

Lecture 28

Antennas and Radiation and the Hertzian Dipole

In this lecture you will learn:

- Generation of radiation by oscillating charges and currents
- Hertzian dipole antenna

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

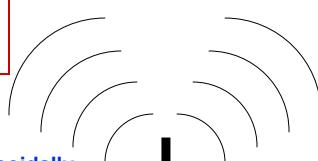
Maxwell's Equations and Radiation

$$\begin{aligned}\nabla \cdot \mu_0 \bar{H}(\bar{r}, t) &= 0 & \nabla \times \bar{E}(\bar{r}, t) &= -\frac{\partial \mu_0 \bar{H}(\bar{r}, t)}{\partial t} \\ \nabla \cdot \epsilon_0 \bar{E}(\bar{r}, t) &= \rho(\bar{r}, t) & \nabla \times \bar{H}(\bar{r}, t) &= \bar{J}(\bar{r}, t) + \frac{\partial \epsilon_0 \bar{E}(\bar{r}, t)}{\partial t}\end{aligned}$$

Time-varying currents as the “source” or the “driving term” for the wave equation:

$$\nabla \times \nabla \times \bar{E}(\bar{r}, t) = -\frac{\partial \mu_0 \nabla \times \bar{H}(\bar{r}, t)}{\partial t} = -\frac{\partial \mu_0 \bar{J}(\bar{r}, t)}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \bar{E}(\bar{r}, t)}{\partial t^2}$$

$$\Rightarrow \nabla \times \nabla \times \bar{E}(\bar{r}, t) + \frac{1}{c^2} \frac{\partial^2 \bar{E}(\bar{r}, t)}{\partial t^2} = -\frac{\partial \mu_0 \bar{J}(\bar{r}, t)}{\partial t}$$



Maxwell's equation predict outgoing radiation from sinusoidally time-varying currents (and charges - recall that current and charge densities are related through the continuity equation:

$$\nabla \cdot \bar{J}(\bar{r}, t) + \frac{\partial \rho(\bar{r}, t)}{\partial t} = 0$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Electro- and Magneto-quasistatics and Potentials

Electroquasistatics

$$\nabla \cdot \epsilon_0 \bar{E}(\bar{r}, t) = \rho(\bar{r}, t)$$

$$\nabla \times \bar{E}(\bar{r}, t) = 0$$

Since:

$$\nabla \times \bar{E}(\bar{r}, t) = 0$$

One could write:

$$\bar{E}(\bar{r}, t) = -\nabla \phi(\bar{r}, t)$$

↑
Scalar potential

Magnetoquasistatics

$$\nabla \cdot \mu_0 \bar{H}(\bar{r}, t) = 0$$

$$\nabla \times \bar{H}(\bar{r}, t) = \bar{J}(\bar{r}, t)$$

Since:

$$\nabla \cdot \mu_0 \bar{H}(\bar{r}, t) = 0$$

One could write:

$$\mu_0 \bar{H}(\bar{r}, t) = \nabla \times \bar{A}(\bar{r}, t)$$

↑
Vector potential

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Electrodynamics and Potentials - I

$$\nabla \cdot \mu_0 \bar{H}(\bar{r}, t) = 0$$

$$\nabla \times \bar{E}(\bar{r}, t) = -\frac{\partial \mu_0 \bar{H}(\bar{r}, t)}{\partial t}$$

$$\nabla \cdot \epsilon_0 \bar{E}(\bar{r}, t) = \rho(\bar{r}, t)$$

$$\nabla \times \bar{H}(\bar{r}, t) = \bar{J}(\bar{r}, t) + \frac{\partial \epsilon_0 \bar{E}(\bar{r}, t)}{\partial t}$$

Vector Potential

One still has:

$$\nabla \cdot \mu_0 \bar{H}(\bar{r}, t) = 0$$

Therefore, one can still introduce a vector potential:

$$\mu_0 \bar{H}(\bar{r}, t) = \nabla \times \bar{A}(\bar{r}, t)$$

Faraday's law then becomes:

$$\begin{aligned} \nabla \times \bar{E}(\bar{r}, t) &= -\frac{\partial \mu_0 \bar{H}(\bar{r}, t)}{\partial t} \\ \Rightarrow \nabla \times \bar{E}(\bar{r}, t) &= -\frac{\partial \nabla \times \bar{A}(\bar{r}, t)}{\partial t} \\ \Rightarrow \nabla \times \left[\bar{E}(\bar{r}, t) + \frac{\partial \bar{A}(\bar{r}, t)}{\partial t} \right] &= 0 \end{aligned}$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Electrodynamics and Potentials - II

Scalar Potential

Since: $\nabla \times \left[\bar{E}(\bar{r}, t) + \frac{\partial \bar{A}(\bar{r}, t)}{\partial t} \right] = 0$

One may introduce a scalar potential as follows:

$$\begin{aligned} \bar{E}(\bar{r}, t) + \frac{\partial \bar{A}(\bar{r}, t)}{\partial t} &= -\nabla \phi(\bar{r}, t) \\ \Rightarrow \bar{E}(\bar{r}, t) &= -\frac{\partial \bar{A}(\bar{r}, t)}{\partial t} - \nabla \phi(\bar{r}, t) \end{aligned}$$

Using the vector and scalar potentials, the expressions for E-field and H-field become:

$$\begin{aligned} \mu_0 \bar{H}(\bar{r}, t) &= \nabla \times \bar{A}(\bar{r}, t) \\ \bar{E}(\bar{r}, t) &= -\frac{\partial \bar{A}(\bar{r}, t)}{\partial t} - \nabla \phi(\bar{r}, t) \end{aligned}$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Choosing a “Gauge” in Electromagnetism

Non-uniqueness of the vector potential

The vector potential \bar{A} is not unique – only the curl of the vector potential is a well defined quantity (i.e. the B-field):

$$\mu_0 \bar{H}(\bar{r}, t) = \nabla \times \bar{A}(\bar{r}, t)$$

Demonstration: suppose we change the vector potential - such that the new vector potential is the old vector potential plus the gradient of some arbitrary function

$$\bar{A}_{\text{new}}(\bar{r}, t) = \bar{A}(\bar{r}, t) + \nabla \psi(\bar{r}, t)$$

Then:

$$\begin{aligned} \nabla \times \bar{A}_{\text{new}}(\bar{r}, t) &= \nabla \times \bar{A}(\bar{r}, t) + \nabla \times \nabla \psi(\bar{r}, t) \\ \Rightarrow \nabla \times \bar{A}_{\text{new}}(\bar{r}, t) &= \nabla \times \bar{A}(\bar{r}, t) \end{aligned} \quad \left. \begin{array}{l} \uparrow^0 \\ \text{The new vector potential} \\ \text{is just as good as it will} \\ \text{give the same B-field} \end{array} \right\}$$

Making the vector potential unique

A vector field can be uniquely specified (up to a constant) by specifying the value of its curl and its divergence

To make the vector potential \bar{A} unique, one needs to fix the value of its divergence – a process that usually goes by the names “gauge fixing” or “fixing the gauge” or “choosing a gauge”

$$\nabla \cdot \bar{A}(\bar{r}, t) = ??$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Gauges in Electromagnetism

Coulomb Gauge:

$$\nabla \cdot \bar{A}(\bar{r}, t) = 0$$

- This gauge is commonly used in electro- and magnetoquasistatics
- This gauge is not commonly used in electrodynamics

Lorentz Gauge:

$$\nabla \cdot \bar{A}(\bar{r}, t) = -\frac{1}{c^2} \frac{\partial \phi(\bar{r}, t)}{\partial t}$$

→ Relates divergence of the vector potential to the time derivative of the scalar potential

- This gauge is commonly used in electrodynamics

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Vector Potential Wave Equation

Using the vector and scalar potentials, the expressions for E-field and H-field were:

$$\mu_0 \bar{H}(\bar{r}, t) = \nabla \times \bar{A}(\bar{r}, t) \quad \bar{E}(\bar{r}, t) = -\frac{\partial \bar{A}(\bar{r}, t)}{\partial t} - \nabla \phi(\bar{r}, t)$$

Ampere's Law becomes:

$$\begin{aligned} \nabla \times \bar{H}(\bar{r}, t) &= \bar{J}(\bar{r}, t) + \frac{\partial \epsilon_0 \bar{E}(\bar{r}, t)}{\partial t} \\ \Rightarrow \nabla \times \nabla \times \bar{A}(\bar{r}, t) &= \mu_0 \bar{J}(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \bar{A}(\bar{r}, t)}{\partial t^2} - \frac{1}{c^2} \nabla \left[\frac{\partial \phi(\bar{r}, t)}{\partial t} \right] \end{aligned}$$

Remembering that:

$$\nabla \times \nabla \times \bar{A}(\bar{r}, t) = \nabla [\nabla \cdot \bar{A}(\bar{r}, t)] - \nabla^2 \bar{A}(\bar{r}, t) \quad \text{and} \quad \nabla \cdot \bar{A}(\bar{r}, t) = -\frac{1}{c^2} \frac{\partial \phi(\bar{r}, t)}{\partial t}$$

We finally get:

$$\nabla^2 \bar{A}(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \bar{A}(\bar{r}, t)}{\partial t^2} = -\mu_0 \bar{J}(\bar{r}, t)$$

This is the vector potential wave equation with current as the driving term

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Scalar Potential Wave Equation

Using the vector and scalar potentials, the expressions for E-field and H-field were:

$$\mu_0 \bar{H}(\bar{r}, t) = \nabla \times \bar{A}(\bar{r}, t) \quad \bar{E}(\bar{r}, t) = -\frac{\partial \bar{A}(\bar{r}, t)}{\partial t} - \nabla \phi(\bar{r}, t)$$

Gauss' Law becomes:

$$\nabla \cdot \epsilon_0 \bar{E}(\bar{r}, t) = \rho(\bar{r}, t)$$

$$\Rightarrow -\nabla^2 \phi(\bar{r}, t) - \frac{\partial \nabla \cdot \bar{A}(\bar{r}, t)}{\partial t} = \frac{\rho(\bar{r}, t)}{\epsilon_0}$$

Remembering that:

$$\nabla \cdot \bar{A}(\bar{r}, t) = -\frac{1}{c^2} \frac{\partial \phi(\bar{r}, t)}{\partial t}$$

We finally get:

$$\nabla^2 \phi(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \phi(\bar{r}, t)}{\partial t^2} = -\frac{\rho(\bar{r}, t)}{\epsilon_0}$$

This is the scalar potential wave equation with charge as the driving term

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Scalar and Vector Potential Wave Equations

Given any arbitrary time-dependent charge and current density distributions one can solve these two wave equations to get the potentials:

$$\nabla^2 \phi(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \phi(\bar{r}, t)}{\partial t^2} = -\frac{\rho(\bar{r}, t)}{\epsilon_0}$$

Scalar potential wave equation

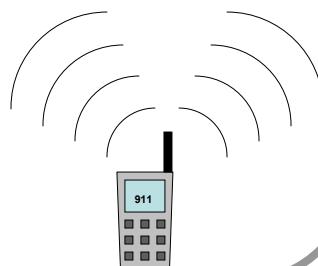
$$\nabla^2 \bar{A}(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \bar{A}(\bar{r}, t)}{\partial t^2} = -\mu_0 \bar{J}(\bar{r}, t)$$

Vector potential wave equation

And then find the E- and H-fields using:

$$\mu_0 \bar{H}(\bar{r}, t) = \nabla \times \bar{A}(\bar{r}, t)$$

$$\bar{E}(\bar{r}, t) = -\frac{\partial \bar{A}(\bar{r}, t)}{\partial t} - \nabla \phi(\bar{r}, t)$$



ECE 303 – Fall 2005 – Farhan Rana – Cornell University

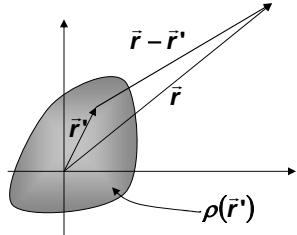
Superposition Integral Solution of the Scalar Wave Equation

We know that Poisson equation in electrostatics:

$$\nabla^2 \phi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon_0}$$

Has the solution:

$$\phi(\vec{r}) = \iiint \frac{\rho(\vec{r}')}{4\pi \epsilon_0 |\vec{r} - \vec{r}'|} d\vec{v}'$$



The wave equation (which looks somewhat similar to the Poisson equation):

$$\nabla^2 \phi(\vec{r}, t) - \frac{1}{c^2} \frac{\partial^2 \phi(\vec{r}, t)}{\partial t^2} = -\frac{\rho(\vec{r}, t)}{\epsilon_0}$$

Has the solution:

$$\phi(\vec{r}, t) = \iiint \frac{\rho(\vec{r}', t - |\vec{r} - \vec{r}'|/c)}{4\pi \epsilon_0 |\vec{r} - \vec{r}'|} d\vec{v}'$$

- Retarded Potential:**
- The potential at the observation point at any time corresponds to the charge at the source point at an earlier time
 - Electromagnetic disturbances travel at the speed c

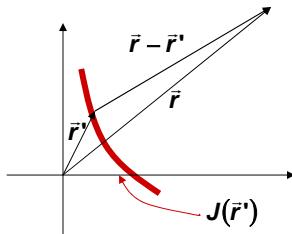
ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Superposition Integral Solution of the Vector Wave Equation

We know that the vector Poisson equation in magnetostatics: $\nabla^2 \vec{A}(\vec{r}) = -\mu_0 \vec{J}(\vec{r})$

Has the solution:

$$\vec{A}(\vec{r}) = \iiint \frac{\mu_0 \vec{J}(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|} d\vec{v}'$$



The wave equation (which looks somewhat similar to the vector Poisson equation):

$$\nabla^2 \vec{A}(\vec{r}, t) - \frac{1}{c^2} \frac{\partial^2 \vec{A}(\vec{r}, t)}{\partial t^2} = -\mu_0 \vec{J}(\vec{r}, t)$$

Has the solution:

$$\vec{A}(\vec{r}, t) = \iiint \frac{\mu_0 \vec{J}(\vec{r}', t - |\vec{r} - \vec{r}'|/c)}{4\pi |\vec{r} - \vec{r}'|} d\vec{v}'$$

- Retarded Potential:**
- The potential at the observation point at any time corresponds to the current at the source point at an earlier time
 - Electromagnetic disturbances travel at the speed c

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Time-Harmonic Fields and Complex Wave Equations

$$\bar{E}(\bar{r}, t) = \operatorname{Re} [\bar{E}(\bar{r}) e^{j\omega t}] \quad \bar{H}(\bar{r}, t) = \operatorname{Re} [\bar{H}(\bar{r}) e^{j\omega t}]$$

$$\bar{A}(\bar{r}, t) = \operatorname{Re} [\bar{A}(\bar{r}) e^{j\omega t}] \quad \phi(\bar{r}, t) = \operatorname{Re} [\phi(\bar{r}) e^{j\omega t}]$$

$$\rho(\bar{r}, t) = \operatorname{Re} [\rho(\bar{r}) e^{j\omega t}] \quad \bar{J}(\bar{r}, t) = \operatorname{Re} [\bar{J}(\bar{r}) e^{j\omega t}]$$

Assuming time harmonic currents, charges, and fields, the wave equations:

$$\nabla^2 \bar{A}(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \bar{A}(\bar{r}, t)}{\partial t^2} = -\mu_0 \bar{J}(\bar{r}, t)$$

$$\nabla^2 \phi(\bar{r}, t) - \frac{1}{c^2} \frac{\partial^2 \phi(\bar{r}, t)}{\partial t^2} = -\frac{\rho(\bar{r}, t)}{\epsilon_0}$$

become:

$$\left. \begin{aligned} \nabla^2 \bar{A}(\bar{r}) + k^2 \bar{A}(\bar{r}) &= -\mu_0 \bar{J}(\bar{r}) \\ \nabla^2 \phi(\bar{r}) + k^2 \phi(\bar{r}) &= -\frac{\rho(\bar{r})}{\epsilon_0} \end{aligned} \right\} \longrightarrow k = \frac{\omega}{c}$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Superposition Integral Solutions of the Complex Wave Equations

For time harmonic signals:

$$\bar{A}(\bar{r}, t) = \operatorname{Re} [\bar{A}(\bar{r}) e^{j\omega t}] \quad \phi(\bar{r}, t) = \operatorname{Re} [\phi(\bar{r}) e^{j\omega t}]$$

$$\rho(\bar{r}, t) = \operatorname{Re} [\rho(\bar{r}) e^{j\omega t}] \quad \bar{J}(\bar{r}, t) = \operatorname{Re} [\bar{J}(\bar{r}) e^{j\omega t}]$$

The solutions to the complex wave equations are found as follows:

$$\rho(\bar{r}, t) = \iiint \frac{\rho(\bar{r}', t - |\bar{r} - \bar{r}'|/c)}{4\pi \epsilon_0 |\bar{r} - \bar{r}'|} d\bar{v}' \quad \longrightarrow \quad \phi(\bar{r}) = \iiint \frac{\rho(\bar{r}')}{4\pi \epsilon_0 |\bar{r} - \bar{r}'|} e^{-j k |\bar{r} - \bar{r}'|} d\bar{v}'$$

Where we have used:

$$\rho(\bar{r}', t - |\bar{r} - \bar{r}'|/c) = \operatorname{Re} [\rho(\bar{r}') e^{j\omega(t - |\bar{r} - \bar{r}'|/c)}] = \operatorname{Re} [\rho(\bar{r}') e^{-j\omega|\bar{r} - \bar{r}'|/c} e^{j\omega t}]$$

And:

$$\bar{A}(\bar{r}, t) = \iiint \frac{\mu_0 \bar{J}(\bar{r}', t - |\bar{r} - \bar{r}'|/c)}{4\pi |\bar{r} - \bar{r}'|} d\bar{v}' \quad \longrightarrow \quad \bar{A}(\bar{r}) = \iiint \frac{\mu_0 \bar{J}(\bar{r}')}{4\pi |\bar{r} - \bar{r}'|} e^{-j k |\bar{r} - \bar{r}'|} d\bar{v}'$$

Where we have used:

$$\bar{J}(\bar{r}', t - |\bar{r} - \bar{r}'|/c) = \operatorname{Re} [\bar{J}(\bar{r}') e^{j\omega(t - |\bar{r} - \bar{r}'|/c)}] = \operatorname{Re} [\bar{J}(\bar{r}') e^{-j\omega|\bar{r} - \bar{r}'|/c} e^{j\omega t}]$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Wave Equations and Methods of Solution

Suppose we need to find the radiation emitted by some collection of sinusoidally time varying charges and currents

Method 1

(1) We can solve these two equations:

$$\nabla^2 \bar{A}(\bar{r}) + k^2 \bar{A}(\bar{r}) = -\mu_0 \bar{J}(\bar{r}) \quad \nabla^2 \phi(\bar{r}) + k^2 \phi(\bar{r}) = -\frac{\rho(\bar{r})}{\epsilon_0}$$

(2) And then find the E-field and the H-field through:

$$\mu_0 \bar{H}(\bar{r}) = \nabla \times \bar{A}(\bar{r}) \quad \bar{E}(\bar{r}) = -j\omega \bar{A}(\bar{r}) - \nabla \phi(\bar{r}, t)$$

Method 2

(1) We can solve just one equation:

$$\nabla^2 \bar{A}(\bar{r}) + k^2 \bar{A}(\bar{r}) = -\mu_0 \bar{J}(\bar{r})$$

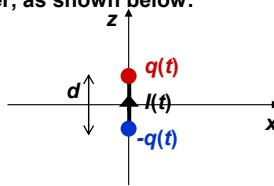
(2) And then find the H-field and the E-field through:

$$\mu_0 \bar{H}(\bar{r}) = \nabla \times \bar{A}(\bar{r}) \quad \nabla \times \bar{H}(\bar{r}) = \bar{J}(\bar{r}) + j\omega \epsilon_0 \bar{E}(\bar{r})$$

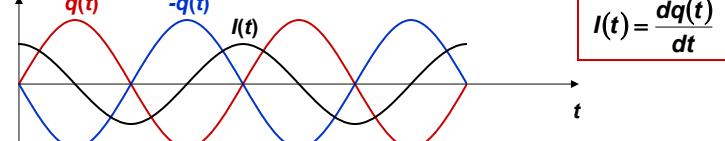
ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Hertzian Dipole Antenna - I

- A Hertzian dipole is one of the simplest radiating elements for which analytical solutions for the fields can be obtained
- A Hertzian dipole consists of two equal and opposite \pm charge reservoirs located at a distance d from each other, as shown below:



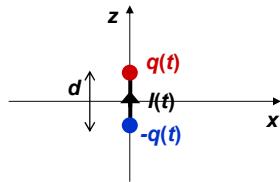
- The two charge reservoirs are electrically connected and a sinusoidal current $I(t)$ flows between them
- Consequently, the charge in the reservoirs also changes sinusoidally:



$$I(t) = \frac{dq(t)}{dt}$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Hertzian Dipole Antenna - II



Suppose we could write a current density $\bar{J}(\bar{r})$ for the Hertzian dipole

Then:

$$\iiint \bar{J}(\bar{r}) dV = \iiint \bar{J}(\bar{r}) dx dy dz = \hat{z} I d$$

- The integral represents the total “weight” or “strength” of the dipole
- If the size of the dipole is much smaller than the wavelength then one may write:

$$\begin{aligned} \bar{J}(\bar{r}) &= \hat{z} I d \delta(x) \delta(y) \delta(z) \\ &= \hat{z} I d \delta^3(\bar{r}) \end{aligned}$$

The above expression will give the same strength for the dipole, i.e.

$$\iiint \bar{J}(\bar{r}) dV = \hat{z} I d$$

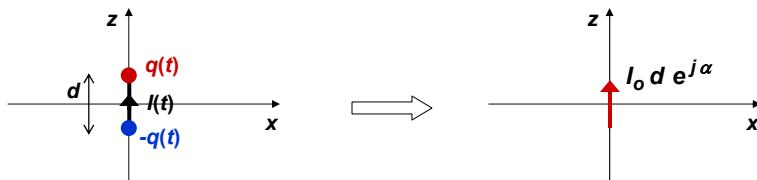
Check units:

$$\left. \begin{aligned} \delta^3(\bar{r}) &\rightarrow 1/m^3 \\ I &\rightarrow \text{Amp} \\ d &\rightarrow \text{m} \end{aligned} \right\} \Rightarrow \bar{J}(\bar{r}) \rightarrow \text{Amp/m}^2$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Hertzian Dipole Antenna - III

- A Hertzian dipole is represented by an arrow whose direction indicates the positive direction of the current and also the orientation of the dipole in space:



Example: If $I(t) = I_o \cos(\omega t + \alpha)$ then: $\bar{J}(\bar{r}) = \hat{z} I_o d e^{j\alpha} \delta^3(\bar{r})$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Radiation Emitted by a Hertzian Dipole - I

Need to solve:

$$\nabla^2 \bar{A}(\bar{r}) + k^2 \bar{A}(\bar{r}) = -\mu_0 \bar{J}(\bar{r})$$

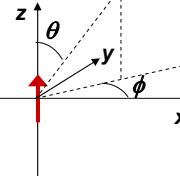
Use the superposition integral:

$$\begin{aligned} \bar{A}(\bar{r}) &= \iiint \frac{\mu_0}{4\pi} \frac{\bar{J}(\bar{r}')}{|\bar{r} - \bar{r}'|} e^{-jk|\bar{r} - \bar{r}'|} d\bar{v}' \\ \Rightarrow \bar{A}(\bar{r}) &= \hat{z} \frac{\mu_0 I d}{4\pi |\bar{r}|} e^{-jk|\bar{r}|} = \hat{z} \frac{\mu_0 I d}{4\pi r} e^{-jkr} \\ \Rightarrow \bar{A}(\bar{r}) &= [\hat{r} \cos(\theta) - \hat{\theta} \sin(\theta)] \frac{\mu_0 I d}{4\pi r} e^{-jkr} \end{aligned}$$

Finding the H-field:

$$\begin{aligned} \mu_0 \bar{H}(\bar{r}) &= \nabla \times \bar{A}(\bar{r}) \\ \Rightarrow \bar{H}(\bar{r}) &= \hat{\phi} \frac{jk I d}{4\pi r} e^{-jkr} \left[1 + \frac{1}{jk r} \right] \sin(\theta) \end{aligned}$$

$$\bar{J}(\bar{r}) = \hat{z} I d \delta^3(\bar{r})$$



Working in spherical coordinates

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Radiation Emitted by a Hertzian Dipole - II

H-field was:

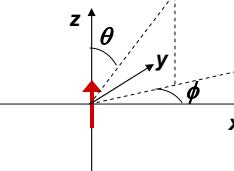
$$\bar{H}(\bar{r}) = \hat{\phi} \frac{jk I d}{4\pi r} e^{-jkr} \left[1 + \frac{1}{jk r} \right] \sin(\theta)$$

Finding the E-field:

$$\text{Use Ampere's Law: } \nabla \times \bar{H}(\bar{r}) = \bar{J}(\bar{r}) + j\omega \epsilon_0 \bar{E}(\bar{r})$$

Away from the dipole the current density is zero, therefore:

$$\bar{J}(\bar{r}) = \hat{z} I d \delta^3(\bar{r})$$



Working in spherical coordinates

$$\bar{E}(\bar{r}) = \frac{1}{j\omega \epsilon_0} \nabla \times \bar{H}(\bar{r})$$

$$\begin{aligned} \bar{E}(\bar{r}) &= \eta_0 \frac{jk I d}{4\pi r} e^{-jkr} \left\{ \hat{r} \left[\frac{1}{jk r} + \left(\frac{1}{jk r} \right)^2 \right] 2 \cos(\theta) + \right. \\ &\quad \left. \hat{\theta} \left[1 + \frac{1}{jk r} + \left(\frac{1}{jk r} \right)^2 \right] \sin(\theta) \right\} \end{aligned}$$

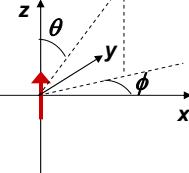
ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Near-Fields of a Hertzian Dipole - I

$$\bar{H}(\bar{r}) = \hat{\phi} \frac{jkId}{4\pi r} e^{-jkr} \left[1 + \frac{1}{jk r} \right] \sin(\theta)$$

$$\bar{E}(\bar{r}) = \eta_0 \frac{jkId}{4\pi r} e^{-jkr} \left\{ \hat{r} \left[\frac{1}{jk r} + \left(\frac{1}{jk r} \right)^2 \right] 2 \cos(\theta) + \hat{\theta} \left[1 + \frac{1}{jk r} + \left(\frac{1}{jk r} \right)^2 \right] \sin(\theta) \right\}$$

$$\bar{J}(\bar{r}) = \hat{z} I d \delta^3(\bar{r})$$



Near-field is the field close to the dipole where: $kr \ll 1$
(or more accurately where: $d \ll r \ll \lambda/2\pi$)

$$\bar{E}_{nf}(\bar{r}) = \eta_0 \frac{Id}{4\pi jkr^3} [\hat{r} 2 \cos(\theta) + \hat{\theta} \sin(\theta)] = \frac{qd}{4\pi \epsilon_0 r^3} [\hat{r} 2 \cos(\theta) + \hat{\theta} \sin(\theta)]$$

$$\bar{H}_{nf}(\bar{r}) = \hat{\phi} \frac{Id}{4\pi r^2} \sin(\theta) = \hat{\phi} j\omega \frac{qd}{4\pi r^2} \sin(\theta)$$

E-field and H-field are 90-degrees out of phase in the near-field

$$\left\{ \begin{array}{l} I(t) = \frac{dq(t)}{dt} \\ \Rightarrow I = j\omega q \end{array} \right.$$

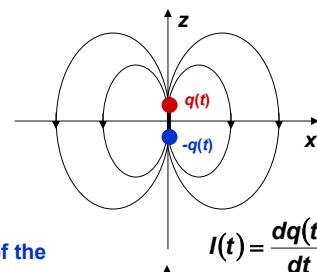
ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Near-Fields of a Hertzian Dipole - II

Near fields of a Hertzian-dipole are quasistatic in nature

1) E-field corresponds to the instantaneous value of the charge dipole

$$\bar{E}_{nf}(\bar{r}, t) = \frac{q(t)d}{4\pi \epsilon_0 r^3} [\hat{r} 2 \cos(\theta) + \hat{\theta} \sin(\theta)]$$



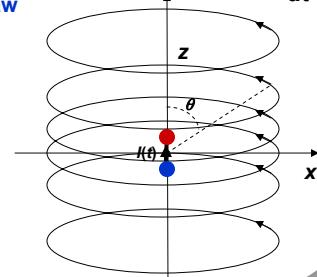
2) H-field corresponds to the instantaneous value of the current and can be obtained from the Biot-Savart law

$$\bar{H}_{nf}(\bar{r}, t) = \hat{\phi} \frac{I(t)d}{4\pi r^2} \sin(\theta)$$

Proof:

$$\bar{H}_{nf}(\bar{r}, t) = \frac{I(t)}{4\pi} \int \frac{d\bar{s}'}{|\bar{r} - \bar{s}'|^2} \times \hat{n}_{\bar{s}' \rightarrow \bar{r}}$$

$$= \frac{I(t)}{4\pi} \int \frac{\hat{z} dz' \times \hat{r}}{r^2} = \hat{\phi} \frac{I(t)d}{4\pi r^2} \sin(\theta)$$



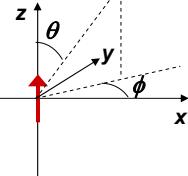
ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Far-Fields of a Hertzian Dipole

$$\bar{H}(\bar{r}) = \hat{\phi} \frac{jkId}{4\pi r} e^{-jkr} \left[1 + \frac{1}{jkr} \right] \sin(\theta)$$

$$\bar{E}(\bar{r}) = \eta_0 \frac{jkId}{4\pi r} e^{-jkr} \left\{ \hat{r} \left[\frac{1}{jkr} + \left(\frac{1}{jkr} \right)^2 \right] 2 \cos(\theta) + \hat{\theta} \left[1 + \frac{1}{jkr} + \left(\frac{1}{jkr} \right)^2 \right] \sin(\theta) \right\}$$

$$\bar{J}(\bar{r}) = \hat{z} I d \delta^3(\bar{r})$$



Far-field is the field far away from the dipole where: $kr \gg 1$
(or more accurately where: $d \ll \lambda/2\pi \ll r$)

$$\bar{H}_{ff}(\bar{r}) = \hat{\phi} \frac{jkId}{4\pi r} e^{-jkr} \sin(\theta)$$

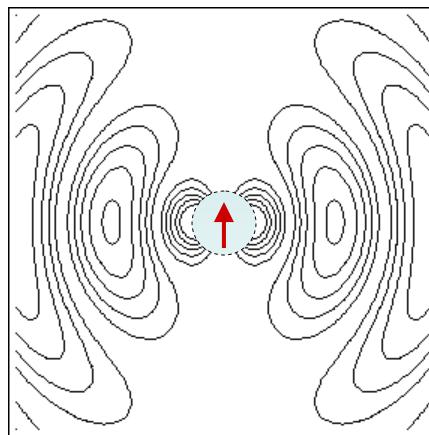
E-field and H-field are in phase in the far-field

$$\bar{E}_{ff}(\bar{r}) = \hat{\theta} \frac{j\eta_0 k Id}{4\pi r} e^{-jkr} \sin(\theta)$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Radiation Emitted by a Hertzian Dipole

$$\bar{E}(\bar{r}, t)$$



Near field region
($r \ll \lambda/2\pi$)

$$\bar{E}(\bar{r}) = \eta_0 \frac{jkId}{4\pi r} e^{-jkr} \left\{ \hat{r} \left[\frac{1}{jkr} + \left(\frac{1}{jkr} \right)^2 \right] 2 \cos(\theta) + \hat{\theta} \left[1 + \frac{1}{jkr} + \left(\frac{1}{jkr} \right)^2 \right] \sin(\theta) \right\}$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University