange attractor 221
strong positive self-feedback case 145, 152-5
structuring element 89, 93, 104
surface interpolation 377
surround component template 26
surround feedforward template 26
switch 316
switch configuration register (SCR) 246, 256
symmetric A template 219-37
symmetric B template 274
symmetric node-pair 233
synapse
conductance functions 337
types 337
synaptic circuits 8
synaptic operators 21
synaptic signal flow graph representation 30—4
synaptic weights 30, 225-9, 236, 275, 327-8
see also specific synaptic weights

template decomposition techniques 271
template design 264—6, 388-9
tools 264-72
template dot product 25
template form 291, 294
template optimization 267-71
template sequence design 265

template type 291, 294
TEMPO program 129, 265, 267, 271
TeraOPS 2
threshold 9, 14, 50, 166, 220
THRESHOLD: gray-scale to binary threshold
template 56-60
examples 57-9
global task 56
local rules 57
mathematical analysis 59-60
time constants 164
time delays 10, 12-13
time step 111
topological conjugacy 244
trajectory 49, 212, 213
of state equation 38
transfer function 280
transient waveform, explicit formula 161-6
TRANSLATE function 195
translation of sets and binary images 193—4
triad synapse action 330
triangular inequality 24
triangular neighborhood 369
truth table 120-6, 167-9, 173, 174, 177, 179, 373
optimization 129-43
see also specific truth tables
Turing—Church thesis 188
Turing machine 188, 245
Turing patterns 375
two-neighbor input AND gate 176
two-self-input AND gate 173

unconstrained propagation 290
uncoupled class 129
uncoupled CNNs 28, 30, 50
example 299
geometrical interpretations 167-9
global task 298
local rules 298-301
mathematical analysis 299-301
optimal 177
realization theorem 187
unified theory and applications 144-87
with nonlinear synaptic weights 296-301
with prescribed Boolean functions, design 171-8
uncoupled first-order linear ordinary differential
equations 279
uncoupled linear ordinary differential equations 279
uncoupled (scalar) class C (ASos, B, z7) 28
unique equilibrium point 49
uniqueness property 216
uniqueness theorem 20-2
unit square 167
unity-gain self-feedback CNN 146, 157-8, 166, 172
unity-gain threshold characteristics 337
universal CNN truth table 120-6
unstable quilibrium point 49
USE declaration 192

VCCS (voltage controlled current source) 309, 310,
336

vector differential equation 17-18

virtual cells 14

396

Index

virtual equilibrium point 148
virtual input 14
virtual output 14
virtual state 14
virtual threshold 14
VisMouse 108
visual cortex 332, 334
visual feature detection 251
visual illusion 334-5
visual microprocessors 5, 309-25
computational infrastructure 319
Visual Mouse Software Platform 108
visual pathway 326-44
CNN models 328-35
VLSI implementation 309-25
voltage controlled current source (VCCS) 309, 310,
336

voltage controlled/gated transconductances 336

weak positive self-feedback case 146, 158-9
white corner pixels 169, 171

white pixels 167, 169, 174

Window Truth Table 267-70

XOR function 169, 178, 179, 199
maxterm realization 185
minterm realization 180

XOR operations 204

XOR truth table 182, 185, 200

zero-feedback (feedforward) CNN 27, 29, 273
zero-flux (Neumann) boundary conditions 15
zero-input 16

zero-input (autonomous) CNN 28, 29

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Acknowledgements
	1 Introduction
	Scenario
	The textbook
	New developments

	2 Notation, definitions, and mathematical foundation
	2.1 Basic notation and definitions
	2.2 Mathematical foundations
	2.2.1 Vector and matrix representation and boundary conditions
	Boundary conditions
	Vector differential equation

	2.2.2 Existence and uniqueness of solutions
	2.2.3 Boundedness of solutions
	2.2.4 Space-invariant CNN
	Cloning template representation

	2.2.5 Three simple CNN classes
	2.2.6 Synaptic signal flow graph representation

	3 Characteristics and analysis of simple CNN templates
	3.1 Two case studies: the EDGE and EDGEGRAY templates
	3.1.1 The EDGE CNN
	EDGE: binary edge detection template

	3.1.2 The EDGEGRAY CNN
	EDGEGRAY: gray-scale edge detection template

	3.2 Three quick steps for sketching the shifted DP plot
	3.3 Some other useful templates
	3.3.1 CORNER: convex corner detection template
	3.3.2 THRESHOLD: gray-scale to binary threshold template
	3.3.3 FILBLACK and FILWHITE templates
	FILBLACK: Gray-scale to black CNN
	FILWHITE: Gray-scale to white CNN

	3.3.4 LOGNOT: Logic NOT and set complementation…
	3.3.5 LOGOR: Logic OR and set union (disjunction) template
	3.3.6 LOGAND: Logic AND and set intersection (conjunction) template
	3.3.7 LOGDIF: Logic difference and relative set complement (P \ P = P – P) template
	3.3.8 SHIFT: Translation (by 1 pixel-unit) template
	3.3.9 CONTOUR-1: Contour detection template
	3.3.10 EROSION: Peel-if-it-doesn’t-fit Template
	3.3.11 DILATION: Grow-until-it-fits template

	4 Simulation of the CNN dynamics
	Introduction
	4.1 Integration of the standard CNN differential equation
	4.2 Image input
	4.3 Software simulation
	4.4 Digital hardware accelerators
	4.5 Analog CNN implementations
	4.6 Scaling the signals
	4.7 Discrete-time CNN (DTCNN)

	5 Binary CNN characterization via Boolean functions
	5.1 Binary and universal CNN truth table
	5.2 Boolean and compressed local rules
	Computer-aided method for proving local rules

	5.3 Optimizing the truth table

	6 Uncoupled CNNs: unified theoryand applications
	6.1 The complete stability phenomenon
	6.2 Explicit CNN output formula
	6.3 Proof of completely stable CNN theorem
	6.4 The primary CNN mosaic
	6.5 Explicit formula for transient waveform and settling time
	6.6 Which local Boolean functions are realizable by uncoupled CNNs?
	6.7 Geometrical interpretations
	6.8 How to design uncoupled CNNs with prescribed Boolean functions
	6.9 How to realize non-separable local Boolean functions?

	7 Introduction to the CNN Universal Machine
	7.1 Global clock and global wire
	7.2 Set inclusion
	7.3 Translation of sets and binary images
	7.4 Opening and closing and implementing anymorphological operator
	7.5 Implementing any prescribed Boolean transition function by not more than 256 templates
	7.6 Minimizing the number of templates when implementing any possible Boolean transition function
	7.7 Analog-to-digital array converter

	8 Back to basics: Nonlinear dynamics and complete stability
	8.1 A glimpse of things to come
	8.2 An oscillatory CNN with only two cells
	8.3 A chaotic CNN with only two cells and one sinusoidal input
	8.4 Symmetric A template implies complete stability
	8.5 Positive and sign-symmetric A template implies complete stability
	8.6 Positive and cell-linking A template implies complete stability
	8.7 Stability of some sign-antisymmetric CNNs
	A Appendix to Chapter 8
	LaSalle’s invariance principle

	9 The CNN Universal Machine (CNN-UM)
	9.1 The architecture
	9.1.1 The extended standard CNN universal cell
	9.1.2 The global analogic programming unit (GAPU)
	Why stored programmability is possible?

	9.2 A simple example in more detail
	9.3 A very simple example on the circuit level
	The task
	The steps of the solution
	The flow diagram of the algorithm and the templates
	The macro code of the algorithm
	The functional circuit level schematics of an extended cell
	The content of the global analogic programming unit (GAPU)

	9.4 Language, compiler, operating system

	10 Template design tools
	10.1 Various design techniques
	10.2 Binary representation, linear separability, and simple decomposition
	10.3 Template optimization
	10.4 Template decomposition techniques

	11 CNNs for linear image processing
	11.1 Linear image processing with B templates is equivalent to spatial convolution with FIR kernels
	11.2 Spatial frequency characterization
	11.3 A primer on properties and applications of discrete-space Fourier transform (DSFT)
	11.4 Linear image processing with A and B templates is equivalent to spatial convolution with IIR kernels

	12 Coupled CNN with linear synaptic weights
	12.1 Active and inactive cells, dynamic local rules
	Dynamic local rules (DLC)

	12.2 Binary activation pattern and template format
	12.3 A simple propagating type example with B/W symmetrical rule
	12.3.1 Global task
	12.3.2 Local rules and binary activation pattern
	12.3.3 Template type and template form
	12.3.4 System of inequalities and optimal solution

	12.4 The connectivity problem
	12.4.1 Global task
	12.4.2 Local rules and binary activation pattern
	12.4.3 Template type and template form
	12.4.4 System of inequalities and optimal solution

	13 Uncoupled standard CNNs with nonlinear synaptic weights
	13.1 Dynamic equations and DP plot
	Gray-scale contour detector

	14 Standard CNNs with delayed synaptic weights and motion analysis
	14.1 Dynamic equations
	14.2 Motion analysis – discrete time and continuous time image acquisition
	Generating the difference picture in continuous time mode

	15 Visual microprocessors – analog and digital VLSI implementation of the CNN Universal Machine
	15.1 The analog CNN core
	15.2 Analogic CNN-UM cell
	15.3 Emulated digital implementation
	15.4 The visual microprocessor and its computational infrastructure
	15.5 Computing power comparison

	16 CNN models in the visual pathwayand the ‘‘Bionic Eye”
	16.1 Receptive field organization, synaptic weights, and cloning template
	16.2 Some prototype elementary functions and CNN models of the visual pathway
	The triad synapse action
	Directional selectivity
	Length tuning
	Orientation selectivity
	A simple visual illusion

	16.3 A simple qualitative ‘‘engineering” model of a vertebrate retina
	The cell prototype
	Some synapse types (S)
	Receptive field organization types (RF)
	Multilayer CNN for receptive field interactions
	The structure of a prototype retinal model

	16.4 The ‘‘Bionic Eye” implemented on a CNN Universal Machine

	Notes
	1 Introduction
	2 Notations, definitions, and mathematical foundation
	3 Characteristics and analysis of simple CNN templates
	4 Simulation of the CNN dynamics
	5 Binary CNN characterization via Boolean functions
	6 Uncoupled CNNs: unified theory and applications
	7 Introduction to the CNN universal machine
	8 Back to basics: Nonlinear dynamics and complete stability
	9 The CNN universal machine (CNN-UM)
	10 Template design tools
	11 CNNs for linear image processing
	12 Coupled CNN with linear synaptic weights
	13 Uncoupled standard CNNs with nonlinear synaptic weights
	14 Standard CNNs with delayed synaptic weights and motion analysis
	15 Visual microprocessors – analog and digital VLSI implementation of the CNN universal machine
	16 CNN models in the visual pathway and the ‘‘Bionic Eye”

	Bibliography
	1988–1990
	1991–1992
	1993–1994
	1995–1996
	1997–1998
	1999

	Exercises
	Chapter 2
	Exercise 2.1 (Simple morph)
	Exercise 2.2 (Hexagonal neighborhood)
	Exercise 2.3 (Triangular neighborhood)

	Chapter 3
	Exercise 3.1 (Separate connected objects)
	Exercise 3.2 (EDGE–CORNERDETECTION comparison)
	Exercise 3.3 (Main group of points)

	Chapter 5
	Exercise 5.1 (Truth table)
	Exercise 5.2 (Boolean function)

	Chapter 6
	Exercise 6.1 (Crossword puzzle endings)

	Chapter 8
	Exercise 8.1 (Dynamic construction of a grid)
	Exercise 8.2 (Reaction–diffusion equations)
	Exercise 8.3 (Surface interpolation)
	Exercise 8.4 (Black pixel count)
	Exercise 8.5 (Second-order oscillator)

	Chapter 9
	Exercise 9.1 (Roughness measurement)
	Exercise 9.2 (Local concavity)
	Exercise 9.3 (Concavity orientation)
	Exercise 9.4 (Improved concavity orientation)
	Exercise 9.5 (Curvature)
	Exercise 9.6 (Absolute value)
	Exercise 9.7 (X and O segmentation)
	Exercise 9.8 (QCA simulation)

	Chapter 10
	Exercise 10.1 (Template design)

	Chapter 12
	Exercise 12.1 (Distance classification)
	Exercise 12.2 (Arc detection)
	Exercise 12.3 (Detect forks)
	Exercise 12.4 (Locate small ellipses)

	Chapter 13
	Exercise 13.1 (Linear morph)
	Exercise 13.3 (Limit set)
	Exercise 13.4 (Chaotic cell)

	Appendices
	Appendix A: TEMLIB, a CNN Template Library
	Appendix B: TEMPO, template optimization tools
	Appendix C: CANDY, a simulator for CNN templates and analogic CNN algorithms

	Index

