

A D A T B Á Z I S O K

Előadási jegyzet (BSc)

Készítette: dr. Katona Endre

Szegedi Tudományegyetem
Informatikai Tanszékcsoport

2013.

Ez a jegyzet az adatbázis-tankönyvek szokásos felépítését követi:

– Az 1.-5. fejezetek az adatbázis-tervezés kérdéskörét tárgyalják (egyed-
kapcsolat modell, relációs modell, normalizálás).

– A 6.-8. fejezetek az SQL nyelvet és annak alkalmazásait tekintik át.
– A 9.-10. fejezetek konkrét adatbázis-kezelő rendszerekről szólnak.
– Az utolsó, adatbiztonságról szóló fejezet már a nagy adatbázis-

alkalmazások világába nyújt bepillantást.

A mintapéldák tábla-, mező- és változónevei – a könnyebb olvashatóság
érdekében – ékezetes betűkkel szerepelnek, konkrét programozási környezetben
azonban ez esetleg nem megengedett vagy zavarokat okozhat, tehát kerülendő.

Az apró betűs szövegrészek kevésbé fontos részleteket tartalmaznak,
amelyek a tananyag mélyebb megértéséhez ajánlottak.

A jegyzetben talált esetleges hibákat kérem jelezzék a
katona@inf.u–szeged.hu címre.

3

Tartalom

Tartalom.. 3
1. Bevezetés .. 5

1.1. Adatmodellek áttekintése ... 7
2. Egyed-kapcsolat modell .. 8

2.1. Kapcsolatok típusai .. 10
2.2. Összetett és többértékű attribútumok ... 12
2.3. Gyenge entitások.. 12
2.4. Specializáló kapcsolatok .. 13

3. A relációs adatmodell.. 15
3.1. A relációs adatmodell fogalma... 15
3.2. Kulcsok .. 17
3.3. Indexek... 19
3.4. E-K diagramból relációs adatbázisséma készítése ... 21

Egyedek leképezése .. 21
Gyenge entitások leképezése... 21
Összetett attribútumok leképezése .. 21
Többértékű attribútumok leképezése .. 22
Kapcsolatok leképezése .. 23
Specializáló kapcsolatok leképezése... 26

4. Relációs algebra .. 28
4.1. Halmazműveletek... 28

Unió... 28
Metszet (Intersection).. 28
Különbség (Difference)... 29

4.2. Redukciós műveletek ... 29
Projekció (vetítés) ... 29
Szelekció (kiválasztás) .. 29

4.3. Kombinációs műveletek... 30
Descartes-szorzat .. 30
Természetes összekapcsolás (Natural join)... 31
Külső összekapcsolás (Outer join) .. 31
Théta-összekapcsolás (Theta-join).. 32

4.4. Multihalmazok ... 33
5. A relációs adatbázis normalizálása ... 34

5.1. Redundáns adattáblák... 34
5.2. Funkcionális függőség ... 35

Kulcsok meghatározása... 37
5.3. Felbontás (dekompozíció) .. 38

Felbontás kulcs mentén ... 40
Egyesítés kulcs mentén ... 40

5.4. Normálformák.. 41
1. normálforma (1NF) ... 41
2. normálforma (2NF) ... 41
3. normálforma (3NF) ... 43
Boyce-Codd normálforma (BCNF)... 44
4. normálforma (4NF) ... 45
Normálformák összefoglalása ... 47
Adatbázis tervezés összefoglalása... 47

6. Az SQL nyelv ... 48
6.1. Általános jellemzés .. 48

Szintaxis.. 48
Speciális logikai kifejezések ... 49

6.2. Relációsémák definiálása (DDL) ... 50
6.3. Indexek létrehozása.. 52
6.4. Adattábla aktualizálása (DML) .. 53
6.5. Lekérdezés (DML)... 54

4

A relációs algebra műveleteinek megvalósítása.. 54
Alias nevek.. 56
Függvények... 56
Összesítő függvények.. 57
Csoportosítás (GROUP BY, HAVING).. 57
Az eredménytábla rendezése... 58
A SELECT utasítás általános alakja.. 58

6.6. Alkérdések ... 59
6.7. Nézettáblák (virtuális táblák) ... 61

7. Aktív elemek (megszorítások, triggerek) .. 63
7.1. Attribútumok megszorításai ... 63
7.2. Táblára vonatkozó megszorítások.. 64
7.3. Általános megszorítások .. 64
7.4. Megszorítások kezelése.. 65
7.5. Triggerek.. 65

8. Beágyazott SQL .. 67
8.1. SQL beágyazás ANSI C-be.. 67

Lekérdezések, kurzorok .. 68
Aktualizáló műveletek kurzorral... 71
Dinamikus SQL... 71

8.2. ODBC .. 72
8.3. JDBC.. 75
8.4. PHP .. 76

9. A MySQL adatbázis-szerver ... 78
Kliens parancsok ... 79

10. Xbase típusú rendszerek.. 80
10.1. A parancsnyelv alapjai ... 80
10.2. Relációsémák és adattáblák létrehozása, kezelése ... 81
10.3. Kapcsolat táblák között, algoritmikus eszközök .. 82

11. Adatbiztonsági mechanizmusok.. 83
11.1. Tranzakciós feldolgozás... 83
11.2. Párhuzamos hozzáférések .. 84

Zárolás... 84
Izolációs szintek.. 85

11.3. Jogosultságok ... 87
Irodalom.. 88

5

1. Bevezetés

Az első számítógépeket matematikai feladatok megoldására készítették, de már az

1960-as évek elejétől a számítógépes alkalmazások nagyobbik részét az adatfeldolgozás tette
ki. Kezdetben egyedi programok készültek az egyes vállalatoknál a munkaügyi, termelési, stb.
adatok nyilvántartására. A tömeges alkalmazási igény azonban kikényszerítette az
adatformátumok szabványosítását, és általános célú adatbázis-kezelő szoftverek kifejlesztését.

Adatok gépi kezelésére többféle eszköz is alkalmas lehet:
1. Szövegszerkesztő program. Tegyük fel például, hogy egy vállalat dolgozóinak

önéletrajzát tároljuk egy szövegfájlon. Ebben a fájlban rá lehet keresni adott névre, lakcímre,
lehet csoportosítani vállalati osztályok szerint (vázlatszint). Ugyanakkor probléma lekérni
például azon dolgozók listáját, akik 1960 és 1970 között születtek.

2. Hypertext (web). A hivatkozások (linkek) segítségével fájlon belül és fájlok között is
komplex kapcsolatok alakíthatók ki (lásd még a HTML és XML egyéb lehetőségeit).

3. Táblázatkezelő program. Itt a fontosabb életrajzi adatok (név, lakcím, születési dátum,
iskolai végzettség) már elkülönítve tárolhatók, és számos lekérdezési lehetőség van. Viszont
sokféle adat közötti bonyolult kapcsolatrendszert, nagy adathalmazok hatékony és
biztonságos kezelését nem támogatják a táblázatkezelők.

4. Adatbázis-kezelő rendszer. A nyilvántartás valamilyen adatmodellre épül, amely
komplex kapcsolatrendszer kézbentartását is lehetővé teszi. Az adatbázis-kezelő rendszerek
kimondottan nagy adatmennyiség hatékony és biztonságos kezelését támogatják.

Adatok típusai:
a) Egyszerű (atomi) adat: szám, string, dátum, logikai érték.
b) Összetett adat: egyszerű adatokból képezhető. Változatai:
– halmaz: egynemű elemek halmaza. Példa: egy vállalat osztályai.
– lista: egynemű elemek rendezett sorozata. Példa: könyv szerzői.
– struktúra: különféle elemek rendezett sorozata. Példa: lakcím = (helység, utca,

házszám).
– a fentiek kombinációi.
c) NULL: definiálatlan adat. (Nem azonos a nulla értékkel!)

Elnevezések:
Adatbázis (= DB = database): adott formátum és rendszer szerint tárolt adatok

együttese.
Adatbázis-kezelő rendszer (= DBMS = Database Management System): az adatbázist

kezelő szoftver.
Rekord (= feljegyzés): az adatbázis alapvető adategysége. Általában struktúra felépítésű.

A DBMS fő feladatai:
- adatstruktúra (adatbázisséma) definiálása,
- adatok aktualizálása (új felvétel, törlés, módosítás),
- lekérdezési lehetőségek,
- fejlesztő környezet biztosítása célalkalmazások létrehozásához.

6

Néhány ismertebb DBMS: • xBase rendszerek (dBase, FoxPro, Clipper): elavult, de még sok alkalmazás működik. • Access (Microsoft): könnyen kezelhető grafikus felület, kisebb alkalmazásokhoz. • MySQL: nyílt forráskódú adatbázis-szerver, közepes méretű (pl. webes) alkalmazá-
sokhoz. • Oracle: nagy teljesítményű rendszer, nagy adatbázisok, sok felhasználó, különleges
biztonsági követelmények esetén ajánlott.

Egy adatbázis-alkalmazásnál az alábbi szinteket különböztethetjük meg:

 Felhasználói felület
 Célalkalmazásként készített program
 Adatmodell (logikai adatstuktúra)
 DBMS
 Fizikai adatstruktúra

7

1.1. Adatmodellek áttekintése

Adatbázisséma: az adatbázis struktúrájának leírása. Erre különféle adatmodellek

használatosak.

Hierarchikus modell: a rekordok fastruktúra-szerű hierarchiába rendezettek (például

vállalat, főosztályok, osztályok, dolgozók). A feldolgozás fabejáró és egyéb fastruktúra kezelő
algoritmusok segítségével történik. A hierarchikus modellnek ma már csak történeti
jelentősége van.

Hálós modell (1961): a rekordok pointerekkel kapcsolódnak egymáshoz. A pointerek

ciklikusan körbefutnak egy összetartozó rekordcsoporton, egy ilyen csoportot setnek
neveznek. Egy set mindig egy "szülő" és több "gyermek" rekordot tartalmaz (például set lehet
egy vállalati osztály és a dolgozói, lásd 1. ábra.) A hálós modell ma már szintén csak történeti
jelentőséggel bír.

1. ábra. Vállalati osztályok és dolgozók nyilvántartása hálós
modellben (V: vállalat, O: osztály, D: dolgozó)

Relációs modell (1970): az adatok kétdimenziós táblákban tárolódnak, a rekordok

közötti kapcsolatot pointerek helyett szintén táblázatok valósítják meg. A relációs modellre
épülő adatbáziskezelőket RDBMS-nek (Relational DBMS) nevezzük. Szabványos
leíró/lekérdező nyelvük az SQL. A relációs modell jelenleg a legszélesebb körben
használatos.

Objektumorientált modell (1990-es évek). Az objektumorientált programozási nyelvek

(C++, Smalltalk) eszközrendszerével definiálja az adatbázis struktúráját. Leíró nyelve az
ODL, lekérdező nyelve az OQL. Az objektumorientált modellre épülő adatbázis-kezelő
rendszereket OODBMS-nek nevezzük (Object Oriented DBMS). Ezek fejlesztő nyelve
általában C++ vagy Smalltalk. Az OODBMS rendszerek a gyakorlatban nem terjedtek el.

Objektum-relációs modell: a relációs modell bővítése objektumorientált lehetőségekkel,

az erre épülő rendszereket ORDBMS-nek nevezzük (Object Relational DBMS). Ezek széles
körben használatosak.

8

2. Egyed-kapcsolat modell

Grafikus leíró eszköz, diagram segítségével szemléletesen adja meg az adatbázis

struktúráját. Az adatbázis implementálásához a diagramot transzformálni kell valamilyen
adatmodellre, ill. annak megfelelő nyelvi leírásra (pl. SQL).

1. Példa. Tegyük fel, hogy egy könyvtár kölcsönzési nyilvántartását szeretnénk

adatbázissal megoldani. Ehhez nyilvántartást kell vezetni
- a könyvekről,
- az olvasókról,
- a kikölcsönzési és visszahozási időpontokról.
A modell megalkotásához néhány alapfogalmat meg kell ismernünk.

Egyednek vagy entitásnak nevezünk egy, a valós világban létező dolgot, amit

tulajdonságokkal akarunk leírni. Esetünkben egyed lehet egy könyv a könyvtárban, illetve egy
adott olvasó. Általánosított fogalmakat használva beszélhetünk "könyv" egyedről és "olvasó"
egyedről is.

Tulajdonságnak vagy attribútumnak nevezzük az egyed egy jellemzőjét. Például a

könyv, mint egyed legfontosabb tulajdonságai a cime, és a szerző neve.

Az attribútumokat úgy célszerű megválasztani, hogy azok egyértelműen meghatározzák

az egyedet. Mivel adott szerző adott című könyve több kiadásban is megjelenhet, sőt adott
kiadásból is több példány lehet a könyvtárban, így minden könyvhöz egy egyedi azonosítót,
könyvszámot (könyvtári számot) célszerű felvenni. Ekkor a "könyv" egyed tulajdonságai:
könyvszám, szerző, cím. (További tulajdonságoktól, mint kiadó, kiadási év, stb. esetünkben
eltekintünk.) Hasonló meggondolások alapján az "olvasó" egyedhez olvasószám, név, lakcím
tulajdonságokat rendelhetünk.

Egy egyed attribútumainak azt a minimális részhalmazát, amely egyértelműen
meghatározza az egyedet, kulcsnak nevezzük és aláhúzással jelöljük. Esetünkben a „könyv”
egyed kulcsa a könyvszám, az „olvasó” egyedé az olvasószám.

Könyvtári nyilvántartásunk azonban ezzel még nincs kész. A "könyv" és "olvasó"

egyedek között ugyanis egy sajátos kapcsolat léphet fel, amelyet kölcsönzésnek nevezünk.
Ezen kapcsolathoz a kivétel és visszahozás időpontját rendelhetjük tulajdonságként.

A valós világ jelenségeit egyedekkel, tulajdonságokkal és kapcsolatokkal leíró modellt

egyed-kapcsolat modellnek, az ezt ábrázoló diagramot egyed-kapcsolat diagramnak nevezik.
(Rövidítve az E-K modell és E-K diagram, illetve az angol entity-relationship model
elnevezés alapján az E-R modell és az E-R diagram elnevezések használatosak.)
Megjegyezzük, hogy hasonló modellezési technikát használ az SSADM rendszerszervezési
módszertan is.

Az egyed-kapcsolat diagramoknak sajátos jelölésrendszerük van:
- az egyedeket téglalappal,
- az attribútumokat ellipszissel,
- a kapcsolatokat rombusszal

9

szokták jelölni. A 2. ábra a fentiekben tárgyalt könyvtári nyilvántartás E-K diagramját
ábrázolja. A tervezés kezdeti szakaszában, illetve bonyolult E-K diagramok esetén az
attribútumok ábrázolását el szokták hagyni.

Az eddig leírtaknál kissé pontatlanul fogalmaztunk, ugyanis meg kell különböztetni

egyedpéldányt, egyedtípust és egyedhalmazt. Példánkban az egyedpéldány egy adott könyvet,
az egyedtípus a könyv fogalmat jelenti. Egy valós adatbázisban minden egyedtípusnak egy
konkrét egyedhalmaz (egyedpéldányok halmaza) felel meg. A kissé nehézkes terminológia
elkerülésére az egyedpéldány, egyedtípus és egyedhalmaz helyett egyszerűen egyedet
mondunk, ha ez nem értelemzavaró.

Hasonlóan beszélhetünk tulajdonságpéldányról, amely egy egyedpéldány adott
tulajdonságát jelenti (például adott könyv szerzőjének nevét), és tulajdonságtípusról, amely
adott egyedtípus adott tulajdonságát, mint fogalmat jelöli (például könyvek esetén a "szerző"
fogalmat).

Ugyanígy meg lehet különböztetni kapcsolatpéldányt, amely két egyedpéldány közötti
konkrét kapcsolatot jelent (például X olvasó kikölcsönözte Y könyvet), kapcsolattípust és
kapcsolathalmazt, ez utóbbi a két egyedtípus közötti kapcsolatok összességét jelenti.

2. ábra: Könyvtári nyilvántartás E-K diagramja.

Fontos az egyedtípus pontos (informális) meghatározása. Például, egy egyetemi oktatási

adatbázisnál a kurzus egyedtípus többféleképp értelmezhető:
(i) Több féléven keresztül tartó kurzust egy egyednek tekintünk.
(ii) Az összetartozó előadást és gyakorlatot egy kurzusnak tekintjük.
(iii) Adott helyen és időpontban tartott foglalkozást tekintünk kurzusnak. Ha több

hallgatói csoport van, akkor mindegyik csoport gyakorlati órája külön egyedpéldányt jelent.

10

2.1. Kapcsolatok típusai

A kapcsolatok típusai a következők:
a). Két egyed közötti (más néven bináris) kapcsolat, mint a könyvtári példa esetében.

Ennek három altípusa lehetséges (E és F jelöli a két egyedtípust):
- 1:1 kapcsolat, amikor minden E-egyedhez csak legfeljebb egy F-egyed tartozhat, és

fordítva.
- 1:N kapcsolat (egy-a-sokhoz kapcsolat), amikor egy E-egyedhez több F-egyed

tartozhat, de ez fordítva nem igaz, vagyis egy F-egyedhez csak legfeljebb egy E-egyed
tartozhat.

- N:M kapcsolat (sok-a-sokhoz kapcsolat), amikor mindkét fajta egyedhez tetszőleges
számú másik fajta egyed tartozhat.

b). Kettőnél több egyed közötti (más néven sokágú) kapcsolat. Ez a típus ritkábban lép
fel, szükség esetén visszavezethető bináris kapcsolatokra.

3. ábra: Kapcsolat típusának jelölése felirattal

4. ábra. Kapcsolat típusának jelölése nyíllal az "1"-oldalon (rendre
1:1, N:1, N:M kapcsolat)

A könyvtári nyilvántartás mindhárom típusra példával szolgálhat.

1. változat: Tételezzük fel, hogy a könyvtáros két feltételezéssel él:
a). Egy olvasónak egyszerre csak egy könyvet hajlandó kiadni.
b). Csak azt kívánja nyilvántartani, hogy egy adott könyv éppen kinél van, azt nem,

hogy korábban ki(k)nél volt. (Ekkor valójában fölöslegessé válik a "visszahozás" tulajdonság,
hisz a könyv visszahozásakor a könyv-olvasó kapcsolat megszűnik.)

A fenti feltételezések mellett a könyv és olvasó egyedek között 1:1 kapcsolat lép fel,
hiszen egy könyv egyszerre csak egy olvasónál lehet, illetve egy olvasó egyszerre csak egy
könyvet vihet ki.

2. változat: Most tételezzük fel, hogy a könyvtáros eltekint az a). feltételtől, és egy

olvasónak egyszerre több könyvet is hajlandó kiadni. Ekkor a könyv és olvasó egyedek között
N:1 kapcsolat lép fel, ugyanis egy olvasónál egyszerre több könyv lehet, viszont egy könyv
egyszerre csak egy olvasónál tartózkodhat.

11

3. változat: Tegyük fel, hogy a könyvtáros eltekint a b). feltételtől is, és azt is nyilván

akarja tartani, hogy egy adott könyv korábban mely olvasóknál mettől meddig volt kint.
Ekkor már egy könyv több könyv-olvasó kapcsolatban is részt vehet, ezért a két egyed között
N:M kapcsolat áll elő.

Látjuk, hogy a kapcsolat típusa lényeges az E-K modell szempontjából, ezért azt az E-K

diagramon a 3. ábra vagy 4. ábra szerint jelölni szokták.

Egy egyedtípus teljesen részt vesz egy kapcsolatban, ha minden egyedpéldány

kapcsolatban áll valamely másik egyeddel. Ha ezt hangsúlyozni akarjuk, akkor az egyed és a
kapcsolat közötti kettős vonalat húzunk. A teljes részvétel általában nem teljesül, például a
könyvtári nyilvántartás 1. és 2. változatánál rendszerint nincs minden könyv kikölcsönözve,
és nincs minden olvasónál könyv. A 3. változatnál viszont megkövetelhetjük, hogy egy
olvasót csak akkor veszünk nyilvántartásba, ha valamikor legalább egy könyvet kölcsönzött,
ekkor az Olvasó egyed teljesen részt vesz a kapcsolatban.

2. Példa. Előfordul, hogy egy egyedtípus önmagával áll kapcsolatban. A 5. ábra egy

hierarchikus felépítésű intézmény szervezeti egységeit modellezi (például egyetemi karok,
tanszékcsoportok, tanszékek). Itt 1:N kapcsolatról van szó, ahol egy kapcsolatpéldány azt
jelenti, hogy X egységnek Y egység a főegysége. Megjegyzendő, hogy ez a modell nem zárja
ki a körkörös hivatkozásokat.

5. ábra. Hierarchikus felépítésű intézmény szervezeti egységeinek
modellezése

6. ábra. Példa sokágú kapcsolatra

12

3. Példa. A 6. ábra sokágú kapcsolatra ad példát. A kiadóra mutató nyíl azt jelenti, hogy

adott (könyv, szerző) pár legfeljebb egy kiadóval állhat kapcsolatban. Hasonló állítás nem
igaz a (kiadó, szerző) és (könyv, kiadó) párokra, mivel egy könyvnek több szerzője lehet.

2.2. Összetett és többértékű attribútumok

Összetett attribútum (struktúra): maga is attribútumokkal rendelkezik. Például a lakcím

attribútumhoz az irányítószám, helység, utca, házszám részattribútumok tartoznak. Jelölése:
attribútumhoz kapcsolódó attribútumok.

7. ábra. Példa összetett attribútumra

Többértékű attribútum: aktuális értéke halmaz vagy lista lehet. Ha például egy

könyvnek több szerzője van, és azok sorrendjét nem tartjuk fontosnak, akkor halmazként, ha
fontosnak tartjuk, akkor listaként adhatjuk meg a neveket. A többértékű attribútum jele kettős
ellipszis.

8. ábra. Példa többértékű attribútumra

2.3. Gyenge entitások

Gyenge entitás: az attribútumai nem határozzák meg egyértelműen, csak a kapcsolatai

révén lesz meghatározott. Jele: kettős téglalap.
Meghatározó kapcsolat: gyenge entitást határoz meg. Jele: kettős rombusz.

4. Példa. Egy számítógép szerviz nem bajlódik azzal, hogy egyedi azonosítót rendeljen

a javított gépekhez, hanem azokat a tulajdonosaik szerint tartja nyilván (9. ábra). Itt a
számítógép gyenge entitás, mivel a műszaki paraméterek nem határozzák meg egyértelműen a

13

gépet. Ha előfordulhat, hogy egy tulajdonosnak több, azonos paraméterekkel rendelkező gépe
van, akkor a számítógép egyedhez egy sorszám attribútum felvétele is szükséges a
megkülönböztetésre. Ez azonban könnyebben kezelhető, hisz itt csak adott tulajdonos gépeit
kell egymástól megkülönböztetni, nem az összes gépet.

9. ábra. Példa gyenge entitásra: számítógép szerviz nyilvántartása

N:M típusú és sokágú kapcsolat mindig helyettesíthető gyenge entitással és több bináris

kapcsolattal (10. ábra).

10. ábra. Sokágú kapcsolat (6. ábra) helyettesítése gyenge egyeddel és
bináris kapcsolatokkal

2.4. Specializáló kapcsolatok

Ha valamely általános egyednek bizonyos altípusait külön szeretnénk modellezni, akkor

a főtípus és az altípusok viszonyát specializáló kapcsolattal írhatjuk le.

14

Jelölés: háromszög, amelynek csúcsa a főtípus felé mutat. A háromszögbe angolul
"is a", magyarul "az egy" szöveget szoktak írni, ezzel is hangsúlyozva a kapcsolat jellegét.

5. Példa. A 11. ábrán egy oktatási intézmény helyiségeit nyilvántartó diagram látható.

Az egyes helyiségeket a tartalmazó épület azonosítójával és az azon belüli ajtószámmal
azonosítjuk, további attribútumok a helyiség neve és alapterülete.

A helyiség egyed altípusai a tanterem (attribútumok: az ülőhelyek száma, a tábla és
vetítő típusa), a számítógépterem (attribútum: a gépek száma) és az iroda (attribútumai az
irodában működő telefon és fax száma, és kapcsolatban áll az irodában dolgozó
személyekkel).

Látjuk, hogy az altípusoknak lehetnek saját attribútumai és kapcsolatai, ugyanakkor

öröklik a főtípus attribútumait és esetleges kapcsolatait is. Például a tanterem teljes
attribútumhalmaza: épület, ajtószám, név, alapterület, férőhely, vetítő, tábla.

A specializáló kapcsolat az egyedek többszörös előfordulását eredményezi. Ha ugyanis

egyedhalmazokat képzelünk a főtípus és altípusok helyére, akkor egy egyedpéldány több
egyedhalmazban is szerepel: például egy konkrét előadóterem egyaránt része a Helyiség és
Tanterem egyedhalmazoknak. A specializáló kapcsolat lényegében 1:1 kapcsolatot jelent egy
főtípus és egy altípus között, de sajátos módon nem különböző egyedeket, hanem ugyanazon
egyed két előfordulását kapcsolja össze. Az altípus mindig teljesen részt vesz ebben a
kapcsolatban, míg a főtípus általában nem.

Egy egyed egyszerre kettőnél több egyedhalmazban is előfordulhat, egy számítógépes
oktatóterem például tanterem és gépterem egyszerre. Végül az is lehet, hogy egy egyed csak a
főtípushoz tartozik (például folyosó, mosdó, raktár, stb.)

11. ábra. Oktatási intézmény helyiség nyilvántartása

15

3. A relációs adatmodell

3.1. A relációs adatmodell fogalma

A relációs adatmodellt 1970-ben definiálta E. F. Codd amerikai kutató, de gyakorlati

alkalmazása csak az 1980-as években vált általánossá. Lényege, hogy az egyedeket,
tulajdonságokat és kapcsolatokat egyaránt táblázatok, úgynevezett adattáblák segítségével
adja meg.

Az adattábla (vagy egyszerűen csak tábla) sorokból és oszlopokból áll. Egy sorát
rekordnak nevezzük, amely annyi mezőből áll, ahány oszlopa van a táblának.

6. Definíció. Attribútumnak nevezünk egy tulajdonságot, amelyet a megnevezésével

azonosítunk, és értéktartományt rendelünk hozzá. A Z attribútum értéktartományát a domain
szó rövidítésével jelöljük: dom(Z).

Korlátozás: a relációs adatmodellnél az értéktartomány csak atomi értékekből állhat,
vagyis elemei nem lehetnek struktúrák, halmazok, stb.

Az értéktartomány megadása rendszerint típus és hossz megadását jelenti, például a

könyvszám attribútum értéktartománya a legfeljebb 4-jegyű decimális számok halmaza lehet.
A gyakorlatban az attribútumnévhez általában informális leírást (kódolási utasítást) kell
mellékelni, amely az attribútum megadását pontosítja (például a szerző attribútumot több
szerző esetén hogyan kell megadni, a könyvszám egyes számjegyei utalhatnak a könyv
jellegére, stb.).

7. Definíció. Relációsémának nevezünk egy attribútumhalmazt, amelyhez azonosító

nevet rendelünk. (Ahol nem értelemzavaró, relációséma helyett egyszerűen csak sémát
mondunk.)

Jelölések:
- A relációsémát R(A1,...,An) módon szokás jelölni, ahol A1,...,An attribútumok, R

pedig a séma neve.
- Használjuk még az R(A) jelölést is, ahol A az {A1,...,An} attribútumhalmaz.
- Az R séma Ai attribútumát R.Ai-vel jelöljük, ha különböző sémák azonos nevű

attribútumait kell megkülönböztetni.

Megállapodás. A továbbiakban mindvégig, ha valamely Z attribútum(rész)halmazról

beszélünk, akkor feltételezzük, hogy Z nem üres. Ha üres halmaz is megengedett, erre külön
felhívjuk a figyelmet.

8. Példa. A könyvek nyilvántartására szolgáló relációséma

Könyv (könyvszám, szerző, cím), ahol az egyes attribútumok értéktartománya:
dom(könyvszám) = 4-jegyű decimális számok halmaza,
dom(szerző) = legfeljebb 30 hosszú karaktersorozatok halmaza,
dom(cím) = legfeljebb 50 hosszú karaktersorozatok halmaza.

9. Definíció. Reláció az R(A1,...,An) séma felett: T ⊆ dom(A1) X ... X dom(An).

Vagyis, T elemei (a1,...,an) alakúak, ahol ai ∈ dom(Ai) (i=1,...,n).

A reláció megjelenési formája az adattábla, amelynek oszlopai az A1,...,An

attribútumoknak, sorai pedig T egyes elemeinek felelnek meg.

16

10. Példa. Tekintsük a Könyv (könyvszám, szerző, cím) sémát! Ekkor a

dom(könyvszám) X dom(szerző) X dom(cím) halmaz az összes lehetséges (könyvszám,
szerző, cím) hármast tartalmazza. Ezek közül kiválasztjuk azokat, amelyek a könyvtárban lévő
könyveknek felelnek meg, ez lesz a T halmaz. Például T a következő lehet:

(1121, Sályi, Adatbázisok)
(3655, Radó, Világatlasz)
(2276, Karinthy, Így írtok ti)
(1782, Jókai, Aranyember)

Az adattábla fejlécében a relációsémát szokták megadni, amely azonban matematikai

értelemben nem része a táblának. Példánk esetében:

Könyvszám Szerző Cím
1121 Sályi Adatbázisok
3655 Radó Világatlasz
2276 Karinthy Így írtok ti
1782 Jókai Aranyember

A matematikában halmazok Descartes-szorzatának részhalmazát általában relációnak
nevezik. Mivel az adattáblát relációként definiáltuk, innen kapta nevét a relációs adatmodell.

Ahogy az E-K modellnél megkülönböztettünk egyedtípust és egyedpéldányt, a relációs
modellnél is beszélhetünk relációtípusról, amely a relációsémának felel meg, és
relációpéldányról, amely az adattáblának felel meg.

Általános esetben a sémára és táblára külön jelölést használunk (például R séma feletti T
tábla), de konkrét példák esetén a kettőt azonosan jelöljük (például Könyv séma és Könyv
tábla).

Mivel a definíció szerint a T reláció egy halmaz, így a relációs modellben a tábla

minden sora különböző, és a sorokra semmilyen rendezettséget nem tételez fel. Valójában az
adatok gépi tárolása mindig valamilyen sorrendben történik, és a konkrét adatbázis-kezelő
rendszerek általában megengednek azonos sorokat is. Az elméleti modell és a gyakorlati
alkalmazás ezen eltéréseire mindig ügyelni kell.

A relációs modell valójában a tábla oszlopaira sem határoz meg sorrendet. Mivel a reláció

fenti definíciója akaratlanul is kiköti az oszlopok sorrendjét, így egy másik definíció is
használatos:

Tekintsük a D = dom(A1) U ... U dom(An) egyesített értéktartományt és az A =
{A1,...,An} attribútumhalmazt. Relációnak nevezünk egy T = {t1,...,tk} halmazt, ahol
ti: A → D leképezés, amelynél minden j-re ti(Aj) ∈ dom(Aj) teljesül.

Több adattábla együttesen alkotja a relációs adatbázist, amely egy teljes jelenségkör

leírására alkalmas. A könyvtári nyilvántartás egy lehetséges megvalósítását a 12. ábra
mutatja: itt a Könyv táblában adjuk meg az adott könyvet kikölcsönző olvasó számát és a
kivétel dátumát. Ha egy könyvet éppen nem kölcsönöztek ki, akkor a megfelelő mezők NULL
értékűek (a 12. ábrán egyszerűen üresen hagytuk ezeket).

17

A Könyv tábla:

Könyvszám Szerző Cím Olvasószám Kivétel
1121 Sályi Adatbázisok
3655 Radó Világatlasz 122 2012.07.12
2276 Karinthy Így írtok ti
1782 Jókai Aranyember 355 2012.09.23

Az Olvasó tábla:

Olvasószám Név Lakcím
122 Kiss István Szeged, Virág u. 10.
612 Nagy Ágnes Szentes, Petőfi út 38.
355 Tóth András Budapest, Jég u. 3.

12. ábra: A könyvtári nyilvántartás 1. ill. 2. változatát megvalósító

adatbázis

A 12. ábrán jól látható, hogy az olvasószám attribútum mindkét táblában szerepel, ezzel

kapcsolatot létesít a táblák között. Ez rávilágít a következőre:
A relációs adatmodell lényege, hogy a különböző relációsémák azonos attribútumokat

tartalmazhatnak, ezáltal kerülnek kapcsolatba egymással, és így a különálló adattáblák
együttese egy szervesen összefüggő adatbázist alkot.

3.2. Kulcsok

11. Definíció. Szuperkulcsnak nevezünk egy attribútumhalmazt, ha egyértelműen

azonosítja a tábla sorait. Pontosabban: egy R(A1,...,An) relációséma esetén az A = {A1,...,An}
attribútumhalmaz egy K részhalmaza szuperkulcs, ha bármely R feletti T tábla bármely két
sora K-n különbözik.

Formálisan: bármely ti ∈ T és tj ∈ T esetén ti ≠ tj => ti(K) ≠ tj(K). Szemléletesen: ha a
táblán a K-n kívüli oszlopokat letakarjuk, akkor is minden sor különböző marad.

12. Példa. A Könyv (könyvszám, szerző, cím) sémában a {könyvszám} szuperkulcs, de

szuperkulcs például a {könyvszám, szerző} vagy a {könyvszám, cím} attribútumhalmaz is.

Megjegyzendő, hogy a teljes A attribútumhalmaz mindig szuperkulcs, hiszen definíció

szerint a tábla minden sora különböző.

13. definíció. Az A attribútumhalmaz K részhalmazát kulcsnak nevezzük, ha minimális

szuperkulcs, vagyis egyetlen valódi részhalmaza sem szuperkulcs. Ha K egyetlen
attribútumból áll, akkor egyszerű, egyébként összetett kulcsról beszélünk.

Ha egy relációsémának több kulcsa is van, egyet kiválasztunk közülük, ez lesz az
elsődleges kulcs. (Ha csak egy kulcs van, akkor szükségképpen az lesz az elsődleges kulcs.)
Egy relációsémában tehát mindig csak egy elsődleges kulcs lehet.

Jelölés: az elsődleges kulcsot alkotó attribútumokat aláhúzással szokás jelölni.

Megjegyzés: A kulcs nem a tábla tulajdonsága, hanem egy feltétel előírása a

relációsémára: annak megkövetelése, hogy a sémához tartozó táblában (annak bármely

18

időpontbeli állapotában) nem lehet két azonos kulcsú sor. A kulcs meghatározása az
attribútumok jelentésének vizsgálatával lehetséges, és nem egy adott tábla vizsgálatával.
Például a 12. ábrán látható Könyv tábla esetén a cím vagy szerző attribútumok is minden
sorban különbözők, de tudjuk, hogy ez nem garantálható a Könyv tábla mindenkori
állapotára.

14. Példa. Az alábbi tábla gépkocsik mozgásának menetlevél-szerű nyilvántartását

tartalmazza:

Fuvar (gkvez, rendszám, indul, érkezik)

Itt négy összetett kulcs van: {gkvez, indul}, {gkvez, érkezik}, {rendszám, indul},

{rendszám, érkezik}. Ezek közül önkényesen kiválasztunk egyet, ez lesz az elsődleges kulcs:

Fuvar (gkvez, rendszám, indul, érkezik)

15. definíció. Egy relációséma attribútumainak valamely részhalmaza külső kulcs

(másnéven idegen kulcs, angolul foreign key), ha egy másik séma elsődleges kulcsára
hivatkozik. A külső kulcs értéke a hivatkozott táblában előforduló kulcsérték vagy NULL
lehet.

Formálisan: legyenek R1(A), R2(B) relációsémák. Az L (⊆ A} külső kulcs az R1-ben R2-
re vonatkozóan, ha

- R2 elsődleges kulcsa K, és dom(K) = dom(L),
- bármely R1, R2 feletti T1, T2 táblák esetén L értéke T1 bármely sorában T2-ben

előforduló K-érték vagy NULL.

Jelölés: a külső kulcsot dőlt betűvel, vagy a hivatkozott kulcsra mutató nyíllal jelöljük.
A kulcshoz hasonlóan a külső kulcs is feltétel előírása a sémákra, és nem az aktuális

táblák tulajdonsága. A külső kulcs feltételek biztosítják az ún. hivatkozási integritást az
adatbázisban.

16. Definíció. Ha egy adatbázis valamennyi táblájának sémáját felírjuk a kulcsok és

külső kulcsok jelölésével együtt, akkor relációs adatbázissémát kapunk.

17. Példa. A könyvtári nyilvántartás relációs adatbázissémája:

Könyv (könyvszám, szerző, cím, olvasószám, kivétel)
Olvasó (olvasószám, név, lakcím)

vagy más jelölésmóddal:

19

3.3. Indexek

Az index nem része a relációs modellnek, hanem kiegészítő adatstruktúra, amelyet egy

táblához lehet generálni. Fő céljai:
- Keresések gyorsítása. Ha például adott olvasószámnak megfelelő rekordot keressük,

ehhez ne kelljen valamennyi rekordot végignézni.
- Rendezés. Listázáskor illetve feldolgozáskor gyakran szeretnénk valamilyen szempont

szerint rendezve kezelni a rekordokat (például olvasó neve szerint ábécé rendben), függetlenül
a fizikai adattárolás sorrendjétől.

Az indexet a tábla attribútumainak valamely L részhalmazához generáljuk, ezt

indexkulcsnak nevezzük. Megegyezhet a tényleges kulccsal, de bármi más is lehet. Az index
segítségével a tábla sorai L szerinti rendezésben kezelhetők.

Az indexet is táblaként lehet elképzelni, amelynek első oszlopa az indexkulcsot, a
második a megfelelő rekord fizikai sorszámát (a gyakorlatban inkább a rekord fizikai címét a
merevlemezen) tartalmazza (13. ábra).

Könyvszám Szerző Cím Olvasószám Kivétel
1121 Sályi Adatbázisok
2276 Karinthy Így írtok ti
3655 Radó Világatlasz 122 2012.07.12
1782 Jókai Aranyember 355 2012.09.23

Szerző Index Cím Index
Jókai 4 Adatbázisok 1
Karinthy 2 Aranyember 4
Radó 3 Így irtok ti 2
Sályi 1 Világatlasz 3

13. ábra. A Könyv táblához létrehozott szerző szerinti ill. cím szerinti

indextábla

Az index konkrét megvalósítása DBMS-enként változik. Az indextábla általában

úgynevezett B-fa (B = balanced = kiegyensúlyozott) struktúrában kerül tárolásra, amely a
bináris keresőfa általánosítása. Tulajdonságai:

- egy csomópontnak kettőnél több gyermeke lehet,
- minden módosítás után kiegyensúlyozott marad (a keresés mélysége bármely ágon

ugyanannyi).

A B-fát általában mágneslemezen tárolják (kivéve a gyökér csomópontot, amely

tartósan a memóriában lehet). Egy csomópont egy lemezblokkot foglal el, ezért akár száz
gyermekre mutató pointert is tartalmazhat. A keresés ritkán mélyebb 3 szintnél. Mivel a
keresés idejében a lemezolvasás a meghatározó, így a gyakorlatban konstans keresési idővel
számolhatunk.

Index létrehozása viszonylag lassú, hiszen ekkor végig kell menni a teljes táblán. A

folyamatot úgy képzelhetjük el, hogy az i-edik rekordhoz egy (zi, i) párt generálnak, ahol zi az

20

L indexkulcs értéke az adott rekordban, i pedig a rekord fizikai sorszáma, és ezt a (zi, i) párt
fűzik fel a fára.

Index használata.
- Az elkészült indexben L adott értékéhez (például a 2276 könyvszámhoz) gyorsan

előkereshető a megfelelő fizikai rekord sorszáma.
- A tábla rendezett listázásához a B-fát kell bejárni.
- Ha a táblába új rekordot veszünk fel, ez mindig a tábla végére kerül, egyidejűleg a

(zi,i) pár beszúrásra kerül az indexbe.
- Ha rekordot törlünk a táblából, a megfelelő indexbejegyzés törlődik, de a táblában a

rekord helye üresen marad, így a rekordok fizikai címei nem változnak meg.

Egy táblához egyszerre több index is létrehozható, például a könyveket indexelhetjük
könyvszám, szerző és cím szerint is. A rekordokat a képernyőn mindig aszerint látjuk
rendezve, hogy a lekérdezésnél melyik mező szerinti rendezettséget kérjük. Ilyenkor
automatikusan a megfelelő index lép működésbe, miközben a rekordok fizikai sorrendje
mindvégig változatlan marad.

21

3.4. E-K diagramból relációs adatbázisséma készítése

Egyedek leképezése

Szabály: az E-K modell minden egyedéhez felírunk egy relációsémát, amelynek neve az

egyed neve, attribútumai az egyed attribútumai, elsődleges kulcsa az egyed kulcs-
attribútuma(i). A séma feletti adattábla minden egyes sora egy egyedpéldánynak felel meg.

18. Példa. A 2. ábra szerinti könyvtári nyilvántartás esetén a könyveket egy Könyv

táblában tarthatjuk nyilván, amely az alábbi séma szerint épül fel:

Könyv (könyvszám, szerző, cím)

Az olvasók nyilvántartására egy Olvasó nevű tábla szolgálhat, amelynek sémája:

Olvasó (olvasószám, név, lakcím)

Gyenge entitások leképezése

Szabály: a gyenge entitás relációsémáját bővíteni kell a meghatározó kapcsolat(ok)ban

szereplő egyed(ek) kulcsával.

19. Példa. A 9. ábra szerinti számítógép nyilvántartás adatbázissémája a következő:

Tulajdonos (személyiszám, név, lakcím)
Számítógép (processzor, memória, merevlemez, személyiszám)

Ha egy tulajdonosnak több, azonos gépe lehet, akkor ezeket egy sorszám attribútummal

különböztetjük meg:

Tulajdonos (személyiszám, név, lakcím)
Számítógép (processzor, memória, merevlemez, személyiszám, sorszám)

20. Példa. A 10. ábrán látható Szerződés egyed leképezése:

Szerződés (fizetés, ISBN, szerzőnév)

Összetett attribútumok leképezése

Tegyük fel, hogy az Olvasó táblában a lakcím attribútumot (helység, utca, házszám)

struktúraként szeretnénk kezelni. Relációs adatmodellben erre egyetlen lehetőség van: az

Olvasó (olvasószám, név, lakcím)

séma helyett a

Olvasó (olvasószám, név, helység, utca, házszám)

sémára térünk át, a megfelelő tábla a következő:

22

Olvasószám Név Helység Utca Házszám
122 Kiss István Szeged Virág u. 10
612 Nagy Ágnes Szentes Petőfi út 38
355 Tóth András Budapest Jég u. 3

Többértékű attribútumok leképezése

Kérdés, hogy többszerzős könyveket hogyan tartsunk nyilván az adatbázisban.

Példaként a Könyv táblát vizsgáljuk, amelynél a 1121 számú könyvnek valójában két szerzője
van: Sályi János és Szelezsán János. Alább sorra vesszük a lehetőségeket.

1. Megadás egyértékű attribútumként. A szerző megadására szolgáló szövegmezőben

felsoroljuk a szerzőket.
Hátrányok:
- a szerzőket külön-külön nem tudjuk kezelni.
- sok szerző esetleg nem fér el a megadott mezőben

2. Sorok többszörözése. A Könyv táblában egy könyvhöz annyi sort veszünk fel, ahány
szerzője van:

Könyvszám Szerző Cím
1121 Sályi Adatbázisok
1121 Szelezsán Adatbázisok
3655 Radó Világatlasz
2276 Karinthy Így írtok ti
1782 Jókai Aranyember

A megfelelő relációséma: Könyv (könyvszám, szerző, cím)
A fenti megoldás hátránya, hogy a többszerzős könyvek címét több példányban kell

megadni. Ez redundanciát jelent, tehát ez nem jó megoldás.

3. Új tábla felvétele. A Könyv (könyvszám, szerző, cím) sémát az alábbi két sémával

helyettesítjük:

Könyv (könyvszám, cím)
Szerző (könyvszám, szerző)

A megfelelő adattáblák a következők:

Könyvszám Cím
1121 Adatbázisok
3655 Világatlasz
2276 Így írtok ti
1782 Aranyember

Könyvszám Szerző
1121 Sályi
1121 Szelezsán
3655 Radó
2276 Karinthy
1782 Jókai

23

Bár ez a megvalósítás bonyolultabbnak tűnik, később látni fogjuk, hogy ez a korrekt
megoldás. Ha a szerzők sorrendje fontos, akkor a Szerző táblát egy sorszám mezővel kell
bővíteni (emlékeztetünk rá, hogy a relációs adatmodell nem definiálja a rekordok sorrendjét):

Könyv (könyvszám, cím)
Szerző (könyvszám, sorszám, szerző)

Kapcsolatok leképezése

Általános szabály:
1. Vegyünk fel a kapcsolathoz egy új sémát, amelynek neve a kapcsolat neve,

attribútumai pedig a kapcsolódó entitások kulcs attribútumai és a kapcsolat saját attribútumai.
Formálisan, ha az összekapcsolt egyedeknek az R1(K1 U B1), ..., Rn(Kn U Bn) sémák

felelnek meg (Ki a kulcs, Bi a további attribútumok halmaza), akkor a kapcsolatnak egy
R(K1 U ... U Kn U B) sémát feleltetünk meg, ahol B a kapcsolat saját attribútumai. R-ben Ki
külső kulcs hivatkozás az Ri sémára. Az R feletti adattábla minden egyes sora egy kapcsolat-
példánynak felel meg.

2. Ha ezen séma kulcsa megegyezik valamely kapcsolódó egyed kulcsával, akkor a
kapcsolat sémája és az egyed sémája összevonható (az attribútumok unióját képezve).

21. Példa. A 2. ábrán szereplő "kölcsönzés" kapcsolat esetén az alábbi sémát kapjuk:

Kölcsön (könyvszám, olvasószám, kivétel, visszahozás)

Kérdés, hogy mi lesz a kulcs ebben a táblában. Ehhez a kapcsolat típusát kell

megvizsgálni. Nézzük meg sorra az előzőekben tárgyalt három változatot!

1. változat: Ha egy olvasónak egyszerre csak egy könyvet adnak ki, akkor a kölcsönzés

1:1 kapcsolatot jelent. Ilyenkor a Kölcsön sémában a könyvszám és az olvasószám egyaránt
kulcs. Továbbá, a visszahozás attribútumra nincs szükségünk, mivel a könyv visszahozásával
a könyv-olvasó kapcsolat megszűnik. Tehát, a

Kölcsön (könyvszám, olvasószám, kivétel)

vagy a

Kölcsön (könyvszám, olvasószám, kivétel)

sémát vehetjük fel a kapcsolathoz. Az első változat kulcsa a Könyv sémáéval, a másodiké az
Olvasó sémáéval egyezik meg. A Kölcsön sémát az azonos kulcsú sémába olvasztva a

Könyv (könyvszám, szerző, cím, olvasószám, kivétel)
Olvasó (olvasószám, név, lakcím)

vagy a

Könyv (könyvszám, szerző, cím)
Olvasó (olvasószám, név, lakcím, könyvszám, kivétel)

adatbázissémákat kapjuk. A megfelelő táblák a 12. és 14. ábrán láthatók. Ha egy könyvet
éppen senki sem kölcsönzött ki, illetve ha egy olvasónál éppen nincs könyv, akkor a
megfelelő mezők üresen maradnak (azaz NULL értékűek).

24

A Könyv tábla:

Könyvszám Szerző Cím
1121 Sályi Adatbázisok
3655 Radó Világatlasz
2276 Karinthy Így írtok ti
1782 Jókai Aranyember

Az Olvasó tábla:

Olvasószám Név Lakcím Könyvszám Kivétel
122 Kiss István Szeged, Virág u. 10. 3655 2012.07.12
612 Nagy Ágnes Szentes, Petőfi út 38.
355 Tóth András Budapest, Jég u. 3. 1782 2012.09.23

14. ábra. Könyvtári nyilvántartás abban az esetben, ha egy olvasó

egyszerre csak egy könyvet kölcsönözhet ki

2. változat: Ha egy olvasó több könyvet is kikölcsönözhet, akkor a könyv-olvasó
kapcsolat N:1 típusú. Ekkor a Kölcsön sémában csak a könyvszám lehet kulcs, ezért a Kölcsön
sémát csak a Könyv sémába olvaszthatjuk:

Könyv (könyvszám, szerző, cím, olvasószám, kivétel)
Olvasó (olvasószám, név, lakcím)

A megfelelő táblák a 12. ábrán láthatók, azzal a különbséggel, hogy most több könyvnél

is szerepelhet ugyanazon olvasó száma. A 14. ábra szerinti lehetőség, vagyis hogy az Olvasó
táblát bővítjük könyvszám és kivétel oszloppal, már nem járható. Ugyanis egy olvasóhoz több
könyvszámot kellene beírnunk, ami ellentmond a relációs adatmodell alapelvének: az
adattábla egy mezőjébe csak atomi értéket lehet beírni.

3. változat: Ha az egyes könyvek korábbi kölcsönzéseit is nyilvántartjuk, akkor nem

csak egy olvasóhoz tartozhat több könyv, hanem egy könyvhöz is több olvasó (N:M
kapcsolat), sőt adott olvasó adott könyvet egymás után többször is kikölcsönözhet. Ezért a
Kölcsön sémában

{könyvszám, kivétel}

vagy

{könyvszám, visszahozás}

a kulcs, a Kölcsön táblát most sem a Könyv, sem az Olvasó táblába nem tudjuk beolvasztani.
Az adatbázisséma ezért a következő:

Könyv (könyvszám, szerző, cím)
Olvasó (olvasószám, név, lakcím)
Kölcsön (könyvszám, olvasószám, kivétel, visszahozás)

25

A Könyv tábla:

Könyvszám Szerző Cím
1121 Sályi Adatbázisok
3655 Radó Világatlasz
2276 Karinthy Így írtok ti
1782 Jókai Aranyember

Az Olvasó tábla:

Olvasószám Név Lakcím
122 Kiss István Szeged, Virág u. 10.
612 Nagy Ágnes Szentes, Petőfi út 38.
355 Tóth András Budapest, Jég u. 3.

A Kölcsön tábla:

Könyvszám Olvasószám Kivétel Visszahozás
1121 355 2005.11.02
1121 612 2003.11.14 2004.01.03
1121 122 2005.02.22 2005.04.17
3655 122 2005.07.12
2276 612 2004.03.16 2004.04.02
1782 355 2005.09.23

15. ábra: A könyvtári adatbázis 3. változata

A fentiek alapján az alábbi szabályok fogalmazhatók meg két egyed közötti kapcsolatok

leképezésére relációs modellbe:
a) 1:1 kapcsolat esetén kiválasztjuk a kapcsolatban résztvevő két entitás egyikét

(bármelyiket), és annak sémájába új attribútumként felvesszük a másik entitás kulcs
attribútumait, valamint a kapcsolat attribútumait.

b) 1:N kapcsolat esetén az „N” oldali entitás sémájába új attribútumként felvesszük a
másik entitás kulcs attribútumait, valamint a kapcsolat attribútumait.

c) N:M kapcsolat esetén új sémát veszünk fel, amelynek attribútumai
- a kapcsolódó entitások kulcs attribútumai,
- a kapcsolat saját attribútumai.

Megjegyzés. Előfordul, hogy 1:1 illetve 1:N kapcsolat esetén sem érdemes a kapcsolat
sémáját beolvasztani a megfelelő egyed sémájába. Ha például a Könyv táblát bővítjük
olvasószám és kivétel oszloppal, de a könyveknek csak elenyészően kis százaléka van adott
pillanatban kikölcsönözve, akkor olvasószám és kivétel attribútumok értéke majdnem
minden sorban NULL lesz. Ez a redundancia megszűnik, ha a kölcsönzéseket egy külön
Kölcsön (könyvszám, olvasószám, kivétel) táblában tartjuk nyilván.

22. Példa. A 5. ábra szerinti szervezeti egység nyilvántartás önmagával kapcsolatban

álló egyedet tartalmaz. Lényegében itt is a fenti b) szabályt alkalmazhatjuk, vagyis az

Egység (egységkód, megnevezés)

sémát kell bővíteni egységkód attribútummal. Mivel egy sémában nem szerepelhet két azonos
attribútumnév, ezért az új attribútumot főegységkódnak nevezzük:

26

Egység (egységkód, megnevezés, főegységkód)

ahol főegység a fölérendelt szervezeti egység kódja.

23. Példa. Az általános szabály alapján felírhatjuk a 6. ábra szerinti E-K modell relációs

adatbázissémáját:

Könyv (cím, év, ISBN)
Szerző (név, lakcím)
Kiadó (név, cím)
Szerződés (ISBN, szerzőnév, kiadónév, fizetés)

Az azonos nevek ütközésének elkerülésére a Szerződés sémában módosított

attribútumneveket alkalmaztunk. Mivel a Szerződés kapcsolatban a könyv és a szerző már
meghatározza a kiadót (lásd a nyilat a 6. ábrán), ezért a kiadónév már nem része a kulcsnak.
Ha a 10. ábra szerinti szétbontott változat sémáját írjuk fel, akkor is a fenti adatbázissémához
jutunk.

Specializáló kapcsolatok leképezése

A relációs megvalósítási lehetőségeket a 11. ábra szerinti E-K modellen mutatjuk be.

1. Minden altípushoz külön tábla felvétele, egy egyed csak egy táblában szerepel. Az

altípusok öröklik a főtípus attribútumait.

Helyiség (épület, ajtószám, név, alapterület)
Tanterem (épület, ajtószám, név, alapterület, férőhely, tábla, vetítő)
Gépterem (épület, ajtószám, név, alapterület, gépszám)
Iroda (épület, ajtószám, név, alapterület, telefon, fax)
Dolgozó (adószám, név, lakcím, épület, ajtószám)

Hátrányok:
- Kereséskor gyakran több táblát kell vizsgálni (ha például a Központi épület 211. sz.

terem alapterületét keressük).
- Kombinált altípus (például számítógépes tanterem) csak új altípus felvételével

kezelhető.

2. Minden altípushoz külön tábla felvétele, egy egyed több táblában is szerepelhet. A

főtípus táblájában minden egyed szerepel, és annyi altípuséban ahánynak megfelel. Az
altípusok a főtípustól csak a kulcs-attribútumokat öröklik.

Helyiség (épület, ajtószám, név, alapterület)
Tanterem (épület, ajtószám, férőhely, tábla, vetítő)
Gépterem (épület, ajtószám, gépszám)
Iroda (épület, ajtószám, telefon, fax)
Dolgozó (adószám, név, lakcím, épület, ajtószám)

Hátrány: Itt is előfordulhat, hogy több táblában kell keresni (például ha a tantermek

nevére és férőhelyére vagyunk kíváncsiak).

3. Egy közös tábla felvétele, az attribútumok uniójával. Az aktuálisan értékkel nem

rendelkező attribútumok NULL értékűek.

27

Helyiség (épület, ajtószám, név, alapterület, férőhely, tábla, vetítő, gépszám, telefon, fax)
Dolgozó (adószám, név, lakcím, épület, ajtószám)

Hátrányok:
- Az ilyen egyesített táblában általában sok NULL attribútumérték szerepel.
- Elveszíthetjük a típusinformációt (például ha a gépteremnél a gépszám nem ismert és

ezért NULL, akkor a gépterem lényegében az egyéb helyiségek kategóriájába kerül). Ez a
hátrány kiküszöbölhető egy típus attribútum felvételével.

28

4. Relációs algebra

A relációs algebra adattáblákon végzett műveletek rendszere, amely az adatbázis

lekérdezés matematikai alapját képezi.

4.1. Halmazműveletek

Itt az adattáblát (relációt) sorok halmazaként kezeljük.

24. Definíció. Két táblát kompatibilisnek nevezünk, ha sémáik megegyeznek, vagy csak

az attrinútumok elnevezésében különböznek.
Pontosabban: Az R1(A1,...,An) és R2(B1,...,Bm) relációsémák kompatibilisek, ha n = m

és dom(Ai) = dom(Bi) minden i-re. Két táblát kompatibilisnek nevezünk, ha sémáik
kompatibilisek.

A halmazműveleteket csak kompatibilis táblákon értelmezzük.

Unió

A T1 és T2 kompatibilis táblák halmazelméleti egyesítése a T = T1 U T2 tábla lesz,

amelynek sémája szintén kompatibilis T1 ill. T2 sémájával. A művelet végrehajtása:
- a két tábla egymás után írása,
- ismétlődő sorok kiszűrése.

25. Példa. Legyen két könyvtár állománya az alábbi táblákban tárolva:

Könyv1 tábla: Könyv2 tábla:
szerzőnév cím szerző könyvcím
Sályi Adatbázisok Jókai Aranyember
Jókai Aranyember Karinthy Így írtok ti
Radó Világatlasz

ahol dom(szerzőnév) = dom(szerző) és dom(cím) = dom(könyvcím), tehát a táblák
kompatibilisek. Ekkor a két tábla uniója az alábbi (az attribútumneveket szabadon
választhatjuk meg):

Könyv1 U Könyv2 tábla:
szerző cím
Sályi Adatbázisok
Jókai Aranyember
Radó Világatlasz
Karinthy Így írtok ti

Metszet (Intersection)

Két kompatibilis tábla halmazelméleti metszete azokat a sorokat tartalmazza, amelyek

mindkét táblában előfordulnak: T = T1 ∩ T2.

29

26. Példa. Az előbbi példát tekintve, a két könyvtár állományának metszete:

Könyv1 ∩ Könyv2 tábla:
szerző cím
Jókai Aranyember

Különbség (Difference)

A T1 és T2 kompatibilis táblák halmazelméleti különbsége azokat a sorokat tartalmazza,

amelyek T1-ben szerepelnek, de T2-ben nem: T = T1 – T2 .

27. Példa. Az előbbi példát tekintve, a két könyvtár állományának különbsége:

Könyv1 – Könyv2 tábla:
szerző cím
Sályi Adatbázisok
Radó Világatlasz

Tulajdonságok: az unió és metszet kommutatív, a különbség nem.

4.2. Redukciós műveletek

Projekció (vetítés)

Adott oszlopok kiválasztása a táblából. Az új tábla sémája a megfelelő attribútumok

kiválasztásával adódik.
Jelölése: πattribútumlista(tábla)

28. Példa: A Könyv1 = πszerző,cím(Könyv) tábla:

Szerző Cím
Sályi Adatbázisok
Radó Világatlasz
Karinthy Így írtok ti
Jókai Aranyember

Ha az attribútumlista nem tartalmazza a kulcsot, akkor a rekordok száma csökkenhet.

Például, ha két könyv szerzője és címe megegyezik (ugyanazon könyv különböző példányai),
akkor a Könyv1 táblában összevonásra kerülnek.

Szelekció (kiválasztás)

Adott feltételnek eleget tevő sorok kiválasztása a táblából. A feltétel általában

attribútumokból és konstansokból felépülő logikai kifejezés. Az eredménytábla sémája
megegyezik (vagy kompatibilis) az eredetivel.

Jelölés: σfeltétel(tábla)

30

29. Példa: Tekintsük az alábbi Könyv táblát:

Könyvszám Szerző Cím Olvasószám Kivétel
1121 Sályi Adatbázisok 612 2012.03.15
3655 Radó Világatlasz 122 2013.07.12
2276 Karinthy Így írtok ti
1782 Jókai Aranyember 355 2012.09.23

Ekkor a σkivétel<2013.01.01(Könyv) tábla:

Könyvszám Szerző Cím Olvasószám Kivétel
1121 Sályi Adatbázisok 612 2012.03.15
1782 Jókai Aranyember 355 2012.09.23

Vegyük észre: az a sor, ahol kivétel értéke NULL, nem kerül kiválasztásra.
A szelekció kommutatív: σf1(σf2(tábla)) = σf2(σf1(tábla)) = σ (f1 AND f2)(tábla)

4.3. Kombinációs műveletek

Descartes-szorzat

Tetszőleges T1 és T2 táblák T = T1 x T2 Descartes-szorzatát úgy kapjuk, hogy T1

minden sorát párosítjuk T2 minden sorával.
Pontosabban: Legyen R1(A1,...,An), R2(B1,...,Bm) két tetszőleges relációséma, és T1 ⊆

dom(A1) x...x dom(An), T2 ⊆ dom(B1) x...x dom(Bm) táblák R1, R2 felett. A T = T1 x T2
Descartes-szorzat az R(A1,...,An,B1,...,Bm) séma feletti T ⊆ dom(A1) x...x dom(An) x
dom(B1) x...x dom(Bm) tábla, amelyet úgy kapunk, hogy T1 minden sorát párosítjuk T2
minden sorával.

Ha R1 és R2 attribútumai között azonos nevűek vannak, akkor R-ben az eredeti séma
nevével különböztetjük meg őket (például R1.Ai, R2.Ai).

30. Példa:

T1: A1 A2 A3 T2: B1 B2 B3 T1xT2: A1 A2 A3 B1 B2 B3
 a b c b d e a b c b d e
 b d e a d b a b c a d b
 f c b b d e b d e
 b d e a d b
 f c b b d e
 f c b a d b

Ha T1 és T2 sorainak száma r1 ill. r2, oszlopainak száma c1 és c2, akkor a T táblában

r1*r2 sor és c1+c2 oszlop van.
Ha két tábla Descartes-szorzatát képezzük, akkor projekcióval visszakaphatók az eredeti

táblák: πA1,...An(T) = T1 és πB1,...,Bm(T) = T2.
A Descartes-szorzat műveletet nem szokták alkalmazni a gyakorlatban, hiszen az

adathalmaz redundanciáját növeli, az összekapcsolási műveletek definiálásánál azonban
szükségünk lesz rá.

31

Természetes összekapcsolás (Natural join)

A relációs modell lényegéhez tartozik, hogy két tábla között a megegyező attribútumok

létesítenek kapcsolatot. Általában, tekintsük az A és B attribútumhalmazok feletti R1(A) és
R2(B) sémákat, ahol X = A ∩ B nem üres. Az R1 és R2 feletti T1 és T2 táblák természetes
összekapcsolása egy R(A U B) feletti T tábla, amelyet a következőképp definiálunk:

T = πA U B(σR1.X=R2.X(T1 x T2))

Vagyis, a két tábla Descartes-szorzatából kiválasztjuk azokat a sorokat, amelyek az

R1.X és R2.X attribútumokon megegyeznek, majd a projekcióval a duplán szereplő X-beli
attribútumokat csak egy példányban tartjuk meg (az A U B halmazelméleti unió, vagyis benne
az X elemei csak egyszeresen szerepelnek).

Jelölés: T = T1 * T2

31. Példa. A gyakorlatban általában külső kulcs alapján végeznek természetes

összekapcsolást. Tekintsük a könyvtári nyilvántartás adatbázissémáját:
Könyv (könyvszám, szerző, cím, olvasószám, kivétel)
Olvasó (olvasószám, név, lakcím)

Ha most a kikölcsönzött könyvek listáját szeretnénk megkapni, de az olvasószám

mellett az olvasó nevének és lakcímének a feltüntetésével, akkor ez a

Kolv = Könyv * Olvasó

természetes összekapcsolás művelettel végezhető el, ahol az eredményül kapott tábla a 12.
ábra szerinti adatbázis esetén

K.szám Szerző Cím O.szám Kivétel Név Lakcím
3655 Radó Világatlasz 122 2012.07.12 Kiss István Szeged, Virág u.10
1782 Jókai Aranyember 355 2012.09.23 Tóth András Budapest, Jég u.3.

Megjegyzés: ha T=T1*T2, akkor T-ből projekcióval általában nem állítható elő T1 ill.

T2. Például, a fenti Kolv tábla csak a kikölcsönzött könyveket tartalmazza, mivel a ki nem
kölcsönzötteknél a Könyv táblában az olvasószám értéke NULL.

Külső összekapcsolás (Outer join)

A természetes összekapcsolás veszélye, hogy általában a kapcsolt táblák nem minden

sora szerepel az eredménytáblában. Ha egy sor nem párosítható a másik tábla egyetlen sorával
sem, akkor lógó sornak nevezzük.

Ha például Könyv táblában téves olvasószám szerepel, akkor a fenti Kolv táblában az
adott könyv nem fog szerepelni. További természetes igény lehet, hogy a Kolv táblában ne
csak a kikölcsönzött könyveket, hanem az összes könyvet lássuk.

A fentiek miatt használatos a külső összekapcsolás (outer join) művelet, amely az
összekapcsolt két tábla egyikénél vagy mindkettőnél valamennyi rekord megőrzését
garantálja. Jelölésére az Oracle rendszer (+) konvencióját használjuk:

32

Bal oldali külső összekapcsolás: T1 (+)* T2. Azt jelenti, hogy az eredménytáblában T1
azon sorai is szerepelnek, amelyek T2 egyetlen sorával sem párosíthatók. Ezen sorokban a T2-
beli attribútumok értéke NULL.

Jobb oldali külső összekapcsolás: T1 *(+) T2. Hasonlóan a T2 táblára.
Teljes külső összekapcsolás: T1 (+)*(+) T2. Itt mindkét tábla nem párosított rekordjai

megőrződnek.

32. Példa. A Kolv1 = Könyv (+)* Olvasó tábla már a 12. ábra adatbázisának összes

könyvét tartalmazza:

K.szám Szerző Cím O.szám Kivétel Név Lakcím
1121 Sályi Adatbázisok
3655 Radó Világatlasz 122 2012.07.12 Kiss István Szeged, Virág u.10
2276 Karinthy Így írtok ti
1782 Jókai Aranyember 355 2012.09.23 Tóth András Budapest, Jég u.3.

A Kolv2 = Könyv *(+) Olvasó táblában minden olvasó szerepel:

K.szám Szerző Cím O.szám Kivétel Név Lakcím
3655 Radó Világatlasz 122 2012.07.12 Kiss István Szeged, Virág u.10
 612 Nagy Ágnes Szentes, Petőfi út 38
1782 Jókai Aranyember 355 2012.09.23 Tóth András Budapest, Jég u.3.

Végül a Kolv3 = Könyv (+)*(+) Olvasó tábla minden könyvet és olvasót tartalmaz:

K.szám Szerző Cím O.szám Kivétel Név Lakcím
1121 Sályi Adatbázisok
3655 Radó Világatlasz 122 2012.07.12 Kiss István Szeged, Virág u.10
2276 Karinthy Így írtok ti
 612 Nagy Ágnes Szentes, Petőfi út 38
1782 Jókai Aranyember 355 2012.09.23 Tóth András Budapest, Jég u.3.

Külső összekapcsolás esetén már projekcióval visszakaphatók az eredeti táblák: bal

oldali külső összekapcsolásnál πA(T) = T1, hasonlóan a többi esetre.

Théta-összekapcsolás (Theta-join)

Itt a táblák Descartes-szorzatából tetszőleges feltétel szerint választunk ki sorokat:

T = σfeltétel(T1 x T2)

Jelölése: T = T1 *feltétel T2

33. Példa. Tegyük fel, hogy adott áruféleséget több raktár tárol, a raktározott

mennyiséget egy

Raktár (raktárkód, mennyiség)

táblában, a vevők igényeit pedig egy

Vevő (vevőkód, igény)

táblában tartjuk nyilván. Az eladási ajánlatok egy

33

Ajánlat (raktárkód, mennyiség, vevőkód, igény)

táblába generálhatók az alábbi theta-join művelettel:

Ajánlat = Raktár *igény≤mennyiség Vevő

4.4. Multihalmazok

Multihalmazon olyan halmazt értünk, amely ismétlődő elemeket is tartalmazhat (például

{1, 3, 4} halmaz, de {1, 3, 1, 4} már multihalmaz). Ha a relációt multihalmaznak tekintjük,
akkor ezzel az adattáblában azonos sorokat is megengedünk. A relációs algebra műveletei
multihalmazokra is értelmezhetők, ennek részleteire itt nem térünk ki.

Az adatbázis-kezelő rendszerek általában multihalmazokkal dolgoznak, és csak külön

kérésre végzik el az azonos sorok kiszűrését. Ennek okai a következők:
- Az adattábla fizikai tárolása természetes módon megengedi az azonos sorokat.
- Egyes relációs műveletek (például unió, projekció) lényegesen gyorsabbak, ha nem

kell kiszűrni az azonos sorokat.
- Egyes esetekben a multihalmaz szolgáltat korrekt eredményt. Például, ha a Dolgozó

(név, adószám, lakcím, fizetés) táblára a Dolg1 = πnév,fizetés(Dolgozó) projekciót végezzük,
akkor feltehetően nem kívánjuk, hogy két azonos nevű és fizetésű személy összeolvadásra
kerüljön.

A gyakorlatban tehát minden adatbázis-műveletnél el kell dönteni, hogy a relációs

modell szerint halmazokkal, vagy (az RDBMS számára természetesebb) multihalmazokkal
kívánunk dolgozni, és ennek megfelelően kell a műveleteket végrehajtani.

34

 5. A relációs adatbázis normalizálása

Ha az egyed-kapcsolat modellt helyesen írjuk fel, akkor általában optimális

(redundanciamentes) relációs adatbázis sémát kapunk. Semmi garancia nincs azonban arra,
hogy az E-K modell optimális, ezért szükség van a relációsémák formális vizsgálatára, amely
a redundanciákat detektálja és az optimalizálást lehetővé teszi (normalizálás). Ezen kérdéskör
elméleti megalapozásával és gyakorlati módszereivel foglalkozik ez a fejezet.

5.1. Redundáns adattáblák

Tekintsük egy vállalat dolgozóit nyilvántartó

Dolgozó (név, adószám, cím, osztálykód, osztálynév, vezAdószám)

sémát, ahol vezAdószám a vállalati osztály vezetőjének adószámát jelenti. A megfelelő tábla a
16. ábrán látható.

Előny: egyetlen táblában a dolgozók és osztályok adatai is nyilvántartva.
Hátrány: redundancia, mivel osztálynév, vezAdószám több helyen szerepel.

Név Adószám Cím Osztálykód Osztálynév VezAdószám
Kovács 1111 Pécs, Vár u.5. 2 Tervezési 8888
Tóth 2222 Tata, Tó u.2. 1 Munkaügyi 3333
Kovács 3333 Vác, Róka u.1. 1 Munkaügyi 3333
Török 8888 Pécs, Sas u.8. 2 Tervezési 8888
Kiss 4444 Pápa, Kő tér 2. 3 Kutatási 4444
Takács 5555 Győr, Pap u. 7. 1 Munkaügyi 3333
Fekete 6666 Pécs, Hegy u.5. 3 Kutatási 4444
Nagy 7777 Pécs, Cső u.25. 3 Kutatási 4444

16. ábra. Dolgozók nyilvántartását tartalmazó redundáns tábla

A redundancia aktualizálási anomáliákat okozhat:

(i) Módosítás esetén:
- Ha egy osztály neve vagy vezetője megváltozik, több helyen kell a módosítást

elvégezni, ami hibákhoz vezethet.

(ii) Új felvétel esetén:
- Új dolgozó felvételénél előfordulhat, hogy az osztálynevet máshogy adják meg

(például Tervezési helyett tervezési vagy Tervező).
- Ha új osztály létesül, amelynek még nincsenek alkalmazottai, akkor ennek adatait csak

úgy tudnánk felvenni, ha a név, adószám, cím mezőkhöz NULL értéket rendelnénk (ami nem
megengedett, mert adószám kulcs).

(iii) Törlés esetén:
- Ha egy osztály valamennyi dolgozóját töröljük, akkor az osztályra vonatkozó

információk is elvesznek.

35

Megoldás: a relációséma felbontása két sémára (dekompozíció):
Dolg (név, adószám, cím, osztálykód)
Oszt (osztálykód, osztálynév, vezAdószám)

A szétválasztott táblák a 17. ábrán láthatók.

Név Adószám Cím Osztálykód
Kovács 1111 Pécs, Vár u.5. 2
Tóth 2222 Tata, Tó u.2. 1
Kovács 3333 Vác, Róka u.1. 1
Török 8888 Pécs, Sas u.8. 2
Kiss 4444 Pápa, Kő tér 2. 3
Takács 5555 Győr, Pap u. 7. 1
Fekete 6666 Pécs, Hegy u.5. 3
Nagy 7777 Pécs, Cső u.25. 3

Osztálykód Osztálynév VezAdószám
 1 Munkaügyi 3333
 2 Tervezési 8888
 3 Kutatási 4444

17. ábra. Redundancia megszüntetése a tábla felbontásával

Megjegyzés: Ha helyesen felírt E-K modellből indulunk ki, amely a Dolgozó és Osztály

entitások között két kapcsolatot (dolgozik és vezeti) tartalmaz, akkor eleve a fenti két táblához
jutunk.

A továbbiakban a relációséma formális vizsgálatával választ adunk a következő

kérdésekre:
- mikor van redundancia egy táblában,
- hogyan kell ezt a tábla felbontásával megszüntetni.

5.2. Funkcionális függőség

34. definíció. Legyen R(A1,...,An) egy relációséma, és P, Q az {A1,...,An}

attribútumhalmaz részhalmazai. P-től funkcionálisan függ Q (jelölésben P → Q), ha bármely
R feletti T tábla esetén valahányszor két sor megegyezik P-n, akkor megegyezik Q-n is,
vagyis bármely ti ∈ T és tj ∈ T esetén

ti(P) = tj(P) => ti(Q) = tj(Q)

Elnevezések:
- A P → Q függést triviálisnak nevezzük, ha Q ⊆ P, ellenkező esetben nem triviális.
- A P → Q függést teljesen nemtriviálisnak nevezzük, ha Q ∩ P = 0.
A gyakorlatban általában teljesen nemtriviális függőségeket adunk meg.

35. Példa. A korábban vizsgált

Dolgozó (Adószám, Név, Cím, Osztálykód, Osztálynév, VezAdószám)

36

tábla lényeges függőségei:
f1: {Adószám} → {Név, Cím, Osztálykód}
f2: {Osztálykód} → {Osztálynév, VezAdószám}

Példa további függőségekre, amelyek valójában a fentiekből következnek:

f3: {Adószám} → {Osztálynév}
f4: {Cím, Osztálykód} → {VezAdószám}

36. Példa. Egy számla tételeit tartalmazó

Számla (cikkszám, megnevezés, egységár, mennyiség, összeg)
tábla esetén az alábbi függőségeket állapíthatjuk meg:
{cikkszám} → {megnevezés, egységár}
{egységár, mennyiség} → {összeg}

Megjegyzések:
- A függőség nem az aktuális tábla, hanem a séma tulajdonsága. Ha az

attribútumhalmazra megállapítunk egy funkcionális függőséget, akkor ez tulajdonképpen egy
feltételt jelent az adattáblára nézve. Ha pl. Adószám → Cím funkcionális függőség fennáll,
akkor egy személyhez több lakcímet nem tudunk tárolni.

- A "funkcionális" kifejezés arra utal, hogy ha P → Q fennáll, akkor létezik egy
dom(P) → dom(Q) függvény, amely P minden konkrét értékéhez egyértelműen meghatározza
Q értékét. Ez a függvény általában csak elméletileg létezik, pl. Adószám → Cím függés
esetén nem tudunk olyan algoritmust adni, amely az adószámból a lakcímet előállítaná. A
Számla tábla esetén azonban az {egységár, mennyiség} → {összeg} függőség már
számítható, mivel egységár*mennyiség = összeg teljesül.

37. Állítás. Egy K (⊆ A) attribútumhalmaz akkor és csak akkor szuperkulcs, ha K→A.
Bizonyítás: a kulcs és a funkcionális függés definíciója alapján nyilvánvaló.

38. Definíció. Relációséma és adattábla fogalma függőség alapján:
Relációsémának nevezünk egy R = (A, F) párt, ahol A = {A1,...,An} attribútumhalmaz,

és F = {f1,...,fm} az A-n definiált funkcionális függőségek egy halmaza (fi: Pi→Qi, i=1,...,m).
A függőségi halmaz olyan követelményrendszert definiál, amit eddig csak az attribútumok
informális leírásával adhattunk meg.

Adattábla (reláció) R felett: T ⊆ dom(A1) X ... X dom(An), amely eleget tesz az F-beli
függőségeknek.

Jelölés: R = (A, F) helyett továbbra is használjuk az egyszerűbb R(A) jelölést, ha a

függőségeket nem kívánjuk hangsúlyozni.

39. Példa. A Dolgozó sémához tartozó függőségi halmaz FD = {f1, f2}. Az f3 és f4

függőségeket nem szükséges hozzávenni, mert érezhetően következményei f1 és f2-nek.

Kérdés, hogy adott függőségekből levezethetők-e újabb függőségek. Erre vonatkozó,
könnyen bizonyítható alapszabályok az Armstrong-axiómák:

A1. Reflexivitás: Ha Y ⊆ X, akkor X→Y.
Bizonyítás: ti(X) = tj(X) => ti(Y) = tj(Y) triv.

A2. Bővítés: Ha X→Y, akkor X U Z → Y U Z.
Bizonyítás: ti(X U Z) = tj(X U Z) => ti(X) = tj(X) és ti(Z) = tj(Z) => ti(Y) = tj(Y) és

ti(Z) = tj(Z) => ti(Y U Z) = tj(Y U Z).

37

A3. Tranzitivitás: Ha X→Y és Y→Z, akkor X→Z.
Bizonyítás: ti(X) = tj(X) => ti(Y) = tj(Y) => ti(Z)=tj(Z).

40. Definíció. Az R=(A, F) feletti f1,..., fn függőségekből következik az f függőség, ha

nem lehet olyan T táblát megadni R felett, amelyre f1,..., fn teljesül, de f nem.

41. Állítás. Az Armstrong-axiómák segítségével egy adott függőségi halmazból

következő bármely függőség formálisan levezethető. (Levezetésen az axiómák véges
sokszori alkalmazását értjük a formális logika szabályai szerint.)

Bizonyítás: itt nem tárgyaljuk.

A funkcionális függés definíciója alapján könnyen beláthatók az alábbi szabályok:
Szétvágási szabály: ha X→{B1,...,Bk}, akkor X→B1, ..., X→Bk (Bi∈A attribútum,

i=1,...,k).
Egyesítési szabály: ha X→B1, ..., X→Bk, akkor X→{B1,...,Bk}
De vigyázat! A fentiek fordítottja már nem igaz, vagyis ha {B1,...,Bk} → X, ebből nem

következik, hogy B1 → X, ..., Bk → X.

A szétvágási szabály bizonyítása Armstrong-axiómákkal: reflexivitás miatt
{B1,...,Bk}→Bi, tranzitivitásból X→Bi.

Az egyesítési szabály bizonyításához belátjuk, hogy X→Y és X→Z akkor X→ (Y U Z).
Ugyanis a bővítés miatt (X U X) → (Y U X) és (X U Y) → (Z U Y), innen tranzitivitással
X→ (Y U Z).

Kulcsok meghatározása

Kérdés: ha adott R = (A, F), a függéshalmaz vizsgálatával meg tudjuk-e határozni a

kulcsokat?

42. Definíció. Egy X attribútumhalmaz lezártja az F függőségi halmaz szerint

X+ = {Ai | X→Ai}, vagyis az összes X-től függő attribútumokból áll. Pontosabban: X+ azon
Ai attribútumokból áll, amelyekre az X→Ai függőség F-ből levezethető.

Algoritmus X+ számítására. Az X = X(0) ⊂ X(1) ⊂ ... ⊂ X(n) = X+ halmazsorozatot

képezzük. X(i)-ből X(i+1) előállítása: keressünk olyan F-beli P→Q függőséget, amelyre
P ⊆ X(i), de Q már nem része X(i)-nek! Ha találunk ilyet, akkor X(i+1) := X(i) U Q, ha nem,
akkor X(i) = X+, vagyis elértük a lezártat. Mivel A véges halmaz, így az eljárás véges sok
lépésben véget ér.

Könnyen belátható, hogy a fenti módon generált X+ halmaz bármely eleme függ X-től.
Annak bizonyításától, hogy X+ az összes X-től függő elemet tartalmazza, itt eltekintünk.

43. Példa. Tekintsük az R=(Z,F) sémát, ahol Z = {A, B, C, D, E}, és F tartalmazza az

alábbi függőségeket:

{C} → {A}
{B} → {C,D}
{D,E} → {C}

Határozzuk meg a {B}+ halmazt!

X(0) = {B} függőségek: {B} → {C,D}
X(1) = {B} U {C,D} = {B,C,D} függőségek: {B} → {C,D}

38

 {C} → {A}
X(2) = {B,C,D} U {A,C,D} = {A,B,C,D} függőségek: {B} → {C,D}
 {C} → {A}

X(3) = X(2), tehát {B}+ = {A,B,C,D}

44. Állítás. Egy K attribútumhalmaz akkor és csak akkor szuperkulcs, ha K+=A.
Bizonyítás: belátható, hogy K→A akkor és csak akkor teljesül, ha K+=A.

Kulcs meghatározása. Először legyen K=A, ez mindig szuperkulcs. K-ból sorra

elhagyunk attribútumokat, és mindig ellenőrizzük K+=A teljesül-e.

A fenti R=(Z, F) séma esetén jól látható, hogy {B, E} szuperkulcs. Most vizsgáljuk meg,
hogy Z-ből B-t illetve E-t elhagyva szuperkulcsot kapunk-e:

{A, C, D, E}+ = {A, C, D, E}
{A, B, C, D}+ = {A, B, C, D}
Egyik esetben sem kaptunk szuperkulcsot, amiből az következik, hogy minden kulcsnak

tartalmaznia kell B-t és E-t, vagyis az egyetlen kulcs {B,E}.

45. Definíció. Az F függéshalmaz lezártja az összes F-ből levezethető függést
tartalmazza. Jelölése F+.

46. Definíció. Az F+ egy részhalmazát bázisnak nevezzük, ha belőle F valamennyi

függése levezethető.

47. Állítás. F+ = {X→Y | Y ⊆ X+}, vagyis F+ pontosan azokból az X→Y függőségekből

áll, amelyekre Y részhalmaza X+-nak.
Bizonyítás. Belátható, hogy Y ⊆ X+ akkor és csak akkor teljesül, ha X→Y.

Algoritmus F+ meghatározására:
1. Vegyük az A attribútumhalmaz összes részhalmazát.
2. Minden X részhalmazhoz állítsuk elő X+ -t.
3. Valamennyi Y ⊆ X+ -ra az X→Y függőséget felvesszük F+-ba.

5.3. Felbontás (dekompozíció)

A redundáns Dolgozó táblát a 17. ábra szerint bontottuk szét. Most megvizsgáljuk, hogy

egy felbontás mikor helyes és mikor nem.

48. Definíció. Legyen R(A) egy relációséma, és X,Y ⊂ A úgy, hogy X U Y = A. Ekkor

az R(A) séma felbontása X, Y szerint az R1(X) és R2(Y) sémákat eredményezi. Az R séma
feletti T tábla felbontása projekcióval történik: T1=πX(T) és T2=πY(T).

49. Definíció. Egy felbontást hűségesnek nevezünk, ha bármely R feletti T tábla esetén

T=T1*T2. Vagyis, a felbontás után adódó táblákból természetes összekapcsolással az eredeti
táblát kapjuk vissza.

Könnyen belátható, hogy tetszőleges felbontás esetén T ⊆ T1*T2 teljesül. A hűségesség
tehát azt jelenti, hogy az összekapcsolás nem állít elő fölös sorokat.

Hűséges felbontásra a 17. ábrán láthattunk példát.

A hűséges helyett a veszteségmentes (lossless) kifejezés is használatos, amely valójában
nem sorok elvesztésére, hanem információvesztésre utal.

39

50. Példa. Nem hűséges felbontást kapunk, ha a Dolgozó táblát a VezAdószám mentén
bontjuk fel:
Dolg (Név, Adószám, Cím, VezAdószám)
Oszt (Osztálykód, Osztálynév, VezAdószám)

Ugyanis a Dolgozó definiálásakor nem kötöttünk ki VezAdószám → Osztálykód függést,
ezzel megengedtük, hogy egy személy több osztálynak is vezetője legyen. Ha például Takács
dolgozó az 1-es osztályon dolgozik, de ennek vezetője azonos az 5-ös osztály vezetőjével,
akkor a Dolg*Oszt táblában Takács kétszer fog szerepelni: egyszer az 1-es, egyszer az 5-ös
osztály dolgozójaként (18. ábra).

A Dolgozó tábla:
Név Adószám Cím Osztálykód Osztálynév VezAdószám
Takács 5555 Győr, Pap u. 7. 1 Munkaügyi 3333
Rácz 9999 Vác, Domb u. 1. 5 Pénzügyi 3333

A Dolg és Oszt táblák:

Név Adószám Cím VezAdószám
Takács 5555 Győr, Pap u. 7. 3333
Rácz 9999 Vác, Domb u. 1. 3333

Osztálykód Osztálynév VezAdószám
1 Munkaügyi 3333
5 Pénzügyi 3333

Az egyesített Dolg*Oszt tábla:
Név Adószám Cím Osztálykód Osztálynév VezAdószám
Takács 5555 Győr, Pap u. 7. 1 Munkaügyi 3333
Takács 5555 Győr, Pap u. 7. 5 Pénzügyi 3333
Rácz 9999 Vác, Domb u. 1. 1 Munkaügyi 3333
Rácz 9999 Vác, Domb u. 1. 5 Pénzügyi 3333

18. ábra. Nem hűséges felbontás következménye

A gyakorlatban rendszerint az alábbi tétel alapján végzünk dekompozíciót:

51. Heath tétele. Ha az R(A) sémánál A = B U C U D, ahol B, C és D diszjunkt

attribútum-részhalmazok és C → D, akkor az R1(B U C), R2(C U D) felbontás hűséges.

Bizonyítás: Legyen T egy tetszőleges R feletti tábla, T1 és T2 a megfelelő szétbontott
táblák. T ⊆ T1*T2 nyilvánvaló, ezért csak azt kell megmutatni, hogy T1*T2 ⊆ T. Legyen t ∈
T1*T2., Ekkor kell hogy legyen olyan t1 ∈ T1 és t2 ∈ T2, amelyek egyesítéseként t előállt,
vagyis t1(C) = t2(C). Kell, hogy legyenek továbbá olyan u1, u2 sorok T-ben, amelyekből
projekcióval t1, t2 származtatható, vagyis u1(B U C) = t1 és u2(C U D) = t2. Mivel u1(C) =
u2(C), így a C → D függőség miatt u1(D) = u2(D). Tehát a u1 = t, vagyis t szerepel T-ben.

52. Példa. A Dolgozó (név, adószám, cím, osztálykód, osztálynév, vezAdószám) tábla

esetén az {osztálykód} → {osztálynév, vezAdószám} függőség teljesül. Ezért ha
B = {név, adószám, cím}, C = {osztálykód}, D = {osztálynév, vezAdószám}, akkor a
Dolg (név, adószám, cím, osztálykód)
Oszt (osztálykód, osztálynév, vezAdószám)
felbontás Heath tétele alapján hűséges lesz.

40

53. Példa. Tekintsük az R(e, f, g, h) relációsémát, ahol {e, f} → g. Ekkor a B, C, D
attribútum részhalmazokat válasszuk úgy, hogy B = h, C = {e, f}, D = g. Mivel C → D, így
Heath tétele alapján az R1(e, f, h), R2(e, f, g) felbontás hűséges.

A függőségeket is figyelembe véve, egy R=(A,F) relációséma felbontása X, Y szerint

R1=(X,F1) és R2=(Y,F2), ahol F1 úgy választandó meg, hogy F1
+ az F+ azon

részhalmazával legyen egyenlő, amely csak X-beli attribútumokat tartalmaz, F2 hasonlóan.
Egy R=(A, F) séma R1=(X, F1), R2=(Y, F2) felbontását függőségőrzőnek nevezzük, ha

F1 U F2 az eredeti F bázisát adják. Egy hűséges dekompozíció nem feltétlenül függőségőrző.
Ha például a vállalat azzal a szokatlan feltétellel élne, hogy minden dolgozó a hozzá
legközelebb lakó osztályvezetőhöz kell hogy tartozzon, akkor a Dolgozó táblában Cím →
VezAdószám függés lép fel. A dekompozíció során ez a függőség elvész, de ez nem
változtat azon a tényen, hogy - a hűségesség miatt - a Dolg és Oszt táblákból természetes
join művelettel mindig visszaállítható az eredeti Dolgozó tábla.

Felbontás kulcs mentén

Legyenek K, A, B attribútumhalmazok. Ha K (szuper)kulcs, akkor az R(K, A, B) séma

felbontása az R1(K, A) és R2(K, B) sémákra hűséges.
Bizonyítás: K → B miatt Heath tételéből következik.

54. Példa: Dolgozó (azonosító, név, cím, osztálykód) lehetséges felbontása:

Dolg1 (azonosító, név, cím) és Dolg2 (azonosító, osztálykód), vagy
Dolg1 (azonosító, név, cím) és Dolg2 (azonosító, név, osztálykód).

Megjegyzés: kulcs mentén mindig lehet felbontani, de ennek általában nincs értelme,

mert nem szüntetünk meg vele redundanciát.

Egyesítés kulcs mentén

Ha két séma kulcsa megegyezik, akkor a sémák egyesíthetők, vagyis az R1(K, A) és

R2(K, B) sémák helyettesíthetők az R(K, A, B) sémával.

55. Példa: Egy vállalatnál a Bérosztály a fizetéseket a

DolgBér (azonosító, név, cím, fizetés) táblában, az Ellátási osztály a munkaruhákat a
DolgRuha (azonosító, név, kiadásdátum) táblában tartja nyilván.
Az egyesített vállalati adatbázis: Dolgozó (azonosító, név, cím, fizetés, kiadásdátum)
Az egyesítés kétoldali külső összekapcsolással célszerű.

Megjegyzés: ha az azonosító DolgBér-ben adószám, DolgRuha-ban személyi szám,

akkor az egyesítés nem lehetséges.

41

5.4. Normálformák

1. normálforma (1NF)

56. Definíció. Egy relációséma 1NF-ben van, ha az attribútumok értéktartománya csak

egyszerű (atomi) adatokból áll (nem tartalmaz például listát vagy struktúrát).
Mivel az 1NF feltétel teljesülését már a relációs modell definíciójánál kikötöttük, ezért

az 1NF-re hozást lényegében az E-K modellről relációs modellre történő átalakításnál
elvégeztük (összetett és többértékű attribútumok leképezése).

2. normálforma (2NF)

57. Definíció. Legyen R(A) relációséma, X,Y ⊆ A, és X→Y. Azt mondjuk, hogy X-től

teljesen függ Y, ha X-ből bármely attribútumot elhagyva a függőség már nem teljesül, vagyis
bármely X1 ⊂ X esetén X1→Y már nem igaz.

Megjegyzés: Ha K kulcs, akkor A teljesen függ K-tól.

58. Definíció. Egy attribútumot elsődleges attribútumnak nevezünk, ha szerepel a

relációséma valamely kulcsában, ellenkező esetben másodlagos attribútum. Vagyis, ha a séma
kulcsai K1,...,Kr, akkor K = K1 U...U Kr az elsődleges attribútumok halmaza, A–K a
másodlagos attribútumok halmaza.

59. Definíció: Egy relációséma 2NF-ben van, ha minden másodlagos attribútum

teljesen függ bármely kulcstól.

Következmények:
- Ha minden kulcs egy attribútumból áll, akkor a séma 2NF-ben van. Ilyen például a

Dolgozó (név, adószám, cím, osztálykód, osztálynév, vezAdószám) tábla.
- Ha a sémában nincs másodlagos attribútum, akkor 2NF-ben van. Ilyen például a

Fuvar (gkvez, rendszám, indul, érkezik) tábla, mivel a következő kulcsok vannak: {gkvez,
indul}, {gkvez, érkezik}, {rendszám, indul}, {rendszám, érkezik}.

A séma akkor nincs 2NF-ben, ha egy kulcs részhalmazától függ (egy vagy több)

másodlagos attribútum.

Ha a séma nincs 2NF-ben, akkor a táblában redundancia léphet fel. Tegyük fel ugyanis,
hogy valamely K kulcs L részhalmazától függ a másodlagos attribútumok egy B halmaza
(L→B). Ekkor a táblában több olyan sor lehet, amelyek L-en megegyeznek, így ezek
szükségképpen B-n is megegyeznek, ami a B-értékek redundáns tárolását eredményezi (lásd
az alábbi példát).

2NF-re hozás: a sémát felbontjuk Heath tétele szerint, a normálformát sértő függőség

mentén.
Ha valamely K kulcsra L ⊂ K és L→B (itt B legyen az összes L-től függő attribútum

halmaza), akkor a sémát felbontjuk az L→B függőség szerint. Legyen C = A – (L U B),
ekkor az R(A) sémát az R1(C U L) és R2(L U B) sémákkal helyettesítjük. Heath tétele
alapján a felbontás hűséges.

42

60. Példa. Tegyük fel, hogy egy vállalat dolgozói különféle projekteken dolgoznak

meghatározott heti óraszámban. Ezt a

DolgProj (adószám, név, projektkód, óra, projektnév, projekthely)

sémával tartjuk nyilván, a megfelelő tábla a 19. ábrán látható.

 Adószám Név Projektkód Óra Projektnév Projekthely
 1111 Kovács P2 4 Adatmodell Veszprém
 2222 Tóth P1 6 Hardware Budapest
 4444 Kiss P1 5 Hardware Budapest
 1111 Kovács P1 2 Hardware Budapest
 1111 Kovács P5 8 Teszt Szeged
 8888 Török P2 12 Adatmodell Veszprém
 5555 Takács P5 3 Teszt Szeged
 6666 Fekete P5 4 Teszt Szeged
 8888 Török P3 4 Software Veszprém
 7777 Nagy P3 14 Software Veszprém

19. ábra. A DolgProj séma feletti tábla

Függőségek:

adószám → név
projektkód → {projektnév, projekthely}
{adószám, projektkód} → óra

A sémában {adószám, projektkód} kulcs, mivel ettől minden attribútum függ,

ugyanakkor akár adószámot, akár projektkódot elhagyva ez már nem teljesül.
A séma nincs 2NF-ben, mert név csak adószámtól függ, vagyis a kulcs részhalmazától

függ. Felbontás az adószám → név függés mentén:

Dolg (adószám, név)
Dproj (adószám, projektkód, óra, projektnév, projekthely)

A Dproj séma a projektkód → {projektnév, projekthely} függőség miatt még mindig

nincs 2NF-ben. Felbontás ezen függőség mentén:

Dolg (adószám, név)
Proj (projektkód, projektnév, projekthely)
DP (adószám, projektkód, óra)

Itt már mindhárom séma 2NF-ben van (20. ábra).

43

 Dolg tábla: Proj tábla:
 Adószám Név Projektkód Projektnév Projekthely
 1111 Kovács P1 Hardware Budapest
 2222 Tóth P2 Adatmodell Veszprém
 4444 Kiss P3 Software Veszprém
 8888 Török P5 Teszt Szeged
 5555 Takács
 6666 Fekete
 7777 Nagy

 DP tábla:
 Adószám Projektkód Óra
 1111 P2 4
 2222 P1 6
 4444 P1 5
 1111 P1 2
 1111 P5 8
 8888 P2 12
 5555 P5 3
 6666 P5 4
 8888 P3 4
 7777 P3 14

20. ábra. A DolgProj séma normalizálása után keletkező táblák

3. normálforma (3NF)

61. Definíció. Legyen X, Z ⊆ A, és X→Z. Azt mondjuk, hogy X-től tranzitívan függ Z,

ha van olyan Y ⊆ A, amelyre X→Y és Y→Z, de X nem függ Y-tól, és az Y→Z függés
teljesen nemtriviális. Ellenkező esetben Z közvetlenül függ X-től.

Megjegyzés: Az "X nem függ Y-tól" és az "Y→Z függés teljesen nemtriviális" kiegészítő

feltételek nem csak a triviális esetek kiszűréséhez kellenek, hanem a későbbi állítások
szempontjából is lényegesek.

62. Definíció. Egy relációséma 3NF-ben van, ha minden másodlagos attribútuma

közvetlenül függ bármely kulcstól.

Következmény: Ha a sémában nincs másodlagos attribútum, akkor 3NF-ben van.

A séma nincs 3NF-ben, ha egy vagy több másodlagos attribútum tranzitívan függ

valamely kulcstól.

Ha a séma nincs 3NF-ben, akkor a táblában redundancia léphet fel. Tegyük fel ugyanis,
hogy valamely K kulcstól tranzitívan függ a másodlagos attribútumok egy B halmaza, vagyis
valamely Y attribútumhalmazra K→Y és Y→B, de K nem függ Y-tól és Y ∩ B üres. Mivel
Y-tól nem függ K, így Y nem szuperkulcs, vagyis a táblában több olyan sor lehet, amelyek
Y-on megegyeznek. Ezek a sorok az Y→B függőség miatt szükségképpen B-n is
megegyeznek, ami a B-értékek redundáns tárolását eredményezi (lásd az alábbi példát).

44

3NF-re hozás. Ha másodlagos attribútumok egy B halmazára és valamely K kulcsra
K→Y→B tranzitív függés fennáll, akkor a sémát felbontjuk Heath tétele szerint az Y→B
függés mentén.

B legyen az összes Y-tól függő attribútum halmaza. Legyen C = A – (Y U B), ekkor az
R(A) sémát az R1(C U Y) és R2(Y U B) sémákkal helyettesítjük. Heath tétele alapján a
felbontás hűséges.

63. Példa. Tekintsük a vállalat dolgozóit és az osztályokat nyilvántartó sémát:

Dolgozó (név, adószám, cím, osztálykód, osztálynév, vezAdószám)

Függőségek:

adószám → {név, cím, osztálykód}
osztálykód → {osztálynév, vezAdószám}

A séma 2NF-ben van, mert egyetlen kulcs az adószám, amely egyelemű. Ugyanakkor

nincs 3NF-ben, mert tranzitív függés van:
adószám → osztálykód → {osztálynév, vezAdószám}.

3NF-re hozás: dekompozíció a függőség szerint:
Dolg (adószám, név, cím, osztálykód)
Oszt (osztálykód, osztálynév, vezAdószám)

64. Állítás. Ha egy relációséma 3NF-ben van, akkor 2NF-ben is van.

Bizonyítás (indirekt). Tegyük fel, hogy az R=(A,F) séma 3NF-ben van, és még sincs
2NF-ben. Ez utóbbi azt jelenti, hogy valamely Ai másodlagos attribútum nem teljesen függ
valamely K kulcstól, vagyis van olyan L ⊂ K, amelyre L→Ai. Ekkor viszont K-tól
tranzitíven függ Ai, ugyanis K→L→Ai, de L-től nem függ K (mivel K kulcs, tehát
minimális), valamint Ai nem eleme L-nek (mivel másodlagos attribútum).

Boyce-Codd normálforma (BCNF)

65. Definíció. Egy relációséma BCNF-ben van, ha bármely nemtriviális L→B függés

esetén L szuperkulcs.

A séma nincs BCNF-ben, ha van benne olyan nemtriviális függés, amelynek bal oldalán

nem szuperkulcs áll.

Ha a séma nincs BCNF-ben, akkor a táblában redundancia léphet fel. Tegyük fel ugyanis,
hogy L→B és L nem szuperkulcs Ezért a táblában több olyan sor lehet, amelyek L-en
megegyeznek, és a függőség miatt szükségképpen B-n is megegyeznek, ami a B-értékek
redundáns tárolását eredményezi.

BCNF-re hozás: a sémát felbontjuk Heath tétele szerint, a normálformát sértő függőség

mentén.
Ha L→B teljesen nemtriviális függés és L nem szuperkulcs, akkor a sémát felbontjuk az

L→B függőség szerint (itt B legyen az összes L-től függő attribútum halmaza). Legyen
C = A – (L U B), ekkor az R(A) sémát az R1(C U L) és R2(L U B) sémákkal helyettesítjük.
Heath tétele alapján a felbontás hűséges.

66. Állítás. Ha egy relációséma BCNF-ben van, akkor 3NF-ben is van.

Bizonyítás (indirekt): Tegyük fel, hogy a séma BCNF-ben van, de nincs 3NF-ben, vagyis
van olyan K→L→B tranzitív függés, ahol K kulcs. A tranzitív függés definíciójából adódóan

45

ekkor L-től nem függ K (ezért L nem szuperkulcs), továbbá L→B nemtriviális, ami
ellentmond a BCNF feltételezésnek.

A gyakorlatban ha egy séma 3NF-ben van, akkor általában BCNF-ben is van. Adódnak

azonban kivételek, ilyen az alábbi példa.

67. Példa. Tegyük fel, hogy a Fuvar sémában a gépkocsivezetők adószámát és TAJ-

számát is nyilvántartják: Fuvar (vezAdószám, vezTAJszám, rendszám, indul, érkezik)

Ekkor a kulcsok:

{vezAdószám, indul}, {vezTAJszám, indul},
{vezAdószám, érkezik}, {vezTAJszám, érkezik},
{rendszám, indul}, {rendszám, érkezik}

Nincs másodlagos attribútum, ezért a séma 3NF-ben van.

További függések:

{vezAdószám} → {vezTAJszám}
{vezTAJszám} → {vezAdószám}
Ezek a függések sértik a BCNF-et.

BCNF-re hozás: felbontás a {vezAdószám} → {vezTAJszám} függés mentén:

Gkvez (vezAdószám, vezTAJszám)
Fuvar (vezAdószám, rendszám, indul, érkezik)

4. normálforma (4NF)

68. Példa. Tekintsük a Rendelhet (nagyker, kisker, áru) sémát, ahol a tábla egy sora

adott kiskereskedőnek adott nagykereskedőtől beszerezhető árufajtáját jelenti. Ha egy
kiskereskedő adott nagykereskedővel kapcsolatban áll, akkor a nagykereskedő összes áruját
nyilvántartásba veszi (21. ábra). Ez azt jelenti, hogy ha valamely (Ni, Kj) és (Ni, Ak) párok
szerepelnek a táblában, akkor az (Ni, Kj, Ak) hármas is kell hogy szerepeljen. Kulcs: az összes
attribútum. Mivel nincs funkcionális függés, ezért a séma BCNF-ben van, ugyanakkor a tábla
erőteljesen redundáns, amit egy Szállít és egy Kínál táblára való felbontással szüntethetünk
meg. Ennek elméleti alapjait tárgyaljuk a továbbiakban.

Rendelhet tábla: Szállít tábla: Kínál tábla:
Nagyker Kisker Áru Nagyker Kisker Nagyker Áru
 N1 K1 A1 N1 K1 N1 A1
 N1 K1 A2 N1 K2 N1 A2
 N1 K1 A3 N2 K2 N1 A3
 N1 K2 A1 N2 K3 N2 A1
 N1 K2 A2 N2 A4
 N1 K2 A3
 N2 K2 A1
 N2 K2 A4
 N2 K3 A1
 N2 K3 A4

21. ábra. A Rendelhet tábla és felbontása

46

69. Definíció. Legyen K, L ⊆ A, és legyen M = A - (K U L). Azt mondjuk, hogy K-tól

többértékűen függ L, jelölésben K→→L, ha bármely R feletti T táblában ha két sor
megegyezik K-n, akkor a két sor kombinációja is szerepel T-ben. Ez pontosabban azt jelenti,
hogy ha a ti, tj sorokra ti(K) = tj(K), akkor van olyan t sor, amelyre az alábbiak teljesülnek:

- t(K) = ti(K) = tj(K)
- t(L) = ti(L)
- t(M) = tj(M)

Jól látható, hogy a fenti példában nagyker→→kisker többértékű függés van.

70. Definíció. A K→→L függés nemtriviális, ha K ∩ L = 0 és K U L ≠ A. (Ugyanis

K U L = A esetén M üres, és t = ti választásával a feltétel mindig teljesül.)

Állítás. Ha K→L, akkor K→→L.
Bizonyítás: t = tj választással nyilvánvaló.

71. Állítás. Ha K→→L, akkor K→→M.
Bizonyítás: a szimmetriából nyilvánvaló.

72. Fagin tétele. Az R(A) relációsémánál legyen A = B U C U D, ahol B, C és D

diszjunktak. R felbontása az R1(B U C), R2(C U D) sémákra akkor és csak akkor hűséges, ha
C →→ D fennáll.

Bizonyítás (direkt):
a) Ha a felbontás hűséges, azaz T=T1*T2, akkor a többértékű függés a természetes join

művelet definíciójából adódik: t1(B U C) ∈ T1, hasonlóan t2(C U D) ∈ T2, ezért
szükségképpen t ∈ T.

b) Ha C →→ D, akkor a hűségességet kell bizonyítanunk. Legyen t1∈T1 és t2∈T2,
amelyekre t1(C) = t2(C). Ekkor a t1 és t2 egyesítésével előálló rekord a függőség miatt
szerepel T-ben, vagyis T1*T2 ⊆ T. Ugyanakkor T ⊆ T1*T2 nyilvánvaló, így T = T1*T2.

73. Definíció. Egy relációséma 4NF-ben van, ha minden nemtriviális K→→L függés

esetén K szuperkulcs.

74. Állítás. Ha egy relációséma 4NF-ben van, akkor BCNF-ben is van.

Bizonyítás (direkt). Legyen K→L nemtriviális függés, belátjuk, hogy K szuperkulcs. Két
eset lehetséges:

- Ha K U L = A, akkor K→L miatt K szuperkucs.
- Ha K U L ⊂ A, akkor legyen L1 = L–K, ekkor K→L1, ezért K→→L1 nemtriviális,

amiből a 4NF tulajdonság miatt következik, hogy K szuperkulcs.

A séma nincs 4NF-ben, ha van benne olyan nemtriviális többértékű függés, amelynek

bal oldalán nem szuperkulcs áll.

Ha egy séma nincs 4NF-ben, akkor a tábla redundanciát tartalmazhat. Ha ugyanis
K→→L, és K nem szuperkulcs, akkor a táblában több olyan sor lehet, amely K-n
megegyezik, és ezekben a sorokban az L és M-értékek redundánsan szerepelnek.

4NF-re hozás: a sémát felbontjuk Fagin tétele szerint, a normálformát sértő függőség

mentén.
Ha K→→L nemtriviális függés, és K nem szuperkulcs, akkor az R(A) sémát az

R1(K U L) és R2(K U M) sémákkal helyettesítjük. Ez hűséges felbontás Fagin tétele szerint.

47

A Rendelhet séma az alábbi felbontással hozható 4NF-re (21. ábra):
Szállít (nagyker, kisker)
Kínál (nagyker, áru)

Normálformák összefoglalása

Az 1NF-re hozás a relációs modellnél kötelező. A további normálformák egyre

szigorúbb feltételeket írnak elő (2NF <= 3NF <= BCNF <= 4NF), amelyek kiküszöbölik a
redundanciát és az aktualizálási anomáliákat. Az ezek szerinti normalizálás célszerű, de nem
kötelező. A gyakorlatban azt kell mérlegelni, hogy a redundancia és az anomáliák mennyire
jelentenek súlyos veszélyt, indokolt-e azok megszüntetésével a táblák számát növelni
(dekompozíció). Erre mutat rá az alábbi példa.

75. Példa. Tegyük fel, hogy egy biztosító társaság az ügyfelei lakcíme mellett azt is

nyilvántartja, hogy hány lakásos házban laknak:
Ügyfél (adószám, név, szüldátum, lakcím, lakásszám)

A séma nincs 3NF-ben a lakcím → lakásszám függés miatt. Ez azonban csak akkor
okoz redundanciát, ha a biztosítónak több ügyfele lakik ugyanabban a házban. Két eset
lehetséges:

a) Ha ritkán fordul elő, hogy egy házban több ügyfél legyen, és a lakásszám
nyilvántartásának csak statisztikai jelentősége van, akkor nem érdemes felbontani a táblát.

b) Ha viszont a biztosító társaság ellenőrizni kívánja, hogy az egy házban lakók azonos
lakásszámot adnak-e meg (mert például ettől is függhet a biztosítás összege), akkor a
felbontás indokolt.

Adatbázis tervezés összefoglalása

Az adatbázis tervezés folyamata három fő lépésből áll:
1. Egyed-kapcsolat modell felírása.
2. Relációs adatbázis séma felírása. Az 1NF-re hozás már itt elvégzendő.
3. Relációsémák normalizálása.
4. Szükség esetén az egyed-kapcsolat modell módosítása a normalizálás szerint.

48

6. Az SQL nyelv

SQL = Structured Query Language (= strukturált lekérdező nyelv). A relációs adatbázis-

kezelés szabványos nyelve. Nem algoritmikus nyelv, de algoritmikus nyelvekbe beépíthető
(beágyazott SQL). Története:

1976: SEQUEL (= Structured English QUEry Language) az SQL eredeti változata,
IBM-nél fejlesztették ki.

1981: Oracle 2 (SQL alapú RDBMS, nagygépre).
1983: IBM: DB2 (SQL alapú RDBMS, nagygépre). A világ legnagyobb adatbázisait ma

is jórészt DB2-ben kezelik.
SQL szabvány (1986), az ANSI (= American National Standards Institute) definiálta.

Változatai: SQL-86, SQL-89.
SQL2 szabvány (1992), más néven SQL-92.
SQL3 szabvány (1999), más néven SQL:1999: rekurzió, triggerek, objektum-relációs

modell.
SQL:2003 szabvány: többek között XML támogatással bővült.
2006, 2008: további bővítések.

A jelenlegi SQL-implementációk általában az SQL2-nél jóval többet tudnak,

ugyanakkor előfordul, hogy az SQL2 bizonyos részleteit nem tartalmazzák, illetve a
szabványtól eltérő formában tartalmazzák (Oracle, MySQL, PostgreSQL).

Jelen anyagban az SQL2 szabványt vesszük alapul, de az utasításoknak csak a
fontosabb lehetőségeit tárgyaljuk. A konkrét rendszerek utasításai gyakran eltérnek az SQL2
szabványtól, ezért programozásnál mindig az adott rendszer kézikönyvei a mérvadók.

6.1. Általános jellemzés

Az SQL utasításait két fő csoportba szokták sorolni:
- DDL (= Data Definition Language): adatstruktúra definiáló utasítások.
- DML (= Data Manipulation Language): adatokon műveletet végző utasítások.

Jelen anyagban - az RDBMS fő feladatai alapján - az alábbi csoportokban tárgyaljuk az

SQL utasításokat:
- adatbázisséma definiálása (DDL),
- adatok aktualizálása (DML),
- lekérdezési lehetőségek (DML).

Szintaxis

Kisbetű és nagybetű a nyelv alapszavaiban egyenértékű.
Utasítások sorfolytonosan írhatók, lezárás pontosvesszővel.
Változó nincs, csak tábla- és oszlopnevekre lehet hivatkozni. Kifejezésben hivatkozás

egy tábla adott oszlopára: tábla.oszlop (ha a tábla egyértelmű, akkor elhagyható).
Alias név: név AS másodnév (egyes implementációkban AS elhagyható).
Szövegkonstans: 'szöveg'

49

Dátum: DATE '1968-05-12'. Egyes rendszerek az SQL szabványtól eltérő konvenciót
alkalmaznak, például 13-NOV-94 (Oracle)..

Idő: TIME '15:31:02.5' (óra, perc, másodperc).
Stringek konkatenációja: + vagy || .
Relációjelek: =, <=, >=, !=, <>
Logikai műveletek: AND, OR, NOT. Az SQL rendszerek "háromértékű logikát"

használnak, vagyis a TRUE és FALSE mellett a NULL (definiálatlan) érték is felléphet. Ha
egy kifejezés valamelyik eleme NULL, akkor a kifejezés értéke is NULL lesz.

Az SQL-szabvány szerint egy logikai kifejezés értéke ISMERETLEN (UNKNOWN), ha

benne NULL érték szerepel.

Az utasítások szintaxisának leírásánál az elhagyható részleteket szögletes zárójellel

jelöljük.

Speciális logikai kifejezések

x IS NULL: igaz, ha az x mező értéke NULL. Ez nem egyenértékű az "x = NULL"

kifejezéssel, ugyanis ennek értéke definiálatlan, mivel definiálatlan komponenst tartalmaz. A
gyakorlatban tehát az „x IS NULL” forma használandó.

x BETWEEN a AND b: igaz, ha a ≤ x ≤ b.

x IN halmaz: igaz, ha x megegyezik a megadott halmaz egy elemével. A halmazt

explicit módon vagy lekérdezéssel lehet megadni.
Példa: város IN ('Szeged','Szolnok','Pécs')

x relációjel ALL halmaz: igaz, ha x a halmaz minden elemével a megadott relációban

van.
Példa: fizetés != ALL (81000, 136000, 118000)

x relációjel ANY halmaz: igaz, ha a halmaznak van olyan eleme, amellyel x a

megadott relációban van.
Példa: fizetés < ANY (81000, 136000, 118000)

EXISTS halmaz: igaz, ha a halmaz nem üres. Például egy "EXISTS lekérdezés"

kifejezés értéke igaz, ha a lekérdezés legalább egy elemet ad vissza.

x LIKE minta: igaz, ha az x karaktersorozat megfelel a megadott mintának. Ha a

mintában "%" illetve "_" jel szerepel, az tetszőleges karaktersorozatot illetve tetszőleges
karaktert jelent. Példa: lakcím LIKE '%Vár u.%' igaz minden olyan lakcímre, amelyben
szerepel a "Vár u." részlet.

A fentiekben általában a NOT is használható, például x IS NOT NULL, x NOT IN

halmaz, stb.

50

6.2. Relációsémák definiálása (DDL)

Relációséma létrehozására a CREATE TABLE utasítás szolgál, amely egyben egy üres

táblát is létrehoz a sémához. Az attribútumok definiálása mellett a kulcsok és külső kulcsok
megadására is lehetőséget nyújt:

CREATE TABLE táblanév
 (oszlopnév adattípus [feltétel],
 ,
 oszlopnév adattípus [feltétel]
 [, táblaFeltételek]
);

Az adattípusok (rendszerenként eltérők lehetnek):

CHAR(n) n hosszúságú karaktersorozat
VARCHAR(n) legfeljebb n hosszúságú karaktersorozat
INTEGER egész szám (röviden INT)
REAL valós (lebegőpontos) szám, másnéven FLOAT
DECIMAL(n[,d]) n jegyű decimális szám, ebből d tizedesjegy
DATE dátum (év, hó, nap)
TIME idő (óra, perc, másodperc)

Az adattípushoz "DEFAULT érték" megadásával alapértelmezett érték definiálható. Ha
ilyet nem adunk meg, az alapértelmezett érték NULL.

Feltételek (egy adott oszlopra vonatkoznak):

PRIMARY KEY: elsődleges kulcs (csak egy lehet)
UNIQUE: kulcs (több is lehet)
REFERENCES tábla(oszlop) [ON-feltételek]: külső kulcs

Táblafeltételek (az egész táblára vonatkoznak):

PRIMARY KEY (oszloplista): elsődleges kulcs
UNIQUE (oszloplista): kulcs
FOREIGN KEY (oszloplista) REFERENCES tábla(oszloplista) [ON-feltételek]: külső kulcs

Ha a (külső) kulcs több oszlopból áll, akkor csak táblafeltétel formájában adható meg.

A PRIMARY KEY (elsődleges kulcs) és UNIQUE (kulcs) közötti különbségek:
- Egy sémában csak egy elsődleges kulcs, de tetszőleges számú további kulcs lehet.
- Külső kulcs általában a másik tábla elsődleges kulcsára hivatkozik.
- Egyes DBMS-ek az elsődleges kulcshoz automatikusan indexet hoznak létre.

A CREATE TABLE utasítással tulajdonképpen egy R = (A, F) relációsémát adunk meg,

ahol F megadására szolgálnak a kulcsfeltételek. Ha a relációséma BCNF-ben van, akkor
ezzel az összes függés megadható, hiszen ekkor csak szuperkulcstól lehet nemtriviális
függés.

76. Példa. Hozzuk létre az

Osztály (osztálykód, osztálynév, vezAdószám)
Dolgozó (adószám, név, lakcím, osztálykód)
relációsémákat SQL-ben:

51

CREATE TABLE Osztály
 (osztálykód CHAR(3) PRIMARY KEY,
 osztálynév CHAR(20),
 vezAdószám DECIMAL(10)
);
CREATE TABLE Dolgozó
 (adószám DECIMAL(10) PRIMARY KEY,
 név CHAR(30),
 lakcím CHAR(40) DEFAULT 'ismeretlen',
 osztálykód CHAR(3) REFERENCES Osztály(osztálykód)
);

A Dolgozó sémát így is lehetne definiálni:

CREATE TABLE Dolgozó
 (adószám DECIMAL(10),
 név CHAR(30),
 lakcím CHAR(40),
 osztálykód CHAR(3),
 PRIMARY KEY (adószám),
 FOREIGN KEY (osztálykód) REFERENCES Osztály(osztálykód)
);

77. Példa. A DolgProj (adószám, projektkód, óraszám) sémában összetett kulcs van,

amelynek definiálása csak tábla-feltételként lehetséges:

CREATE TABLE DolgProj
 (adószám DECIMAL(10) REFERENCES Dolgozó(adószám),
 projektkód CHAR(5),
 óraszám DECIMAL(2),
 PRIMARY KEY (adószám, projektkód)
);

A tábla módosításakor a definiált kulcsfeltételek automatikusan ellenőrzésre kerülnek.

PRIMARY KEY és UNIQUE esetén ez azt jelenti, hogy a rendszer nem enged olyan
módosítást illetve új sor felvételét, amely egy már meglévő kulccsal ütközne.

REFERENCES (külső kulcs hivatkozás) esetén ON-feltételek megadásával
szabályozhatjuk a rendszer viselkedését (jelölje T1 a hivatkozó és T2 a hivatkozott táblát):

- Alapértelmezés (ha nincs ON-feltétel): T1-ben nem megengedett olyan beszúrás és
módosítás, amely T2-ben nem létező kulcs értékre hivatkozna, továbbá T2-ben nem
megengedett olyan kulcs módosítása vagy sor törlése, amelyre T1 hivatkozik.

- ON UPDATE CASCADE: ha T2 egy sorában változik a kulcs értéke, akkor a rá való
T1-beli hivatkozások is megfelelően módosulnak (módosítás továbbgyűrűzése).

- ON DELETE CASCADE: Ha T2-ben törlünk egy sort, akkor T1-ben is törlődnek a rá
hivatkozó sorok (törlés továbbgyűrűzése).

- ON UPDATE SET NULL: ha T2 egy sorában változik a kulcs értéke, akkor T1-ben a
rá való külső kulcs hivatkozások értéke NULL lesz.

- ON DELETE SET NULL: ha T2-ben törlünk egy sort, akkor T1-ben a rá való külső
kulcs hivatkozások értéke NULL lesz.

A kulcsfeltételek ellenőrzése csak indexekkel oldható meg hatékonyan.

52

78. Példa.

CREATE TABLE Dolgozó
 (adószám DECIMAL(10) PRIMARY KEY,
 név CHAR(30),
 lakcím CHAR(40) DEFAULT 'ismeretlen',
 osztálykód CHAR(3) REFERENCES Osztály(osztálykód)
 ON UPDATE CASCADE
 ON DELETE SET NULL
);

Relációséma törlése:

DROP TABLE táblanév;

Hatására a séma és a hozzá tartozó adattábla törlődik.

Relációséma módosítása:

ALTER TABLE táblanév
 [ADD (újelem, ..., újelem)]
 [MODIFY (módosítás, ..., módosítás)]
 [DROP (oszlop, ..., oszlop)];

újelem: egy "oszlopnév adattípus [feltétel]", vagy egy "táblafeltétel", mint a CREATE

TABLE utasításban.
módosítás: "oszlopnév adattípus [feltétel]".
Az ALTER TABLE utasítás szintaxisa és szemantikája rendszerenként eltérő, például

oszlopok törlését nem minden rendszer engedi meg.

Példák:

ALTER TABLE Dolgozó ADD (szüldátum DATE);
ALTER TABLE Dolgozó MODIFY (lakcím VARCHAR(60));
ALTER TABLE Osztály
 MODIFY (vezAdószám REFERENCES Dolgozó(adószám));

6.3. Indexek létrehozása

Az indexek kezelése nem része az SQL2 szabványnak, de valamilyen formában minden

RDBMS támogatja. Index létrehozása általában a

CREATE [UNIQUE] INDEX indexnév ON tábla(oszloplista);

utasítással lehetséges, amely a megadott tábla felsorolt oszlopaira, mint indexkulcsra generál
indexet. Ha UNIQUE szerepel, akkor a tábla nem tartalmazhat két azonos indexkulcsú
rekordot. Index törlése a

DROP INDEX indexnév;

utasítással történik. Példák:
CREATE INDEX DolgInd1 ON Dolgozó(név);
CREATE INDEX DolgInd2 ON Dolgozó(osztálykód,név);

53

Az első példa egyszerű indexkulcsot tartalmaz, amely a dolgozók név szerinti keresését,
illetve rendezését támogatja. A második példában szereplő összetett indexkulcs az osztálykód
szerinti, osztályon belül pedig név szerinti keresést/rendezést segíti, mivel a rendszerek
általában az osztálykód és név attribútumok konkatenációjával képezik az indexkulcsot. Ez a
megoldás viszont a pusztán név szerinti keresést nem támogatja.

6.4. Adattábla aktualizálása (DML)

A táblába új sor felvétele az

INSERT INTO táblanév [(oszloplista)] VALUES (értéklista);

utasítással történik. Ha oszloplista nem szerepel, akkor valamennyi oszlop értéket kap a
CREATE TABLE-ben megadott sorrendben. Egyébként csak az oszloplistában megadott
mezők kapnak értéket, a többi mező értéke NULL lesz.

Példák:

INSERT INTO Dolgozó (név, adószám)
 VALUES ('Tóth Aladár', 1111);
INSERT INTO Dolgozó
 VALUES (1111, 'Tóth Aladár', , '12');

A táblába adatokat tölthetünk át másik táblából is, ha a VALUES(értéklista) helyére egy

lekérdezést írunk (lásd az Alkérdések fejezetben).

Sor(ok) módosítása az

UPDATE táblanév
 SET oszlop = kifejezés, ..., oszlop = kifejezés
 [WHERE feltétel];

utasítással történik. Az értékadás minden olyan soron végrehajtódik, amely eleget tesz a
WHERE feltételnek. Ha WHERE feltétel nem szerepel, akkor az értékadás az összes sorra
megtörténik.

Példák:

UPDATE Dolgozó
 SET lakcím = 'Szeged, Rózsa u. 5.'
 WHERE név = 'Kovács József';
UPDATE Dolgozó
 SET osztálykód = '003'
 WHERE osztálykód = '012';
UPDATE Dolgozó SET osztálykód = NULL;

Sor(ok) törlése a

DELETE FROM táblanév
 [WHERE feltétel];

utasítással lehetséges. Hatására azok a sorok törlődnek, amelyek eleget tesznek a WHERE
feltételnek. Ha a WHERE feltételt elhagyjuk, akkor az összes sor törlődik (de a séma
megmarad).

54

Példák:
DELETE FROM Dolgozó
 WHERE név = 'Kovács József';
DELETE FROM Osztály;

79. Példa. Tekintsük az alábbi utasításpárt:

INSERT INTO Dolgozó (név, adószám)
 VALUES ('Tóth Aladár',4321);
DELETE FROM Dolgozó WHERE adószám = 4321;

Ha a táblában korábban már volt egy 4321 adószámú sor, akkor a fenti utasításpár azt is
kitörli. Általában, ha egy tábla két azonos sort tartalmaz, DELETE utasítással nem tudjuk
csak az egyiket kitörölni. Ha ugyanis a WHERE feltétel az egyikre igaz, akkor szükségképpen
a másikra is igaz. A PRIMARY KEY feltétellel az ilyen anomáliák megelőzhetők.

6.5. Lekérdezés (DML)

Lekérdezésre a SELECT utasítás szolgál, amely egy vagy több adattáblából egy

eredménytáblát állít elő. Az eredménytábla a képernyőn listázásra kerül, vagy más módon
használható fel. (Egyetlen SELECT akár egy komplex felhasználói programot helyettesíthet!)

A SELECT utasítás alapváltozata:

SELECT [DISTINCT] oszloplista
 FROM táblanévlista
 [WHERE feltétel];

A "SELECT DISTINCT A1,...,An FROM T1,...,Tm WHERE feltétel" utasítás egyen-

értékű a következő relációs algebrai kifejezéssel:

E = πA1,...,An(σfeltétel(T1 x...x Tm))

Vagyis, a felsorolt táblák Descartes-szorzatából szelektáljuk a feltételnek eleget tévő

sorokat, majd ezekből projekcióval választjuk ki az E eredménytábla oszlopait. A DISTINCT
opciót akkor kell kiírni, ha az eredménytáblában az azonos sorokból csak egyet kívánunk
megtartani.

Ha oszloplista helyére * karaktert írunk, ez valamennyi oszlop felsorolásával
egyenértékű. A SELECT legegyszerűbb változatával adattábla listázását érhetjük el:
SELECT * FROM T;

A relációs algebra műveleteinek megvalósítása

Projekció:

SELECT [DISTINCT] A1,...,An FROM T;

Példa:
SELECT DISTINCT szerző, cím FROM Könyv;

Szelekció:

SELECT * FROM T WHERE feltétel;

Példa:
SELECT * FROM Könyv WHERE kivétel < 2013.01.01;

55

Descartes-szorzat: T1 x T2

SELECT * FROM T1,T2;

Természetes összekapcsolás. Állítsuk elő például az Áru (cikkszám, megnevezés) és

Vásárlás (cikkszám, mennyiség) táblák természetes összekapcsolását:

SELECT Áru.cikkszám, megnevezés, mennyiség
 FROM Áru, Vásárlás
 WHERE Áru.cikkszám = Vásárlás.cikkszám;

A fentivel egyenértékű, szintén gyakran használt szintaxis:

SELECT Áru.cikkszám, megnevezés, mennyiség
 FROM Áru INNER JOIN Vásárlás ON Áru.cikkszám = Vásárlás.cikkszám;

Megjegyzés. A fenti példákban a SELECT után nem elegendő csak „cikkszám”-ot írni,

annak ellenére, hogy esetünkben „Áru.cikkszám = Vásárlás.cikkszám”, tehát mindegy, melyik
cikkszámot választja a rendszer. Általában, ha egy lekérdezésben több azonos oszlopnév
szerepel, az SQL rendszerek megkövetelik a táblanév megadását.

Külső összekapcsolás. A fenti példát alapul véve, ha az eredménytáblában valamennyi

áru adatait szerepeltetni szeretnénk, akkor ez – az Oracle rendszer korábbi verzióiban használt
jelöléssel – az alábbi módon adható meg:

SELECT Áru.cikkszám, megnevezés, mennyiség
 FROM Áru, Vásárlás
 WHERE Áru.cikkszám (+)= Vásárlás.cikkszám;

Az SQL szabvány szerint a LEFT, RIGHT vagy FULL OUTER JOIN kulcsszavakkal

adható meg külső összekapcsolás, például:

SELECT Áru.cikkszám, megnevezés, mennyiség
 FROM Áru LEFT OUTER JOIN Vásárlás
 ON Áru.cikkszám = Vásárlás.cikkszám;

Théta join:

SELECT * FROM T1,T2 WHERE feltétel;

Unió:

(SELECT * FROM T1)
UNION
(SELECT * FROM T2);

A két SELECT eredménytáblája kompatibilis kell, hogy legyen (lásd Relációs algebra).

Metszet:

(SELECT * FROM T1)
INTERSECT
(SELECT * FROM T2);

A két SELECT eredménytáblája kompatibilis kell, hogy legyen.

Különbség:

(SELECT * FROM T1)
EXCEPT
(SELECT * FROM T2);

A két SELECT eredménytáblája kompatibilis kell, hogy legyen. Egyes rendszereknél
EXCEPT helyett MINUS használatos.

56

80. Példa. Tekintsük az alábbi helyiség-adatbázist:
Helyiség (épület, ajtószám, név, alapterület)
Tanterem (épület, ajtószám, férőhely, tábla, vetítő)
Gépterem (épület, ajtószám, gépszám)

Kérjük le az oktatási célú géptermek listáját:
(SELECT épület, ajtószám FROM Tanterem)
INTERSECT
(SELECT épület, ajtószám FROM Gépterem);

Alias nevek

A SELECT után megadott oszloplista valójában nem csak oszlopneveket, hanem

tetszőleges kifejezéseket is tartalmazhat, és az eredménytábla oszlopainak elnevezésére alias
neveket adhatunk meg:

81. Példa. a Raktár(cikkszám, név, egységár, mennyiség) táblából egy E(áru, érték)

tábla létrehozása:
SELECT név AS áru, egységár*mennyiség AS érték FROM Raktár;

82. Példa. a Személy(adószám, név, születésiév) táblából egy E(név, életkor) tábla

létrehozása:
SELECT név, 2013-születésiév AS életkor FROM Személy;

A FROM után megadott táblák esetén is használhatók alias nevek, és erre szükség is

van akkor, ha egy táblának önmagával való összekapcsolását képezzük:

83. Példa. Azonos nevű dolgozók lekérése a Dolgozó (adószám, név, lakcím) táblából:

SELECT d1.név, d1.adószám, d2.adószám
FROM Dolgozó AS d1, Dolgozó AS d2
WHERE d1.név=d2.név AND d1.adószám < d2.adószám;

Az adószámokra előírt feltétel azért kell, hogy önmagával ne párosítson rekordot,
illetve, hogy egy azonos nevű pár csak egyszer jelenjen meg.

Függvények

ABS(n): abszolút érték Példa:

ABS(-15) = 15

LOWER(char): konverzió kisbetűsre. Példa:
LOWER(’Kovács’) = ’kovács’

UPPER(char): konverzió nagybetűsre. Példa:
UPPER(’Kovács’) = ’KOVÁCS’

LTRIM(char): balról szóközök eltávolítása. Példa:
LTRIM(’ alma ’) = ’alma ’

RTRIM(char): jobbról szóközök eltávolítása. Példa:
RTRIM(’ alma ’) = ’ alma’

SUBSTR(char, m[, n]): a char string m-edik karakterétől n hosszú részstringet ad
vissza. (Ha n nem szerepel, akkor a végéig.) Az első karakter 1-es sorszámú. Példa:
SUBSTR(’ABCDEFG’,2,3) = ’BCD’

TO_CHAR(n): konverzió numerikusról vagy dátumról karakteresre. Példa:
TO_CHAR(123) = ’123’

57

TO_DATE(char): konverzió karakteresről dátumra. Példa:
TO_DATE(’15-JAN-06’)

TO_NUMBER(char): konverzió karakteresről numerikusra. Példa:
TO_NUMBER(’123’) = 123

Összesítő függvények

Egy oszlop értékeiből egyetlen értéket hoznak létre (például átlag). Általános alakjuk:

függvénynév ([DISTINCT] oszlopnév)

Ha DISTINCT szerepel, akkor az oszlopban szereplő azonos értékeket csak egyszer kell
figyelembe venni. A számításnál a NULL értékek figyelmen kívül maradnak. Az egyes
függvények:

AVG: átlagérték.
SUM: összeg.
MAX: maximális érték.
MIN: minimális érték.
COUNT: elemek száma. Ennél a függvénynél oszlopnév helyére * is írható, amely

valamennyi oszlopot együtt jelenti.

Példák:
- SELECT AVG(fizetés) FROM Dolgozó: az eredménytábla egyetlen elemből áll,

amely az átlagfizetést adja.
- SELECT SUM(fizetés) FROM Dolgozó: a fizetések összege.
- SELECT COUNT(*) FROM Dolgozó: a Dolgozó tábla sorainak száma, vagyis a

dolgozók száma.
- SELECT COUNT(DISTINCT osztkód) FROM Dolgozó: az osztályok száma.

Csoportosítás (GROUP BY, HAVING)

Ha a tábla sorait csoportonként szeretnénk összesíteni, akkor a SELECT utasítás a

GROUP BY oszloplista

alparanccsal bővítendő. Egy csoportba azok a sorok tartoznak, melyeknél oszloplista értéke
azonos. Az eredménytáblában egy csoportból egy rekord lesz. Az összesítő függvények
csoportonként hajtódnak végre.

84. Példa. A Dolgozó táblából osztályonként az átlagfizetést számoljuk. Az

eredménytáblának annyi sora lesz, ahány osztály van:
SELECT osztkód, AVG(fizetés) FROM Dolgozó
 GROUP BY osztkód;

85. Példa. A Projóra (dolgozó, projekt, óra) táblából dolgozónkénti és projektenkénti

óraszám összegzés:
SELECT dolgozó, SUM(óra) FROM Projóra GROUP BY dolgozó;
SELECT projekt, SUM(óra) FROM Projóra GROUP BY projekt;

58

Csoportosítási szabály: A SELECT után összesítő függvényen kívül csak olyan
oszlopnév tüntethető fel, amely a GROUP BY-ban is szerepel.

Hibás például az alábbi lekérdezés, amely azt szeretné megtudni, hogy az egyes
osztályokon kinek a legnagyobb a fizetése:
SELECT osztkód, név, MAX(fizetés) AS maxfiz FROM Dolgozó GROUP BY osztkód;

A hiba oka: név nem szerepelhet a SELECT után, mert a GROUP BY után sem szerepel. (Ha
egy osztályon több személynek is maximális a fizetése, a rendszer nem tudja eldönteni, hogy
melyiknek a nevét írja ki. A lekérdezés helyes megoldását majd az Alkérdések fejezetben
látjuk.)

A GROUP BY által képezett csoportok közül válogathatunk a

HAVING feltétel

alparancs segítségével: csak a feltételnek eleget tevő csoportok kerülnek összesítésre az
eredménytáblába.

86. Példa. Azon osztályok listája, ahol az átlagfizetés > 180 000 Ft:

SELECT osztkód, AVG(fizetés) FROM Dolgozó
 GROUP BY osztkód
 HAVING AVG(fizetés) > 180000;

Az eredménytábla rendezése

Bár a relációs modell nem definiálja a rekordok sorrendjét, a gyakorlatban rendszerint

valamilyen rendezettségben kívánjuk látni az eredményt. Erre szolgál az

ORDER BY oszlopnév [DESC], ..., oszlopnév [DESC]

alparancs, amely a SELECT utasítás végére helyezhető, és az eredménytáblának a megadott
oszlopok szerinti rendezését írja elő. Az oszlopnév után írt ASC (ascending) növekvő, DESC
(descending) csökkenő sorrendben való rendezést jelent. Alapértelmezés szerint a rendezés
növekvő sorrendben történik, ezért ASC kiírása fölösleges.

87. Példa. Dolgozók és fizetéseik listája az osztálykód szerint növekvő, osztályon belül

pedig fizetés szerint csökkenő sorrendben:
SELECT osztkód, név, fizetés FROM Dolgozó
 ORDER BY osztkód, fizetés DESC;

A SELECT utasítás általános alakja

A SELECT utasítás az alábbi alparancsokból állhat az alábbi sorrendben (a szögletes

zárójelben szereplő részek elhagyhatók):

SELECT [DISTINCT] oszloplista projekció
 FROM táblanévlista Descartes-szorzat
 [WHERE feltétel] szelekció
 [GROUP BY oszloplista csoportonként összevonás
 [HAVING feltétel]] csoport-szelekció
 [ORDER BY oszloplista]; rendezés

59

Ahol "oszloplista" szerepel, ott általában oszlopkifejezések listáját lehet megadni
(példák az Alias nevek alpontban). Az egyes alparancsok megadási sorrendje az angol nyelv
szabályait követi (lásd fent a mintautasítást), végrehajtási sorrendjük viszont az alábbi:

1. FROM Descartes-szorzat
2. WHERE szelekció
3. GROUP BY csoportonként összevonás
4. HAVING csoport-szelekció
5. SELECT projekció
6. ORDER BY rendezés

A végrehajtási sorrend határozza meg, hogy melyik alparancsban mire lehet hivatkozni.

Például GROUP BY után végrehajtott alparancsokban csak összesítő függvény és összesített
oszlop adható meg (lásd csoportosítási szabály).

88. Példa. A Dolgozó (név, adószám, lakcím, osztkód, fizetés) és Osztály (osztkód,

osztálynév, vezAdószám) táblákból kérjük le ábécé sorrendben azon osztályok nevét, ahol a
legkisebb fizetés is nagyobb, mint 200 000:

SELECT osztálynév, MIN(fizetés)
FROM Dolgozó, Osztály
WHERE Dolgozó.osztkód=Osztály.osztkód
GROUP BY Dolgozó.osztkód, osztálynév
HAVING MIN(fizetés)>200000
ORDER BY osztálynév;

6.6. Alkérdések

Az SQL nyelv ismertetésének elején láttunk halmazokat tartalmazó logikai

kifejezéseket. Egy ilyen halmaz SELECT utasítással is előállítható, például a

'Tóth Pál' IN (SELECT név FROM Dolgozó WHERE osztálykód='015')

logikai kifejezés akkor igaz, ha Tóth Pál a 015 kódú osztály dolgozója, vagy

EXISTS (SELECT * FROM Dolgozó WHERE fizetés < 80000)

akkor igaz, ha van 80000 Ft-nál kisebb fizetésű dolgozó.

Ha egy SELECT utasítás WHERE vagy HAVING feltételében olyan logikai kifejezés

szerepel, amely SELECT utasítást tartalmaz, ezt alkérdésnek vagy belső SELECT-nek is
nevezik. Általában, valamely SQL utasítás belsejében szereplő SELECT utasítást alkérdésnek
nevezzük.

89. Példa. Az alábbi utasítás azon dolgozók listáját adja, amelyek fizetése kisebb, mint

az átlagfizetés:
SELECT név, fizetés FROM Dolgozó
 WHERE fizetés < (SELECT AVG(fizetés) FROM dolgozó);

Ebben a példában az alkérdést elég csak egyszer kiértékelni, hiszen a Dolgozó tábla

minden egyes sorára ugyanazt az eredményt kapjuk. Ha viszont a belső SELECT-ben a külső
SELECT-beli táblák oszlopnevei szerepelnek, akkor a külső SELECT minden egyes
rekordjára kiértékelődik a belső SELECT. Egy kiértékelés során a külső változónevek
konstansnak tekintendők. Ilyen a következő példa:

60

90. Példa. A Dolgozó(név, cím, osztálykód, fizetés) táblából azon dolgozók listáját
kérjük, akiknek az osztályon belül a legnagyobb a fizetése (ha több ilyen van, mindegyiket ki
kell listázni). A Dolgozó tábla két példányát a D1 és D2 alias nevek különböztetik meg:
SELECT osztálykód, név, fizetés FROM Dolgozó AS D1
 WHERE fizetés = (SELECT MAX(fizetés) FROM Dolgozó AS D2
 WHERE D1.osztálykód = D2.osztálykód);

91. Példa. Ügyeljünk a típuskompatibilitásra! Hibás például az alábbi lekérdezés

WHERE feltétele, mert az alkérdés rekordhalmazt ad vissza, amely nem hasonlítható össze a
fizetés értékkel:
SELECT adószám, név FROM Dolgozó
 WHERE fizetés = (SELECT * FROM Dolgozó WHERE név=’Kovács’);

Helyesen:
SELECT adószám, név FROM Dolgozó
 WHERE fizetés = (SELECT fizetés FROM Dolgozó WHERE adószám=1234);

92. Példa. Bizonyos esetekben az alkérdés join-műveletet helyettesít, például a

Könyv (könyvszám, szerző, cím, olvasószám, kivétel)
Olvasó (olvasószám, név, lakcím)
sémák esetén az alábbi két lekérdezés egyaránt a pécsi olvasók által kikölcsönzött könyvek
listáját adja:
SELECT szerző, cím FROM Könyv WHERE olvasószám IN
 (SELECT olvasószám FROM Olvasó WHERE lakcím LIKE '%Pécs%');
SELECT szerző, cím FROM Könyv, Olvasó
 WHERE Könyv.olvasószám = Olvasó.olvasószám AND lakcím LIKE '%Pécs%';

Nem csak SELECT utasításban alkalmazható alkérdés:

93. Példa. Tekintsük a következő táblákat:

Dolgozó (adószám, név, fizetés)
Projekt (adószám, pkód, óraszám)

Az alábbi utasítás fizetésemelést hajt végre az A12 projekt dolgozóinál:
UPDATE Dolgozó
 SET fizetés=fizetés+10000
 WHERE adószám IN (SELECT adószám FROM Projekt
 WHERE pkód='A12');

Nem csak a logikai kifejezés tartalmazhat alkérdést, hanem az INSERT utasítás is:

INSERT INTO táblanév [(oszloplista)] SELECT ... ;

A SELECT annyi oszlopot kell hogy kiválasszon, amennyit oszloplista tartalmaz. A

többi oszlop NULL értéket vesz fel.

94. Példa. Tegyük fel, hogy a Raktár (cikkszám, név, egységár, mennyiség) táblából

egy Készlet (áru, érték) táblát szeretnénk létrehozni, amely az áruféleség megnevezését és az
aktuálisan tárolt mennyiség értékét tartalmazza. Ez a következőképp lehetséges:

CREATE TABLE Készlet
 (áru CHAR(20),
 érték INTEGER
);
INSERT INTO Készlet
 SELECT név, egységár*mennyiség FROM Raktár;

61

6.7. Nézettáblák (virtuális táblák)

Egy adatbázisban általában kétféle adatra van szükségünk:
- alapadatok: tartalmukat aktualizáló műveletekkel módosítjuk.
- származtatott adatok: az alapadatokból generálhatók.
Származtatott adattáblát például INSERT ... SELECT segítségével is létrehozhatunk

(lásd az előző pontot), ekkor viszont az nem követi automatikusan az alapadatok módosulását,
ha pedig minden aktualizáló műveletnél újragenerálnánk, az rendkívül lassú lenne. A
problémát a nézettábla oldja meg.

A nézettábla (virtuális tábla, view) nem tárol adatokat. Tulajdonképpen egy

transzformációs formula, amelyet úgy képzelhetünk el, mint ha ennek segítségével a tárolt
táblák adatait látnánk egy speciális szűrőn, „optikán” keresztül.

Nézettáblák alkalmazási lehetőségei:
- Származtatott adattáblák létrehozása, amelyek a törzsadatok módosításakor

automatikusan módosulnak (pl. összegzőtáblák).
- Bizonyos adatok elrejtése egyes felhasználók elől (adatbiztonság vagy egyszerűsítés

céljából).

Nézettábla létrehozása:

CREATE VIEW táblanév [(oszloplista)] AS alkérdés;

A SELECT utasítás eredménytáblája alkotja a nézettáblát. "Oszloplista" megadásával a

nézettábla oszlopainak új nevet adhatunk. A CREATE VIEW végrehajtásakor a rendszer csak
letárolja a nézettábla definícióját, és majd csak a rá való hivatkozáskor generálja a szükséges
adatokat. Ebből adódóan a nézettábla tartalma mindig aktuális.

A nézettáblák általában ugyanúgy használhatók, mint a tárolt adattáblák, vagyis ahol
egy SQL parancsban táblanév adható meg, ott rendszerint nézettábla neve is szerepelhet.

95. Példa. Származtatott adatok kezelése. A Raktár (cikkszám, név, egységár,

mennyiség) táblából létrehozott nézettábla:
CREATE VIEW Készlet (áru, érték) AS
 SELECT név, egységár*mennyiség FROM Raktár;

96. Példa. Adatok elrejtése. A Dolgozó (adószám, név, lakcím, osztálykód, fizetés)

táblához létrehozzuk a következő nézettáblát:
CREATE VIEW Dolg2 AS
 SELECT adószám, név, lakcím FROM Dolgozó
 WHERE osztálykód='A02';

Ha a nézettábla tartalmát módosítjuk, akkor a módosítás a megfelelő tárolt táblákon

hajtódik végre – és természetesen megjelenik a nézettáblában is. Alapelv, hogy egy SQL
rendszer csak akkor engedi meg a nézettábla módosítását, ha a módosítást egyértelműen
végre tudja hajtani a tárolt táblákon. Nem lehet módosítani például a fenti Készlet tábla érték
mezőjét, de a Dolg2 tábla lakcím mezője már gond nélkül módosítható. Nem lehet módosítani
továbbá a nézettáblát, ha definíciója

- DISTINCT opciót,
- FROM után egynél több táblanevet (join művelet),
- GROUP BY alparancsot

tartalmaz.

62

Példák a fenti korlátozások indokolására, a Dolg (adószám, név, lakcím) és ProjÓra
(adószám, projektkód, óra) táblák alapján:

- DISTINCT esetén:
CREATE VIEW HardProj(projkód) AS
SELECT DISTINCT projektkód FROM Projóra WHERE óra>10;
azon projektek listáját adja, amelyeken valaki 10-nél több órában dolgozik. Projkód
módosítása esetén a rendszer nem tudja eldönteni, hogy a ProjÓra táblában projektkód
valamennyi előfordulását módosítsa-e, vagy csak azokat, ahol ora>10.

- Join művelet esetén:
CREATE VIEW DolgProj AS
SELECT név, projektkód, óra FROM Dolg, Projóra WHERE
Dolg.adószám=Projóra.adószám;
Ha egy dolgozó több projekten dolgozik, és csak az egyik rekordban a nevét módosítom, a
rendszer nem tudja eldönteni, hogy a dolg táblában módosítsa-e a nevet.

- GROUP BY esetén:
CREATE VIEW SumProj AS
SELECT projektkód, SUM(óra) FROM Projóra WHERE óra<10 GROUP BY
projektkód;
az egyes projektekre a 10-nél kisebb óraszámokat összegzi. Itt a SUM(óra) mező nyilván
nem módosítható, projektkód módosítása esetén pedig a rendszer nem tudja eldönteni, hogy
a ProjÓra táblában a projektkód összes előfordulását módosítsa, vagy csak azokat, ahol
óra<10.

Ha egy módosítható nézettáblába új rekordot veszünk fel, akkor az alaptáblának a

nézettáblában nem szereplő oszlopaiba szükségképpen NULL kerül felvételre.
Tegyük fel, hogy a fenti Dolg2 táblába új rekordot szeretnénk felvenni:

INSERT INTO Dolg2 VALUES (3333, 'Tóth Pál');

Mivel osztálykód nem szerepel Dolg2-ben, így értéke az új rekordban szükségképpen NULL
lesz, vagyis az új dolgozó nem az 'A02' osztályra kerül felvételre, és így nem jelenik meg
Dolg2-ben. A hiba kiküszöbölhető, ha az osztálykódot felvesszük Dolg2-be:
CREATE VIEW Dolg2 AS
 SELECT adószám, név, lakcím, osztálykód FROM Dolgozó
 WHERE osztálykód='A02';
INSERT INTO Dolg2
 VALUES (3333, 'Tóth Pál', , 'A02');

Ha a CREATE VIEW utasítás végére a WITH CHECK OPTION záradékot illesztjük,

akkor a rendszer nem engedi meg a nézettábla olyan módosítását, amely nem tesz eleget a
leválogatási feltételnek. Például,
CREATE VIEW Dolg2 AS
 SELECT adószám, név, lakcím, osztálykód FROM Dolgozó
 WHERE osztálykód='A02' WITH CHECK OPTION;

nem engedi meg az osztálykód módosítását, vagy 'A02'-től különböző osztálykód felvitelét.

Lekérdezések kiértékelése. A nézettáblára vonatkozó lekérdezést relációs algebrai

formulával írjuk fel, ebbe behelyettesítjük a nézettábla definícióját, és a kapott formulát
értékeljük ki az alaptáblákra. Példa:

SELECT lakcím FROM Dolg2 WHERE név='Tóth Pál';

Ez relációs algebrával felírva:

E = πlakcim(σnév='Tóth Pál'(Dolg2)), ahol

Dolg2 = πadószám,név,lakcím,osztálykód(σosztálykód='A02'(Dolgozó))

A Dolg2 behelyettesítésével adódó formulát kell kiértékelni.

63

7. Aktív elemek (megszorítások, triggerek)

Aktív elem: olyan programrész, amely bizonyos szituációban automatikusan

végrehajtódik. Ennek speciális esete a megszorítás, ami bizonyos feltételek ellenőrzését
jelenti bizonyos helyzetekben.

7.1. Attribútumok megszorításai

A CREATE TABLE-ben valamely attribútum deklarációja után adhatók meg.

Kulcs feltételek: a CREATE TABLE utasításban adhatók meg a PRIMARY KEY,

UNIQUE, REFERENCES kulcsszavakkal. Aktualizálási műveleteknél a megfelelő feltétel
automatikus ellenőrzését váltják ki.

További megszorítások:

NOT NULL

Adott attribútum értéke nem lehet NULL. Hatására a rendszer megakadályoz minden olyan
műveletet, amely az adott attribútum NULL értékét eredményezné. Adatbevitelnél például ez
azt jelenti, hogy az attribútum értékét kötelező megadni.

CHECK (feltétel)

Az adott attribútum módosítását a rendszer csak akkor engedi meg, ha a feltétel teljesül.

97. Példa: A dolgozók nemét is nyilvántartjuk (F=férfi, N=nő):

CREATE TABLE Dolgozó
 (adószám DECIMAL(10) PRIMARY KEY,
 név CHAR(30) NOT NULL,
 nem CHAR(1) CHECK (nem IN ('F', 'N')),
 lakcím CHAR(40),
 osztkód CHAR(3) REFERENCES Osztály(osztkód)
);

98. Példa. Külső kulcs feltétel csak korlátozottan ellenőrizhető CHECK-feltétellel:

CREATE TABLE Dolgozó
 (adószám DECIMAL(10) PRIMARY KEY,
 név CHAR(30),
 lakcím CHAR(40),
 osztálykód CHAR(3)
 CHECK (osztálykód IN (SELECT osztálykód FROM Osztály))
);

A fenti CHECK biztosítja, hogy a Dolgozó tábla csak létező osztálykódra hivatkozhat, de
az Osztály tábla változásainál már nem ellenőrzi a külső kulcs feltételt. Vagyis a CHECK
feltétel ellenére előállhat olyan Dolgozó tábla, amelyre a feltétel nem teljesül.

Értéktartomány definiálása:

CREATE DOMAIN név típus [DEFAULT érték] [CHECK (feltétel)];

64

Értéktartomány módosítása ALTER DOMAIN, törlése DROP DOMAIN utasítással
történik.

99. Példa. A nemekhez tartozó konstansértékek definiálása:

CREATE DOMAIN NemÉrték CHAR(1) CHECK (VALUE IN ('F', 'N'));

Használata:
CREATE TABLE Dolgozó
 (adószám DECIMAL(10) PRIMARY KEY,
 név CHAR(30),
 nem NemÉrték,
 lakcím CHAR(40)
);

7.2. Táblára vonatkozó megszorítások

A CREATE TABLE végére, a táblaFeltételeknél helyezendők el. Kulcs feltételek:

PRIMARY KEY, UNIQUE, FOREIGN KEY kulcsszavakkal. Ha a CHECK feltétel egyszerre
több attribútumot érint, akkor szintén a táblaFeltételeknél helyezendő el.

100. Példa. Biztonsági ellenőrzésként megköveteljük, hogy a könyvek kölcsönzésénél a

kivétel dátuma előzze meg a visszahozási határidőt::
CREATE TABLE Könyv
 (könyvszám DECIMAL(6) PRIMARY KEY,
 szerző CHAR(30),
 cím CHAR(30),
 kivétel DATE,
 vissza DATE,
 CHECK (kivétel < vissza)
);

7.3. Általános megszorítások

Több táblára (általában, a teljes adatbázissémára) vonatkozhatnak. Megadásuk:

CREATE ASSERTION név CHECK (feltétel);

A feltételben szereplő táblák bármelyikének módosításakor a feltétel ellenőrzésre kerül.

101. Példa. A Dolgozó(adószám, név, fizetés, osztálykód) és Osztály(osztálykód,

osztálynév, vezAdószám) táblák esetén megköveteljük, hogy a vezetők fizetése legalább
100 000 Ft legyen:
CREATE ASSERTION VezetőFizetés
 CHECK (NOT EXISTS
 (SELECT * FROM Dolgozó, Osztály
 WHERE Dolgozó.adószám = Osztály.vezAdószám
 AND fizetés < 100000));

A feltétel két esetben sérülhet: ha egy dolgozó fizetését változtatjuk, vagy ha egy dolgozót
vezetőnek nevezünk ki. Ezért a fenti önálló megszorítás nem helyettesíthető egyetlen táblára
vonatkozó megszorítással.

Az önálló megszorítás törlése:

DROP ASSERTION név;

65

7.4. Megszorítások kezelése

A megszorításokat célszerű elnevezni a "CONSTRAINT név" előtag segítségével.

Például a Dolgozó tábla név attribútuma esetén:
név CHAR(30) CONSTRAINT NévKulcs UNIQUE

Ezután a kulcsfeltétel elvethető a következő utasítással:
ALTER TABLE Dolgozó DROP CONSTRAINT NévKulcs;

A kulcsfeltétel újra érvényesíthető táblafeltételként:
ALTER TABLE Dolgozó ADD CONSTRAINT NévKulcs UNIQUE (név);

Értéktartományra vonatkozó megszorítás esetén:

CREATE DOMAIN NemÉrték AS CHAR(1)
 CONSTRAINT FérfiVagyNő CHECK (VALUE IN ('F', 'N'));

Értéktartományra vonatkozó megszorítás hasonlóan módosítható:
ALTER DOMAIN NemÉrték DROP CONSTRAINT FérfiVagyNő;

7.5. Triggerek

A trigger egy aktualizálási művelet esetén végrehajtandó programrészletet definiál.

Megadása:

CREATE TRIGGER név
{ BEFORE | AFTER | INSTEAD OF }
{ DELETE | INSERT | UPDATE [OF oszlopok] }
ON tábla
[REFERENCING [OLD AS régi] [NEW AS új]
[FOR EACH ROW]
[WHEN (feltétel)] programblokk;

Jelölés: a fenti szintaxis leírásban { x | y } azt jelenti, hogy x és y egyike választható.

név: a trigger neve.
BEFORE, AFTER, INSTEAD OF: az aktualizálási művelet előtt, után, vagy helyette lép

működésbe a trigger.
DELETE, INSERT, UPDATE OF: az aktualizálási művelet neve.
ON tábla: ezen tábla aktualizálásakor lép működésbe a trigger.
REFERENCING: lehetővé teszi, hogy a tábla aktuális sorának aktualizálás előtti és

utáni állapotára névvel hivatkozzunk.
FOR EACH ROW: ha megadjuk, akkor a trigger a tábla minden egyes sorára lefut,

amelyet az aktualizálási művelet érint (sor szintű trigger). Ha nem adjuk meg, akkor egy
aktualizálási művelet esetén csak egyszer fut le a trigger (utasítás szintű trigger).

WHEN feltétel: a megadott feltétel teljesülése esetén hajtódik végre a trigger.
programblokk: egy vagy több SQL utasításból álló, vagy valamely programozási

nyelven írt blokk.

66

102. Példa sor szintű triggerre. Az alábbi trigger egy

FizetésNapló (dátum, adószám, régifiz, újfiz) táblában gyűjti a fizetés-módosítások adatait:

CREATE TRIGGER fiz_napló
 AFTER UPDATE OF fizetés ON Dolgozó
 REFERENCING OLD AS régi NEW AS új
 FOR EACH ROW
INSERT INTO FizetésNapló
 VALUES (SYSDATE, régi.adószám,
 régi.fizetés, új.fizetés);

A trigger engedélyezett vagy letiltott állapotban lehet. Létrehozáskor engedélyezett,
változtatás ALTER TRIGGER utasítással lehetséges (nem részletezzük).

67

8. Beágyazott SQL

Az SQL lehetőségeivel nem oldható meg minden adatbázis kezelési feladat. SQL-ben

például nem használhatók változók és vezérlési szerkezetek, így az adatbázis algoritmikus
kezelése sem lehetséges.

Ezért az SQL utasításokat általában egy hagyományos algoritmikus programnyelv (C,
Java, stb.) utasításaival keverten használjuk, és az SQL utasításokban felhasználhatók a
befogadó programnyelv változói is. Ezt a megoldást nevezzük beágyazott SQL-nek
(embedded SQL).

a) Befogadó nyelv utasításai + beágyazott SQL utasítások

Előfordító (precompiler)

b) Befogadó nyelv utasításai + függvényhívások

Befogadó nyelv fordítóprogram + SQL függvénykönyvtár

c) Futtatható program

22. ábra. Beágyazott SQL fordítása

Jellemző megoldási módok:
- Precompiler alkalmazása (22. ábra), amely a forráskódban felismeri az SQL

utasításokat, és lecseréli azokat a befogadó nyelv függvényhívásaira (például Oracle Pro*C).
- Az SQL nyelvet algoritmikus lehetőségekkel bővítik. Itt valójában nincs befogadó

nyelv, az algoritmikus nyelv és az SQL szerves egységet képez. (Ilyen például az Oracle
rendszer PL/SQL nyelve.) Ezt úgy képzelhetjük el, mint ha a 22. ábrán a)-ból közvetlen
fordítással adódna c).

- A befogadó nyelvben beágyazott SQL utasítások helyett csak a nekik megfelelő
függvényhívások használhatók (például ODBC, JDBC, PHP). Ekkor a 22. ábrán eleve a b)
fokozatról indulunk.

A továbbiakban részletesebben megnézünk néhány SQL beágyazási módszert.

8.1. SQL beágyazás ANSI C-be

Nem konkrét implementációt, hanem az SQL2 szabvány által definiált általános

megoldást tárgyaljuk. Befogadó nyelvként ANSI C-t tételezünk fel. Minden beágyazott SQL
utasítás elé EXEC SQL írandó, az előfordító ez alapján ismeri fel a neki szóló utasításokat.

68

Kommunikációs változók: a befogadó nyelv azon változói, amelyeket SQL
utasításokban is használni kívánunk. Ezeket

EXEC SQL BEGIN DECLARE SECTION;
 ...
EXEC SQL END DECLARE SECTION;

utasítások között kell deklarálni. Csak olyan típusok használhatók, amelyeket a befogadó
nyelv és az SQL implementáció egyaránt támogat.

A beágyazott SQL utasításokban lényegében bárhol használhatunk kommunikációs
változót, ilyenkor annak neve elé kettőspont írandó.

SQLSTATE változó: hibakódot tartalmaz, az SQL utasítások állítják be. Általában 5

karakterből áll, hibátlan végrehajtás esetén értéke '00000'.

103. Példa. Rekord felvétele a könyv táblába. A program a 23. ábrán látható.

void újkönyv()
{ EXEC SQL BEGIN DECLARE SECTION;
 char kszám[6];
 char kszerző[30];
 char kcím[50];
 char SQLSTATE[6]; // a stringlezáró karakter miatt 5+1 elemű
 EXEC SQL END DECLARE SECTION;
 /* Itt a képernyőről bekéri a könyvszám, szerző, cím adatokat
 és letárolja a megfelelő változókba. */
 EXEC SQL INSERT INTO Könyv VALUES (:kszám, :kszerző, :kcím);
 if (strcmp(SQLSTATE,"00000")) ...; // hibaüzenet kiírása
}

23. ábra. Új rekord felvétele a Könyv táblába

Lekérdezések, kurzorok

A SELECT utasítás beágyazása problematikus, mivel eredménytáblát ad vissza. Két

eset lehetséges:

a) Egysoros lekérdezés. Ha a SELECT csak egy sort ad vissza, akkor

EXEC SQL SELECT oszlopok INTO változók FROM ...;

alakban használható. Ha a SELECT nem egy sort ad vissza, akkor a változók nem kapnak
értéket, és SQLSTATE megfelelően beállításra kerül. Példák:

EXEC SQL SELECT szerző, cím INTO :kszerző, :kcim
 FROM Könyv WHERE könyvszám = :kszám;

EXEC SQL SELECT AVG(fizetés) INTO :átlagfiz FROM Dolgozó;

b) Többsoros lekérdezés. Ha a SELECT több sort ad vissza, akkor egy rekordmutatót,

úgynevezett kurzort kell definiálni:

EXEC SQL DECLARE kurzornév CURSOR FOR alkérdés;

69

A kurzor a lekérdezés (SELECT utasítás) által definiált eredménytáblához rendelődik.
Használat előtt a kurzort meg kell nyitni:

EXEC SQL OPEN kurzor;

Hatására a kurzor a tábla első sora elé mutat. A kurzort léptetni az

EXEC SQL FETCH FROM kurzor INTO változólista;

utasítással lehet. Hatására a kurzor a soron következő rekordra lép, és annak mezői a
változólista megfelelő elemeibe tárolódnak. Ha a FETCH elérte a tábla végét (az utolsó utáni
rekordra lép), akkor a változók nem kapnak értéket, és SQLSTATE-be a "02000" konstans
kerül.

Használat után a kurzort le kell zárni:

EXEC SQL CLOSE kurzor;

A lejárt kurzor újabb OPEN-nel újra megnyitható, így a tábla többször végigjárható.

104. Példa. Készítsünk kimutatást egy vállalat dolgozóiról, amely megadja, hogy a

80 000, 120 000, 200 000, 300 000, 500 000 értékek által határolt jövedelemsávokba hány
dolgozó esik. A program a 24. ábrán látható. Az eredmény a dolgozoSzam tömbben
keletkezik.

void jövedelemSávok()
{ int határ[5] = {80000, 120000, 200000, 300000, 500000};
 int dolgozóSzám[6] = {0, 0, 0, 0, 0, 0};
 int i;
 EXEC SQL BEGIN DECLARE SECTION;
 int jövedelem;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL DECLARE sor CURSOR FOR
 SELECT fizetés FROM Dolgozó;
 EXEC SQL OPEN sor;

 while (1)
 { EXEC SQL FETCH FROM sor INTO :jövedelem;
 if (strcmp(SQLSTATE,"02000")==0) break;
 for (i=0; i<5; i++)
 if (jövedelem < határ[i]) break;
 dolgozóSzám[i]++;
 }
 EXEC SQL CLOSE sor;
}

24. ábra. Jövedelem statisztikát készítő program

70

Ha a tábla rekordjait más sorrendben kívánjuk bejárni, a kurzor deklarációjába a
SCROLL szót kell illeszteni:

EXEC SQL DECLARE kurzornév SCROLL CURSOR FOR lekérdezés;

Ezután a FETCH utasításban az alábbi kulcsszavak használhatók:
- NEXT: következő sor (ez az alapértelmezés),
- PRIOR: előző sor,
- FIRST, LAST: első ill. utolsó sor,
- RELATIVE n: n sorral előre (vagy vissza, ha n negatív),
- ABSOLUTE n: az n-edik sor.

Példa:

EXEC SQL FETCH LAST FROM sor INTO :jövedelem;

Ha a sorokat valamilyen rendezettség szerint kívánjuk bejárni, akkor a kurzort deklaráló

SELECT-ben az ORDER BY alparancsot kell alkalmazni. Példa:

EXEC SQL DECLARE sor CURSOR FOR
 SELECT fizetés FROM Dolgozó
 ORDER BY név;

void rendelés()
{ EXEC SQL BEGIN DECLARE SECTION;
 char vevő[20];
 char csz[12];
 int eár, menny, érték;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL DECLARE rendelésSor CURSOR FOR
 SELECT * FROM Rendelés;
 EXEC SQL OPEN rendelésSor;

 while (1)
 { EXEC SQL FETCH FROM rendelésSor INTO :vevő, :csz, :menny, :érték;
 if (strcmp(SQLSTATE,"02000")==0) break;
 EXEC SQL SELECT egységár INTO :eár FROM Áru
 WHERE cikkszám = :csz;
 érték = eár * menny;
 if (érték < 2000)
 EXEC SQL DELETE FROM Rendelés
 WHERE CURRENT OF rendelésSor;
 else
 EXEC SQL UPDATE Rendelés SET érték = :érték
 WHERE CURRENT OF rendelésSor;
 }
 EXEC SQL CLOSE rendelésSor;
}

25. ábra. Rendelések feldolgozása

71

Aktualizáló műveletek kurzorral

Az UPDATE és DELETE utasítások a kurzor sorára is alkalmazhatók, ha a WHERE

feltételben CURRENT OF kurzornév szerepel.

105. Példa. Egy kereskedő cég az árukat és a beérkező rendeléseket az alábbi táblákban

tartja nyilván:

Áru (cikkszám, megnevezés, egységár)
Rendelés (vevő, cikkszám, mennyiség, érték)

Feladat: a rendelések feldolgozása úgy, hogy meghatározzuk minden tétel értékét
(egységár*mennyiség). Ha ez kisebb 2000-nél, akkor a rendelést töröljük, egyébként beírjuk
az értéket a Rendelés táblába. A program a 25. ábrán látható.

Dinamikus SQL

Ha egy adatbázis-alkalmazást igazán rugalmassá kívánunk tenni, akkor a felhasználó

számára biztosíthatjuk, hogy maga is megfogalmazhasson lekérdezéseket. Ilyenkor a
megfelelő SQL utasítás csak futás közben állítható elő, fordítási időben még nem. Ezt teszi
lehetővé az

EXEC SQL PREPARE sqlutasítás FROM string;

utasítás, amely a befogadó nyelven előállított string karaktersorozatot elemzi, és belőle az
sqlutasítás SQL-változóba előállítja a megfelelő (végrehajtható belső formátumú) SQL-
utasítást. Ezután az

EXEC SQL EXECUTE sqlutasítás;

segítségével végrehajtható az utasítás. Minden egy lépésben is elvégezhető az

EXEC SQL EXECUTE IMMEDIATE string;

utasítással. (A szétválasztás akkor indokolt, ha az elemzett utasítást sokszor kell végrehajtani,
és a többszöri elemzés idejét meg akarjuk takarítani.) Az eljárás alkalmazására a 26. ábra ad
példát.

void felhasználóiKérdés()
{ EXEC SQL BEGIN DECLARE SECTION;
 char *kérdés;
 EXEC SQL END DECLARE SECTION;

 /* A felhasználó által megadott kérdésből SQL utasítást
 tartalmazó string szerkesztése 'kérdés'-be */

 EXEC SQL EXECUTE IMMEDIATE :kérdés;
}

26. ábra. Felhasználói lekérdezést feldolgozó program

72

8.2. ODBC

ODBC = Open Database Connectivity
ODBC 1.0 specifikáció: Microsoft, 1992.
Az ODBC magja szabványos, vagyis lényegében megfelel az SQL:1999 szabvány CLI

(= Call-Level Interface) specifikációjának, amelyet röviden SQL/CLI-nek neveznek.

A lényeg: normál C nyelvű programot írhatunk, amelynél egy függvénykönyvtár

segítségével érjük el az adatbázist, alapvetően SQL utasításokat küldhetünk a DBMS-nek.
Ezzel bizonyos rendszerfüggetlenség érhető el: különböző platformokon és különböző
DBMS-ek esetén ugyanaz a forrásprogram használható. (Probléma viszont, hogy az egyes
DBMS-ek SQL-szintaxisa eltérhet.)

Windows környezetben a befogadó program elején általában az alábbiakat kell include-
olni:
#include <stdio.h>
#include <windows.h>
#include <sql.h>
#include <sqlext.h>

Hatására az ODBC függvények, típusok, konstansok használhatók. Az ODBC-
függvények által visszaadott érték SQLRETURN típusú, értéke 0 hibátlan végrehajtás esetén.

Az alábbi adatstruktúrák használhatók:
- Környezet (Environment): a kliens hozza létre a DBMS-sel való kapcsolat

előkészítéséhez.
- Kapcsolat (Connection): DBMS-sel való kapcsolat leírására szolgál. Egy

környezethez több kapcsolat tartozhat.
- ODBC-utasítás (Statement): egy SQL utasítás leírására szolgál. Minden ODBC-

utasítás valamely kapcsolathoz tartozik. Ugyanaz az ODBC-utasítás különböző időpontokban
különböző SQL-utasításokat tartalmazhat.

A fentiek kezelése handle-k (az adatstruktúrára mutató pointerek) segítségével történik.
Ezek típusai sorrendben SQLHENV, SQLHDBC, SQLHSTMT.

Handle létrehozására szolgáló függvény:

SQLAllocHandle(hType, hIn, hOut)

hType: a handle típusa, lehetséges értékei:
SQL_HANDLE_ENV, SQL_HANDLE_DBC, SQL_HANDLE_STMT.

hIn: a magasabb szintű elemet megadó handle.
Környezet esetén SQL_NULL_HANDLE adandó meg.

hOut: az SQLAllocHandle által létrehozott handle címe.

Példa adatbázis-szerverhez való kapcsolódásra (a kipontozott részek a konkrét

szoftverkörnyezettől függenek):
SQLHENV env;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN ret;
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
// beállítjuk a környezeti paramétereket:
SQLSetEnvAttr(env, ...);

73

SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
// megnyitjuk a kapcsolatot:
ret = SQLDriverConnect(dbc, ...);
// ellenőrizzük, hogy a kapcsolatteremtés sikeres volt-e
 if (SQL_SUCCEEDED(ret)) {
 printf("Kapcsolat létrejött\n");
 } else {
 printf("Sikertelen kapcsolódás\n");
 exit(-1);
 }
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

SQL utasítás előkészítése:

SQLPrepare(sh, st, sl)

sh: utasítás handle
st: SQL utasításra mutató pointer
sl: az SQL utasítás hossza (karaktereinek száma). SQL_NTS megadása esetén a

rendszer maga állapítja meg a hosszat a lezáró null-karakter alapján.
A függvény hatására az sh handle a továbbiakban az st utasítást reprezentálja.

SQL utasítás végrehajtása:

SQLExecute(sh)

sh: utasítás handle
A végrehajtás evidens INSERT, UPDATE, DELETE esetén. SELECT esetén úgy kell

elképzelni, hogy a lekérdezés eredménye valahol létrejön készen arra, hogy elérjük egy
implicit kurzorral.

SQL utasítás közvetlen végrehajtása:

SQLExecDirect(sh, st, sl)

sh: utasítás handle
st: SQL utasításra mutató pointer
sl: az SQL utasítás hossza
Az utasítás hatása egyenértékű az

SQLPrepare(sh, st, sl)
SQLExecute(sh)

párral.

Példa: Egy árukat nyilvántartó Raktár(cikkszám, megnevezés, egységár, mennyiség)

táblában az árakat csökkenti 10%-kal:
 SQLPrepare(stmt, "UPDATE raktár SET egységár = egységár*0.9", SQL_NTS);
 SQLExecute(stmt);

Implicit kurzor léptetése:

SQLFetch(sh)

Feltételezzük, hogy az sh utasítás már végrehajtásra került, egyébként a fetch hibát
jelez. Ha a függvény visszaadott értéke az SQL_NO_DATA_FOUND konstanssal jelölt érték,
ez azt jelenti, hogy a lekérdezés nem adott vissza több értéket (tábla vége).

Példa:

 ret = SQLFetch(stmt);
 if (ret == SQL_NO_DATA_FOUND) printf("\n Nincs adat.\n");

74

Tábla oszlopainak kapcsolása befogadó nyelvi változókhoz:
SQLBindCol(sh, colNo, colType, pVar, varSize, varInfo)

sh: utasítás handle
colNo: az oszlop sorszáma a táblában
colType: az oszlopnak megfelelő befogadó nyelvi típus. Lehetséges értékei például

SQL_C_CHAR, SQL_C_SHORT.
pVar: pointer a befogadó nyelvi változóra.
varSize: a pVar-nak megfelelő változó mérete byte-ban.
varInfo: pointer egy integer változóra, amelyben az SQLBindCol függvény további

információt helyezhet el.

Példa: A Raktár táblában adott árhoz legközelebbi egységárú cikk adatainak lekérése:

int legközelebbiCikk(int adottár) {
 int diff, különbség, jóCikk;
 SQLHENV env;
 SQLHDBC con;
 SQLHSTMT stmt;
 SQLINTEGER c, a, cInfo, aInfo;

 diff = jóCikk = -1;
 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
 SQLSetEnvAttr(...);
 SQLAllocHandle(SQL_HANDLE_DBC, env, &con);
 SQLAllocHandle(SQL_HANDLE_STMT, con, &stmt);
 SQLDriverConnect(...);
 SQLPrepare(stmt, "SELECT cikkszám, egységár FROM Raktár", SQL_NTS);
 SQLExecute(stmt);
 SQLBindCol(stmt, 1, SQL_C_SHORT, &c, size(c), &cInfo);
 SQLBindCol(stmt, 2, SQL_C_SHORT, &a, size(a), &aInfo);
 while (SQLFetch(stmt) != SQL_NO_DATA_FOUND) {
 különbség = abs(a - adottár);
 if (diff == -1 || diff > különbség) {
 diff = különbség;
 jóCikk = c;
 }
 }
 return (jóCikk);
}

Paraméterek átadása:
Az SQLPrepare-ben a paraméterek helyére kérdőjel írandó. Az i-edik kérdőjel felel meg

az i-edik paraméternek. A paraméterekhez érték rendelhető
SQLBindParameter(...)
segítségével. A függvénynek 10 argumentuma van, alább csak a fontosabbakat használjuk.

Példa: INSERT utasítás paraméterezése a Dolgozó(adószám, név, cím, fizetés) táblára:

SQLPrepare(utasitas, "INSERT INTO dolgozo(nev, cim) VALUES (?, ?)",
 SQL_NTS);
SQLBindParameter(utasitas, 1,..., dolgozonev,...);
SQLBindParameter(utasitas, 2,..., dolgozocim,...);
SQLExecute(utasitas);

Lekérdező ciklusok optimalizálása:
Mivel az eredményhalmaz soronkénti lekérése lassú, megadhatunk sorhalmazt:

SQLSetStmtAttr(stmt, SQL_ATTR_ROW_ARRAY_SIZE, 20,...)

75

A fenti példában egyszerre 20 sort kérünk le, amely például kényelmesen elférhet egy
hálózati csomagban. Ezzel viszont a ciklusszervezés jóval bonyolultabbá válik, a részletektől
eltekintünk.

8.3. JDBC

JDBC = (Java Database Connectivity). Az ODBC-hez hasonló, de a Java objektum-

orientált jellegének felel meg.

Először egy JDBC driver betöltése szükséges a megfelelő DBMS-hez (ennek módja

platformfüggő). Eredményeként egy DriverManager objektum jön létre, amely az ODBC-beli
„környezet”-nek felel meg.

Kapcsolódás az adatbázishoz (az ODBC „kapcsolat” létrehozásához hasonlóan):

Connection kapcsolat = DriverManager.getConnection(url,user,password)

Vagyis, a DriverManager getConnection metódusát alkalmazva egy Connection típusú

változó jön létre.
url: az adatbázist azonosítja, például "jdbc:mysql://home.cab.u-szeged.hu:3306/test".
user: a DBMS-felhasználó azonosítója.
password: a DBMS-felhasználó jelszava.

Utasítás létrehozása a CreateStatement metódus paraméteres és paraméter nélküli

változatával lehetséges:
CreateStatement()

Statement típusú objektumot ad vissza. SQL utasítás nem tartozik hozzá, hasonlóan a
ODBC-beli SQLAllocHandle-hez.
CreateStatement(sqlutasitás)

SQL-utasításstringet kap, és PreparedStatement típusú objektumot ad vissza. ODBC-
ben az SQLAllocHandle + SQLPrepare párnak felel meg.

Utasítás végrehajtása: két-két (paraméteres és paraméter nélküli) változat: "query"

lekérdezésekre, "update" minden módosító utasításra (INSERT, CREATE TABLE stb.)
vonatkozik.
executeQuery(sqllekérdezés)

Statement objektumra hajtódik végre, ResultSet típusú objektumot ad vissza, amely az
eredménysorok multihalmaza.
executeQuery()

PreparedStatement objektumra hajtódik végre. Szintén ResultSet objektumot ad vissza.
executeUpdate(sqlmódosítás)

Statement objektumra hajtódik végre, az adatbázist módosítja, nincs visszaadott
eredményhalmaz.
executeUpdate()

PreparedStatement objektumra hajtódik végre, egyébként mint az előző.

Példa: Egy árukat nyilvántartó Raktár(cikkszám, megnevezés, egységár, mennyiség)

táblában a cikkek árát csökkenti 10%-kal:

76

void árcsökkentés() {
 Connection kapcsolat = DriverManager.getConnection(...);
 Statement stmt = kapcsolat.createStatement();
 stmt.executeUpdate("UPDATE Raktár SET egységár = egységár*0.9");
 kapcsolat.close(); //kapcsolat lezárása
}

Implicit kurzor használata:
A ResultSet osztályhoz az alábbi metódusok tartoznak:
next(): az implicit kurzort a következő sorra lépteti (első meghíváskor lép az első

sorra). FALSE értéket ad vissza, ha nincs több sor.
getString(i), getInt(i), getFloat(i), stb.: az aktuális sor i-edik mezőjét adja

vissza.

Példa: A Raktár táblában adott árhoz legközelebbi egységárú cikk adatainak lekérése:

int legközelebbiár(int adottár) {
 Connection kapcsolat = DriverManager.getConnection(...);
 PreparedStatement stmt = kapcsolat.createStatement(
 "SELECT cikkszám, egységár FROM Raktár"
);
 ResultSet tábla = stmt.executeQuery();
 int diff = -1;
 int jóCikk = -1;
 while(tábla.next()) {
 int c = tábla.getInt(1);
 int a = tábla.getInt(2);
 int aktdiff = (a - adottár)*(a - adottár);
 if(diff == -1 || diff > aktdiff) {
 diff = aktdiff;
 jóCikk = c;
 }
 }
 kapcsolat.close();
 return(jóCikk);
}

Paraméterek átadása:
Az ODBC-hez hasonlóan kérdőjelekkel történik. A setString(i, v),

setInt(i, v), stb. metódusokat használhatjuk, amelyek az SQL-utasítás i-edik
paraméteréhez a v értéket rendelik.

Példa: INSERT utasítás paraméterezése a Dolgozó(adószám, név, cím, fizetés) táblára:
PreparedStatement utasitas = kapcsolat.createStatement(
 "INSERT INTO dolgozo(nev, cim) VALUES (?, ?)");
utasitas.setString(1, nev);
utasitas.setString(2, cim);
utasitas.executeUpdate();

8.4. PHP

A PHP tulajdonképpen egy általános célú algoritmikus nyelv, amelyet dinamikus

weboldalak előállítására terveztek (PHP = Personal Home Page). Rendszerint az alábbi három
szoftvert együtt alkalmazzák:

- Apache: közkedvelt web szerver program. Letölthető: www.apache.org
- PHP interpreter. Letölthető: www.php.net.

77

- MySQL: adatbázis szerver. Letölthető: www.mysql.com.
Célszerűbb azonban ezeket nem külön-külön letölteni, hanem együtt, az XAMPP

telepítő csomag formájában: www.apachefriends.org/en/xampp.html

A fejlesztési technológia lényege:
- A statikus, HTML nyelvű weblapok forrásszövegébe PHP programrészeket illesztünk.

Az Apache-ba integrált PHP-értelmező ezeket végrehajtja, melynek eredményeként egy
módosított HTML-kód generálódik, és az Apache ezt a weblapot küldi ki a kliens felé.

- A PHP program függvényhívásokon keresztül éri el a MySQL szervert, és az
adatbázisból lekért adatokkal építheti fel a dinamikus weblapot.

A fenti technológia részletes bemutatását a pub/Adatbázisok/PhpMysql.ppt tananyag

tartalmazza.

78

9. A MySQL adatbázis-szerver

Nyílt forráskódú szoftver, letölthető a www.mysql.com honlapról. Gyakran alkalmazzák

a PHP nyelvvel és az Apache webszerverrel együtt internetes alkalmazásoknál.

Történet:
1979: UNIREG: belső használatra szánt adatbázis-kezelő (fejlesztője Michael Widenius,

becenevén Monty) (Indexelt ISAM tárolóhelyeket kezel.)
1981. Monty a svéd TcX DataKonsult AB vállalatnál dolgozik.
1994. A TcX az UNIREG-et alkalmazza dinamikus weblapok készítéséhez, de az

UNIREG-et túlságosan költségesnek találta. Ezért a Hughes Technologies által fejlesztett
mSQL (a miniSQL rövidítése, fejlesztője David Hughes) adatbázis-kezelővel próbálkozott,
amely azonban nem kezelte az indexeket, ezért jóval kisebb hatékonyságú volt, mint az
indexelt adatstruktúrákat kezelő UNIREG.

1995. A TcX elkészíti MySQL 3.11-et Monty és Hughes együttműködésével, az mSQL
felületének megtartásával és az UNIREG indexelési technikájának beépítésével.

Később a TcX átalakul MySQL AB néven, a MySQL nyílt forráskódúvá válik. Becslések
szerint jelenleg több mint négymillió szerveren fut.

2008. A Sun felvásárolja a MySQL AB-t.
2009. Az Oracle felvásárolja a Sun-t.

A MySQL jellemzői:
- Nyílt forráskódú, többféle platformon futtatható (pl. Win, Mac, Solaris).
- Többszálas rendszer: minden bejövő kapcsolatot (kliens folyamatot) külön szál kezel.
- Hatékonyság szempontjából az egyik legjobb rendszer.
- Kevesebb szolgáltatást nyújt, mint egyes kereskedelmi rendszerek, pl. Oracle.
- A tranzakciókezelést csak a MySQL újabb változatainál valósították meg, tranzakciók

izolációs szintjeit a rendszer támogatja. A tranzakciókezelés csak akkor van jelen, ha
engedélyezzük. A hatékonyságot rontja.

- SQL3-ból az objektum-relációs lehetőségeket a MySQL egyelőre nem tartalmazza.
- Alkalmazásprogramozási felület (API) a legtöbb nyelvhez, pl. C, C++, Java, PHP.
- Külső összekapcsolások támogatása.

A MySQL fontosabb segédprogramjai:
- mysql: SQL-alapú konzol program, kliens folyamatok vezérlésére. A begépelt

parancsok több sorosak lehetnek, pontosvesszővel kell őket lezárni.
- mysqladmin: rendszeradminisztrációs feladatok elvégzésére.
- mysqldump: adattáblák definíciójának és tartalmának fájlra írása.
- mysqlhotcopy: futásidőben végrehajtott biztonsági mentés.
- mysqlimport: különféle formátumú adatok beolvasása MySQL táblákba.

A MySQL többféle adattárolási mechanizmust (storage engine) használ, ezek két fő

típusba sorolhatók:
- Tranzakciós táblák: biztonságosabbak, rendszerösszeomlás esetén helyreállíthatók.

COMMIT, ROLLBACK használható (lásd az adatbiztonságról szóló fejezetet). Hibás
módosítás esetén a korábbi állapot áll helyre. Hatékonyabb párhuzamos végrehajtás.

- Nem tranzakciós táblák: a fenti előnyök nélkül, viszont gyorsabbak és kevesebb
tárolóhelyet igényelnek.

79

Fontosabb tárolási típusok:
- MyISAM: gyors, és fulltext search-et támogat, nem tranzakciós.
- MERGE: több MyISAM táblát egy táblaként kezel, nem tranzakciós.
- InnoDB: tranzakciós táblatípus sorzárolással.
- BDB (Berkeley-DB): tranzakciós táblatípus lapzárolással.
A tárolási típust a CREATE TABLE utasítás TYPE paraméterében kell megadni,

alapértelmezés a MyISAM.

Kliens parancsok

Belépés:

MYSQL –U felhasználó –P

A –U kapcsoló a felhasználónévre, a –P kapcsoló a jelszó bekérésére utal. (Ha ez
utóbbit nem adjuk meg, akkor parancssorban kell megadni a jelszót, ami viszont ekkor látható
lenne a képernyőn.) A belépés sikeres, ha utána megjelenik a mysql> prompt.

Kilépés:

QUIT

Adatbázisok listája:

SHOW DATABASES;

Telepítés után a rendszer – verziótól függően – például az alábbi adatbázisokat
tartalmazhatja:

- information_schema: rendszerkatalógus (a fontosabb táblák: tables, columns, views,
triggers, user_privileges, ...)

- mysql: a rendszer saját adminisztrációs adatbázisa (táblák: user, ...).
- test: üres adatbázis tesztelési célokra.

Adatbázis létrehozása:

CREATE DATABASE adatbázis;

Adatbázis megnyitása:
USE adatbázis;

Adatbázis törlése:
DROP DATABASE adatbázis;

Megnyitott adatbázis tábláinak listája:
SHOW TABLES;

Adott tábla struktúrájának lekérése:
SHOW COLUMNS FROM tábla;

Több soros SQL parancsok is beírhatók (lezárás pontosvesszővel), de ajánlatos ezeket

külön TXT fájlon elkészíteni, és átirányítással végrehajtani: <parancsfile.txt

80

10. Xbase típusú rendszerek

Xbase család: az 1980-as évek elejétől különböző cégek által fejlesztett, de közös

alapelvekre épülő és többé-kevésbé kompatibilis PC alapú relációs adatbáziskezelő
rendszerek (RDBMS-ek): dBase, FoxBase, FoxPro, Clipper. Az első változatok igen
egyszerűek voltak (az első PC-k lehetőségeihez igazodva), ezeket fokozatosan
továbbfejlesztették az alapelvek megtartásával.

Általános jellemzők:
– Minden adattábla külön fájlon van. (.DBF kiterjesztés, szabványos, nyilvános

adatformátum. Számos más rendszer is felismeri.)
– Algoritmikus programnyelv, amely – az SQL beágyazáshoz hasonlóan – tartalmazza

az adatbázis-kezelő utasításokat is. Végrehajtása interpreterrel.
– Nem SQL-alapú rendszerek, bár az újabb változatok több-kevesebb SQL támogatást is

tartalmaznak.

Az Xbase rendszerek ma már elavultnak számítanak, elsősorban azért, mert

szemléletmódjuk idegen az SQL-től (pl. munkaterület, aktuális tábla fogalma). Ugyanakkor
még igen sok működő alkalmazással találkozunk, ezért az alapelvek megismerése ajánlott. A
továbbiakban a FoxPro parancsnyelvének alapjaival ismerkedünk meg, amelyek lényegében
változatlan formában érvényesek az Xbase család valamennyi rendszerénél.

Megjegyzés. Az Xbase rendszereknél egyetlen adattáblát szoktak adatbázisnak nevezni,

mi azonban továbbra is adattáblák együttesét tekintjük adatbázisnak.

10.1. A parancsnyelv alapjai

Minden parancsot új sorban kell kezdeni. Ha egy parancs nem fér ki egy sorban, a sor

végén pontosvesszővel jelzendő, hogy a következő sorban folytatódik.

Speciális adattípusok, konstansok:
- dátum: 'mm/dd/yy' string, a CTOD() függvénnyel konvertálható dátum típusúra.
- logikai: .T., .F.
- memo: változó hosszúságú szövegmező. Tetszőleges szöveges információt tartalmaz-

hat.
Műveleti jelek: +, -, *, /, .AND., .OR., .XOR., .NOT.
Stringek konkatenációja: +

Változónevek:
- mezőnév: az aktuális adattábla aktuális rekordjának "mezőnév" mezőjét jelenti.
- táblanév–>mezőnév vagy táblanév.mezőnév: a "táblanév" adattábla aktuális

rekordjának "mezőnév" mezőjét jelenti (például DOLG–>LAKCIM)
- munkaváltozó: nem kell deklarálni, az első értékadással definiálódik a típusa. Újabb

értékadáskor újradeklarálódik (például VAL='szoveg', VAL=25).
- &változó: a "változó" nevű karakteres változó aktuális értékét helyettesíti a parancsba

(makróhelyettesítés, például USE &adat).

81

10.2. Relációsémák és adattáblák létrehozása, kezelése

SELECT munkaterület
Munkaterület kiválasztása. Az Xbase rendszerek legalább 10 munkaterületet

biztosítanak az adattáblák kezelésére, egy munkaterületen egyszerre csak egy táblát
használhatunk. Az egyes munkaterületek jelölésére az 1, 2, ..., 10 számokat, vagy az A, B, ...,
J betűket, vagy a munkaterületen megnyitott tábla nevét használhatjuk. Például
SELECT 2

a 2. számú munkaterület kiválasztását jelenti. Minden további parancs a kiválasztott
munkaterületre, illetve az ott megnyitott táblára (aktuális tábla) vonatkozik.

CREATE táblanév

Új relációséma (és adattábla) létrehozása. A parancs begépelése után egy ablakban
megadhatjuk a tábla mezőinek nevét, típusát és hosszát. Az eljárás végén az újonnan
létrehozott adattábla megnyitásra kerül az aktuális munkaterületen.

USE táblanév
Adattábla megnyitása. Ezzel egy már létező táblát (DBF file-t) nyitunk meg az aktuális
munkaterületen. Műveletet végezni csak megnyitott táblán lehet. A táblanév nélküli USE
parancs az aktuális munkaterületen lévő táblát lezárja.

MODIFY STRUCTURE

Relációséma módosítása. Az aktuális tábla mezőinek nevét, típusát és hosszát lehet
módosítani.

BROWSE

Tábla megjelenítése "táblázat" formában, módosítási lehetőséggel.

INDEX ON kifejezés TO indexfile [UNIQUE]
Tábla indexelése. A "kifejezés" tetszőleges karakteres típusú kifejezés lehet, az

indexkulcsot adja meg (általában mezőnév vagy mezőnevek konkatenációja, amelyet + jellel
jelölünk). A parancs hatására a megadott nevű indexfile jön létre. A tábla a továbbiakban az
index szerint rendezve jelenik meg a képernyőn, és a parancsok is eszerint kezelik. UNIQUE
esetén az azonos kulcsú rekordokból csak egy példányt indexel.

Példa a Könyv tábla indexelésére:
INDEX ON szerző+cím TO Szercím UNIQUE

Az indexfile kiterjesztése és formátuma rendszerenként változik, például dBase típusú
rendszereknél NDX, Fox típusú rendszereknél IDX a kiterjesztés.

SET FILTER TO feltétel

Szelekciós szűrő megadása. A továbbiakban csak a "feltétel"-nek eleget tevő rekordok
érhetők el, minden kiadott parancs csak ezekre vonatkozik. Például a könyvtári adatbázis 2.
változatában ha egy adott olvasó által kikölcsönzött könyveket szeretnénk áttekinteni, akkor
SET FILTER TO olvasószám='355'

parancs kiadása után BROWSE segítségével kényelmesen megtekinthetjük és módosíthatjuk
az adott olvasóhoz tartozó rekordokat. A feltétel nélkül kiadott SET FILTER TO kikapcsolja
a szűrőt.

82

SET FIELDS TO mezőnévlista

Projekciós szűrő megadása. A továbbiakban csak a felsorolt mezők jelennek meg a
képernyőn. A szűrő a SET FIELDS OFF/ON paranccsal ki/bekapcsolható.

10.3. Kapcsolat táblák között, algoritmikus eszközök

A relációs adatmodell lényege, hogy több tábla között külső kulcsok segítségével

kapcsolatot tud teremteni. Ennek gyakorlati használatát támogatja az alábbi parancs:

SET RELATION TO kapcsolómező INTO táblanév
Két tábla rekordmutatóinak összekapcsolása. Az aktuális munkaterületen megnyitott

tábla kerül összekapcsolásra egy másik munkaterületen megnyitott "táblanév" táblával. Az
aktuális tábla kell, hogy tartalmazzon egy "kapcsolómező" nevű mezőt (külső kulcs), és a
"táblanév" tábla egy ennek megfelelő (gyakran azonos nevű, általában elsődleges kulcs
szerepét betöltő) mező szerint kell, hogy legyen indexelve.

A parancs hatására az aktuális tábla rekordmutatójának mozgását automatikusan követi
a másik tábla rekordmutatója. Pontosabban, a másik tábla rekordmutatója mindig éppen arra a
rekordra áll, amelynek index értéke megegyezik az aktuális tábla aktuális rekordjának
"kapcsolómező" értékével.

Tekintsük például a könyvtári adatbázis 2. változatát, vagyis a következő relációs

sémákat:
Könyv (könyvszám, szerző, cím, olvasószám, kivétel)
Olvasó (olvasószám, név, lakcím)

Adjuk ki a következő parancssorozatot:

SELECT 1
USE Olvasó
INDEX ON olvasószám TO Olvind
SELECT 2
USE Könyv
SET RELATION TO olvasószám INTO Olvasó

Ciklusszervezés:

DO WHILE feltétel
 ciklusmag
ENDDO

Feltételes elágazás:

IF feltétel
 utasítások
[ELSE
 utasítások]
ENDIF

Rekord mezője értékadó utasítással nem módosítható, erre a célra az alábbi szolgál:

REPLACE mezőnév WITH kifejezés

Program (.PRG fájl) futtatása:

DO programnév

83

11. Adatbiztonsági mechanizmusok

Nagy adatbázis-alkalmazásoknál sok felhasználó és nagyszámú, párhuzamosan futó

kliens folyamat mellett is biztosítani kell az adatbázis sértetlenségét, még esetleges üzemzavar
(rendszerleállás, áramkimaradás, stb.) esetén is. Ezzel a kérdéskörrel foglalkozunk a
továbbiakban.

11.1. Tranzakciós feldolgozás

Tranzakció: adatbázis-kezelő műveletek sorozata, amelyeket egy egységként célszerű

kezelni, mert a részműveletek közben átmenetileg sérülhet az adatbázis integritása.

106. Példa. A Számla (számlaszám, egyenleg) táblán banki átutalás végrehajtása egyik

számláról a másikra. A megfelelő beágyazott SQL program a 27. ábrán látható.

void átutalás()
{ EXEC SQL BEGIN DECLARE SECTION;
 int szsz1, szsz2; // számlaszámok
 int egyenl;
 int összeg;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT egyenleg INTO :egyenl FROM Számla
 WHERE számlaszám = :szsz1;

 if (egyenl >= összeg)
 { EXEC SQL UPDATE Számla
 SET egyenleg = egyenleg - :összeg
 WHERE számlaszám = :szsz1;
 EXEC SQL UPDATE Számla
 SET egyenleg = egyenleg + :összeg
 WHERE számlaszám = :szsz2;
 }
 else printf("Nincs fedezet!");
}

27. ábra. Banki átutalást végrehajtó program

Probléma: Ha hardver vagy szoftver hiba miatt egy tranzakció végrehajtása közben a

DBMS leáll (rendszerösszeomlás), és ez a fenti példában a két UPDATE utasítás között
következik be, akkor az átutalt összeg elvész.

Megoldás: Biztosítani kell, hogy vagy végrehajtódjon a tranzakció valamennyi
utasítása, vagy egyik se hajtódjon végre. Rendszerösszeomlás esetén ez azt jelenti, hogy a
rendszer újraindításakor a félkész tranzakciók visszavonásra kerülnek.

Tranzakciós feldolgozást támogató SQL utasítások:

COMMIT;
Tranzakció lezárása, az eddig kiadott SQL parancsok hatásának véglegesítése.

COMMIT előtt a változások még visszafordíthatók.

84

Általában két COMMIT között kiadott SQL parancsok sorozatát tekintjük

tranzakciónak. A fenti átutalás() függvényt úgy alakíthatjuk tranzakcióvá, hogy az elejére és
végére

EXEC SQL COMMIT;

utasítást írunk.

SAVEPOINT azonosító;

Tranzakción belüli pontot azonosít (címke jellegű funkció).

ROLLBACK [TO savepoint];
Változások visszapörgetése a tranzakció elejéig, vagy a tranzakción belül megadott

„savepoint”-ig. A ROLLBACK műveletet alkalmazhatja a rendszer (pl. újraindításkor), de
élhet vele a programozó is, ha adott szituációban vissza kívánja vonni a tranzakciót.

11.2. Párhuzamos hozzáférések

Kliens-szerver modellben, ha a tranzakciók párhuzamosan időosztásban futnak, akkor

egymást megzavarhatják, ha egyik vagy mindkettő módosítja az adatbázist. A 27. ábra szerinti
program esetén, ha az első számla egyenlege 100 000 Ft, és ebből ketten egyszerre kívánnak
átutalni 80 000 Ft-ot, akkor a fedezetellenőrzés dacára az egyenleg negatív lesz (28. ábra).

1. folyamat: sz1 fedezet ellenőrzés OK.
2. folyamat: sz1 fedezet ellenőrzés OK.
1. folyamat: sz1: egyenleg := egyenleg – 80000 (új egyenleg: 20000)
2. folyamat: sz1: egyenleg := egyenleg – 80000 (új egyenleg: –60000)
1. folyamat: sz2: egyenleg := egyenleg + 80000
2. folyamat: sz3: egyenleg := egyenleg + 80000

28. ábra. Hibás fedezetellenőrzés időosztással összefésülődő
sz1 → sz2 és sz1 → sz3 számlák közötti átutalások esetén

Zárolás

A fenti jellegű problémákra a megoldás: az adatok zárolása (locking), vagyis az adatok

elérhetőségének korlátozása más tranzakciók részére. A zárolás általában tranzakció közben
jön létre, és a tranzakció végéig (COMMIT vagy ROLLBACK végrehajtásáig) tart.

Zárolási szintek:

1. A teljes adatbázis zárolása. Az előbb induló tranzakció zárolja az egész adatbázist
mindaddig, amíg véget nem ér. Ekkor a második tranzakció el sem tud indulni az első
befejezése előtt. Ez tulajdonképpen azt jelenti, hogy nem engedünk meg párhuzamos
hozzáféréseket, amely nagy adatbázis és sok egyidejű kliens folyamat esetén elfogadhatatlan.

2. Tábla zárolása: a tranzakció csak azt a táblát zárolja, amellyel dolgozik. Ez már sok
esetben megfelelő lehet, de a banki átutalás esetén a teljes Számla tábla (összes folyószámla)
zárolása még mindig elfogadhatatlan.

85

3. Sor szintű zárolás. Nem a teljes táblát, hanem csak a művelet által érintett sor(oka)t
zároljuk.

Zárolási módok. A DBMS-ek sokféle zárolási módot alkalmaznak, a két legfontosabb:
- Megosztott (shared) zár: lényegében olvasási jogot ad a zároló tranzakciónak. Egy

objektumra (táblára vagy sorra) egyszerre több megosztott zár lehet érvényben.
- Kizárólagos (exclusive) zár: módosítást is lehetővé tesz. Egy objektumra egyszerre

csak egy kizárólagos zár lehet érvényben, és mellette semmilyen más zár nem megengedett.

A zárolás implicit vagy explicit formában történhet.
Implicit zárolás: A DBMS adateléréskor általában automatikus zárolást hajt végre,

például minden INSERT, UPDATE, DELETE utasítás végrehajtásakor az érintett
objektumokon zárolás történik.

Explicit zárolás: Egyes DBMS-ek SQL utasításokat biztosítanak felhasználói
zároláshoz.

Tábla zárolása (Oracle):

LOCK TABLE táblanév IN zárolásimód MODE [NOWAIT];
Ha az utasítás végrehajtásakor a táblát más tranzakció már zárolta, akkor az utasítás
várakozik a zárolás feloldásáig. Viszont, ha az utasítás végére a NOWAIT opciót illesztjük,
akkor a DBMS egy üzenet kíséretében azonnal visszaadja a vezérlést. Példa:
LOCK TABLE dolgozó IN EXCLUSIVE MODE NOWAIT;

Sor szintű zároláshoz a SELECT végére
FOR UPDATE [OF oszlopok]
írandó, ekkor az utasítás zárolja a SELECT által kiválasztott sorokat. Példa:
SELECT * FROM Dolgozó WHERE osztálykód='A11' FOR UPDATE;

A zárolások miatt holtpont (deadlock) léphet fel, vagyis párhuzamos folyamatok

egymásra várhatnak, például:

1. tranzakció: T tábla zárolása, S tábla zárolása, COMMIT
2. tranzakció: S tábla zárolása, T tábla zárolása, COMMIT
---> idő

Ebben a példában az 1. tranzakció először zárolja a T táblát, egyidejűleg a 2. tranzakció

az S táblát. Ezután az 1. tranzakció S-et, a 2. tranzakció T-t zárolná, de kölcsönösen egymásra
várnak, és sohasem jutnak el a tranzakció végéig, amely a zárolás feloldását jelentené.

A DBMS általában nem tudja megakadályozni a holtpontot, de észleli azt, és ilyenkor
visszapörgeti az előidéző tranzakciókat, majd kis időkülönbséggel újra elindítja azokat.

Izolációs szintek

Párhuzamosan futó tranzakciók esetén az alábbi anomáliák léphetnek fel:
a) Kétes adat olvasása (dirty read): más tranzakció által módosított, de még nem

véglegesített adat olvasása. Ez akkor okoz gondot, ha a másik tranzakció valamiért
visszavonásra kerül, és így hibás adatot olvastunk (lásd az alábbi példát).

b) Változó adat olvasása (nonrepeatable read): a tranzakció újraolvas egy adatot,
amelyet közben más (véglegesített) tranzakció módosított vagy törölt, így a két olvasás
eredménye eltér egymástól.

86

c) fantom adat olvasása (phantom read): a tranzakció újraolvas egy táblát, amelybe
közben más (véglegesített) tranzakció új sorokat szúrt be.

A fenti anomáliák kiszűrése SQL-ben a tranzakció izolációs szintjének megadásával

lehetséges:

SET TRANSACTION [elérés] [ISOLATION LEVEL izoláció];

Az utasítás a tranzakció elején adható ki. Az elérés paraméter lehetséges értékei:
- READ ONLY: a tranzakció csak olvassa az adatbázist.
- READ WRITE: a tranzakció olvassa és írja is az adatbázist.

Az izoláció paraméter lehetséges értékei:
- READ UNCOMMITTED: kétes adat olvasása engedélyezett. Ekkor az a), b), c)

anomáliák egyaránt felléphetnek.
- READ COMMITTED: kétes adat olvasása nem engedélyezett. Itt csak a b), c)

anomáliák léphetnek fel.
- REPEATABLE READ: kétes adat olvasása nem engedélyezett, és az olvasott adatokat

más folyamat nem módosíthatja a tranzakció végéig. Itt csak a c) anomália fordulhat elő.
- SERIALIZABLE: sorosítható tranzakció, vagyis párhuzamos végrehajtása

egyenértékű kell, hogy legyen a sorban egymás utáni végrehajtással. Itt egyik anomália sem
léphet fel.

Alapértelmezés: SERIALIZABLE.

Minél magasabb szintű izolációt alkalmazunk, annál nagyobb az adatbiztonság, de

csökken a párhuzamosítás lehetősége.

Megjegyzések:
- A READ ONLY tranzakciók korlátlanul párhuzamosíthatók egymással.
- A READ WRITE + READ UNCOMMITTED tranzakciók a legveszélyesebbek (ezért

READ UNCOMMITTED esetén az alapértelmezés READ ONLY).

A 28. ábra szerinti anomália megszüntethető, ha a tranzakció elején kiadjuk a

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

utasítást, amely egyébként az SQL2-ben alapértelmezés.

107. Példa. Repülőgépre helyfoglalás: a program először lefoglalja az első szabad

helyet, majd megkérdezi az ügyfelet, hogy elfogadja-e azt. Ha igen, akkor véglegesít
(COMMIT), ha nem akkor visszavon (ROLLBACK).

Ebben a példában kétes adat olvasása történhet a következőképpen: a T1 tranzakció
ideiglenesen lefoglalja például az 52. számú helyet. A párhuzamosan futó tranzakció már az
52-es helyet foglaltnak érzékeli, ezért csak más helyet tud foglalni (ha van). Ugyanakkor - az
ügyfél visszautasítása miatt - T1 később felszabadítja az 52-es helyet, de azt T2 mégsem tudta
lefoglalni. Ha úgy döntünk, hogy a leírt anomália nem jelent komolyabb veszélyt és várhatóan
igen ritkán fog fellépni, akkor

SET TRANSACTION READ WRITE ISOLATION READ UNCOMMITTED;

kiadásával gyorsíthatjuk a párhuzamos tranzakciók feldolgozását.

87

11.3. Jogosultságok

Minden adatbáziselemnek van tulajdonosa, éspedig az a felhasználó, aki létrehozta. A

tulajdonos minden joggal rendelkezik az adott elem felett.

Jogosultság adományozása SQL-ben:

GRANT jogosultságok ON adatbáziselemek TO felhasználók
[WITH GRANT OPTION];

Jogosultság:
- SELECT: lekérdezés engedélyezése.
- ALTER: struktúramódosítás engedélyezése (ALTER TABLE).
- INSERT[(oszlopok)], UPDATE[(oszlopok)], DELETE: tábla módosítás

engedélyezése a megfelelő utasítással. Oszlopok megadása esetén az engedély csak az adott
oszlopokra vonatkozik.

- REFERENCES: külső kulcs hivatkozás engedélyezése az adatbáziselemre,
- ALL PRIVILEGES: az összes adományozható jogosultság.
Adatbáziselem: amelyre a jogosultságot adományozzuk.
Felhasználó: akinek a jogosultságot adományozzuk.
WITH GRANT OPTION: továbbadományozási jog adása.

Engedélyezési diagram: csomópontjai jogosultságot, élei adományozást jelentenek.
- csomópont: adott F felhasználónak adott A adatbáziselemre vonatkozó adott J

jogosultsága (F,A,J).
- él: (F1,A1,J1) → (F2,A2,J2) azt fejezi ki, hogy F1 felhasználó az A1 elemre érvényes J1

jogosultsága alapján F2-nek az A2 elemre J2 jogot adományozott.

Jogosultság visszavonása:

REVOKE jogosultságok ON adatbáziselemek FROM felhasználó [CASCADE];

CASCADE: a visszavont jogosultság alapján továbbadományozott jogosultságok is

visszavonásra kerülnek - feltéve, hogy ugyanazt a jogot az illető más forrásból nem szerezte
meg.

Egy SQL utasítást csak akkor hajt végre a rendszer, ha a felhasználó a végrehajtáshoz

szükséges valamennyi jogosultsággal rendelkezik.

Példák:

GRANT SELECT ON Dolgozó TO Kovács, Tóth;
GRANT UPDATE(lakcím) ON Dolg1 TO Horváth WITH GRANT OPTION;
REVOKE SELECT ON Dolgozó FROM Tóth;

88

Irodalom

Az Object Data Management Group honlapja. http://www.odmg.org

Gazsó Zoltán: Adatbáziskezelés FoxPro-ban (2.5, 2.6 DOS, Windows). ComputerBooks,
Budapest, 1995.

Gruber M.: SQL A-Z. Kiskapu kiadó, 2003.

Gulutzan P., Pelzer T.: SQL teljesítményfokozás. Kiskapu kiadó, 2003.

Hernandez, M. J.: Adatbázis-tervezés. Kiskapu kiadó, 2004.

Kende Mária, Kotsis Domokos, Nagy István: Adatbázis-kezelés Oracle-rendszerben. Panem,
Budapest, 2002.

László József: Dinamikus weboldalak, CGI programozás Windows és Linux rendszereken.
ComputerBooks, Budapest, 2002.

Ramakrishnan R., Gehrke J.: Database Management Systems. McGraw-Hill, 2000.

Reese G, Yarger R. J., King T.: A MySQL kezelése és használata. Kossuth Kiadó, 2003.

Ullman J. D., Widom J.: Adatbázis rendszerek – Alapvetés. Második, átdolgozott kiadás,
Panem, 2008.

