Lecture 28

Antennas and Radiation and the Hertzian Dipole

In this lecture you will learn:

* Generation of radiation by oscillating charges and currents

* Hertzian dipole antenna
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Maxwell’s Equations and Radiation

V. uo H(F,£)=0 VxE(F,t)= - 6uogt(f,t)
V. 80 E(F,t)= p(F,1) V< H(F )= J(F 1)+ 6g°la_=t(F, t)

Time-varying currents as the “source” or the “driving term” for the wave equation:

_0uVxHF,t) _ oud(F,t) 1 0%E(F.t)
at ot c?  ot?

VxVxE(F,t)=

1 %E(F,t) _ duod(F,t)

ot ot ////

Maxwell’s equation predict outgoing radiation from sinusoidally
time-varying currents (and charges - recall that current and
charge densities are related through the continuity equation:

V. J(f,t)+%=o

——
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= | VxVxE(F,t)+

D




Electro- and Magneto-quasistatics and Potentials

Electroquasistatics Magnetoquasistatics
V. &, E(F,t)= p(F,t) V. u, HF,t)=0
VxE(F,t)=0 VxH(F,t)= J(F,t)
Since: Since:
VxE(F,t)=0 V. po H(F,t)=0

One could write: One could write:

E(F,t)= -V (. t) Ho H(F,t) = Vx A(F,t)

I !

Scalar potential Vector potential

e
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Electrodynamics and Potentials - |

V. uo H(F,£)=0 VxE(F,t)= - 6uogt(f,t)
V. 50 E(7,t) = p(F,1) V< H(F.8) = J(F )+ 6a°laz't(F, t)

Vector Potential

One still has:
V. o H(F,t)=0

Therefore, one can still introduce a vector potential:
Uo H(F,t) = Vx A(F,t)

Faraday’s law then becomes:

VxE(F,t)= - 2£H(:1)
ot
- VxE(F,t)=—7avxa':\(r’t)

= Vx{é(i‘,t)+62\§tf’t)} =0

——
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Electrodynamics and Potentials - I

Scalar Potential
Since: Vx E(F,t)+M =0
ot
One may introduce a scalar potential as follows:

E(F,t)+ w _ V(1)
0 A(r t)

= E(F,t)=- —V4(F,t)

Using the vector and scalar potentials, the expressions for E-field and H-field
become:

to H(F,t) =V x A(F,t)

E(r.0=-2A00 _vy(r,0)
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Choosing a “Gauge” in Electromagnetism

Non-uniqueness of the vector potential

The vector potential A is not unique — only the curl of the vector potential is a well
defined quantity (i.e. the B-field):

Uo H(F,t) =V x A(F,t)

Demonstration: suppose we change the vector potential - such that the new vector
potential is the old vector potential plus the gradient of some arbitrary function

Apew(F,t)= A(F,t)+ Vl//(F,t)
Then:
V x Apew (F,t) = Vx A(F,t)+V x y/ r t) The new vector potential

is just as good as it will
= Vx Anew(r’ t) =Vx A(r, t) give the same B-field

Making the vector potential unique

A vector field can be uniquely specified (up to a constant) by specifying the value of
its curl and its divergence

To make the vector potential A unique, one needs to fix the value of its divergence —
a process that usually goes by the names “gauge fixing” or “fixing the gauge” or

‘choosing a gauge” R
gagate V.A(F,t)=2?
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Gauges in Electromagnetism

Coulomb Gauge:

V.A(F,t)=0

* This gauge is commonly used in electro- and magnetoquasistatics

* This gauge is not commonly used in electrodynamics

Lorentz Gauge:

V-A(F,t) == c2 ot potential to the time derivative of

the scalar potential

1 84(F,t) {Relates divergence of the vector
LI AGELY) ,

* This gauge is commonly used in electrodynamics
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Vector Potential Wave Equation

Using the vector and scalar potentials, the expressions for E-field and H-field were:

s H(E )=V x A7 1) E(F )= _% _V4(F.)
Ampere’s Law becomes: -
V<A 1) = J(f,t)+%t(”‘)
i - 1 %A(F,t) 1 [6¢(f,t)]
VxVxA(F,t)= pJF, t)-———5—"-—SV|——7
= XV X (r ) Ho (r 2 ot o2 ot
Remembering that:
VxVxAF)=V[V.AFO)-V2AGF)  and  VAGt)=- a"’é’, :t)
c
We finally get:
o 1 02A(F,t) -
V2A(F,t) - — 0 = J(F
( ) 2 o Ho ( )

This is the vector potential wave equation with current as the driving term
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Scalar Potential Wave Equation
Using the vector and scalar potentials, the expressions for E-field and H-field were:

so (P, £) = V % A7 1) E(r )= -2 A1) A(’ 0 _v (1)

Gauss’ Law becomes:

V. e, E(F,t)= p(F,t)

o V2 t)- av. A(r t) p(sr ,t)

Remembering that:

V.A(F,t)= _ 1 0¢(F,1)

¢ ot
We finally get:
V24, t) 1 02 ¢(£ 1) __p(F,t)
ot €o

This is the scalar potential wave equation with charge as the driving term
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Scalar and Vector Potential Wave Equations

Given any arbitrary time-dependent charge and current density distributions one
can solve these two wave equations to get the potentials:

V24(F,t)- 1 o o, t) p(f‘,t) Scalar potential wave equation
c?

ot? &o
VZA( t) 1 0 A(r t) /‘oj(F’t) Vector potential wave equation
ot?

Uo H(F,t) =V x A(F,t)

And then find the E- and H-fields using: // \N

E(F )= Aa(t’ ) _v4(7.1)
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Superposition Integral Solution of the Scalar Wave Equation

We know that Poisson equation in electrostatics:

v ¢(r) .0(")

o

Has the solution:

67)=11-—PT) gy

Arey [F—T"

The wave equation (which looks somewhat similar to the Poisson equation):

10 ¢(r t)__pl.1)

2
VE(r, t)
ot? &o
Has the solution: Retarded Potential:
* The potential at the observation
_ p(F' JgA—\r=r' c) \ point at any time corresponds to the
#(F,t)=[[f dre |F— F'/ v’ charge at the source point at an
o earlier time

* Electromagnetic disturbances
travel at the speed ¢
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Superposition Integral Solution of the Vector Wave Equation

We know that the vector Poisson equation in P
magnetostatics: 2= =
VEA(F) = ~poJ(F)

Has the solution:

'\\ J(F)

A@)=1i1 2o ) v

The wave equation (which looks somewhat similar to the vector Poisson
equation):

1aA(r °A(F,t) _

2 T
V2A(F,t)- —poJ(F,t)
ot?
Has the solution: Retarded Potential:
’ * The potential at the observation
FLt—F—F/c point at any time corresponds to the
A(F,t)= [ “e S e—|r ‘/ ) current at the source point at an
4z |[F-r earlier time

* Electromagnetic disturbances
travel at the speed ¢
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Time-Harmonic Fields and Complex Wave Equations
E(F.t)=Re| E¢F)e/®t|  H(7.t)=Re[ A(F) ef@t |
A(F,t)=Re| A(F) e/t | #(7.1) = Re[ 4(F) e |
pF.t)=Re[ pF)ei®t | J(F,H)=Re[ J(F) et |
Assuming time harmonic currents, charges, and fields, the wave equations:

V2 1 02A(r, t)_
A(F,t)-—
() ¢ ot?

~Hod(F,t)

vW01aW” _p(F,t)

ot? o
become:

V2A(F)+ k2A(F) = —uoJd(F)

V2(7)+ K24(F) = - (’)
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Superposition Integral Solutions of the Complex Wave Equations
For time harmonic signals:

AF,t)=Re[ AF) e/ | 4 t)=Re|g() et |
p(F,t)=Re| p(F) /" | J(7.6) = Re| J(F) /" |

The solutions to the complex wave equations are found as follows:

47, 0)= 2Tt =) — ¢(f)=m”(fj)_F,e-f”-f' dv*

Ar e, |F -1 Az e, |F

Where we have used:

p(F,t—F — 71/c) = Re| p(7*)e/ 2t17-712)| - Re[ p(*)e T @ 7-T1/e giot]

And:
A(r,t)= [If e (' tlr-re) gy m—p | AF)= ] o ”°J(’) e K=l gyt

7 |F—F] —-F \
Where we have used:
J(F t-|F-r/c)= Re[J(F')ej”’(t_‘f_f"/c)]= Re[J(F')e_j”"F_F'Vc ej“’t]
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Wave Equations and Methods of Solution

Suppose we need to find the radiation emitted by some /ff/ \\\\

collection of sinusoidally time varying charges and currents

-]
Method 1 =S
(1) We can solve these two equations:
V2A(F) + K2A(F) = — 1y J(F) v24(F)+ k2g(F) = - 2F)
&
(2) And then find the E-field and the H-field through: °
sio H(F) = V x A(F) E(7) = - jo A(F)-V4(7, 1)
Method 2
(1) We can solve just one equation:
V2A(F)+ K2AF) = — g d (F)
(2) And then find the H-field and the E-field through:
st H(F) = V x A(F) VxH(F) = J(F)+ jo s E(F)
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Hertzian Dipole Antenna - |

* A Hertzian dipole is one of the simplest radiating elements for which analytical
solutions for the fields can be obtained

* A Hertzian dipole consists of two equal and opposite + charge reservoirs located at
a distance d from each other, as shown below:

z
a(t
CIND €
K W *

* The two charge reservoirs are electrically connected and a sinusoidal current I(t)
flows between them

* Consequently, the charge in the reservoirs also changes sinusoidally:

q(t) -q(1) dq(t
1) I(£)= —Zg )

\ A
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Hertzian Dipole Antenna - Il

z Suppose we could write a current density J(F) for
the Hertzian dipole
q(1)
dT £\ Then:
\L neyg x
-q(9) ([T I(F)dv = [[jJ(F) dx dy dz=2 Id

* The integral represents the total “weight” or “strength” of the dipole
« If the size of the dipole is much smaller than the wavelength then one may write:

J(F)=z21d 8(x)5(y) 5(z)
=z1d5%(F)
The above expression will give the same strength for the dipole, i.e.
[fd(F)dv=21d

Check units:

53(F) > 1m?
I > Amp
d-om

= J(F)> Amp/m?
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Hertzian Dipole Antenna - llI

* A Hertzian dipole is represented by an arrow whose direction indicates the positive
direction of the current and also the orientation of the dipole in space:

z z
; T q(t) I,d ele
) i) e > e
T-q(t)

Example: If I(t)=1I,cos(wt+a) then: J(F)=321,d ei* §3(F)
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Radiation Emitted by a Hertzian Dipole - |
J(F)=21d 5%(F)

Need to solve:

V2A(F)+ k2A(F) = — o J(F)

Use the superposition integral:

o x
AE)= i o 1) onikrr1 gy
s\ s Mo ld eI KIFl _ 5 H Id _ix Working in spherical
= A(F)=2 4; \r\ = 407”. e /8T coordinates

= A(F)= [F cos(9)-6 sin(B)] Ho ld o jkr
Arr
Finding the H-field:

Ho H(F) =V x A(F)

= H({F)=¢ ’k’d "k’[1+j;r]sin(0)
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Radiation Emitted by a Hertzian Dipole - Il
J(F)=21d 5°(F)

H-field was:

~. N ~jkid _; 1 .
A(r)=¢ 1K1 ””[1+jkr}sm(0)

Finding the E-field:

Use Ampere’s Law:  V x H(F) = J(F)+ jo £,E(F)

Working in spherical

Away from the dipole the current density is zero, therefore: .
coordinates

E(F)= ' vxAF)

Joégo

jkid 1 1 )2
E e TKripl 4| | |2
E(F)=11o Arr rlik”(jkr}] cos(8) +

é [1 + 11? + (”1“_)21 sin(B)}
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Near-Fields of a Hertzian Dipole - |

- . J(F)=21d 5%F
I:I(F)=¢?"4l;'fe‘1k’[1+ ‘1 ]sm(e) r)=2 (T)
2 |
jkid ke 1 1
E(F)=1, i i { [jkr+(jkrj 12005(0)+

D ¢

6 l1 + j% + (“1”]21 sin(e)}

Near-field is the field close to the dipole where: kr << 1
(or more accurately where: d << r << 1/2r)

E ¢(F)=1, Ls[ 7 2cos(0) + 6 sin(9) |= L:,,[ 7 2cos(6) + 6 sin(9) |
4r jkr Are,r

sm(B) E-field and H-field are 90-degrees out

Hor(F)=¢ sm(0) bio,

of phase in the near-field

{l(t)=dzst) > 1= jog

ECE 303 - Fall 2005 — Farhan Rana — Cornell University

Near-Fields of a Hertzian Dipole - I
Near fields of a Hertzian-dipole are quasistatic in nature

1) E-field corresponds to the instantaneous value
of the charge dipole
q(t)
= t)yd 1. A .
E¢(F,t)= L):i[r 2cos(0) + 6 sin(6) | ) x
Are,r

2) H-field corresponds to the instantaneous value of the
current and can be obtained from the Biot-Savart law

I(t)d

Hor(F.t)= "5 sin(6)
Proof:
A (7. t) = I(t)Ids x Ag 7

F-sf

- @Iﬂ ’(t)d ! sin(6)
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Far-Fields of a Hertzian Dipole

- . J(F)=21d 5%F
I:I(F)=¢?"4l;'ge‘1k’{1+ ‘1 ]sm(e) r)=2 (T)
2 |
jkid k|| 1 1
E(F)=1, anr © i { [jkr+(jkrj 12005(0)+

él1+j;r+[j;r]215in(0)} ‘ .

Far-field is the field far away from the dipole where: kr >> 1
(or more accurately where: d << A/2z<<r)

gy (F)= ¢ f‘t"le—f K" sin(@)
zr E-field and H-field are in phase in the
far-field

Ey ()= 611 K19 o-jkr 5in(g)
Arr
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Radiation Emitted by a Hertzian Dipole

E(.0) [/
Near field region
(r<<i/2m
@D’z
™

2
Jkid jkr) | 1 1 1 7]
Ei — 2 1+—+| ——
E(F) =1, anr jkr+ jkr cos(0)+0 +jkr+ ikr sin(9)
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