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Lecture 28

Antennas and Radiation and the Hertzian Dipole

In this lecture you will learn:

� Generation of radiation by oscillating charges and currents

� Hertzian dipole antenna
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Maxwell’s Equations and Radiation

Maxwell’s equation predict outgoing radiation from sinusoidally

time-varying currents (and charges - recall that current and 

charge densities are related through the continuity equation:
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Time-varying currents as the “source” or the “driving term” for the wave equation:
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Electro- and Magneto-quasistatics and Potentials
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Electrodynamics and Potentials - I
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One still has: ( ) 0,. =∇ trHo
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Therefore, one can still introduce a vector potential:
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Electrodynamics and Potentials - II

Using the vector and scalar potentials, the expressions for E-field and H-field 

become:
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Choosing a “Gauge” in Electromagnetism

The vector potential A is not unique – only the curl of the vector potential is a well 

defined quantity (i.e. the B-field):
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Demonstration: suppose we change the vector potential - such that the new vector 

potential is the old vector potential plus the gradient of some arbitrary function
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Non-uniqueness of the vector potential

A vector field can be uniquely specified (up to a constant) by specifying the value of 

its curl and its divergence

To make the vector potential A unique, one needs to fix the value of its divergence –

a process that usually goes by the names “gauge fixing” or “fixing the gauge” or 

“choosing a gauge”
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Gauges in Electromagnetism

Coulomb Gauge:

� This gauge is commonly used in electro- and magnetoquasistatics

� This gauge is not commonly used in electrodynamics
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Lorentz Gauge:
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� This gauge is commonly used in electrodynamics
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Vector Potential Wave Equation

Using the vector and scalar potentials, the expressions for E-field and H-field were:
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Ampere’s Law becomes:
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This is the vector potential wave equation with current as the driving term
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Scalar Potential Wave Equation

Using the vector and scalar potentials, the expressions for E-field and H-field were:
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This is the scalar potential wave equation with charge as the driving term
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We finally get:
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Scalar and Vector Potential Wave Equations
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Given any arbitrary time-dependent charge and current density distributions one 

can solve these two wave equations to get the potentials:
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Scalar potential wave equation

Vector potential wave equation

( ) ( )trAtrH ,, o

rrrr ×∇=µ
( ) ( ) ( )tr

t

trA
trE ,

,
,

r
rr

rr φ∇−∂
∂−=

And then find the E- and H-fields using:
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Superposition Integral Solution of the Scalar Wave Equation

We know that Poisson equation in electrostatics:
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Retarded Potential:

� The potential at the observation 

point at any time corresponds to the 

charge at the source point at an 

earlier time 

� Electromagnetic disturbances

travel at the speed c
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Superposition Integral Solution of the Vector Wave Equation

We know that the vector Poisson equation in 

magnetostatics:

Has the solution:
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The wave equation (which looks somewhat similar to the vector Poisson 
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Retarded Potential:

� The potential at the observation 

point at any time corresponds to the 

current at the source point at an 

earlier time 

� Electromagnetic disturbances

travel at the speed c
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Time-Harmonic Fields and Complex Wave Equations
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Assuming time harmonic currents, charges, and fields, the wave equations:

become:
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Superposition Integral Solutions of the Complex Wave Equations

The solutions to the complex wave equations are found as follows: 
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Wave Equations and Methods of Solution

Suppose we need to find the radiation emitted by some 

collection of sinusoidally time varying charges and currents

(1) We can solve these two equations:

(2) And then find the E-field and the H-field through:
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Hertzian Dipole Antenna - I

� A Hertzian dipole is one of the simplest radiating elements for which analytical 

solutions for the fields can be obtained

� A Hertzian dipole consists of two equal and opposite ± charge reservoirs located at 

a distance d from each other, as shown below:

x

z

d

� The two charge reservoirs are electrically connected and a sinusoidal current I(t) 

flows between them

� Consequently, the charge in the reservoirs also changes sinusoidally:

t
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Hertzian Dipole Antenna - II
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-q(t)

I(t)

Suppose we could write a current density             for 

the Hertzian dipole

Then:
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� The integral represents the total “weight” or “strength” of the dipole

� If the size of the dipole is much smaller than the wavelength then one may write:
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The above expression will give the same strength for the dipole, i.e.

Check units:
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Hertzian Dipole Antenna - III

� A Hertzian dipole is represented by an arrow whose direction indicates the positive 

direction of the current and also the orientation of the dipole in space:
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Radiation Emitted by a Hertzian Dipole - I

Need to solve:
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Radiation Emitted by a Hertzian Dipole - II

H-field was:
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Near-Fields of a Hertzian Dipole - I
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Near-field is the field close to the dipole where: kr << 1 

(or more accurately where: d << r << λ/2π )
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E-field and H-field are 90-degrees out 

of phase in the near-field
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Near-Fields of a Hertzian Dipole - II

Near fields of a Hertzian-dipole are quasistatic in nature
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1) E-field corresponds to the instantaneous value 

of the charge dipole

2) H-field corresponds to the instantaneous value of the 

current and can be obtained from the Biot-Savart law
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Far-Fields of a Hertzian Dipole
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Far-field is the field far away from the dipole where: kr >> 1

(or more accurately where: d << λ/2π << r )
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E-field and H-field are in phase in the 

far-field

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Radiation Emitted by a Hertzian Dipole
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