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Energy of an Electromagnetic Cavity Mode
At every resonant frequeny @i the energy is ,quantized’

E™P = he,,, -(n ¥ 1) n=0,1,2,..., n1y...
‘ 2

The energy of a photon with frequency a’mﬁp is h a)mé

Eﬁéhm E,=Ey+h® E,=Ey+2h@ E =E,+nho

? + One photon  + 2 photons + n photons

Ey ZE”_Z he,,>o <@, <

mip
mip ma’p






The Hilbert Space of Quantum Mechanics
information we can know about o state
In quantum physics a physical state s represented by a
state veclor in a complex vector space, called Hilbert space.

We call the state vector a .ket”, and denote it by kﬂr}

{This state ket is postuloted to contain compiete information about

the physical state. Everything we are allowed to ask about the
stote i contained in the ket,)

Two kets can be added, and can be multiplied by a
complex number, and the result is also a ket

la)+| F)y= |7} Alee)=|echd

Null ket Alac)if A0

1l e 30 Lmagaj & Pl b 20l Hi

laryand Alac), with A = (), represent the same physical state.

{Only the . direction” In vector space is of significance, We are
dealing with rays rather than vectors )

The state space of guantum physics is a Hilbert space
Iﬂ}plﬁ}r'-] HE a)e W)= e e Ala)e & A complex number

The dimension of the vector space depends on the physical system
{Sple: 2; Fieite dim,: 8 Bounded: countable infinite;
Free: continuously infinite)

Observable is represented by o linear operotor
The operator acts on the ket from left, and maps a ket on a kel
.|'4.I:|:r]|':l 1 Jsl.ll-r}l..' H

TR Ly & T Tk |1 TN LF]



The Hilbert space is a linear vector space over the complex numbers,
in which the scalar product of the elements exist.

Definition of the scalar product of a bra and a ket
(#]e) = number (in general complex), for which (bla) = (a|b)
Scalar product 1 a bracket”
{-::Ec!} restl number; {rr[u} e I {u|cr} 0= |rr} null ket
To kets are orthogonal
lay L|b) if (a|b)=0
Normalized ket:

|a>=m|:f> {a a1

Bra Ket Bra-ket Operator

-

(| o) (b]a) A
Cperators i, i’,i.. i,ﬁ, E,
X=Y if i|ﬂ}vi"§cr} for 7|a)

null operator if fil}=ﬂ for "l.'-’lr:.r}

&

X+¥Y=%4 i', 1--[% 4i]—{j{ |’i"}|i"
Linear Operators

i{t; |a}+ q].‘:}] = !‘"ilﬂ'} + r,,il.!:-}









Matrix representation of kets bras and operators
In quantum physics the mathematical representation
of observables are linear self-adjoint operators

Lernma 1. Eigenvalues of self-adjoint operators are
real numbers, The eigen-kets belonging to different

eigenvalues are orthogonal.
Aln)=a"" |n)  d"a",...a", . cigenvalues of A

[1.]2)s...| ). "eigen — Kets”

{ilj)=9,

Gy & MR

Lemma 2. Eigen-kets constitute a complete orthonormal
basis.

@)= 3
@)= Zla){oo)
(o)~ {a|Slo)nlJla) = Zhela)

If |a) is normalized. then E!:HI' = ?'{ulﬂ}r =1

e =(la)
Sh)ol<1

Cmrgay & Pl o

Projection operator

A, =[nnl

A |a)=|n){nla)=c,|n) E"‘h_ “ 1 (Completeness)

If N isthe dimension of the space of kets,
the representation of operator X

b1

:i:-_J':—-i:[i;n}{nl}i[gm}{ml];

=

= 33 ) X )]

=l sl

{mlxln}ﬁ: number; {ml i5 @ row vector;

in} is a coiumn vector



In order to simplify the mathematical description of the
cavity dynamics, we introduce two new operators.

A 'f‘ The “creation” or “raising” operator will increase the
a number of photons in the cavity by one,

A the “annihilation” or “lowering” operator will decrease
a the number of photons by one.

First, we introduce these new operators
for the simple quantum mechanical harmonic oscillator.

A A
X Position operator X=X-
~

Momentum operator f) = —jh —



Creation and Annihilation Operators
of a Harmonic Oscillator

The time-independent Schrodinger equation
for the harmonic oscillator

H

Let us define a (non-Hermitian) operator

) 1 B B
a= — |MoX
N2mho (p J )
and its adjoint
g 1

a =m(f)+jmwi)

We can express the position and momentum operators
by the new operators as

A B / R . x RO (n a4
i i) b )

We know that the commutator  |[X-P|=Xp—pX = j
The commutator I:ﬁjﬁf] =aa —aa=1
Proof [ﬁ,ﬂH] =aa —a'a= ;{p— jmmi);[f] + jmex) —
roo N 2mheo N 2mha
1 . 1 —
—UPTM{p+t|mmx}m[p—t|mmx}_

:Tlﬁm{iﬁ +_im{d[ﬁi—iﬁ}+mlm:ig]_

|
2mliw

[ﬁ: —jm&;[ﬁi—iﬁ]+mlmzi2] :%(ﬁi—if]):—}—ijﬁi =]




The Hamilton operator

A2

A p ]_ 242 l mhﬂ} - .&-1-2 I 2 h ) A'f'z
= b =———a+a — — Mao a—a

A= (L. g (8+4") 2 2mm( )

The energy levels of the harmonic oscillator are determined by
the eigenvalues of the operator

P

AT A y
N=a'a called “number operator”.






Stern-Gerlach Experiment

Classical
rediction
p What was Silver atoms
actually observed
|
L\ Q Furnace
Inhomogeneous

magnetic field

Ag: 1s? 2s? 2pb 3s? 3p® 452 3d'° 4p® 4d10 5s'

Number of electrons 46 + 1 =47

Put atoms in inhomogeneous magnetic field pointing in
z direction — split in two groups — spin up and spin down

What if | take just atom went up, and send them
through another identical magnetic field — What happens?

EEEEEEEN

[ O A D R A A

All go up (+2)

E



Second Experiment: What if | take just atoms that went up, and
send them through a magnetic field pointed in the x direction
— perpendicular to first field (pointing into the screen)?

EEEEEEE

I R

Half go into the screen (+x), half go out of the screen (—x)

Third Experiment: Take just the atoms that went in +x direction in
second experiment, and send them through a third magnetic field,
pointed in the z direction?

Half go up (+z), half go down (-2z).



