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1. Klasszikus mechanika

1.1. SI mértékegységrendszer

A mértékegységrendszer néhany (7), nemzetkozileg elfogadott mértékegységen, illetve a
10 kiilonb6z6 hatvanyain alapul.

1.1.1. Mértékegység
A 7 mértékegység a kovetkezo:
1. Hosszisag, amit méterben mériink. Jele: 1, mértékegysége: m.
. Témeg, amit kilogrammban mériink. Jele: m, mértékegysége: kg.

. Id6, amit secundumban mériink. Jele: t, mértékegysége: s.

. Abszolut hémérséklet, amit kelvinben mériink. Jele: T, mértékegysége: K.

2
3
4. Elektromos aramer6sség, amit amperben mériink. Jele: I, mértékegysége: A.
5
6. Anyagmennyiség, amit mélban mériink. Jele: n, mértékegysége: mol.

7

. Fényerosség, amit kandelaban mériink. Jele: I,,, mértékegysége: cd.

masodperc

, , . s . , , 1
Egy méter annak az ttnak a hosszusaga, amit a fény vakuumban 5=

alatt tesz meg.

A kilogramm az 1889. évben, a tomeg nemzetkozi etalonjanak Parizsban elfogadott, és
ma a Nemzetkozi Suly- és Mértékiigyi Hivatalban, Sevres-ben 6rzott platina-iridium henger
tomege.

A masodperc az alapallapoti cézium-133 atom két hiperfinom energiaszintje kozotti
atmenetnek megfelel6 sugarzas 9192631770 periédusédnak idétartama.

Az amper olyan allandé villamosaram erdssége, amely két egyenes, parhuzamos, végtelen
hosszisagu, elhanyagolhatdéan kicsiny kor keresztmetszetii és egymastol 1 méter tavolsagra
16v6, vakuumban elhelyezkedd vezetében fenntartva, e két vezet6 kozott méterenként 2-10~7
N erdt hozna létre.

A kelvin a viz harmaspontjanak termodinamikai hémérsékéletének 276.13-ad része.

A mdl annak a rendszernek az anyagmennyisége, amely annyi elemi egységet tartalmaz,
mint ahany atom van 0.012 kilogramm szén-12-ben. A mol alkalmazéasakor meg kell hatdrozni
az elemi egység fajtajat; ez atom, molekula, ion, elektron, més részecske vagy ilyen részecskék
meghatarozott csoportja lehet.

A kandela az a fényforras er6ssége adott iranyban, amely 540-1012 Hz frekvencidji mono-
kromatikus fényt bocséat ki és sugdrerdssége ebben az irdnyban 683-ad watt per szteradian.

1.1.2. Prefixumok

Az SI mértékegységrendszer prefixumait az aldbbi tablazat tartalmazza:



S| mértékegység rendszer prefixumai (elStagjai)
(International Systern of Units, 51 Prefixes)

yotta
zetta
exa
peta
tera
giga
mega
kilo
hekto
deka
deci
centi
milli
mikro
nano
piko
femto
atto
zepto
yocio

Az MKSA-rendszer a Méter-Kilogramm-Secundum-Amper mozaikszébdl ered.

1.2. Tér, ido, test, er6. Newton-torvények

A klasszikus fizika négy alapvetd alapfogalma a homogén id6, a homogén és izotrop geo-
metriai tér, a tomeggel rendelkez6 test és végiil a testek kozotti kolesonhatast leird ero.

Newton ezért azt hitte, hogy az 0Osszes test elemi - oszthatatlan - részeskékbol all, és
ezeket er6k mozgatjak. A klasszikus mechanikaban az m tomegl testek mozgasat F er6
hatasara a Newton-térvények irjak le. Az elsé torvény szerint erémentes térben (F=0) a
test konstans v=v, sebességgel mozog. A masodik torvény szerint a test lendiiletének (p)

Y]
[Z]
[E]
IF]

(1]

Iyl

1 000 00O D00 000 000 000 OO 000
1 000 000 000 000 000 000 DOO

1 000 000 D00 000 000 00O

| 000 000 000 000 000

1 000 000 DOO 000

1 000 Q00 000

1 000 00O

1 000

100

10

01

0,01

0,001

0,000 001

0,000 000 001

0,000 000 00D 001

0,000 000 000 000 001

0,000 000 000 000 000 004

0,000 000 DOO 000 000 000 001
0,000 000 000 000 000 000 000 001

1. abra.

id6egységenkénti megvaltozasa aranyos az erével, tehat

dp
= =F
dt ’

ahol p = mwv és elfogadjuk kisérleti tényként, hogy

ahol my a test nyugalmi (tehetetlen) tomege, ¢ pedig a fény vdkuumbeli sebessége és ~

31082,

Amennyiben eltekintiink a relativitaselmélettél, gy az (1) a kovetkezéképpen médosul:

A harmadik tétel pedig kimondja, hogy az akcid és a rakovetkezd reakeid ellentétes irany,
azonos nagysagu, azaz, ha két test kozott hatoé eré Fi, illetve Fyq, akkor teljestilnie kell, hogy

m = ———,

dv
— =F.
mo (it

F12 = _F21-

E24
E21
E18
E15
E12
ES
EG
E3
E2
El
E-1
E-2
E3
E-6

E-12
E-15
E-18
E-21
E-24



1.3. Homogén, sztatikus erotér

Amennyiben egy erétér homogén és sztatikus, az azt jelenti, hogy a tér minden pontjaban
az erotér nagysaga konstans és az idoben ez nem valtozik.

A legegyszerlibb példdkkal a pontszert testek mozgasaiban taldlkozhatunk, példaul a
"hajitasok”. Legyen F = -mgk, ahol k a z tengely iranyaba mutato egységvektor, g pedig
a gravitacios gyorsulds (~9,81%). Ekkor felirhaté a kovetkezd egyenlet (nem relativisztikus
esetben):

d*r(t)
Ezt koordinatanként is felirhatjuk:
=0
y=20
Z=—g.

Ekkor, ha megoldjuk a fenti differencidlegyenleteket (kétszeres integralassal tq és t hatdrokkal),
a kovetkezoket kapjuk:

x =0, (t — to) + rox
Yy = on(t — to) + Toy
1
z = _ég(t — t0)2 + U0Z<t — to) + Toz-
Ebbdl pedig felirhatjuk (2) teljes megoldésat:

1
I‘(t) = —§gk(t — t0)2 + Vo(t — to) + Irp.

Altaldnosan megjegyezhetd, hogy amennyiben ismeriink egy homogén, sztatikus ercteret,
akkor a mozgas palydjanak z,y,2z koordinatdjat meghatarozhatjuk 3 darab ma&sodrendi,
(in)homogén, allandéegyiitthatés differencidlegyenlet megoldasaiként, és ebbdl alkotott vek-
tor lesz a mozgas pélydja.

1.4. Lorentz-erotorvény

Mindig és mindeniitt az a tapasztalat, hogy elektromos toltés koril elektomos erotér van,
melynek jele: E ([E] = L). Két toltés egymdsra a Coulomb-erével hat, amely a kivetkezd:

_ 1 aer
dmeg 12 71’

F,

ahol ¢1,q2 (mindkett§ As-ban) a két toltés nagysaga, r pedig az ellentétes t6ltés iranyaba
mutaté vektor, melynek nagysdga megegyezik a két toltés kozotti tavolsaggal, ¢y pedig a
vakuum permittivitasa, értéke:
As

=8.85-10712—.
=0 Vm



Mindig és mindeniitt az a tapasztalat, hogy az elektromos dram (mozgé toltés) koriil
mégneses erétér van, melynek jele: B ([B] = £3). A mégneses tér egy mozgé toltésre erdvel
hat, melynek nagysaga:

F:q<VXB)7

ahol ¢ a toltés nagysaga, és v a toltés sebessége.

1.4.1. Elektromagneses erotér

Amennyiben a toltott részecskét elektromégneses erétérbe tessziik, a testre hatd er6 a
kovetkezoképpen szamolhaté:

F = ¢E + ¢(v x B).

Toltott részecske mozgasa elektromagneses térben:

d
dl;)_qE+q(VXB)

azonban, ha a sebesség sokkal kisebb, mint a fénysebesség, gy az egyenlet a kovetkezore
redukalodik:

d
md—‘;—qE—i—q(va)

1.5. Az elektromagneses tér munkaja

Mozogjon egy m tomegi, g toltési részecske a vizsgalt t1-t0l to-ig terjed6 intervallumban
Py és P, pontok kozott egy palyan. Szamitsuk ki a munkét, amit az erétér végez:

Py Py Py Py dv
W = Fdr:q/ Edr+q/ v X Bdr = m—dr. (3)
Py Py P o d
Végezziik el a kovetkez6 atalakitast:
d
dr = d—rdt — vt
majd ezt helyettesitiik a (3) egyenletbe:
P
2 d 1
m dr = mv—dt / mvdv = —mvz — —muyj.

Most pedig tekintsiik a (3) egyenlet masik oldalat:

Py Py Py
q/ Edr+q/ VXBdr:q/ Edr, (4)

Py Py Py

hiszen a vx B vektor merdleges dr vektorra, mert az elmozduldsvektor parhuzamos a
sebességvektorral, és vx B pedig meréleges a sebességre (és mdagneses indukciéra), mint
vektorra.



Ebbdl levonhatunk egy nagyon egyszerii kovetkezményt, nevezetesen azt, hogy a magneses
erotér munkat nem végez, a sebesség nagysiagat nem tudja valtoztatni, csak az iranyat.

Most tegytik fel, hogy E(r) sztatikus erétér, mert akkor eldéllithaté egy skalartér negativ
gradienseként:

E(r) = —gradU(r). (5)
Ezt behelyettesitve (4)-be, a kovetkezot kapjuk:
P2 P2
q/ Edr = —q/ gradUdr = q(Uy — Uy).
Py Py

a (3)-ban leirt egyenléség miatt tehét:

1 1

§mv§ — §mvf =q(U; — Uy),
amit atrendezve megkapjuk, hogy

1

1
émvf +qU, = émvg + qUs.

Tehat kimondhatjuk azt a kovetkezményt, hogy sztatikus, konzervativ erétér esetén a
test Osszenergidja minden pillanatban egyenl6 a kinetikus és potencialis energiak Gsszegével,
tehat az energia megmarad.

1.6. Részecske gyorsitasa

A fenti (nem relativisztikus esetben) levezetett egyenlet a kévetkezOképp maédosul, ha
nem tekintiink el a relativitdselmélettol:

me® — moc® = q(Us — Uy). (6)

1.6.1. A részecske tomegének novelése

Relativisztikus esetben, amikor tetszdleges sebességet tekinthetiink, akkor a testek tomege
a sebesség novelésével no.

Tegyiik fel, hogy egy részecskét nyugalmi helyzetbdl szeretnénk valamilyen U fesziiltséggel
gyorsitani, hogy a részecske mgy nyugalmi tomege a k-szorosara novekedjen. Tekintsiik a
kovetkezo egyenletet:

kmoc® — moc® = qU.
Rendezziik at az egyenletet, és fejezziik ki U-t:

(k — 1)mqc?
Y

U:



1.6.2. A részecske sebessége tetszolegesen nagy U gyorsitéfesziiltség esetén

Tegyiik fel, hogy az elobbi részecskénket valamilyen U - tetszoleges - fesziiltséggel gyorsitjuk,
és szeretnénk megtudni a végsebességét. Ekkor (6)-ba behelyettesitve a relativisztikus tomeget,
azt kapjuk, hogy:

Rendezziik at v-re a kifejezést:

1
V=~¢C l1-— .
\/ (14 :25)2

1.6.3. A részecskék nyugalmi energiaja

Egy adott ¢ toltésh részecske nyugalmi energidjat a kovetkezo képlettel lehet kiszamolni:
Enyugalmi = mOCQ-

Miel6tt meghatdroznank a fontosabb részecskék (elektron, proton, neutron) nyugalmi
energidjat, elébb be kell vezetniink egy 1j fajta energiaegységet, az elektronvoltot (eV).

Az elektronvolt pontosan megegyezik egy elektron toltésénék és 1V potenciél szorzatanak,
tehét

leV =1le-1V = 1.6- 107V As(Ws).
Az elektron témege 9.1-1073! kg, tehat a nyugalmi energidja:
Eryugaimi = 9.1-107°1(3-10%)* = 8.19 - 107" Ws = 5.11 - 10°¢V.

A neutron és proton nyugalmi energiaja ebbol egyszerii aranyként hatarozhaté meg, hiszen
a tomegaranyok a kovetkezok

m 1.67-107%7 m
Me 9.1-10-3¢ 18310 Me

Ebbol pedig mar kiszamolhaté a proton és neutron nyugalmi energiaja:

E

p

myugalmi = —20.511 - 10° = 938.2MeV.
m,

e

A neutron nyugalmi energidja megkozelitoleg ugyanennyi, ugyanis tomegiikben csak a
harmadik tizedesjegytol van kiilonbség.

1.7. Toltott részecske palyaja sztatikus elektromagneses térben

A toltott részecskére az elektromagneses erétér erét gyakorol, és ezaltal "mozgatja”. A
magneses erotér a sebesség nagysagat ugyan megvaltoztatni nem tudja, de iranyat igen.



1.7.1. Részecske mozgasa homogén, sztatikus elektromos er6térben

Az egyik legegyszeriibb elektroméagneses erotér, mikor nincs jelen mégneses térerdsség,
csak elektromos.

Tegyiik fel, hogy E = (E,, E,, E,), és B = 0. Tovabba tegyiik fel, hogy vy = vzot+vy0i+v.0k,
és 19 = ryt+ryj+rok. Ekkor a mozgasegyenleteket felirva az m toémegil részecskére (nem
relativisztikus):

mi = qF,
my = qu
mzZ = qFE,.
Oldjuk meg a fenti differencidlegyenleteket kétszeres integralassal, majd a kapott eredmény:
q 2
= B, (t—t ot —t .
X om ( 0) +v 0( 0) —+ 720
q 2
Yy = %Ey(t—to) +Uy0<t—t0)+7'y0
4q 2
=—F. (t—1 0l — 1T .
z 5 ( 0)° + v.0( 0) + 70

Ezt egzakt formaban a kovetkezoképpen irhatjuk:
qE 2
r(t) = —I({& —19)" + volt — o) + o,
(t) Zm( 0) o(t —to) + 1o

tehdt a részecske az F és vy vektorok altal kifeszitett sikon 1év6é parabola palyan fog
mozogni.

1.7.2. Részecske mozgasa homogén, sztatikus magneses er6térben

Tegyiik fel, hogy az elozd fejezetben szerepelt vy és 1y vektorok adottak most is, és
tegyiik fel, hogy B = (B,, By, B.), illetve E = 0. Ekkor a mozgésegyenleteket felirhatjuk
az. m tomegl részecskére, de el6bb nézziik, hogy mi lesz a teljes mozgdsegyenlet (v < ¢
feltételezéssel élve):

dv
"t

Lathatjuk, hogy az er6 mindig merdleges a sebességre. Ez annyit jelent, hogy a tér a
sebességnek csak az iranyat tudja befolyédsolni, a nagysagat nem.

Szorozzuk meg a fenti Osszefiiggést skalarisan wv-vel, és ekkor a kovetkezo Osszefiiggésre
jutunk:

=q(v x B).

dv

M

A skalarszorzat képzése és az idobeli derivalt sorrendjének ”felcserélése” esetiinkben nem

valtoztat a lényegi kovetkezményeken, csupan egy kétszeres eredményt kapunk, azonban
egyenletrendezéssel ez eliminalhaté. Tehéat:

dv?

dt

m(v, —) = (v,q(v x B)) = 0.

=0,
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tehat v* konstans, azaz |v| konstans.

Amennyiben pedig a sebesség abszoliutértéke allando és a hatd erd allandéan merdleges a
sebességre gy egy stkmozgas alakul ki, mégpedig egyetlen ilyen sikmozgas van, az egyenletes
kormozgas. A részecske tehat korpalyan mozog.

A korpalydn mozgd test gyorsulasa

)

r
innen pedig egyszertien felirhatjuk a newtoni mozgdasegyenletet:

2
v

m— = quB,
r

amit egy kicsit arendezve azt kapjuk, hogy

muv
r =

Tehat a korpalyan mozgd részecske palyajanak a sugara aranyos a részecske lendiiletével.

1.7.3. Részecske mozgasa sztatikus, homogén, egymasra merdéleges elektromos
és magneses térben

Amennyiben a sebesség elhanyagolhatéan kicsi a fénysebességhez képest, tigy a Newton-
féle mozgasegyenletre egy éallandd egyiitthatés, linearis, masodrendli differencidlegyenletet
kapunk:

d
md—z:q(E—l—va),

ami megoldhatd, r(t) kiszamolhato tetszéleges vy és 1y esetén.

Tegyiik fel, hogy az elektromos és méagneses terek egymasra merolegesek. Ekkor a mozgas
E iranyu egyenletesen gyorsuld, és a B-re merdleges sikban elhelyezkedd ciklois mozgés
szuperpozicidja lesz. Ennek igazolasara tegytik fel, hogy a test az origéban all, tehat vy és
19 is zérus.

Bontsuk fel a sebességet és az elektromos erét B-vel parhuzamos és B-re merdleges Ossze-
tevokre:

vV=v|+vVvL
E:E”-i-EL

Ez esetben a mozgasegyenlet két fiiggetlen egyenletre ”esik szét”:

vy _aq
dt m I
dv q

q
— == B —E,.
dt m<vL>< )+mL

11



Az els6 egyenlet egy E iranyu egyenletesen gyorsulé mozgast ir le, még pedig:

r) = %E||<T
A miésodik esetben a részecskére haté gE, er6 merdleges B-re. Vegyiink fel most egy
masik koordinatarendszert, amelynek tengelyei a t = t; idépillanatban az el6z6 koordinata-
tengelyekkel egybeesnek, de amely a régi rendszertiinkhoz képest dllandé u sebességgel mozog.
Tetsz6leges idépillanatban a részecske sebessége az eredeti (nyugvé) koordindtarendszerben
mérve:

vi=u+v,

ahol v a mozgod koordinatarendszer sebessége, v, pedig a mozgo rendszerhez viszonyitott
(tehdat relativ) sebesség. Majd, ha ezt behelyettesitjiitk a mozgasegyenletbe, a kovetkezét
kapjuk:
d(u+ v,
m%:q(EuqtuxBJrvpr). (7)
Most pedig az eddig hatdarozatlan u sebességet gy valasszuk meg, hogy a mozgas a mozgd
koordinatarendszerben a lehet6 legegyszeriibb legyen. Hatédrozzuk meg gy, hogy (7) jobb

oldalan a zardjel els6 két tagja nullat adjon, vagyis:

E” +uxB=0.
Tehat w nagysaga:
o= Bl _E
B B
azaz,
E” x B
u=—0

A mozgéasegyenlet a mozgd koordinatarendszerben tehat:

dv,
dt

hisz u differencidlhanyadosa allando lévén zérus.

A részecske a mozgd koordinata-rendszerben tehat gy mozog, mintha csak mégneses
tér volna jelen. Az elektromos tér ezen koordinatarendszer transzlacios sebességén keresztiil
érvényesiil. A mozgd rendszerbol az elektromos tér mintegy kitranszforméalédott. A részecske
a mozgo koordinata-rendszerben korpalyat ir le, ha vy, merdleges B-re, de ez a koordinata-
rendszer egyenletes transzldciés mozgast végez. A részecske palydja eredeti koordinata-
rendszeriinkben tehat ciklois lesz.

m = q(v, x B),

1.8. Mérnoki alkalmazasok

A fentebb targyalt mozgdsokat tobb teriileten is alkalmazzak, igy a katodsugarcsoves
tévénél vagy monitornal (bdr ez ma mar kevésbé népszerti), tomegspektografoknal, illetve
részecskegyorsitoknadl is, csak hogy egy par példat emlitsiink.

12



1.8.1. Az elektrosztatikus eltéritésii katédsugarcso

A katédsugarcsovel konnyen taldlkozhattunk egyszertibb (és j6 nagy méretii) monitorok,
illetve tévékésziilékek esetén. A mitkodését leirni egyszerti (elektronok csapédnak a fluoresz-
cens ernyére, és igy fel-felvillan6 képpontokként &ll Gssze a kép), azonban megérteni mér
kicsit nehezebb.

A 2. dbrdn lathato, hogy egy katodrdl elektronok 1épnek ki, amiket egy szabalyozo racs és
lencse fokuszél, majd két vizszintesen parhuzamos, és fliggblegesen parhuzamos kondenzator
térit el, mégpedig ugy, hogy a koztiikk 1évo sztatikus elektromos tér kimozditja az eredeti
palydjardl az elektront, és igy a fluoreszcens erny6 tetszéleges pontjara juttatja azt.

vizszintes
’ 2 eltérités
szabalyozd racs \

/

elektronoptikai
lencse

1zzokatod
fuiggoleges
eltérités

2. dbra.

1.8.2. A magneses eltéritésii tomegspektrograf

Az atomok szétvélaszthatoak a toltésiik segitségével, ugyanis, ha egy részecskét belovink
magneses térbe, akkor az korpédlyara fog allni. A korpélya sugara pedig a kovetkezoképpen
szamolhato:

muv
r =

Ebbél lathatjuk, hogy dlland6 v sebesség esetén (amit gyorsitéval tudunk biztositani) a
tomeg és toltés ardnydban a 3. dbrdn lathato eszkoz szétvalasztja a részecskéket.

13
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1.8.3. A ciklotron

Ernest Lawrence 1930-ban alkotta meg a ciklotront. A ciklotron két darab D alaku
fémdobozbdl all, amit homogén magneses térbe helyeziink, és valtakozo fesziiltséget kapcso-
lunk kozéjiik(4. dbra). Ezzel tudunk gyorsitani ”tetszélegesen” egy részecskét, amelyet akér
iitkoztethetiink is késébb.

Egy részecske koriilfutasi ideje nem fligg a részecske energidjatdl vagy sebességétol:

T_ 2mm

qB’

a részecske legnagyobb (vég)sebessége:

_ qBrma:c
Umazr = —
m
a részecske végenergidja pedig:
2 2p2
_ 2 ]‘rmaxq B
W=-mv,,, ==
2 m

14
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1.9. Analitikus mechanika

Az eddig targyalt vektormechanikanak a hatrdnya, hogy minden egyes témegpontra meg

kell hataroznunk az 0sszes ra haté erot, hogy megoldhassuk a Newton mozgasegyenletet.
Az analitikus mechanika ezzel szemben jéval ”erésebb” leirasa a klasszikus fizikanak.
Elészor is induljunk ki a vektor mechanikabdl (nem relativisztikus eset):

dv
m— =
dt
Tegyiik fel, hogy a mozgasok konzervativak, tehat F-hez tartozik egy potencidl, illetve

mi(t) = F.

1
Eéssz = émr(t) + Upot(r) = allandé.

Vezessiik be a konfiguracios tér fogalmat. A konfigurdciés tér mindig a rendszer sza-
badsagi fokaval megegyez6 szamu altalanos koordinatakkal jellemzett absztrakt tér. Ezeket
(q1,92,---,q5)-fel jeloljiik, ahol f a rendszer szabadsagi foka. Ezek id6beli derivéltja az dltaldnos

sebességkoordinatak.
Az analitikus mechanikahoz vezessiink be tovabbi két 1j fogalmat:

— Lagrange-fliggvény

— Hatés

A Lagrange-fliggvény nem mas, mint a kinetikus és potencidlis energiak kiilonbsége, tehat
L = Exin — Epot.

A kinetikus energia fiigghet az altalanos hely- és sebességkoordinataktol, a potencidlis
energia azonban csak a helykoordinataktol fligg.

15



A hatés a Lagrange-fiiggvény id6 szerinti integralja:

S[e(t)] = /t C Lt

A test tényleges palyajan a hatds minimalis, esetleg maximalis, de mindenképpen szélsGér-
ték, tehat

dS[r(t)] = 0.
Ezt nevezik Hamilton-elvnek, vagy méasnéven a legkisebb hatas elvének.
Ennek a problémanak a megoldasa az Fuler-Lagrange egyenletek, amelyek a kovetkezok:

oL d oL

ol - %aq'i =0

Ezeket hivjuk Lagrange-mozgéasegyenleteknek.

1.9.1. Hamilton variaciés elv és Newton mozgastorvény kapcsolata

A fentiekben bemutatott médszerek is ugyanarra a mozgésegyenlet(ek)re vezet(nek) vissza,
még pedig a Newton-egyenlet(ek)re.

Tegyiik fel, hogy az er6tér egy U (r(t)) potenciéllal leirhatd, és tegyiik fel, hogy a kinetikus
energia csak az altalanos sebességkoordinataktol fiigg. Ekkor a Newton mozgasegyenlet a
kovetkezo:

mr = —gradU.

Az r(t) vektort jellemezziik (q1,q2,...,qr) altaldnos koordinatéakkal. Nézziik az alabbi kife-
jezést:
d . d1 o¢?
—mr = ——m—.
dt dt2  oOr
Ebbol pedig lathatjuk, hogy ez a Lagrange-fiiggvény id6 és altalanos sebességvektor sze-
rinti derivaltja. A gradU pedig a Lagrange-fiiggvény altaldanos helyvektor szerinti derivaltja

(azaz a potenciélis energia), hiszen a kinetikus energia a feltételezésiink miatt nem fligg a
helykoordinatéaktol. Ezzel pedig, ha rendezziik az egyenletet a kovetkezot kapjuk:

4oL oL _
dtor or
amibol pedig L a kovetkezo:
d1 oi?
=mi — gradU = —-—m—— — gradU.
L =my — gradU dt2m oF gradU

Ezzel pedig belattuk, hogy a Newton egyenletek megegyeznek az Fuler-Lagrange mozgase-
gyenletekkel.

16



1.9.2. Altaldnositott lendiilet és a Hamilton-féle kanonikus mozgasegyenletek

Az altalanositott hely- és sebességkoordinatak mellett felirhatjuk az altalanos lendiiletko-
ordinatakat is, a kovetkezdképpen:
0L
- 0g;

Pi
A Hamilton-féle kanonikus mozgasegyenletekhez elébb definidljuk a Hamilton-fliggvényt:
H(gi,pi) = Z%Pz‘ - L,

ahol L a Lagrange-fiiggvény.
Ebbal felirhatjuk a Hamilton-féle kanonikus mozgasegyenleteket, amelyek a kovetkezok:

' dq;
' Opi

Ezek alapjan elmondhatjuk, hogy a rendszerhez felirhatunk 2f darab, elsérendii k6zonséges
differencialegyenletet is, amelyeket, ha megoldunk, mar "mindent” tudunk a rendszerrol.

Fontos megjegyezni, hogy az analitikus mechanika kétféle mozgasegyenletei(Hamilton-féle
kanonikus egyenletek, Lagrange-egyenletek) és a vektormechanika Newton mozgasegyenlete(i)
teljes mértékben ekvivalensek, és egymasba atalakithatoak azonos atalakitasokkal.

1.9.3. Analitikus mechanika példak

Tegyiik fel, hogy van egy [ hosszisagu nyujthatatlan fonalunk, amelynek végén egy m
tomeg 16g. Ekkor az altalanos koordindta legyen az inga és a vizszintes tengely altal bezart
sz0g (¢). Ehhez irjuk fel a kinetikus energiat

1 1
Elin = —=mv* = —ml?$?,
2 2

és a potencidlis energiat
Epot = mgl(1 — cosyp).

Ebbdl felirhaté a Lagrange-fliggvény is:
1
L= 5m12¢2 —mgl(1 — cosyp).

Hatarozzuk meg az altalanos lendiiletkoordinatat:
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Innentdl pedig felirhatjuk a Hamilton-fiiggvényt:

1 1
H(qi,p;) = ml*p* — §ml2gb2 + mgl(1 — cosp) = §ml2¢2 + mgl(1 — cosp) = % + mgl(1 — cosy).

Ebbdl pedig a Hamilton-féle kanonikus mozgasegyenletek:

. 0H )
p= —% = mgl(—siny)
. oH P
T T 2

Ezzel levezettiik a sikinga Hamilton-féle kanonikus mozgasegyenleteit.

Vegyiink egy, az el6z6hoz hasonlo sikingat, de most egy [y kezdeti nyijtottsagi gumiszalon
l16gjon az m tomeg. Ekkor a rendszer szabadsédgi foka kettd, szogelfordulds (¢), és az inga
megnyildsa (1). Ekkor felirhatjuk a potenciélis energiat, ami a fondlban, mint ”rugéban”
tarolt potencidlis energia

1
2
Epot,r = _k(l - lO) >
2
és a nehézségi erobdl szarmazdéd

Epotn = mg(h + 1y — lcosy)

potencidlis energidk Osszege, és h az ingara légatott test nyugalmi dllapotban mért tavolsaga
a foldtol.
A kinetikus energidk pedig a kovetkezoképpen alakulnak:

1 -
Ekin,r = §ml27
illetve
1
Ek:in,n = §ml2gb2.

Ebbdl felirhatjuk a Lagrange-fiiggvényt:
. 1 . 1
L= %(12 + 12¢?) + mg(lcosp — lg — h) — §k(l —1p)? = %(12 + I¢?) + mglcosp — 5/# + kll,.
A fenti egyenlet jobb oldalan a konstans tagokat elhanyagoltuk, hiszen az Euler-Lagrange

egyenletek felirdsakor a derivdlds miatt amugy is eltiinnek.
Irjuk fel az Euler-Lagrange egyenleteket:

- k kl
[+ (— —<,'02>l — (gcosgo—l— —0> =0
m m
© + %simp = 0.

Ezzel megkaptuk az inga mozgasegyenleteit.
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2. Klasszikus elektrodinamika

A klasszikus elektrodinamika kiterjeszti a klasszikus fizika alapjait, de ehhez el6bb néhany
matematikai alapfogalommal kell tisztaban lenniink.

2.1. Matematikai bevezeto

Mindenek el6tt a fejezet egyik legfontosabb operdtorat definialjuk, a nablat (V):
o 0 0
V= (—, 2. —>.
Ox’ Oy’ 0z
2.1.1. Skalar-vektor fiiggvény, gradiens, rotacié

A skalar-vektor fliggvény, més néven skaldr tér a geometriai tér (és id6) minden pontjahoz
egy skalart (szdmot) rendel. Példaként képzeljiik el egy szoba homérsékletét vagy egy test
strtiségét. Az azonos skalarszamau feliileteket ekvipotencialisnak nevezziik.

Skalar tér gradiensét ugy képezziik, hogy vessziik a tér minden koordinata szerinti parcialis
derivaltjat, és ezeket elhelyezziik egy vektorba. Fontos megjegyezni, hogy a skalar tér gradi-
ense mindig egy vektor-vektor fiiggvény lesz.

A skalar tér gradiensének egy fontos tulajdonsaga, hogy rotacio-, azaz orvénymentes, ami
annyit jelent, hogy a térben barmely zart gorbére vett vonalintegral értéke zérus.

A rotéciot egy F erotérre rotF-fel jeloljiik, és amennyiben F el6éll egy f fliggvény gra-
dienseként, gy F biztos, hogy rotaciomentes a fentiek értelmében, és f-et potencidlnak,
pontosabban skaldrpotencidlnak nevezziik.

A fentiekbol tehat altalanosan felirhato, hogy

rot(gradF) = 0.

Az utolsé Osszefliggés altalanositasa a Poincarré-lemma.

2.1.2. Vektor-vektor fiiggvény, divergencia, rotacié

Az el6z6 fejezetben bemutatott vektor-vektor fiiggvényt ugy jellemezhetjiik, hogy a kon-
figuracios tér egy-egy pontjahoz (vektorahoz) egy-egy vektor tartozik, tehat egy vektorhoz
vektort rendel. Példaként elképzelhetiink elektromos vagy épp mégneses (esetleg mindketto)
teret, ahol az erdteret minden pontban egy vektorral jellemezhetjiik.

Az elébbiekben emlitett rotacioképzés nem mas, mint a vektor-vektor fiiggvény és a V
operéator kiils6 (kereszt), vagy més néven vektoridlis szorzata:

rotFF =V x F.

Az el6z6hoz "hasonld” | vektoranalitikai ”eszkoz” a divergenciaképzés. A divergencia meg-
adja egy vektor tér forrasossagat, tehat azt, hogy vannak-e a térnek olyan pontjai, amelyekbdl
az er6vonalak kiindulnak (source) vagy elnyelddnek (sink).
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Amennyiben egy vektor tér eloallithatd egy vektor-vektor fiiggvény rotacidjaként, ugy az
utobbi fiiggvényt vektorpotencialnak nevezziik, az el6éllitott vektor térre pedig mindig igaz,
hogy ennek divergenciaja zérus, azaz

div(rotF) = (V,V x F) = 0.

Ez is a Poincarré-lemma egy specidlis esete.

2.1.3. Gauss-Osztrogdradszkij és Stokes-tétel

Altaldnosan elmondhaté, hogy mind a Gauss-Osztrogradszkij, mind a Stokes-tétel az
altalanos Stokes-tétel kovetkezménye, de nekiink itt elég ezt a két specialis esetet vizsgalni.

A Gauss-Osztogradszkij-tétel kimondja, hogy egy vektor-vektor fliggvény zart feliiletre
vett integralja megegyezik a vektor tér divergencidjanak zart feliilet altal kozrezart térfogatra
vett integraljaval. Ezt szokas fluxusnak is nevezni.

= 7{ FdA = / divFdV.
A v

Amennyiben a fluxus pozitiv, ugy a zart térrészben forrdas van, amennyiben negativ, agy
a zart térrészben nyel6 van, amennyiben pedig zérus, gy nincs se forras, se nyelo a zart
térrészben.

A Stokes-tétel pedig kimondja, hogy egy vektor-vektor fiiggvény zart gorbe mentén vett
integralja megegyezik a vektor tér rotacidjanak zart gorbére kifeszitett feliileten vett in-

tegréaljaval.
%FdL = / rotFdA.
L A

Ezen két tétel jelentosége a Maxwell-egyenletek bevezetése utan lesz lathato.

2.1.4. Koordinata-transzformacid

A fizikai problémak esetében eléfordulhat, hogy a probléma megoldédsat jelentésen konnyiti,
ha a "megszokott” Descartes-koordinatakrdl attériink mas koordinatakra.

Ezesetben azonban figyelniink kell, hogy hogy tériink at, ugyanis a kiilso- és belsoszorzat,
rotacié, divergencia, illetve gradiens képzése jelentosen eltér a kiillonboz6 koordinatarendszerekben,
és az integraldsnal is figyelni kell a transzformacié Jacobi-determinansaval valé beszorzasra.

Vegyiik a "szokdsos” haromdimenzids teret. Ekkor egy helyvektort az altaldnos koor-
dindtarendszerben felirhatjuk a kovetkezoképpen:

r = x1e1 + Taeg + T3e3.
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Ebbol e, ey és e3 egységvektorok felirhatdk:

o
oz

or
oz
or
0z
or
0z
Or
Oxs
or
Oxs

e =

€y =

€3 =

alakban.
Ekkor a dr vektort a kovetkezéképpen definidljuk

dr = gidzrie; + godrses + gsdrses,

ennek hossza pedig:

dr| = \/g2da} + gida} + gida?,

ahol ¢1,92 és g3 az adott koordinatarendszerre jellemzo metrika.

Adottak a kovetkez$ fiiggvények: U (r) = U(xy,x9,x3) és A(r) = A(ay,as,as3), ahol
a;(r) = (z1,x2,x3), @ = 1,2,3. A gradiens, divergencia, rotacié képzése a kovetkezSképpen
néz ki altalanos koordinatakkal:
1oy 1 0V 1 0V

= ———€ — —C€9 + — €3
g1 014 g2 02 g3 O3

. 1 199293 99193 99192
divA(r) = (V,A(r)) =
A ) = (V, AL) = (T + Ty + i)

grad¥(r) = V¥

€1 €2

€3
9293 9193 9192
rotA(r) =V x A(r) = a%ql 5%(]2 a%qg

gi1a1 goQo gs3as

Az aldbbiakban a két f6 koordindtarendszer kozotti attéréseket, illetve szamolasokat
vizsgaljuk (Descartes < Gombi).
El6szor is nézziik a koordindtatranszformacidkat

x = rsindcosy
Yy = rsindsing
z = rcosv,

ahol r a helyvektor nagysdga, ¥ a vektor z tengellyel bezart szoge, mig ¢ a helyvektor zy
sikra vett vetiiletének x tengellyel bezart szoge.
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Az inverz transzformacio pedig:
r=\/1? 4 y? + 22
_ )
p = arctan —
x

x? 492
—

¥ = arctan

Gombi koordinatakban az egységvektorok: e,, e, és ey.
Tegyiik fel, hogy adottak a fent definialt A és ¥ fliggvények. Descartes-koordinatarendszerben
a kovetkezoképpen definidljuk a divergencia-, rotacio- és gradiensképzést:
ov, ov, oV
grad¥(r) = —i+ —j+ —k
T T2 T3

- 8&1 8@2 80,3

divA(r) =
w (r) E)xl + 8902 + 8303
i j k
0 0 0
TOtA(I') = 8_561 3_x2 8_x3

aq a9 as

Most pedig tekintsiik ugyanezeket a fiiggvényeket, csak most gombi koordinatarendszerben:

8\IJe N 18\Ife n 1 8kIfe
or " r o9 " rsing oo 7
1 Or2a, 1 Osinday 1 Oa,

grad¥ =

divA = — + — + — .
r2 Or rsind O rsind Op
[ €y o
r2sind rs%nﬂ 5
T’OtA(I‘) = a—xl 8—x2 3_553

ay ras rsindas
Ebbdl tehat megallapithatjuk, hogy Descartes-koordinatak esetén a metrika

g1 =92 =g3 =1,

mig gombi koordinatak esetén

g =1
g2 =7
g3 = rsiny.

2.2. Maxwell-egyenletek

A Kklasszikus elektrodinamika legfontosabb egyenleteit James Clerk Maxwell publikalta
1865-ben. Einstein szerint Newton 6ta a legtermékenyebb fizikus volt Maxwell, aki az elek-
trodinamika mellett a statisztikus fizika teriiletén is kiemelked6t alkotott.
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2.2.1. 1. Maxwell-egyenlet

Mindig és mindeniitt azt tapasztaljuk, hogy az dramsiirliség és az eltolasi aram maga
koriil magneses orvényeket gerjeszt. Ennek integrélis alakja a kovetkezo:

oD
Hdl:/ J+ — |dA.
fua [ (5+7)

Tehat egy adott zart gorbe mentén a magneses térerdsség megegyezik az efolé a gorbe folé
kifeszitett, tetszoleges feliileten athaladd aramstirtiség vektorok és eltolasi aram vektorok
idGegységenkénti megvéltozasanak Osszegével. Az eltolasi dram vektor a nyilt (példdul a
kondenzatort tartalmazé) aramkorok esetében jelentds, hiszen itt az egyszerti dramstiriiség
vektor nem magyarazza az daramkor "tokéletes” miikodését.

Ennek felirhat6 lokalis, azaz differencialis alakja is. Felhasznalva az el6bbiekben ismerte-
tett Stokes-tételt a torvény a kovetkezo alakot olti:

oD

tH=J + — = H.
r0 +6’t V x

A torvényt szokas Ampere-torvénynek is nevezni.

2.2.2. 1I. Maxwell-egyenlet

Mindig és mindeniitt azt tapasztaljuk, hogy az id6ben valtozé méagneses tér (mégneses
indukcid) maga koriil az elektromos térerésség orvényeit generdlja. Integralis alakban:

fEdl ~ 92 [ Baa.
L Ot Ja

Azaz elmondhato, hogy egy adott zart gorbe mentén az elektromos térerdsség megegyezik
az efolé a gorbe folé kifeszitett, tetszoleges feliileten athaladé magneses indukciovektorok
id6beli derivaltjanak (-1)-szeresével. Ez csupan a Faraday-féle indukciétorvény atirt alakja,
mely kimondja, hogy ha barmely vezeto altal koriilfogott fluxus az idében valtozik, akkor
ebben a vezetékben a fluxusvaltozassal aranyos fesziiltség keletkezik. Ezért szokas Faraday-
torvénynek is nevezni.

Az el6z6 torvényhez hasonléan ez is felirhaté differencalis alakban a Stokes-féle integral-
transzformacio felhasznalasaval:

0B
rotB = ——— =V x E.
ot
A el6z6 torvénytol vald eltérés az, hogy az elektromos térerdsség orvényei a magneses
indukciévektorokkal balsodrasu rendszert, mig az aramstirtiség, az eltolasi aramvektor ido
szerinti derivaltja és az ezek koriili mégneses térerdsség orvényei jobbsodrasu rendszert al-
kotnak.

23



2.2.3. III. Maxwell-egyenlet

Mindig és mindeniitt azt tapasztaljuk, hogy a mégneses indukciévektoroknak nincsenek

forrasaik, azaz
j{ BdA = 0.
A

Az eddigiekhez hasonléan a torvény most is felirhaté differencialis alakban, ha felhasznaljuk
a korabban ismertetett Gauss-Osztrogradszkij-féle integraltranszformacios tételt:

divB = 0 = (V,B).

2.2.4. IV. Maxwell egyenlet

Mindig és mindeniitt azt tapasztaljuk, hogy az elektromos eltoldsi vektor ”forrasai” az

elektromos toltések.
j{DdA:ZQi:/pdV.

Tehat egy adott zart feliileten athalado elektromos eltolasi vektorok 6sszessége megegyezik
a zart felillet altal kozrezart térrészben 1évo toltés Osszességével. Masképpen ezt fluxusnak
is nevezhetjiik.

A torvény lokalis alakja a Gauss-tétel felhasznalasaval:

divD = p = (V,D).

A TII. és IV. torvényt “kiegészitd” torvényeknek is szokas hivni, bar ezek is a Maxwell-
egyenletekhez tartoznak. Azért kiegészito torvények, mert a II. torvénynek, ha képezziik a
divergenciajat, akkor a Poincaré-lemma szerint a divergencidja a rotaciénak azonosan zérus,
igy megkapjuk a divB = 0 egyenletet. Az I. torvénynek pedig szintén a divergenciaképzésvel
kapjuk egy folytonossagi egyenletbdl a divD = p Osszefiiggést.

2.2.5. [Eltolasi aram és az elektromos térer6sség kapcsolata

A Maxwell-egyenletekben észrevehetjiik, hogy az elektromagneses tér egyik ” 6sszetevojét”,
az elektromos teret két vektorral tudjuk leirni. Az elektromos térerdsség (E) és eltolasi aram
(D) vektorokkal.

Az elsore talan tavol all6 leirdsi médokon azonban jelentOsen egyszerisit az alabbi egyen-
let, amely megmutatja a két jellemz6 kozotti Osszefliggést:

D=c¢E+P. (8)

A kifejezés ebben a formajaban a legaltalanosabb, de miel6tt ezt targyalnank, tekintsiik
a lehet6 legegyszeriibb esetet, amikoris az elektromos teret vakuumban tekintjiik.
Ekkor a kifejezés a kovetkezore egyszertisodik:

D= 50]5‘]7
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ahol g9 a vakuum permittivitasa, és

As
g0~ 8.854 - 1072 —.
0 Vm
Amennyiben kicsit ”bonyolultabb” kozeget vesziink, de még mindig egyszeri kozegrol
beszéliink (ezt egyszert kozegnek is hivjak), tgy a vakuumra értendé kifejezésben szerepld
go-t meg kell szoroznunk még a kozegre jellemzo, vakuumhoz viszonyitott relativ permitti-
vitassal, tehat

D =c¢E,
ahol
E = E0&pel-

Most tegyiik fel, hogy egy teljesen dltalanos esetben vagyunk, ekkor a (8) egyenlet irja le
egzaktul az eltolasi dram és az elektromos térerdsség kapcsolatat. Az egyenletben szerepld
P vektor az adott anyag polarizaciés vektora. Vegyiink egy altaldnos kozeget V' térfogattal.
Legyen A a kozeg egy pontja, és legyen AV az ekortili elemi térfogat. Tovabba legyen p, az
ezen a AV térfogatban foglalt molekuldk dipélus nyomatékanak ereddje, akkor az A pontban
a polarizaciévektor definicié szerint

. Ap
P =5
A polarizaciévektor mértékegysége: [P] = 23

Els6 megkozelitésben a linearis anyagegyenlet igaz, vagyis P = xeoE, ahol x egy dimenzi6
nélkiili szam, neve dielektromos szuszceptibilitas. Vakuumban, illetve vezetében x = 0,
szigeteldanyagban y > 0.

2.2.6. A magneses térer6sség és indukciévektor kapcsolata

Az elektromos térhez hasonléan a magneses teret is két vektorral irhatjuk le, a mégneses
térerésség (H ) és indukcié (B) vektorokkal.

A kozegekre vonatkozo Osszefiiggés e két leirasi mod kozott hasonlit az elektromos teréhez,
igy altalanos esetben a kovetkezoképpen néz ki:

B =uH+ M. 9)

Hasonlban az el6z6 fejezetben targyalt modhoz, most is a legegyszertibbtdl fogjuk ” felépiteni”
az altalanosig az Osszefliggést.

Vékuumban a kifejezés - hasonléan az elektromos tér esetéhez - csupan egy konstanssal
valé szorzéasra redukalédik a jobb oldalon

B = ,LLOHa
ahol pp a vakuum permeabilitasa, és

Vs

=1.256-10"6——.
Ho Am
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Amennyiben egyszeri kozegeket tekintiink, ugy a kifejezésben a vakuum permeabilitdsat
meg kell szoroznunk - ugyancsak hasonlé médon az elektromos térhez - egy relativ permea-
bilitassal, ami az adott kozegre jellemezo, tehat

B =uH,
ahol

M= Hotlrel-

Most tekintsiik a legdltaldnosabb esetet, amikor a (9) Osszefiiggés lesz igaz a magneses
indukciovektor és az elektromos térerosség kozotti kapcsolatra. Az egyenlet M vektora az
anyagra jellemzo magnesezettség vektor. A polarizacios vektornal megismeretett kortilményeket
feltételezve a magnesezettség vektoranak értéke egy A pontban definicié szerint

Am
M(A) = —
)= Jim, 2
ahol m az adott AV térfogatban a magneses dipdlnyomatékok vektori Gsszege (mésnéven
eredéje). Tehat mérészamként ez megadja az egységnyi térfogatra juté mégneses dipélnyomatékot.
Meértékegysége: [M] = 2.
A mértékegység talan egy kicsit zavard lehet, de az ellentmondas felolddsa az, hogy a
magneses térerdsséget a kovetkezoképpen definidljuk:
B
H=—-M,
Ho
amibél egyenletrendezéssel megkapjuk ugyan (9) egyenletet, de amit mi ott M -nek hivunk,

az egy konstansszorosa annak, amit mi az el6bbiekben levezettiink, még pedig pip-szorosa.

2.2.7. Elektro- illetve magnetosztatika

Sztatikus esetrdl beszéliink, ha sem a magneses, sem az elektromos tér nem valtozik az
idoben, tehat % — 0, illetve, ha nem folyik aram, tehat J = 0. Ebben az esetben a négy
Maxwell-egyenlet a kévetkezoképpen modosul:

VxH=0
(V,B)=0
VxE=0
(V,D) =p.

Az elsO két egyenlet a magnetosztatikdara, mig a masodik kettd az elektrosztatikara vo-
natkozik. Az elektromos térerésség és eltolasi aram vektor, illetve magneses térerGsség és
indukcié vektorok kozotti osszefiiggések valtozatlanok.

A fenti négy egyenletbdl megallapithatjuk, hogy sztatikus esetben semmilyen kapcsolat
nincs a magneses és elektromos terek kozott.

26



2.2.8. Staciondrius terek

A stacionarius terek mar egy fokkal "komplikaltabbak”, mint a sztatikusak. Idébeni
valtozas még itt sincs, azonban van toltésmozgés, tehat folyik az aram, vagyis J # 0.
Ebben az esetben a Maxwell-egyenletek alakjai

VxH=1J
(V,B) =0
VxH=0
(V,D) = p.

A térerosségek és eltolasi aram, illetve indukcié vektor kozotti osszefiiggések tovabbra is
valtozatlanok. Azonban ebben az esetben mar be kell vezetniink egy ujabb Osszefiiggést,
mégpedig az aramsiriiség vektorra:

J=0(E+E,),

ahol E,, a generatokban tarolt elektromos térerdsség, mig o a fajlagos vezetéképesség,
méasnéven konduktivitdas. Mértékegysége: [o] = %. Ezt nevezik differencialis Ohm-torvénynek.

Az Ohm-torvény arrdl szol, hogy egy vezetében az dramstiriiség és az elektromos térerdsség
egyenesen aranyos egymassal. Ervényességérol fontos megjegyezni, hogy korlatozott, ugyanis
ha n6 az aramstriiség, akkor a homérséklet is, és lecsokken a fajlagos vezetoképesség, tehat
o csak akkor lesz fliggetlen J-t6l, ha a hdmérséklet alland6. Néhany anyagra (pl. félvezetd
di6dék) azonban még dllandé homérsékleten sem igaz, sét néhany anyag vezetOképessége
hiitéskor egy meghatarozott homérséklet alatt végtelenné valik, ekkor nem sziikséges térerosség
sem ahhoz, hogy aram folyjon. Ezt szupravezetésnek hivjuk.

Az Ohm-torvényben szerepel tovabbé a generatorok altal keltett ”ideigen” tér is, ez az
E,.,.

2.3. Inverz-problémak

Adott toltéselrendezéshdl skalarpotencial bevezetésével hatarozhaté meg az elektrosztati-
kus erotér. Ezt a 2.1.1 fejezetben megismertett skalarpotencial segitségével tehetjiikk meg.
Tegyiik fel, hogy a kozegiink ”egyszeri”, vagyis

D = (g0 + k)E = gp&,E = ¢E.
Induljunk ki a IV. Maxwell-egyenletbdl, vagyis
(V,D) = p.

Hasznéljuk fel a 2.1.1 fejezetben ismertetett Poincaré-lemmat (hiszen az egyszerii koze-
gekre vonatkozo II. Maxwell egyenlet kévetkezménye, hogy az elektromos tér rotaciomentes),
tovabba irjuk 4t az el6z6 egyenletet gy, hogy E szerepeljen benne és ne D. Ezutan pedig
helyettesitiink be a skalarpotencial negativ gradiensét ide:

P
- Uy ="
(v.v0) = £,
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ahol U a skalarpotencial.
Ekkor tudjuk, hogy V2 = A, tehat kapunk egy Poisson-egyenletet:

AU(r) = —@.

Ennek az egyenletnek a megoldasa

1 p) o
= av’.
U dme /v r —r/| v

Ezzel megadtuk a toltésekbdl a skalar potencialt. A térerGsséget a kovetkezOképpen lehet
meghatarozni a potencialbol:

Lo
E(r)=—gradU(r) = 4%5/‘/ > dv’,

ahol az r’ vektor az adott r helyvektord pontbdl az r’ helyvektori pont felé mutatéd
egységnyi hosszisdgi vektor, r? pedig a két pont tédvolsdganak négyzete.

Az elébbiekben megismertiik a sztatikus elektromos térerére vonatkozo inverz-problémat,
azonban a stacionarius magneses térnek is van inverz-problémaja. Méagneses térre vonatkozo
inverz probléma esetén egy adott J(r) vektorbdl szeretnénk meghatarozni B(r)-t, tehdt
stacionérius térben az aramok adottak, és a magneses teret (pontosabban ezek 6rvényeit)
hatarozzuk meg.

Tovabbra is "egyszerti” kozegeket tekintsiink, vagyis

D =c¢E,
illetve
B =uH,

ahol p = poptrer-
Induljunk ki a I. Maxwell-egyenletbol

VxH=1J.

Hasznéljuk fel a 2.1.2-ben ismertetett Poincaré-lemmaét, miszerint tudjuk, hogy B(r)
el6éll egy A(r) vektorpotencidl rotaciéjaként (a mégneses tér forrdsmentességének kovet-
kezmény). Majd az el6bbi Maxwell-egyenletet irjuk at, hogy B szerepeljen benne H helyett,
ezutan pedig - az atirt - egyenletbe helyettesitiik be a vektorpotencial rotacidjat, azaz azt
kaptuk, hogy

VXV XxA=-AA=ud,
ahol felhasznaltuk, hogy
VxVxA=V(V,A) - AA,
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és V(V,A) = 0 vélasztdssal éltiink, amely az altalanossdgot nem szoritja meg, hiszen
A-nak csak a rotacidjara vagyunk kivancsiak, am ez nem hatdrozza meg egyértelmiien vek-
torpotencialt.

Ebben az esetben pedig a J(r)-bSl A (r) meghatarozhato:

Ar) =1 /VJ("‘)CW,

r

Az el6z6 egyenletbodl pedig mar B(r) egy egyszerii rotacié képzéssel megkaphato:

B(r):VxA:ﬁvX/ IE) (10)

v — |

2.3.1. Coulomb-torvény

Tekintsiink egy pontszer toltést, azaz

@zfvpdv.

R Y V) S
E(r) = 47T5/V av' = r’

Tehat a ¢ toltésre hatd ero:

Ennek erotere:

qQ 0

F=¢E =
1 Arer?

Ez pedig a jol ismert Coulomb-torvény, amelyet szokas a potencial és az elektromos tér
"szuperpozicidjanak” torvényeként is emlegetni.
2.3.2. Biot-Savart torvény

Amennyiben a (10) egyenletet egy kicsit még alakitjuk

0
dAdl = M2 / —dl plo[dlxr

47 L 7"2

B(r)= —V /

—I‘/’

és végeredményt pedig leosztjuk p-vel, megkapjuk a Biot-Savart torvényt. A torvényt
vonalszerti aramok altal keltett mégneses térerosség meghatarozasara hasznalhatjuk, ahol a
keresztmetszet elhanyagolhaté a vezeték hosszahoz viszonyitva.

2.4. Kirchhoff-torvények

Staciondrius (egyenaramu) aramkorokben igaz Kirchhoff-térvényeket levezethetjiik a Maxwell-
egyenletekbdl is.
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2.4.1. 1. Kirchhoff-torvény

A torvény kimondja, hogy egy adott csomépontban érvényesiil a toltésmegmaradas elve,
azaz a befoly6 és kifolyé aramok el6jeles 6sszege zérus. Kirchhoff I. torvényét szokéas csoméponti
potencialok torvényének is nevezni.

Induljunk ki az I. és IV.

oD
VxH=J+ En
(V.D) =p

Maxwell-egyenletekbol. A Poincaré-lemmat felhasznalva tudjuk, hogyha képezziik az I.
egyenlet divergenciajat, akkor nullat kapunk, azaz

oD
Az utolsé egyenletbe behelyettesitve IV. Maxwell-egyenletet azt kapjuk, hogy
dp
Nl _ v g =
(V.3)+ L = (9,3) =0,

hiszen a toltéssliriiség nem valtozik az idében a stacioner koriilmények miatt. Fkkor
felhasznalva a Gauss-Osztrogradszkij tételt azt kapjuk, hogy

deA:Z[k:o.
A k

2.4.2. II. Kirchhoff-torvény

A torvény kimondja, hogy egy zart hurok mentén a fesziiltségesések Osszege zérus. Szokas
hurokaramok torvényének is nevezni.
Induljunk ki a IT. Maxwell-egyenletbol:

V xE =0,

amit atirhatunk a Stokes-tétel segitségével az alabbi formara:

/VxEdA:j{Edl:O,
A L

illetve a
J=0(E+E4.,)

egyenletekbdl. Rendezziik at az utolsé egyenletet E-re:

J
E:__Eem
o g
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majd ezt helyettesitsiik be a(z atirt) Maxwell-egyenlet jobb oldalaba

foa- f( ﬁgm_o

Alakitsuk at az utolsé egyenletet tgy, hogy az integrandusban az elsé tagot szorozzuk
eggyel a kovetkezoképp:

JA
f (e )aifpa- fEnasn

amit pedig, ha egy altalanos héldzat tetszés szerinti zart korére vesziink, akkor Kirchhoff

I1. torvényére jutunk:
Z Iy Ry, — Z U’gen;C = 0.
k k

Az utolso egyenletet atrendezve megkapjuk a k. indexti tagra vonatkozé klasszikus Ohm-
torvényt, hiszen a k. indexii generator altal szolgaltatott villamos térerésség vonalmenti
integralja megegyezik a hélézatba juttatott kiils6 potencial értékével.

Az integralis alakban szereplo — kifejezés tehat ellendllds (€2) dimenzidju.

2.5. Mozgd, pontszerii toltések elektromagneses tere

A valésagban az elektromagneses tér létrehozdi a toltések és az dramok. Altaluk kozeli
és tavoli elektromégneses tér jéhet létre, am fontos kiilonbség e két tér kozott, hogy a kozeli
nagysiga -z-esen, mig a tavolié ——rel csokken.

Sztatlkus toltéseknek csak kozeh elektromos, sztatikus dramoknak csak kozeli magneses
tere van.

2.5.1. Allandé sebességgel mozgo toltés

Adott egy toltés, amely allandd sebességgel mozog (v = allandé, akar zérus). Ekkor a
toltésnek csak kozeli elektromos és méagneses tere van.
A p(r,t) toltéssiirtiség-fliggvényt a kovetkez6képpen definialjuk:

plr.t) = g3(r — Vi),

ahol delta egy haromdimenzidiis Dirac-delta fiiggvény. Ez esetben a elektromagenes teret
leir6 elektromos térerdsség és méagneses indukcidévektorok a kovetkezoképpen szamolhatok:

1 — vt
B_ . r—v
dmey " |r — vit|?
MoV x r’
T

Amennyiben a toltés all6 helyzetben van, gy megkapjuk a mar jol ismert Coulomb-
torvényt, illetve azt, hogy allo toltés koriil nincsenek magneses indukciévonalak, ugyanis a
magneses tér orvényeit az aram, vagyis a mozgd toltés hozza létre.
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2.5.2. Gyorsulo toltés

A gyorsul6 toltésnek a kozeli téren kiviil van egy masik, ugynevezett tavoli vagy sugarzo
tere is. Ez esetben a vektorpotencidl a kovetkezoképpen néz ki

AT (T,

A r c

Ebbdl kiszdmolhatjuk a magneses és elektromos térerdsség vektorait:

= ST 1) )

AT r
1
E = M—(I‘q<t—i> ><I'0> X Iy.
47 r c

Jol lathato, hogy amennyiben a gyorsulés zérus, azaz a toltés sebessége allandd, igy mind
az elektromos, mind a méagneses térerosség is zérus.

A maégneses és elektromos tér egymdsra merdleges, és mindketté nagysdga aranyos a
toltéstol vald tavolsag reciprokaval.

2.6. Dipdlus és multipolus elektrosztatikus tere

A pontszert t6ltés elektrosztatikus tere mellett (amit a Coulomb-térvénnyel meghatérozhatunk)
a gyakorlatban nagy jelentésége van a dipdlusok, illetve multipélusok terének is.
2.6.1. Dipdlus

A dipélus két, ellenkez6 el6jelii, azonos nagysagu toltésbol all, melyek nagyon kozel vannak
egymashoz.

5. abra.

Hozzunk egy + @) és egy -() toltést egymashoz nagyon kozel az 5. dbrdn lathaté médon,
akkor a tetszoleges P pontban a potencialérték a kovetkezo:

- (20D - ()

dreg \ry  r_ dmeg \ry  T_ dmeq +1 |-
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ahol 7, és r_ a pozitiv, illetve negativ toltésbol a P pontban mutatd vektorok.
A gradiens definicidja szerint

1 1
r_+1  |r-

1
| ~ <17 gradD;>7

ha az |[| < |r|. A D index azt mutatja, hogy a gradiensképzéskor a D pont koordindtdit
kell valtozoknak tekinteniink. Ezt behelyettesitve a potencidlt megadé kifejezésbe:

0 1
U(P) ~ Tnes (1, gradD;>.

Amennyiben a két pontot nagyon kozel vissziik egymashoz, ugy a P pontbeli potencial
értéke zérushoz kozelit. Noveljiik @ értékét uigy, hogy QI = p szorzat allandé maradjon. A
p és 1 vektorok definicié szerint a negativ toltésbol a pozitivba mutatnak. Ekkor a potencidl
értéke is allandé marad, kivaltképpen a potencidlt egyre pontosabban adja meg az utolso
Osszefiiggés.

Tehat a dipdélus potencidlja

1
(p, QT@dD;>-

U=
47'('80

Azonban, ha most nem a dipdlus koordinatai szerint differencialunk, hanem a P pont
koordinatai szerint, és a

1
gradp— = —gradp—
r r
osszefliggést figyelembe vessziik, akkor a
1 p 01
U=—— dp—) = — ——.
4meg (p.gra PT> Arey Oz 1

egyenletre jutunk.
A dipélus potencialja atirhaté az

1 (p,ro) 1 pcost
2 2 -

U —

dreg T Cdmey T
alakra.
A potenciél ezek utan negativ gradiensképzéssel egyszeriien meghatarozhaté gémbi koor-
dinatakban:

ou 1 (p,rog) 1 pcost

B =22 —
or 2meq 13 2meg 13
> _lou 1 psind 1 [roXp|
YT o0 Aeg 13 dmeg T3
E, =0,
amit felirhatunk vektoregyenletben is:
1 2(p, ro) ro X (ro X p) 1 2(p, ro) p
E — s ] = |: , —_
4reg < r3 ro) + r3 4meg r3 To) r3
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2.6.2. Multipd6lus

Az altalanos multipélusokon beliil a legegyszeriibbek az axidlis multipélusok, mi most
csak ezekkel fogunk foglalkozni. A dipdlust gy kaptuk meg, hogy két, ellentétes elGjelil
pontszerl toltéseket, masnéven monopolusokat vagy nulladrendit multipolusokat I-lel eltol-
tunk egymashoz képest. Vizsgaljuk most meg azt az esetet, ha egy dipdlust eltolunk m
vektorral, és ellenkezoleg iranyitjuk, és ennek a két dipdlusnak figyeljiik egyszerre a terét.
Ezt az elrendezést hivjdk egyébként (axidlis) kvadrupdlusnak, vagy mésnéven masodrendii
multipélusnak. Az elrendezést a 6. dbra szemlélteti.

6. abra.

Az els6 dipdlus potencialjat mar egyszer meghataroztuk

1 ! Q0 o 1
Ut — dp—) = — -
4reg (p.gra Pr+> Ameg Oz ry’

ahol Ut(D azt jeloli, hogy ez a referencia irdnynak tekintett ”pozitiv”, és elsérendii mo-
nopoélus, vagyis dipélus. Azonban a masodik dipélus potencidljat a
Q 01

- —
dmeg Oz r_

Osszefliggés adja meg. Az eredd axidlis kvadrupélus potencidlja e kettd szuperpozicidja,
tehat

g — o L p-m = 1@ 9 (i _ l)

B dmeg Dz \r_ 1y
Viszont tudjuk, hogy
1 1 1 1 1 1 01
r_ ry |I', + m| |I‘,| (m,gm D7’> <m7 gra P7’> m@zr’

és ezzel a potencidl értéke a kovetkezdképpen véltozik:

U@ — 1Q 8_21
Amey 0221

34



Csokkentsiik most [ és m tavolsdgokat minden hataron til, és kdzben noveljik @-t, hogy a
2mlQ) = p® szorzat dllandé maradjon. A p® momentumi axidlis kvadrupélus potencidljara
tehat azt kaptuk, hogy

(2 2
@ _ p< 1 0% 1

" dmeg 20221
A Kkettes szorzé bevonasanak célja itt nem latszik, de célszerii és késébbiekben majd
vildgossa valik a szerepe.
Irjuk fel a kvadrupdlus potencialjat gombi koordinatakaban is:

_1Q <00519+ 00319_>7

477'60 2

2 — y+ -1
U U +U 7z )

viszont

cos¥,  cosv_ cosv
5 — ——— ~ —(m, gradp——).
Ty r r

A gradci—iﬂ komponensei gombi koordinata-rendszerben

cost B 0 cost B _200319

d, = =
gra 72 or r? 73
g cos?d 1 9 cos?t sind
rady—— = —— = —
grado 72 rod r? 73
cost
grad¢r—2 =0,

mig az m vektor ugyanebben a koordinata-rendszerben
m, = mcost
my = —msint
my =0
alakot olti. Ebbdl pedig felirhatjuk a potencialt a gombi koordindtarendszerben:

) 1
<2>:lei( 219_1>:p_i( 2q9__>
u ey T3 cos 3 4rreg 213 o3 3/

Most, hogy megallapitottuk a masodrendii multipélust, minden adott, hogy egy n-ed
rendi, axialis multipélus potencidljat meghatarozzuk. Az elébbiek értelmében tehat két

ellenkezé eléjellel vett kvadrupdlusbol kapjuk az oktopdlust. Ennek potencidljat Descartes-
koordinatakkal

3 3
po PP 1ol
Areg 31 023 1’
mig gombi koordinatakkal
B 1
B = P72 (500830 —
UY = e 27“4(5608 ¥ — 3cos?),
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ahol p® = 3p@myg, és p® azon kvadrupdlusok nyomatéka, amelyek egymdstél ms tavolsagra
valé eltolasabdl és eléjelvaltoztatasabol kaptuk az oktopdlust.

Ezek utan pedig mar lathatjuk, hogy az m-ed rendi multipélus képzésének szabdlya
Descartes-koordinatakkal, illetve gémbi koordinatakkal a kovetkezo:

M 1 9m1
U (o 22
(z,9,2) = (=1) Aregn! Oz™ r
(n 1
(n) P
U™ (r,9) = — P,(cos?),

ahol p™ = ip™=Ym,,, P,(cos?) pedig a cos valtozé n-ed foki polinémja, az igynevezett
Legendre-poliném.

Fontos megjegyezni, hogy az elébbiekben levezetett potencidlok csak az axialis mul-
tipolusokra érvényesek, a teljesen altalanos multipélusokra nem. A definicié célszertiségét a
kovetkezd fejezetben fogjuk belatni, amikor vonaltoltés potencialjat fogjuk meghatarozni.

A kiilonb6z6 multipdlusok tulajdonsagait a kovetkez6 tablazat tartalmazza:

Monopdlus ) . i (i)-ed rendil
vagy pontszeri Dipdlus Kvadrupdlus Oktopilus multipélus
tiltés b
A multipélus rendje 0 [ z g J
A pontszerf toltések 50 = 1 31 -9 92 =4 =8 2
SEZAIMA — = <t
,: p;:i:n.l..!ii} Q1 P P 1 3% PP 1 8t (-1 ¥ 1t 1
km?dinézjlf;an doey r dmegazr dmeg2lazlr dmeg 3ltazr Amegilaz' s
A potencidl p® 13 P 11 i
gtimbkoordindtdkban Q1 ptt 1 cos B dmegri2 dmegrt 2 P ;P- (cosB)
..L'E,E,:Ir dr_"'[fu ri -(cﬂszﬂ‘— ;) .4;‘1'I'Enrfl'| i
Ekuipmeuci:ilis A
feliiletek ¥ @ bt (
RS g =/

A ﬁo:cn-:iﬁl eloszldsa
gimbfeliileten

7. dbra.

2.7. Vonalszeri és feliilleti toltések erotere

Amennyiben nem csak monopdélusokbdl 6sszerakott multipélusok potencialjat vizsgaljuk,
hanem folytonos toltésekét, tigy beszélhetiink vonalszerii és feliileti toltések erGterérol.
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2.7.1. Vonaltoltés potencialja

Hatarozzuk meg a tér egy P pontjaban a z tengely mentén & = - és & = +l kozott
folytonosan eloszlé ¢(€) vonaltoltés potencialjat. Az elrendezést a 8. dbra szemlélteti.

Z‘ P

8. abra.
A (0,¢) pont kornyezetében kivélasztott df szakaszon helyet foglald toltés
dQ = q(§)ds,

és ennek potencialja

dU = ﬂdf,
47’(’60’/’]3@

azaz a teljes potencial

1 /+l @dg_

- 471'60 1 TpPQ
Legyen a P pont rogzitett, ahogy a 8.dbra mutatja. Ekkor rpg értéke az
rpQ = Va2 +y? + (2 — )2 (11)

kifejezésnek megfelelden csak &£-t6l fiigg.
Tekintsiik az f(§) = —— fiiggvényt, amely az f(0) =  pontban Taylor-sorba fejthetd és

o 210
[ =3 —=¢
=0
A (11)-bél kévetkezik, hogy
0 1 0 1
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tehat

o0 Z

Z z'! 62’ r

Ezek utéan tehat felirhatjuk a P pontbeli potencidlt a sorfejtés felhasznélasaval:

1 i il 91 +l .
up) = 47eg ; [<_1) ﬁ<azl;> /_l a8 dﬁ]

Ebbdl lathatjuk, hogy egy tetszoleges vonaltoltés elsé kozelitésre egy monopdlusnak,
masodik megkozelitésre egy dipolusnak, harmadik megkozlitésre pedig egy kvadrupoélusnak
felel meg, és igy tovabb. A Taylor-sor tagjai a magasabb rend multipolusok hatasat adjék
meg. Tobbek kozott ezért volt benne a kvadrupdélus momentuméaban a 2-es szorzd, ugyanis
az a Taylor-sor konvergencidja miatti faktoralasbol ered.

Amennyiben pontszeri toltések szerepelnek, gy az altalanos momentumra az alabbi

kifejezést kapjuk:
-Yos

Azonban a z tengelyen folytonosan eloszlé vonaltoltés potencialjat mas médon is sorba
lehet fejteni. Legyen a 8. dbra szerint

rIQDQ =12 4 £ — 2rfcosv.

Ezért a potencial

U(p) = — /“Lq@dgz ! /+_ll[l+(§>2—2§cosﬁ}_q(E)df-

dmeg ) TPQ Ameg J4q T r

[

Az r > 1> & értékre % binomidlis sorba fejtheto:
1 1 3 3
= [1 + (;) - 2= cosﬁ} ZP (cos¥)— +1

’f‘pQ

ahol P; polinomok definiciészertien a Legendre-polinomok. Ezek kiadédnak, ha a sorba-
fejtést % novekvo hatvanyai szerint rendezziik. A potencidl tehét:

[e.o]

1
U= 471'80;

A potencialt igy most is a kiilonb6z6é multipélus-nyomatékokkal fejezziik ki, am most
gombi koordinatakkal.

+1

q(&)ﬁ"dél :

1
mP,-(cosﬁ) /

-1
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2.7.2. Feliileti toltés potencialja

Legyen az A feliilet p(r) véltozé feliileti toltéssiirtiséggel ellatva. Egy dA feliiletelemen a
pdA pontszertinek tekintheto toltéselem potencidlja

dU = L @
dreg T

Itt r a dA felilletelem és a P pont kozotti tavolsdg, ahol keressiik a potencialt. fgy tehat
a feliileti toltés potencidljat megadja az

1 pdA
Cdmeg Ju 1

Osszefliggés.

A potencidl ugyanazt az értéket adja, akarmelyik oldalrdl is kozelitjik meg a feliiletet.
Masképpen ezt gy fogalmazhatjuk meg, hogy a potencial folytonosan megy at egy p feliileti
toltésstliriséggel ellatott feliileten. A potencidl normélis menti derivaltja azonban ”ugrik”.

“u\,.-”ﬂ' A
, \ .

9. abra.

A fenti dbran lathato zart feliiletre, és az altala koriilhatarolt térfogatra, ha alkalmazzuk
a Gauss-Osztrogradszkij tételt, akkor azt kapjuk, hogy

e ) = 20| (32),~ (50), |

pdA = —E—?o(a—n2 + 8_711

Tehat azt kaptuk, hogy
<8U ) P n <6U )
on’1 & on/2
2.8. Elektromagneses energia

2.8.1. Az elektromagneses tér energia- és lendiilethordozdja

Az elektromagneses tereket a Maxwell-egyenletek kielégitéen leirjak. Azonban vizsgaljuk
meg, hogy az egyenletek hogy kapcsolédnak a fizika tobbi agahoz.
El6szor is definidljuk az energiasiirtiség (w) fogalmat, amelyet egyszerii kozegekben a

1 1 1 1
w = §<E7D> + §<B7H> = §€(E,E> + §M<H,H>
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Osszefiiggés definidl. Mértékegysége [w] = 2 = \;gs_

Ezen felil pedig a mozgo toltésre hatd erét a Lorentz-erével

F =¢E + ¢(v x B)

irhatjuk le.
Az Osszenergia egy térfogatban megegyezik a méagneses és elektromos energiak Osszegével,
vagyis az energiasiiriiség térfogati integraldjaval, azaz

1 1
/§5<E, E) + §,u<H, H)aV.

2.8.2. Véges térfogatu elektromagneses tér energiaja, energiamegmaradas

A zart, véges V térfogatu térrészre igaz az a tétel, miszerint a V-beli generdtorok altal
termelt teljesitmény megegyezik a V-ben tarolt egységnyi ido alatti energianovekedés, a V-
ben hévé alakulo teljesitmény, és az A feliileten V-bol kilép6 sugarzo teljesitmény Osszegével.
Ez formailag a kovetkezo alakot 6lti:

/<Egen7J>dV = 2/ <1M<H,H> + 16<E,E>> dV+/ <J’J>dv+7{E x HdA.

A fenti tételt egyszeriien bebizonyithatjuk. Induljunk ki az I. és a II. Maxwell-egyenlet
altalanos alakjabol. Az els6 egyenletet szorozzuk meg -E-vel skalarisan, a masodikat pedig
szorozzuk meg H-val, szintén skaldrisan. A kapott eredményeket adjuk Gssze egymassal, és
azt kapjuk, hogy

0B oD
=y _(E. ==
’8t> <’8t

Majd alkalmazzuk a bal oldalra azt az osszefliggést, hogy div(Ex H) = (H,rotE)-(E,rotH),
illetve integraljuk az adott V térfogaton a kifejezés mindkét oldalat, akkor az
0B oD
/ div(E x H)dV = —/ ((H, T2 L (E, —>)dv - / (E, J)dV

kifejezéshez jutunk. Ezutan, ha felhasznaljuk a differencidlis Ohm-torvényt a jobb ol-
dal utolsé tagjara, illetve a Gauss-Osztrogradszkij tételt a bal oldalra, akkor a koévetkezd
egyenletre jutunk:

jé(ExH)dA: —/V <<H,%—]:’>+<E,aa—]?>>dv—/v <J’J>dv+/v(Egen,J>dV.

(H,V x E) — (E,V x H) = —(H ) — (B, J).

g

Ezt az egyenletet rendezziik

(0 w22 freermans [BDa - [ w0

g
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és amit kapunk, azt Ugy értelmezhetjiik, mint az energia megmaradasanak tételét. Az
egyenlet bal oldalanak atalakitasaval

0B oD 0 1 1

lathatjuk, hogy ez nem mas, mint a kozrezart térfogatban foglalt elektromégneses energia
idGegység alatti véaltozasa. Ezt behelyettesitve (12)-be, és dtrendezve az egyenletet megkap-
juk a tétel allitasat, de ezt most nem tessziik meg, mert igy a fizikai hattér jobban latszik.
Ugyanis, ha vessziik (12)-t, akkor az egyenlet jobb oldaldn azt lathatjuk, hogy a tér elekt-
romagneses energiaja minek a hatasara véaltozik meg.

A térfogatba zart elektromégneses energia csokken idoegység alatt, hiszen a vezetésbeli
aram a vezeton athaladva Joule-hét fejleszt. A hévé disszipalt teljesitményt a jobb oldal
kozépso tagja irja le.

Csokken az energia akkor is, ha az aram a generdtorok altal fejlesztett térerdsség ellen fo-
lyik, hiszen ekkor a jobb oldal utols6 tagja negativ lesz, és az integrél el6tti (-1)-szeres szorzo
az energia csokkenését idézi el6. Azonban, ha az aram egyiranyba folyik a generdtorok altal
gerjesztett erotér iranyaval, akkor a generatorok végeznek munkat, és igy az elektromagneses
energia noni fog. A generatorok altal leadott teljesitmény a jobb oldal utolso tagjaban jelenik
meg.

Azonban ezen energiadtalakuldasok mellett van a jobb oldalon egy harmadik tag is, ami
nem mas, mint a térrészt lezaré A zart felilleten sugarzas formajaban kilépo energia. Ezt
Poynting-vektornak nevezziik, és S-sel jeloljik, tovabba igaz ré a kovetkezd osszefiiggés:

S=E x H.

Tehat altaldnosan elmondhatjuk, hogy a sugarzast leiré vektor merdleges mind az elekt-
romos, mind a magneses térerosségre. Ahol a Poynting-vektor nem nulla, ott az energia
aramlik, még stacionarius esetben is. Ennek magyarazata, hogy az energia mindig a dielekt-
rikumban terjed.

2.9. A Maxwell-egyenletek megoldasanak egyértelmiisége

Ha egy zart V térfogatban a kezdeti feltételek, és a zart térrész A hatérfeliiletén a
hatarfeltételek adottak, vagyis

1. a V térfogat minden pontjaban az E, D, H, B vektorok adottak a t = t; idopillanatban
(kezdeti feltételek)

2. a V térfogatban a generatorok adottak a ¢t > ty-ra

3. a hatarolo feliilet A minden pontjaban vagy a tangencidlis elektromos vagy mégneses
térer6 adott t > to-ra (hatarfeltételek)

akkor a térrész belsejében a Maxwell-egyenletek megolddsa mindentitt 1étezik, és egyértelmii,
azaz FE, D, H, B kiszamithaté minden ¢ > to-ra. Ennek bizonyitasa nem nehéz.

Tegyiik fel, hogy a Maxwell-egyenleteknek van két olyan megoldésa, amelyek ugyanazokat
a kezdeti és hatarfeltételeket elégitik ki. Legyenek ezek E’ és H', illetve E” és H”. Ekkor
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a Maxwell-egyenletek linearitasabol kovetkezik, hogy e két megoldéas kiilonbsége is szintén
megoldés lesz, tehat

E(] — E/ _ El/
HO — H/ - H//
is megoldasok, azaz kielégitik a Maxwell-egyenleteket, és eleget tesznek a kezdeti és
hatarfeltételeknek, tehat az elektromagneses energiamegmaradds torvényének is, vagyis igaz
rajuk, hogy
0
ot Jy
ugyanis a generatorok mindkét esetben azonosak, tehat a generatokbol adodé teljesitményt
megadé tag a megoldasok kiilonbségére zérus, illetve a Poynting-vektor feliileti integralja is
nulla, hiszen sugarzas sem lehet az A-n, mivel vagy az E vagy H tangencialis komponense
nulla, tehat azt kaptuk, hogy a kifejezés értéke pozitiv, hiszen a disszipélt teljesitmény csak

pozitiv lehet. Mivel a kezdeti idépillanatban az 0sszes energia nulla, hiszen azonos kezdeti
értékekbol indultunk, ezért az osszes energia késobb sem valhat negativva, vagyis

E/ — E//
H =H".

(%€<E0,E0> - %M<H0,H0>>dv =/ S8 gy,

\ g

Ezzel belattuk a Maxwell-egyenletek megoldasanak egyértelmiiségét egy zart térrészben,
adott feltételek mellet.

2.10. A retardalt potencial

Amennyiben szeretnénk megoldani a Maxwell-egyenleteket hullamtanilag, gy be kell
vezetniink a retardalt potencidlok fogalmat. A retardalt késleltetettet jelent, ami fizikailag
annyit tesz, hogy egy adott pontban, ha megvéltoztatjuk az elektromagneses eroteret, akkor
egy attol tavolabbi pontban a valtoztatas hatasa késleltetve fog megjelenni.

Ehhez elobb tekintsiink a Maxwell-egyenletekre egy eddigiektol kiilonbozo megvilagitasban:

B 1 OE(r,t)
V x B(r,t) = poJ(r,t) + 2 o
_ 0B(r,1)
V x E(r,t) = — Y
(V,B(r,t)) = 0.

(V. E(r, 1)) = 5—10p<r,t>

Ekkor induljunk ki abbdl, hogy B felirhaté egy A vektorpotencial rotdcidjaként, tehat
B helyére helyettesithetiink V x A-t a II. Maxwell-egyenletbe és, ha ezt nullara rendezziik,
akkor a kovetkezo Osszefliggéshez jutunk:
A
V X (E + 8_)

=0
ot ’
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ahol pedig a Poincaré-lemmat felhasznalva tudjuk, hogyha egy vektortér rotacidja azono-

san zérus, akkor ez a vektortér el6all egy skalarpotencial negativ gradienseként, tehat:
0A
E+ — = —-Vo(r,1).
= V(1)

Az utolso egyenletet atrendezve E-re azt kapjuk, hogy
0A

ot
Ekkor tehat kapunk egy szoros Osszefiiggést a potencidlok és az E és B terek kozott:

(8) = () (2) = (5 7%)

Ezek utan elszor helyettesitsiink be az I. majd a IV. Maxwell-egyenletbe, vagyis

E=-V¢— —

19(-vo-%)
VXVXA:V<V,A>—AA:MOJ+§ 5 , (13)
illetve P 1
—(V, Vo) — —<V A) = g (14)

Ahhoz, hogy (13) és (14) egyenleteket megoldjuk, valasszuk "mértéknek” a Lorenz-mértéket,
azaz

19¢

V,A)+=—=0
(V. A + 52 =0,
amibol egyenesen kovetkezik, hogy
1 0¢
V,A) = ———.
< ) c? ot
Ezt behelyettesitve (13) és (14) egyenletekbe a kovetkezbket kapjuk:
1 0?A
_ = — —und
és
1%  p
292 gy

Ezek megoldésai pedig rendre

e
A(r):@/‘](r ) gy

47 |r — 1|

és

I‘/ _|r—r’|
o(r) = 1 /p( b= = )dV’.

degm lr — /|

Felhasznalva a potencialok és az erdterek kozotti Osszefiiggést, az elektromégneses erétér
a retardalt potencidlokbdl mar konnyen szamolhato.
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2.11. Maxwell-egyenletek harmonikus idofiiggés esetén. Frekven-
ciatartomany. Komplex amplitidok

Egyszerti kozegekben, harmonikus monokromatikus (szinuszos) idéfiiggések esetén beve-
zethetjiik a komplex amplitudékat. Ezek elonye, hogy sokkal konnyebb veliik szamolni, mint
egy szinuszos kifejezéssel, hatranya, hogy a komplex tartomanyra ”ugrunk”.

Idotartomanyban a Maxwell-egyenletekben szereplé mennyiségek r-tél és ¢-tol is fiiggnek,
mig frekvenciatartomanyban ugyanezek csak a helytdl fliggnek, ugyanis a gerjesztést allandé
frekvencian tekintjiik.

A frekvenciatartomanyban a Maxwell-egyenletek a kovetkezoképp alakulnak:

VxH=1J+jwD

V xE = —jwB
(V,B) =0
(V,D) =p

A Maxwell-egyenletek "maradéka”, azaz a Lorentz-er6t leird, az aramstriségre vonat-
kozé, illetve a D & E és B < H kozotti osszefiiggések véltozatlanok maradnak egyszerii
kozegekben.

Az id6- és frekvenciatartomany kozotti atmenetet az aldbbi Osszefiiggés adja meg:

u(r,t) = Ucos(wt + ¢) = %{U(r)eﬁﬁejwt}’
ahol a komplex amplitudé az

U(r)e’?.

2.12. Az elektromagneses hullamok

Az elektromdgneses hulldimok egyenleteit (egyszer(i kbzegekben, idétartomanyban) meg-
hatarozhatjuk a Maxwell-egyenletekbol, mégpedig a kovetkezo két feltétel mellett:

p=20
J=o0.

Ekkor a Maxwell egyenletek a kovetkezoképpen egyszertisodnek:

oD
H=—
V X o
0B
E=—
V x T
(V,B) =0
(V,D) =0.
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frjuk at az elsé egyenletet a kovetkezoképp:

OcE
VxB=pu—.
" or
Tekintsiik most a masodik egyenletet, és képezziik mindkét oldal rotacidjat:
VxVxE:—QVxB,
ot
ahova, ha behelyettesitjiik az els6 egyenlet atirasat, azt kapjuk, hogy
O’E
VxVxE=-AE=—pues——,
e o

ahol a kifejezés kozepe és bal oldala kozotti egyenldséget a kovetkezo Osszefliggés irja le
(kiegészitve a feltételezéseink mellett érvényes IV. Maxwell-egyenlettel):
VxVxE=V(V,E) - AE = —-AE.
Amennyiben az el6bb végzett atalakitdsokat elvégezziik ”forditott szereposztassal”, ugy
megkapjuk ugyanezt az egyenletet, B-re vonatkozdan:
0°B
AB = pe—.
T
A fenti két hullamegyenletet hivjuk az elektromégneses tér hullamegyenleteinek. Fontos
megjegyezni, hogy a két megoldas (E, B) nem biztos, hogy 6sszetartozoak!

2.12.1. Hullamegyenletek a frekvenciatartomanyba
A fent bemutatott hullamegyenleteket természetesen le lehet irni a ”komplex amplituddk”
vilagaban is:
AE = —w?cuE
AB = —w?euB.

2.12.2. A fény, mint elektromagneses hullam

1864-ben Maxwell egyenleteibdl levezette, hogy 1éteznie kell olyan elektromagneses hullamnak,
amelynek sebessége a stacionariusan mérhetd y-bdl és p-bol kiszamithato, tehat

1
\/ﬁo/to'

Maxwell koraban mar ismert volt a fény terjedési sebessége, amely Fizeau 1849-es pon-
tositdsa értelmében

v =

km
¢ = 300000—.
s
Amennyiben kiszamoljuk a fenti, v-t megadé kifejezést, azt kapjuk, hogy
v=3-108",
s

azaz ebbdl Maxwell arra kovetkeztetett, hogy a fény elektromégneses hullam.
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2.13. Sikhullamok
A hullamegyenletek legegyszertibb megoldasai a sikhullamok (egyszerti kozegekben), eh-

hez a kovetkezo feltételeket kell teljesiteni az elektromagneses hullamnak:
0B _oB_0B_0B_
Jor Oy Oz dy
Tekintsiik a kovetkezé (frekvencia tartomanyban 1évé) egyenletet:
V x E(r) = —jwB(r),

ha pedig az egyenlet bal oldalan szereplo rotacioképzést elvégezziik a kovetkezo egyenloségre

jutunk:
i j k
2 8% 21 = —jw(B.i+ B,j + B.k)
E. E, E.

itt pedig tagonként egyenloséggel kapunk harom egyenletet:

8(9Ezy = jwB,, aa% = —jwBy, 0= —jwh,.

Hasonlban vizsgaljuk meg a kovetkezo osszefiiggést is:

B
V x — = jwekE.
i
Ismét végezziik el az egyenlet bal oldalan szerepl6 rotacioképzést
i j k
aa_z a% % = jwep(E,i+ Eyj + E.k),
B, B, B,

amibol pedig tagonkénti egyenloséggel a kovetkezd adodik:
0By _ Jwpe by, % = jwuely,, 0= jwuck,.

0z
Jol lathato, hogy E, = B, = 0. Tovabba a két, tagonként vett egyenldség Osszeha-

sonlitasaval kapunk két masodrendii, homogén, kézonséges differencial egyenletet:

OPE,
— L+ Wuek, =0,

022

illetve
9’B,

5.2 + w?peB, = 0.

Ezek megoldasa rendre
E, = Efe % + E ¢iP?,
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és
— pt,—iBz —oiBz
B, = B]e + B, el77,
amit célszeri a magneses térerosségekkel megegyezo koordinataval megadni, azaz
— [Jt,—iBz —oJBz
H,=H]e + H 7%,

ahol 8 = w,/ue.

Most, hogy FE.-et és H,-et ismerjiik, hasznéljuk fel ismét a tagonkénti egyenlGséggel
leirt egyenleteinket, amik segitségével meghatarozhatjuk az y-hoz tartozé koordinatait is
a térerosségeknek:

oF, ,

az = —]w/”l‘Hy7
amibol pedig megkapjuk, hogy

H, = Ezpmine _ Er o
n n

Teljesen hasonlé médon

0H, :

9. Jjwek,,

amibdl pedig azonnal kovetkezik, hogy
E, =nHe % —nH_ el

A fenti dtalakitasokban kihasznaltuk, hogy a hulldmellendlasra (karakterisztikus impe-
dancia) vonatkozé Osszefiiggés a kovetkezo:

7]:%: Wi _ VHO [ el — 1207 /,urel.
ﬁ WA/ ne \/5_0 Erel Erel
Amibdl pedig lathatd, hogy a vdkuum hulldmellendlldsa n = 1207 ~ 37742.
Osszesitve tehat az sikhullamok altaldnos megoldéasa:

E(z) = (Efefjﬁz + E;ejﬁz)i + (E;re*fﬁz _ Ey*ejﬁz)j

Bf .. E; . EX . E; .
H(z) = <_w€—aﬁz _ _wemz)i n (_ye—JBz _ _yejﬁz>j
U U U U

2.13.1. Sikhullamok terjedése kiilonb6z6 kozegekben

A sikhullamok esetében a fent levezetett egyenletek akkor és csak akkor érvényesek, ha
vakuumban terjed a hullim. Amint mas kozegekrdl beszéliink (vezet6k belsejében), akkor
mar a kozeget jellemezhetjiik gy, hogy veszteségmentes vagy veszteséges, attol fiiggden,
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hogy a vezetés(o) értéke mekkora. Tovabba jweq kifejezés o + jwe Osszefliggésé bonyolddik.
Ekkor a fent bemutatott Maxwell-egyenleteket ki kell egésziteni a kovetkezokkel:

. . . .0
7:J5:JW\/€#—>7:JW\/M<5—];>,

ahol v a terjedési egyiitthatd vagy masnéven tényezo, amit igy kapunk meg, ha az ima-
gindrius egységgel szorozzuk a (-t. A karakterisztikus impedancia is valtozik kozegben:

1 [ i
T]:\/j—>77: o
€ £—j2

Kiszamolhaté az admittancia (Y(jw)) és impedancia (Z(jw)) hanyadosianak négyzetgyokeként
is.

Lathato, hogy o = 0 esetén visszakapjuk a vdkuumra vonatkoz6 egyenleteket, tehat a
vakuum veszteségmentes (egyszeril) kozeg. Amennyiben azonban o # 0, gy a sikhulldmok
egyenletei jelentGsen nem valtoznak, csupan a (3, azaz

3oyl —12).

illetve a fent emlitett karakterisztikus impedancia.
A sikhullamok, ha két kozeg hatarolé feliilletéhez érnek, akkor harom dolog torténhet
veliik:

— Egy részben athaladnak, részben visszaverodnek
— Veszteségmentesen dthaladnak, nem verédnek vissza egyéltalan

— Teljesen visszaverédnek

2.14. Tavvezetékek

A tavvezeték reprezentalhato aramkori elemként is. Vegytink a vezetékbol egy dz, egységnyi
hosszisagi szakaszt. Ezt jellemezhetjiik valamilyen Y (admittancia) és Z (impedancia)
értékekkel. Az adott egységnyi vezetékelemben, a bemeneti dramot jelolje I(z), beme-
neti fesziiltséget jeldlje U(z), és a kimeneti aramot, illetve fesziiltséget jelolje I(x)+dI(z)
és U(z)+dU(z). Ekkor a kovetkez6 egyenletek érvényesek lesznek:

—dU(x) = ZdzI(x),
illetve

—dI(z) =YdzU(x).
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2.14.1. Tavirdegyenletek

Rendezziik az utolso két egyenletet, ekkor kapunk két elsérendii, homogén, linedris diffe-
rencidlegyenletbdl allé rendszert

—dU (z)

b ZI(x)
—dl(z)
P YU(2)

Ezek a taviréegyenletek ezen egyenletek megoldasai a kovetkezok:
Ulz) = Ute P 4 Ul
illetve
I(z) = ITe 9P 4 [~eiP,
A terjedési tényez6 itt
v=a+jB=VZY,

ahol az a a csillapitas mértéke.
A 7hullamellenallas” pedig

/2

Fontos megjegyezni azonban, hogy a fenti osszefiiggések csak idedlis vezetd esetén értendo,
azaz, ha a generator belso ellenéllasat és a fogyaszté ellendlldsat zérusnak tekintjiik (viszont
ekkor nincs csillapités!).

Ha a hosszegységre es6 impedanciat aramkori ekvivalensként egy induktivitassal, az ugyan-
erre az egységre esO admittanciat pedig dramkori ekvivalensként egy kapacitéssal helyet-
tesitjiik, akkor megkapjuk az idealis, veszteségmentes tavvezetéket.

2.14.2. Hullamterjedés és reflexié tavvezetékekben

Eddig idedlis tavvezetékekrol beszéltiink, amelyet gy is modellezhetiink, mint egy ge-
nerator, és egy fogyaszté aramkore, ahol a generator belso ellenédllasa és a fogyasztd impe-
dancidja is nulla (vagy végtelen hosszi vezetékrél beszéliink, de ez fizikailag és mérnokileg
nem relevéns).

Azonban, ha véges hosszi vezetéket lezarunk egy tetszoleges impedanciaval, akkor harom
eset lehetséges:

A) A lezér6 impedancia véges, de nem nulla.
B) A 7lezaré impedancia” azonosan zérus.

C) A lezaré impedancia értéke végtelen. (Tehdt szakadassal helyettesitjiik).
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A) Ha a lezér6 impedancia (fogyasztd) véges, de nem nulla, akkor az elektromagneses
hulldm, amint eléri a fogyasztot, reflektalédik a reflexids tényezé (I') fliggvényében, amely
megadja, hogy a bees6 hullamok mekkora hanyada reflektalédik. A reflexids tényezé az
alabbi képetbdl szamolhato:

 Z—Z
247

A hullamellenallas csak akkor adja meg a vezeték tetszoleges pontjaban mért fesziiltség és
aram viszonyat, ha abban a vezetékben csak egyiranyd hulldim halad. Ez vagy végtelen
vezetékben fordulhat elo, vagy, ha a lezaré impedanciat pontosan a hullamellenéallassal
megegyezo értéklinek valasztjuk. Ekkor a generator altal kozolt teljes energia a lezard el-
lenalldsban emésztodik fel.

B) Ebben az esetben a reflexiés tényez6 értéke -1, a fesziiltség ellenkez6 fézisban, az dram
pedig azonos fazisban verddik vissza. Az eredé fesziiltség és az aramerdsség allohullamot
alkot, tehat az amplitidoé eloszlasa a vezetékben szinuszos, és ezen eloszlds cstucspontjai és
zérusai az idoben allandéak maradnak.

C) Ezesetben a vezetéket egy kondezétorral zarjuk le. A B)-hez hasonldan itt is alléhullamot
kapunk, de észrevehetjiik azt, hogy egy x=d hellyel arrébb "toltuk” a fesziiltségmaximumat,
ami annyit tesz, mintha a vezetéket ”meghosszabbitottuk” volna, a B)-ben targyalt ve-
zetékhez képest.

2.15. A sikhullamok refrakciéja. Snellius-Descartes torvény és Fresnel-
egyenletek

El6fordulhat, hogyha egy hatarolo feliiletre érkezik egy elektromagneses hullam, és transz-
mittalodik, akkor nem az eredeti terjedési iranyaban halad tovabb, hanem elhajlik, idegen
szoval refraktalodik.

Az érkezd elektromagneses hullam beesési merélegessel bezart beesési, illetve transzmittalt
hullam altal szintén a merolegessel bezart szogek kozotti Osszefiiggést adja meg a Snellius-
Descartes torvény, miszerint

sind; By /el
s1ny By VE212
Majd, ha a beesési, és tovabbhaladé hullamokat felbontjuk a hatarolé réteggel parhuzamos

és arra mer6leges Osszetevokre, és mindkettére kiilon-kiilon felirjuk a reflexiés(I") és transz-
misszios( T') koefficienst, akkor a kovetkezéket kapjuk:

A

Ejm _ macosty — micosy;

Oy = —m
I Eﬁm 11c0sY; + nacosth
T — Eﬁm B 21905V,
= Ei  micost; + nacosdy’

[[m
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illetve

Eim Nacost; — nycost;
FJ_ = —== =
B 1M1cosVy + Macost;
EAth 2m,c08Y;
T === ,
B m cosvty + macost;
ahol
_ R
m )
H2
UPY

Ezek pedig az tigynevezett Fresnel-egyenletek, amelyeket tehat a Snellius-Descartes torvénybdl

vezettink le.

€9
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3. Kvantummechanika

A klasszikus fizika minden, amit Max Planck 1900. december 14-ei fekete testrdl szolo
cikkje el6tt tudtunk a vilagrol. Innentdl szamtjuk a kvantummechanika korat.

3.1. Az anyagok kettOs természete

A fényrdl sokaig azt hitték, hogy részecske, am Maxwell merész kijelentése, miszerint a
fény elektromagneses hullim (ami egyébként levezetheté a Maxwell-egyenletekbdl) egy j
problémakort nyitott meg.

3.1.1. A foton, mint "kettos természet”

Arthur Holly Compton 1922-ben rontgen (x-ray) kvantumokat titkoztetett elektronokkal.
Az iitkozés soran a rontgen-kvantum az allé elektront megloki, kinetikus energiat ad at, a
fénykvantum energiat veszit és szérédik. (10. dbra)

Compton Effect

A

Sy
/1{' X

10. 4bra.

Az energia megmaradasa:

hf +moc® = hf + ——c,

ahol A a Planck-dllando és
h = 6.626 - 10734 Js.

A momentum megmaradasa:

hf _hf

= ——cos¥ + muvcose.
c c

A fénykvantum (”foton”) energidja:

hf
(1 — cos?)’

[
S

moc2
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illetve hulldamhossza az utkozés utan:

c c h
AN=— — - = —(1 — cos?).
I f moc( )
Ennek kisérleti igazolasa Wilson-chamber-ben (kddkamra) tortént. A részecsketrajektoridk
nagy pontossaggal igazoltak a fénykvantum részecske szerti viselkedését.
A fény egy elektromégneses hulldm, tehat inferferenciat mutat (Young kisérlet, 11. dbra).
Azonban a fény részecske is, mert titkozéskor testként viselkedik (Compton-szérédas, 10.

,

abra).

3 ¥ Max

b, A
- R 5
Incident \\ ™
wave \.\ 3 ) " X
12 N £ 1

\ ax

i 1%

1x

11. 4bra.

Amennyiben a fény hullam, akkor frekvenciaja, terjedési sebessége és hulldimhossza van,
azaz frekvencidja és hulldmszdm-vektora van: (w, k). Azonban, ha a fény részecske, akkor
energidja és momentuma van: (E, p). Mivel a fény mindkét tulajdonsiggal rendelkezik, ezért
azt mondjuk, hogy a fény "kettés-természetii” (angolul: wavicle. A megnevezés Richard
Feynmantdl szarmazik). Ugyanaz a foton az egyik kisérletben részecskeként, a mésikban
hullamként viselkedik.

Mint hullam, elmondhaté réla, hogy

w=2nf,
és
27
k=—
A

ahol n a hullam terjedési iranyaval megegyezo egységnyi hosszi normélvektor.
Az alabbi két egyenlet teremt kapcsolatot a részecske és hullam természet kozott:

E = hw = hf,
illetve
h
P = hk = Xn,
ahol f a redukalt Planck-allandé, azaz:
h
h=—.
2T
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3.1.2. Az elektron hulldmtermészete

Sir Joseph John Thomson katédsugarcso kisérletébol kidertilt, hogy az atomok nem oszt-
hatatlanok, tovabba az is kidertilt, hogy elektronokra ”bonthaté” az atom. Ekkor részecskének
gondoltak még az elektront, és ezen természete vitan feliil allt. Azonban 1924-ben Louis de
Broglie felvetette, hogy - a fényhez hasonléan - az elektronnak is van hullamtermészete. Az
eleinte abszurd otlet 3 évvel késobb realitassa valt, ugyanis kimutattak, hogy kristalyracson
athaladva az elektron is ugyanolyan elhajldsképet mutat, mint a szerkezetileg hasonl6 optikai
racson athaladé fény. Claus Jonsson, svéd fizikus elvégezte a Young-féle két rés kisérletet is
az elektronnal, és teljesen azonos elhajlasképet kapott, mint amit Young is kapott 1799-ben.

De Broglie azt feltételezte, hogy az elektron-hullam csoportsebessége megegyezik az elekt-
ron, mint részecske sebességével, a hullamhossza pedig - hasonléan a fotonhoz - forditottan
aranyos a lendiiletével, azaz

.
p

és
_h27r
2\

Tovabba de Broglie szerint az atomi elektronpélyak hossza mindig a hullamhossz egész
szamu tobbszorose (12. dbra):

p=mv = hk

h
mu,r, = TLg,

ahol n = 1, 2,... lehet. Most tekintsiik az el6z6 két egyenletet, és fejezziik ki a kertiletet
a hullamhosszal:

2r, ™ = nA.

Three complete waves

Two complete One complete wave
waves

12. abra.

Lathato, hogyha korpalyanak képzeljik el az elektronpalyat, akkor tényleg megegyeznek
a keriiletek a hullamhossz egészszamu tobbszoroseivel.
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A hulldmtermészet kisérleti igazolasa (két rés kisérlet) teljesen egyértemtien bebizonyitotta,
hogy az elektron nem csak részecske természetii, hisz, amennyiben ”golydk” lennének az
elektronok, igy a réseken athaladé elektronok képe megegyezett volna az egyik résen athalado
és a masik résen athalado golydk képének Osszegével, am nem ezt tapasztaltak, tehat valahol
interferencianak kellett keletkeznie, ami viszont a hullam sajatos tulajdonséaga.

Az elektronra is igazak a fotonra felirt 6sszefiiggések a hullam (w, k)- és részecsketermészet
(E,p) kozott:

E:hfziw:ﬁw
2T
h h

= —n=—k = hk.
P )\n 2

Fontos megjegyezni, hogy nem csak az elektronnak és a fotonnak van hulldimtermészete,
hanem mindennek. Ezt a tényt protonok, neutronok, He atom és Cy, molekula esetén
kisérletileg is bebizonyitottak.

3.2. A fekete test sugarzasa

Altalénos tapasztalat, hogy minden gaz, folyadék és szilard anyag -273 Kelvinnél maga-
sabb hémérsékleten elektromagneses hullamokat sugaroz, masnéven sugarzast emittal.

A minden sugarzast elnyel6 (abszorbedld), ugy nevezett fekete test (13. dbra) sugarzésa
fliggetlen a sugarzé test anyagatol, illetve alakjatol.

13. abra.

Azért nyel el minden sugarzéast, mert a fényforras csak egy nagyon kis résen tud bejutni
a test belsejébe, és ott a folyamatos visszaverddésekkor energiat veszit, és matematikailag
nagyon kicsiny az esélye, hogy a hulldim barmikor pontosan ugy érkezzen a réshez, ahogy
befele érkezett, tehat pongyolan megfogalmazva ”sosem jon ki”.

A kisérletekben rogzitett hémérsékleten mérték a felilletegységen (vagy hulldmhosszon)
hulldmhosszegységre esé kisugarzott intenzitdst, amit S(A, T)-vel jeloliink. A mérések utén
a kovetkez6 gorbét kaptak:
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14. abra.
A mérésekkel kapcsolatban tobb megfigyelés, illetve torvény sziiletett
1. Wien-torvény
2. Stefan-Boltzmann-térvény
3. Planck-torvény

Wien megfigyelése, vagy torvénye kimondja, hogy a gorbe maximumhelyének és a hoémérsékletnek
(amin a kisérletet elvégezték) szorzata allando, és

AmaeT = 2.898 - 1073 m K.

Stefan-Boltzmann-torvény azt mondja ki, hogy a feliiletegységen sugarzott osszteljesitmény
az abszolut hémérséklet negyedik hatvanyaval no, tehat

M:0T4zw

A A ’

ahol a paraméter értéke

0 = 5.6705- 107" —

Planck a méréseket probalta zart alakban lefrni. Tudtédk, hogy az idedlis fekete test,
minden szint tokéletesen elnyel, és minden szint sugaroz. Az intenzitas csak a homérséklettdl
fiigg, a test alakjatol, illetve anyagatdél nem.

Planck talalt ra egy formulat, amely egyszerii, és csupan egyetlen paramétertol fiigg,
amelyet a mért gorbékre vald illesztéssel hatarozott meg, ez a Planck allandé.

Feltette, hogy a sugarzast az iiregben 1év0 "oszcillatorok”, az iireg rezondns modusai
nyelték el, és sugaroztak vissza a kis nyilason at.

Adott T hémérsékleten, egyensilyban, minden szabadsagfokra %kT energia jut, ahol
k a Boltzmann-allandé. A mddusok szama a frekvencia négyzetével aranyosan no, ez az
ultraibolya paradox.
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A mérésekkel egyezd formula azonban egy komoly ”gondra” mutatott ra, ugyanis csak agy
sikeriilt megegyeznie a mérésekkel, hogy Planck feltette, hogy az oszcillatorok csak ”kvantalt”
energiajuak lehetnek, mégpedig

E=nh,n=0,1,2.
Ezek utan pedig a formula:

2mhe 1

7 .
A eAkaT -1

SO\T) =

3.3. Fényelektromos jelenség

Amennyiben egy monokromatikus fénnyel vilagitunk meg egy fémfeliiletet, akkor a fémfeliiletbol
elektronok lépnek ki, ez a fényelektromos jelenség. Ezeket az elektronokat hivjuk ”fotoelekt-
ronoknak”. (15. dbra).

Monokromatikusnak hivunk minden olyan hulldmot, amelynek a frekvenciaja allando.

Incoming hlue light
collector plate

emitter plate

* -
. e e

vacuum

electrons get to collector plate

@ Ammeter

15. abra.

Megfigyelhetd, hogy a kilépo elektronok maximaélis energidja nem fligg a megvildgito fény
intezitdzastol, csupan a frekvencidjatol (szinétdl). A fény intenzitdsdnak novelésével azonban
a kilépé elektronok szama novekszik (16. dbra).
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Increasing Light Intensity

15 2 25 3 35 4 45 5
Retarding Yoltage

16. abra.

Eszrevehetjiik azt is, hogy a fékezo fesziiltség novelésével az anddra eljutd elektronok
szama csokken, illetve, ha a fesziiltség eléri a zardfesziiltség értékét (és meghaladja azt),
akkor nem ér el egyetlen elektron sem a kat6drdl az anddra (17. dbra).

09 Increasing Light Frequency

12 2 25 3 35 4 45 5
Retarding Voltage

17. abra.

Ez a zaréfesziiltség a megvilagito fény frekvencidjaval linedrisan valtozik (18. dbra).

Slope=h

¥ for &

Stopping Patential

Metal B

YWork Function
&=hv

0
v for B

F

Light Frequency

18. abra.

Az elektromagneses sikhullam ”energiacsomagokban” terjed, és az f frekvenciaju csomag
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energiaja:
E = hf.

A fény c sebességgel repiil6 hf energidju ”részecskeként” titkozik a fémfeliiletbe, amennyi-
ben pedig van elég energidja, ugy behatol és kiiit egy elektront. Az energia megmaradasa:

1
hf > §TTL’U2 + EW,

ahol Ey az elektron "kilépési” munkdja, a jobb oldal masik tagja pedig a kilép6 elektron
kinetikus energidja.

Zaro fesziiltség esetén ez a kovetkezoképpen modosul:

L
q.U, = §mvmax =hf — Ew.

Einstein szerint a fény fotoelektromos hatasa miatt a fény részecskeként miikodik, tehat
sugarzas "tlsugarzas”, azaz hullamcsomagokban terjed, és a fenti Gsszefiiggések igazak ra.
Ezt egyébként Selényi Pal cafolta meg, aki bebizonyitotta, hogy a fény sugarzasa gomb-
SUgArzas.

3.4. Az atommag

1911-ben Ernest Rutherford felfedezte az atommagot. Rutherford kisérletileg bebizonyitotta,
hogy az atomban 1év6 pozitiv toltés egy kis magban koncentralédik, melynek atméréje
nagyjébol 10 5nm, igy 10000-szer kisebb, mint az atom atmérdje, vagyis 0.1nm, azaz 1A
(Angstrém). A kisérletet az alabbi dbra szemlélteti:

scinfillations mavable
_ fluorescent

lead screen
/ N, withslit
lead shield radicactive

A Transmitted beams
( or no deflection)
ed beam ;
deflection) ' d
ad beam go

e deflection] foll

© 2007 Eneyelopadia Britannles, Inc.

19. abra.

A kisérletben radioaktiv He atombdl "nyert” sugarakkal bombazott egy aranyfoliat. A
lemez koré pedig ernyoket tett, hogy vizsgalja a becsapddo részecskéket. Azt vette észre,
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hogy a részecskéknek 98%-a akadélytalan athaladt a folian, mig 2% jelentésen elhajlott.
Tovabba a részecsék 0.01%-a visszaverddott.
Ez alapjan négy dolgot foglmazhatunk meg:

1. Az atomban van egy pici atommag. Az atommag térfogata 10~ 15-ed része az egész atom
térfogatanak

2. Majdnem a teljes atomtomeg az atommagban koncentralddik
3. Az atommag toltése pozitiv. Az elektronok negativ toltése neutralizalja az atomot.

4. Az elektronok az atommag koriili iires térben keringenek.

3.5. Bohr-féle atommodell

A fizikusok koziil Bohr volt az elso, aki "teljes” atommodellt épitett, mégpedig a legegy-
szeriibb atomra, a hidrogénre. Bohr szerint az atom egy klasszikus, a Naprendszeriinkhoz
hasonld, ”planetaris” rendszer, azaz

1 ¢ v
Ame 12 Tn

viszont a palyak perdiilete
MUy =n—,n =12, ..
2m

Az atom foton abszorpcid, illetve emisszié soran kibocsat, vagy elnyel fotont, igy egy
elektronja eggyel alacsonyabb, vagy magasabb energiaszintre ugrik, vagyis

h’f = FEny — Enr.
Hidrogén atom esetén a palyak sugarai, illetve energidi:

h2€0
7,112

Tme?
me* 1

n — ——_—
8€0h2 n?

Ennek bizonyitésa teljesen mechanikus. Induljunk ki az els6é posztulatumbdl, vagyis abbdl,
hogy az atom planetaris rendszer, majd ezt alakitsuk a kovetkezok szerint:

2 2 2

h mu2\ r2 1 e*\r? e 1
Mgty =no— = (=)= ()=
T Tn Un TEY T,/ Un TEY Up,

Most pedig irjuk fel a kapott eredményt
h e? 1

n— =
2 Ameg v,
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amibdl kifejezve v,,-t

e? 1
Up = —.
2e0hn
Most fejezziik ki a perdiiletbol
h
Mo, Ty, = N—
27
a palya sugarat. Ekkor azt kapjuk, hogy
nh nh h*eo
Ty = = — = n-.
2mmu,  2mm 220 - % Tme?

Ezekbdl az eredményekbol pedig, ha felirjuk a hidrogén atom oOsszenergidjat, ami a kine-
tikus és potencialis energiak Osszege, akkor a kovetkezd Gsszefiiggésre jutunk:

1 e? met 1 me* 1 me? 1
E = Epin + Epot = —muv?2 — = — - e
kin + Hpot 9"n dreqr,  8eih?n?  4degh? n? 8=3h? n?

3.6. Vonalas spektrum

A newtoni, illetve maxwelli fizikdbdl ismerjiik, hogy az atommag korili gyorsulva mozgd
toltés, vagyis elektron sugaroz, mint egy korantenna. Azonban, ha a kormozgast végzo elekt-
ron energiat veszitene, ugy fokozatosan kozelednie kéne az atommaghoz, mig végiil bele nem
zuhanna. A sugarozva keringé elektron altal kisugarzott energia frekvencidja folytonosan
valtozik tehét.

A kisérletek viszont azt mutatjak, hogy az atomok (tiszta gazok) sugarzasanak spektruma
"vonalas”, tehat diszkrét frekvencidkon megy véghe a sugarzas. Amennyiben pedig az atom
eléri a legkisebb energidja, igy nevezett " ground state” allapotot, akkor megsziinik sugarozni.
Stacionarius sajatallapotokban az elektron nem sugaroz. Ez is egy jelentds lépés volt a
klasszikus fizikatol a kvantumfizikaig.

3.7. Schrodinger-egyenlet

Erwin Schrodinger altal megalkotott egyenlet sok valaszt adott az addigi nyitott kérdésekre
a kvantummechanikaban. Célja az volt, hogy egy hullamfiiggvénnyel leirja az elektront.

Az elektron hullamszertien (is) viselkedik, és interferencidt mutat (ami szuperpozicié-
szerll), ezért a hullamfiiggvény linedris. A hullamfiiggvény a térbeli véltozasokat koti Gssze
az idébeli valtozasokkal.

Adott egy részecske (elektron), ennek van m, tomege és ¢, toltése. Tovabba potencialjaval
adott egy erétér, amelyben mozog az elektron. Ekkor a kovetkezd egyenletet nevezziik
id6fliggd Schrodinger-egyenletnek:

o
HU — i
I
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U az elektron hullamfiiggvénye (igazabdl az egyenlet ismeretlene), és H a Hamilton-
operator, ami az elektron Osszenergiaja, tehat:

ﬁQ
H= _%A + Epot7

ahol

Ekin o h?

kK2  2m’
hiszen
p = hk

és

p’ = (mOV)Q. (15)

3.7.1. A Schrodinger-egyenlet megoldasa valtozdék szétvalasztasaval

A fenti egyenletet a valtozok szétvalasztasa modszerével oldhatjuk meg. Ugyan ez egy
erds, de miikodo feltételezés, hisz azt jelenti, hogy a W (r,t) fiiggvény felirhaté egy id6tol
fiiggd, helytol nem, illetve egy helytol fliggs, idotol nem fliggd tag szorzataként, vagyis

U(r,t) = U(r)o(t).

Ezt most helyettesitsiik vissza az idofiiggetlen egyenletbe, és hasznaljuk fel a Hamilton-
operatorra vonatkozé Osszefiiggést:
h? do
HY = (= S04 V) W6 = jAS.
¢ 2m Voot )W = dt
Az egyenlet bal oldaldn azért emeltiikk ki a csak id6tél fiiggd ¢ tagot, mert amiatt,
hogy csak az id6tdl fiigeg, a Hamilton-operator szempontjabdl csak egy konstans, és linedris
operatorként a konstans szorzo kihozhaté az operator elé.
Ezek utéan, ha osztjuk az utolsé egynletet W-vel és ¢-vel, akkor a kovetkezd egyenletre
jutunk:

Az egyenlet egyenlo lesz egy konstanssal, hiszen egy csak idotdl fliggd, és egy csak helytol
fiiggo fiiggvény akkor lesz egyenl6 egymassal, ha azok azonosan egyenléek valamilyen kons-
tanssal.

Igy tehat az eredeti id6fiiggd Schrodinger-egyenletiink két, mar joval konnyebb, és kezel-
hetobb egyenletre esik szét:

Lldo

g
T

)
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illetve

1
—HV = F.
v
Az elobbi egyenletet kicsit rendezve azt kapjuk, hogy
do F
- ) %Cb,
aminek a megoldasa:
o(t) = e I7t.

A megoldasban a C konstanstol eltekintiink, azt a teljes megoldasnal fogjuk meghatarozni.

3.7.2. Az idofiiggetlen Schrodinger-egyenlet

A masik egyszertisitett egyenletet pedig atrendezve
HV = EV.

Ez tehat az idofiiggetlen Schrodinger-egyenlet. Ehhez az egyenlethez analitikus médon is
eljuthatunk, ha egy sima Helmholtz-féle hullamegyenletbol indulunk ki, amely a kévetkezo
alaku:

ViU = — k20,
ahol V2 = A.
A U(r,t) fiiggvényre mindig igaz az aldbbi Osszefliggés:
/ UwdVv =1,
1%
hiszen a
T = | @2

jelentése valoszintiség, és V pedig az adott konfiguracios tér, igy hat annak a valészintiségnek,
hogy a konfiguraciés térben van az elektron egynek kell lennie.

A U hullamfiiggvény jellemzi a rendszert, és egy komplex értékii fiiggvény, tehdt U*
fliggvény ennek konjugaltja.

3.8. A kvantummechnika Scrodinger-féle posztulatumai

Schrodinger posztuldtumai a kévetkezok:

1. A fizikai rendszer dllapota a hullamfliggvény (¥). A hullamfiiggvény a konfiguracios
tér q1, g2, g3, ..., ¢ koordindtaitdl és az id6tdl fuiggd, egyértéki, komplex fiiggvény, mely
folytonos és analitikus.
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2. Annak a valdszintisége, hogy a részecskét a konfigurdcids tér egy dV térfogatdban
taldljuk

DUV,

amibdl pedig kovetkezik, hogy

‘/mmwsz
R

azaz VU négyzetesen integralhaté fiiggvénye a konfiguracios tér valtozoinak.

3. Minden megfigyelheté L mennyiséghez egy L operator rendeliink. Amennyiben egy
makroszkopikus miiszerrel mérjiikk az L fizikai mennyiséget, akkor a mérés eredménye
mindig a L operator egyik sajatértéke lesz, ahol

LU = )\V.

4. Amennyiben a fizikai rendszer allapot W és L mennyiséget mérjiik L adott operatorral,
akkor a mérés varhaté értéke

(MZ/wmwM
|4

szorasa pedig
AL = +/(L?) + (L)>.

5. A zart rendszer hullamfiiggvénye az id6fiiggd Schrodinger-egyenlet szerint fejlodik:

o
HY — ih
T o

3.9. A posztulatumok kovetkezményei
A fenti Schrodinger-posztulatumoknak két kovetkezményét targyaljuk a fejezetben:
— Heisenberg-féle hatarozatlansagi relacié
— Ehrenfest-tétel

Azonban miel6tt ezeket diszkutalnank, elébb vizsgaljuk meg a kvantummechanikai méréseket.

3.9.1. Kvantummechanikai mérés

Minden megfigyelhetd fizikai mennyiséghez (L) egy operdtort rendeliink, legyen ez L.
Amennyiben egy makroszkopikus miiszerrel mérjiik ezt a mennyiséget, azt tapasztaljuk, hogy
a mérés eredménye mindig, és minden koriilmények kozott az L operator egyik sajatértéke
lesz

LU = AV,
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ahol A\ az L operator sajatértéke.
Fontos megjegyezni, hogy a klasszikus dinamikai mennyiségek a hely és lendiilet koor-
dinaték fliggvényei:

— Kinetikus energia:

— Perdiilet:

— Energia:

E = Eyin + Epot - Z

=1

2m; (i py) + Epot

Ugy rendeliink operatorokat dinamikai mennyiségekhez, hogy a klasszikus kifejezésekbe
behelyettesitjiik a hely és a lendiilet operatorait.
Az alabbiakban par példat talalhatunk:

1. Helykoordinata:

X —z:xV =20
2. Lendiilet:

Z%IWi%p:—ﬁgnﬁp:jMV%p@:—ﬁVQ
a

3. Perdiilet:
L=rxp=—jh(rxV).

4. Osszenergia:

ﬁ2
E= Ekln + Epot —H= —%A + Epot-
A negyedik pontban bemutatott H operator a Hamilton-operétor.

3.9.2. A mérés varhatd értéke:

Ha a fizikai rendszer allapota ¥, és az L mennyiséget figyeljiik, mely az L operatorral
irhato le, akkor L varhaté értéke a kovetkezo:

<mzlpmwv
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3.9.3. A mérés szdérasa

A fenti feltételek adottak, tehat a rendszer allapota ugyancsak W és L mennyiséget fi-
gyeljiik, akkor ennek szorasa - melyet AL-el jeloliink - megegyezik a kovetkezovel:

AL = /(L% — (L)2.

3.9.4. A varhato érték idobeli fiiggése

Vegyiik az el6bb emlitett feltételeket tehat W, L legyen adott. Vizsgaljuk a varhato érték
idobeni valtozasat, és azt tapasztaljuk, hogy

dil) _j

Al U*(HL — LH)UdV.
dt h/v ( )

Ennek bizonyitasa nem nehéz. Induljunk ki a varhato érték definicigjabol:
(L) = / U*LYdV,
1%

majd vegyiik mindkét oldal idGszerinti derivaltjat:

d(Ly [ ov o

— = LY + U*L—dV.
a )oY
Ekkor a Schrodinger-egyenletet felhasznalva azt kapjuk, hogy
ov J
— =—=-HV
ot o
illetve
ov* g
=< (HY)*
5 = pHT)

amit visszahelyettesitve a varhaté értékrol szolo egyenletbe és kihasznalva, hogy az operatorok
linearisak:

— = —/ U*(HL — LH)VdV,
1%

ahol felhasznaltuk, hogy
(HV)" = v"H* = U"H.

Az integrandusban talalhat6 operatorszorzatok kiilonbségét tgy hivjuk, hogy kommutator,
és jelolése [A,B], ahol A és B linedris operatorok. Amennyiben

[A,B] = AB — BA =0,

ugy a két operator kommutal, tehat a szorzasban, ha felcseréljik Oket egymassal, nem
valtoztatunk az eredményen.

Egy mérés varhaté értéke akkor marad allandé az idoben, ha a mérendé L mennyiség L
operatora kommutal a H Hamilton-operatorral.
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3.9.5. Ehrenfest-tétel

A tétel kimondja, hogy a lendiilet varhaté értékének id6 szerinti derivaltja egyenld az erd
varhaté értékével.

Ennek bizonyitasa mechanikus. Vegyiik egy részecske lendiiletének p operdtorat, és
tegylk fel, hogy az erctér a potencialjaval adott. Ekkor az elobb bemutatott Osszefiiggés
a lendiilet varhaté értékének valtozasara a kovetkezo:

d{p) _j /
—= == | U*[H, p|¥dV
Mivel ismerjiik a Hamilton-operatort
hQ
H= _%A + Epot7
és a lendiilet operatorat

ezért kiszamithatjuk a [H, p/-t:
h
[H,p] = —EVEpot.

Ezutan, ha ezt visszahelyettesitjiik az lendiilet varhaté értékének véaltozasarol szélo egyen-
letbe, azt kapjuk, hogy:

d ' i
i) _ l/ V(=2 V By ) UdV = / U (—V By )WV = (—V E,0) = (F).
dt h Jy J v

Ez egy elég szoros kapcsolat a Newton-mozgasegyenlettel.

3.9.6. Heisenberg-féle hatarozatlansagi relacié

Vegytlink egy L és egy M fizikai mennyiséget, rendre L és M operatorokkal. Vegyiik
tovabba ezek kommutétorat, /L, MJ-et. Ezt a két mennyiséget most egyszerre figyeljiik
meg.

A két mennyiség egyidejii megfigyelésének szorasa eleget tesz a kovetkezo egyenlotlenségnek:

1

ALAM > 5/ UL, M]WdV
\%

Ez a Heisenberg-féle hatarozatlansagi relacio, mely kimondja, hogy ha két fizikai mennyiség
operatorai nem cserélhetok fel, akkor a két mennyiség egyidejii megfigyelése pontossaganak
objektiv korlatja van.

Ez azt jelenti, hogyha az egyik mennyiség szérasat csokkentjiik, akkor a masik mennyiség
szorasa novekedni fog, és forditva.

Amennyiben a két fizikai mennyiség operatorai kommutalnak, gy nincs korlatja a meg-
figyelés pontossdganak.
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3.9.7. A hely és lendiilet egyiittes mérésének pontossagi korlatja

Vegyiink egy helykoordinatat (z), és az azonos irdnyu p, lendiiletkoordinatat. Szamoljuk
ki el6szor a hely (x) és lendiilet (p) operatorok hatasat a W hullamfiiggvényre:

h/o ov
(p.x = xp)W(ry.2) = = (5 (x0) —o5 ).
Ebbdl pedig lathatd, hogy
h
px7X = —.
[P, x] ;

Ezek utan, ha helyettesitiink az eredeti egyenletbe, azt kapjuk, hogy

l/W*E\PdV
2 Jy J

h

:i_i /\IJ*\IldV
2| Jy

Tehat a helykoordinata és a vele azonos iranyu lendiiletkoordinata mérésének pontossagara
vonatkozo relacio a kovetkezo:

AzAp, >

1
5 [ vip.xvav
2 Jy

h h
AxAp, > — = —.
xpz_2 47

3.10. Az elektron spektruma

Alapvetéen kétféle elektron létezik, kotott és szabad elektron. A kotott (példéul egy
potencidldobozba zart elektron) egy allohullam, mig a szabad elektron hullimcsomagként
viselkedik.

A hullamfiiggvény meghatarozasdhoz meg kell oldanunk a Schrodinger-egyenletet. El6szor
az egyszerlibb esettel foglalkozzunk, vagyis amikor az elektron kétott. A doboz, mint erGtér
a kovetkez6 potencidllal irhato le

Byl) = {
Ekkor a valtozék szétvalasztasa miatt tudjuk, hogy

Uz, t) = V(z)o(t)

0 ha x € (0,a)

00 kilonben

és
o) = e I,
Az id6fliggetlen Schrodinger-egyenlet a doboz belsejében a kovetkezo:
n* 0%
——— =EV.
2m Oz?

Ennek a megoldasa

U = Asin(kx) 4+ Beos(kx).
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A peremfeltételek (V(0) = VU (a) = 0) felhasznédlasval meghatérozhatjuk a konstansokat

U(0) =0=B,
illetve
U(a) = Asin(ka) — k = %,n =12, ..

Ekkor a ¥, felirhaté a kovetkezoképp:
U, = A,sin(k,z),
ahol

Ezutan a ¢ és U fliggvények szorzataként eléll a W (z,t) hullamfiiggvény:
E

U(x, t) = Ansm(mx)eﬂ?t.
a

A,-t tgy hatarozzuk meg, hogy a hullamfiiggvény abszolutértékének konfiguraciés téren
vett integralja egyet kell adjon:

“ A? @ 2 A? sin(2Tg)qa A2
/ A%sin? <Tx)d$ = —/ 1-— cos(ﬂx)dx = — [x — CLM] =—a=1.
0 a 2 Jy a 2 2nm 0 2
Az egyenletet rendezve pedig megkapjuk az A egytitthatot:
2
A=4/—-.
a

Tehét a W, (x,t) megoldas:

W, (1) :{ asin(zaye i it L
0 ulonben

3.10.1. A dobozba zart elektron megengedett energiai

Az energiat felirhatjuk gy, mint a kinetikus és potencialis energia Gsszegeként:
E= Ekln + Epot-

Mivel a dobozban a potencidlis energia zérus, ezért az elektron lehetséges energiaszintjei
meg fognak egyezni az elektron kinetikus energiaival, azaz:

h2k? h?
=—=——n’n=12..

E,=F, =
2m 8ma?

kin
A legkisebb energiaszint n=1 esetén van
h2

i =—
'™ 8ma?’

(16)

és a tovabbi kvantdlt energidk ennek n2-szeresei.
Magatol értetédoen az n. energiaszinthez az n. hullamfiiggvény tartozik.
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3.10.2. Haromdimenziés dobozba zart elektron hullamfiiggvényei és energiaértékei

A ¥ hullamfiiggvény meghatarozasahoz meg kell oldanunk a Schrodinger-egyenletet, amit
tovabbra is a valtozok szétvalasztasa maddszerrel tehetiink meg legkonyebben, hisz ekkor
tudjuk, hogy

W(r, 1) = W(r)o(t),

és

o) = eIt

Miel6tt azonban ratérnék a W(r) meghatdrozasara, adjuk meg a konfigurdcids téren a
potencialt:

E

p

(r) = 0 ha x € (0,a), y € (0,b), z € (0,¢)
o\F) =\ 0o kiilénben

Innetol csak az idofiiggetlen Schrodinger-egyenletet kell megoldanunk, ami a kovetkezo:
2
HY — " Aw— Ew.
2m

Ekkor tovabbra is a valtozok szétvilasztdsa médszerét hasznalva felirhatjuk W (r)-t a
kovetkezo szorzatalakban:

U(r) = Ui(z)Va(y) ¥s(2).
Amennyiben erre elvégezziik a masodik differencidlképzést, azt kapjuk, hogy
>V, (x) d*U,(y) d*Us5(2)
dz? dy? d?z
Ezek utan, ha a kapott idéfiiggetlen Schrodinger-egyenletbe behelyettesitjik az imént

kapott kifejezést, és végigosztunk Wy (x)Ws(y)W3(2)-el, illetve rendezziik az egyenletet, akkor
azt kapjuk, hogy

AW ()W (y)WU3(2)) = WUa(y) ¥s(2)

+ Wy (z)¥3(2)

+ Wy (7)Ws(y)

1 d*V(2) 1 d®Uy(y) 1 d®Us(z) QmE
Uy (z) da? Uo(y)  dy? Us(z) dz2 W2
Ezutédn bontsuk az EF-t harom 0sszetevire

E:E1+E2+E3,

és akkor kaptunk 3 kiilonallo, egy-dimenzids, idofliggetlen Schrodinger-egyenletet
P*Uy(z)  2m

w ~ )
d>Wy(y 2m

d;( ) = —ﬁEQ\I%(y)
d*Us5(2) 2m

2 = g )
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Ezen egyeletek megoldédsa(i) rendre:

Uy (z) = Asin(%x),nl =1,2,
Uy (y) = Bsin(%y),ng =1,2,..
Us(z) = OS’iTL(%Z),Tlg =12,
Tehét ebbdl felirhatjuk ezek szorzataval a W(r)-t:
U(r) =y (z)Ws(y)¥s(2) = DSin(%l‘) sm(%y) sin(%z).

D meghatéarozasa a kovetkezo egyenletbdl torténik:

a b c
D2/ / / sin2<Mx)sm2(gy)siﬁ(Mz)dzdydx:1.
o Jo Jo a b ¢
Mivel az integrandus véltozék szerint rendezhet6 (hiszen szepardbilisen elvégezhetd a

hérmas integral kiilon-kiilon, de nem szorzatonként felirva), igy az integrél kiszamitasa meg-
egyezik azzal, mintha 3 integrél szorzataként irnéank fel, amikbdl az egyik:

¢ 1 [ 2 1 sin(2Tx)ja 1
/ sin® <nl—7rx>dx = —/ 1-— cos( nlﬁx)dm = — [m — aM = —aq,
0 a 2 Jo a 2 2nm o 2

és ezt felhaszndlva, és tudvan azt, hogy a masik két integral is teljesen hasonl6 ehhez, azt

kapjuk, hogy:
b
1
[ (=1

¢ 1
/ sin® (@z) dz = —c.
0 c 2

Ekkor mivel tudjuk, hogy a teljes integrdl az el6z6 harom integral szorzata, ezért azt
kapjuk ezeket behelyettesitve, hogy:

illetve

D2%abc =1,

amibol megkapjuk a D-t a
8

abce

alakban.
Mindezek utan tehat a haromdimenzids dobozba zart elektron hulldmfiiggvénye(i):

8 X nym . NoT i nsm _:Bningng
Wy nons (T, 1) = 4/ —sm(—x)sm(—y)sm(—z)e I
abc a b c

71



ahol

h* /n? ni nd
Bunans = By + By + By = (5 + 32 + =)

az elektron megengedett energiaértékei.

A hullamfiiggvény csak a dobozban egyezik meg a kiszamolttal, a dobozon kiviil természetesen
azonosan z€rus.

3.10.3. Elfajulé stacionarius sajatallapotok

Tegyiik fel, hogy a=b=c (tehat a doboz szimmetrikus, méghozzd egy kocka). Ekkor az
energiaértékek igy alakulnak:

2

h
Eringns = E1+ By + B3 = W(n% + n% + ng)

Az elektron allapotat a sajatfiiggvény hatarozza meg. Ez esetben azonban egynél tébb

sajatfiiggvény is tartozhat egy energiaszinthez (sajatértékhez). A fent emlitett konfigurdcios
téren

— a”ground-state” allapot E; energidjahoz (1,1,1) kvantumszamu sajatfiiggvény tartozik,

— a kovetkez6 FEy = 2F) energiaszinthez harom sajatfiiggvény tartozik: (2,1,1), (1,2,1),
(1,1,2),

—az B = %El energiaszinthez hat kiilonboz6 sajatfiiggvény tartozik: (1,2,3),(1,3,2),
(2,1,3), (2,3,1),(3,1,2), (3,2,1).

Amennyiben az elektronra mégneses tér is hat (ez szinte mindig igy van), akkor minden

(n1, ng, ng) kvantumszdm harmashoz még két kiillonb6zé ” spin-kvantumszami” sajétfiiggvény
tartozik +3 és —3:

illetve

1
V_ 1= \Ijn1n2n3qjs< - _>
2 2

gy minden energiaszinthez kétszer annyi sajatallapot tartozik.

Ezek alapjan a W sajatfiiggvényekbol a spektrum kiszamithato, ha Fourier-transzformaljuk
a hullamfiiggvényeket.
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3.10.4. Tobb elektron a dobozban

Tegyiik fel, hogy ezutdan nem csak egy elektront vizsgalunk a dobozban, hanem ”bedo-
bunk” egy masikat is. Akkor a mar megismertetett energiaszintek egyikére fog kertilni, és
hullamfiiggvénye olyan lesz, hogy ne egyezzen a mar vele azonos energiaszinten 1évo elektron
hullamfiiggvényével (amennyiben van vele azonos energiaszinten 1évé elektron).

Az elektronok a Hund-szabaly és Pauli-elv szerint prébalnak rendezodni, tehat nincs két
olyan elektron, amelynek a hullamfiiggvénye megegyezik, és torekednek a minimélis energia-
szintre val6 helyezkedésre, tovabba igyekeznek parositatlanul maradni.

3.10.5. Szabad elektron. A hullAimcsomag

Vegyiink egy erémentes teret - tehat ne "zarjuk be” az elektront egy dobozba, vagy
gombbe, vagy barmilyen mas zart térrészbe, és ne hassunk réd semmilyen erovel. Ekkor a
Schrodinger-egyenlet az aldbbi formét olti:

h? d?
—————=U =FEV.
2m dx?
Ezt atrendezve azt kapjuk, hogy
d*U 2mFE
— = U= k¥
dx? h? 7
ahol
1
k= ﬁ QmE,
tehat
ﬁ2
By = —Fk.
" om
A Schrodinger-egyenlet megoldéasai:
\Ifk = Akejkz.

A VU (z,t)-t megkaphatjuk, ha kiszdmoljuk az aldbbi integralt:

U, t) = /OO Apé (1o-5) dk,

[ee]

Ez lesz a szabad elektron hullamfiiggvénye.
Az Aj hulldimcsomag meghatarozhaté a kovetkezoképp is:

Ak ) = - / T W e (1o-5) d.

2

—00

Vegyiik észre, hogy Ay és U egymasnak Fourier-transzformaltjai!
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3.10.6. Hullamcsomag a helykoordinatakkal és lendiiletkoordinatakkal

Tegyiik fel, hogy a hullamfiiggvénytink az alabbi alaki (¢=0 pillanatban):

1 R0y a a
\/_66 fi ha x € (—5,5)

U(r,0) =
(x,0) { 0 kiilonben

Amennyiben ezt a fiiggvényt Fourier-transzformaljuk, megkapjuk az A(k,t) realizéciot.
Ekkor, felhasznaljuk, hogy

_ _b
p=hk— k=1,

és ezt helyettesitve egy csak lendiilettél (és id6tol) fliggd hulldmesomagot kapunk.

A hely- és lendiiletkoordindtakkal megadott hullamcsomagot a Fourier-transzformacioé
koti ossze. Figyelni kell azonban a lendiiletkoordinatdkkal adott reprezentaciébdl helykoor-
dinatakra valé attérésnél, ugyanis

d
@:ﬁ%—n&:%ﬁ

tovabba arra is, hogy a helyettesitési integralas miatt a momentum szerinti integraléaskor
az integralasi hatarok is valtoznak

a a h h
——<zrx< - —=p——<p<p+—
2 2 a a

Amennyiben Ax = § és Ap = 3 valasztassal éliink, akkor megkapjuk a Heisenberg-féle

hatarozatlansagi relaciét a hely és momentumkoordinatak operatora esetében:

AxApzzg (17)

A hulldmcsomagot kiilonboz6 hullamszamu (lendiiletii) komponensekbdl allitjuk ossze.

3.11. Hidrogén és hidrogénszerii atomok

Egy pozitiv toltésti atommag kornyezetében az egy-elektron problémanak egzakt, analitikus
megoldasa van. Az elektron az atommag gombszimmetrikus Coulomb er6trében mozog, tehat
a potencial itt
Ze* 1
Ameg T

Epot - QeU = -

A Schrodinger-egyenlet igy a kévetkezéképpen alakul:
Ze?

dmeor

2m
AW+7?<E+

)@:0
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Az E-re és U-re vonatkozo sajatérték problémat most tekintsiik gémbi koordinatakkal,
mivel

1
AV = A, + ﬁAg#,,

ahol
10/,0
A =55 (75)
illetve
1 1 0 0 1 02
—Ay,=———|sind— _.
27" T Sind 90 (Smﬁaﬁ) sin?¥ 0p?

fgy pedig ¥ redukalhaté harom darab kozonséges differencidlegyenlet szorzatara, azaz
V(r, d,p) = R(r)®(p)0(0).

Ezek utan pedig a harom kiilonall6 differencidlegyenlet a kovetkezo:

1d9
Vdp?
1 . dy/ . dv C9q g
Esmﬁ% (szm?%) + Asin“ =m
1dy/,dR 2m 4 Ze? A
S (R 22 (g ) . —}R —0.
r2dr<r dr>+[ﬁ2r< +47r&?07“ r2
Ezek megoldasai rendre
() = e

I (9) = B (cos)
Ru(p) = Ame™"(2p)' Ly (2p),

ahol
AL
pP=—
Qo
és
h2
ay = —2 = 0.0528nm.
Tme
Az n. energiaszint
mZ%e
E, = ,n=1, 27
Regh?n? "

Ezekbdl tehat a teljes hullamfliggvény, azaz a Schrodinger-egyenlet megoldéasa:

Wt (1,0, ) = Ae™"(2p)' L3 (20) P (cos9) ™.
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A konstans meghatarozhaté az alabbi formulaval:

o) T 2T
A/ r? [/ siny (/ ’:ﬂm\llnlmdap>] dr =1
0 0 0

Egy n atomszamhoz

i
L

(20+1)=n?
I

Il
=)

kiilonbozo sajatfiiggvény tartozik, mert [ 0-tél n-ig vehet fel értékeket, mig m 2[+1 értéket
vehet fel, hiszen |m| <.
Ezen kivil minden n,l[,m kvantumszam-harmashoz két-két spin kvantumszam is tartozik

1

Ui1= ‘I’nlm‘l’< + 5)
1

Vo, = ‘I/nlm‘lf( - —)
2 2

fgy tehat az Osszes lehetéséget még dupldznunk kell, azaz Osszesen 2n? a lehetséges
sajatallapotok szama 1-1 energiaszinthez.

3.12. A testek kvantummechanikaja

A testek atommagokbdl és elektronokbdl épiilnek fel. Ahhoz, hogy ezeket dltalanosan tud-
juk vizsgalni, elobb az egy-eletkron problémat kell megoldanunk tobb atommag esetén. Ezt
ugy tudjuk, hogy képzeletben "kiszivattytuzzuk” az elektronokat az anyagbol, majd egyesével
tessziik azokat vissza, igy elérve az egyenstlyi allapotot.

Az atomoknak diszkrét energia szintjei vannak, de ezek felhasadnak s,p,d,f palyakra,
amelyeket az elektronok fokozatosan be tudnak tolteni. Amennyiben egy kristdly N darab Z
rendszamu atombol épiil fel, akkor e kettd szorzata adja meg a kristyalban 1évo elektronok
szamat. Fontos azonban megjegyezni, hogy T=0K-en igaz csak, hogy minden energiaszint
a Fermi-szintnek megfeleléen van betoltve, egyébként ez nem igaz. Amint nem abszolit
nulla homérsékleten vagyunk, dgy az elektronok a Fermi-Dirac statisztika szerint toltik be
az elektronpélyakat.

"Soft-matter”-rol, vagyis "lagytestrol” akkor beszélhetiink, ha egy anyag konnyen valtoztatja
formdjat, fizikai tulajdonsagait példaul hoingadozasra, vagy hokozlésre. Ezek altaldban
folyékony anyagok, folyékony kristalyok, membranok stb. A testek masik nagy halmaza
a szilardtestek.
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4. Statisztikus és szilardtest fizika

Mint az el6z6 fejezet végén lathattuk a vald életben, és a mérnoki gyakorlatban nem
csupan egy-elekton problémak vannak, nem potencidldoboz van, és nem egyszera koriillmény.
Ezek leirdsat nagyban segiti a statisztikus fizika, ahol N db részecske (elektron) viselkedését
irjuk le.

4.1. Mikro- és makroallapotok

~ Tegyiik fel, hogy egy rendszer hullamfiiggvény W, akkor a rendszer ¥ mikroallapotban van.
Altalaban viszont az energiaszintek elfajuléak, tehat egy E energiaszinten tobb kiilonbozo
hullamfiiggvény, igy mikroédllapot van. )

Egy testben az elektronok kiilonb6z6 energidkon helyezkednek el. Igy az N(E) jelolés
a rendszer markodllapotait adja meg. Az energia-sajatértékeket F,-nel, a mikrodllapotok
szamat Z,-nel, az elektronpopuldcidékat pedig N,-nel jeloljiik.

Altaldnosan elmondhaté, hogy zart rendszer esetén az elektronok szdma és a rendszer
Osszenergidja allandé, vagyis

Y Ni=N

4.2. A statisztikus fizika posztulatumai
A zart rendszerre a kovetkezok igazak:
— Minden mikroallapot egyforméan valdszinti.
— A rendszer "gyorsan” konvergal a legvalészintibb makroallapothoz. Ez az egyensiily.

— A makroallapot valészintisége aranyos az 6t megvaldsité mikroallapotok szaméval.

4.3. Fermionok, bozonok és megkiilonboztethet6 testek

Eloszor is nézziik, hogy a fermionok, bozonok és a megkiilonboztethetd testek kozott mi
az eltérés.

Vegylink egy azonos részecskékbdl (pl. elektronok) allé rendszert. Két azonos részecske
esetén a sajatérték-probléma megoldhato, és ha felcseréljiik egymassal a két részecskét, ak-
kor a sajatértékek nem valtoznak, tehat a ¥ hullamfiiggvények kozotti eltérést csak egy
allandéval valé szorzds jelentheti. Tegyiik fel, hogy ez az allandé a2, és legyen a?=1, azaz
létezik egy szimmetrikus és egy antiszimmetrikus hullamfiiggvény-par, hiszen a; =1, illetve
as=-1. A részecske megfigyelései azonban csak W*W-t4l fiiggnek.

Ez azt jelenti, hogy a részecskék felcserélése nem valtoztat a mérés eredményén, ami a
klasszikus fizikdhoz képest egy lényeges kiilonbség. Abban ugyanis minden egyes részecske
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"torténetét” egymastdl fiiggetlentil végigkisérhetjik, am a kvantummechanikdban ez nincs
igy.

Amennyiben két részecske hullamfiiggvénye atlapolodott, gy a két részecske mar megkii-
l6nboztethetetlen lesz. A természetben kétféle részecske létezik: bozonok és fermionok. A
bozonok éllapotfiiggvénye szimmetrikus, és a spinkvantumszamuk egész szam (0,41), mig a
fermionok allapotfiiggvénye antiszimmetrikus, és spinkvantumszamuk :l:%. Fermionok kozé
tartoznak példaul az elektronok, mig a bozonok kozé a fotonok.

Ezek utan pedig nézziik meg, hogy a bozonok, fermionok és megkiilonboztethetetlen testek
makrodllapotait eloallité mikroallapotok szamat hogy kaphatjuk meg

A fermionok mikrodllapotainak szamat a Fermi-Dirac statisztika irjale. A Z mikorallapot-
ban N db fermion ( Ii) féleképpen lehet. Egy makroallapotot realizalé mikrodllapotok szdma:
N;(E;). Ebbdl a statisztikét a

e =T1(3) =Tl sz

i
kifejezés adja meg, ami tulajdonképpen egy ismétlés nélkiili kombinacio.
A bozonok makrodllapotait eléallité mikroallapotok szamat a Bose-Einstein statisztika

irjale. Az Ny, Na, ..., N;, ... eloszlast megvaldsité mikroallapotok szamat egy ismétléses kom-
bindcié irja le, amely a kovetkezo:

B Ni+Z; =1\ (N; + Z; — 1)
wBE_U( N, >_1:[Ni!(Zi—1)!'

A megkiilonboztetheto testek statisztikajat a Maxwell-Boltzmann statisztika irja le, ezt
szokas klasszikus statisztikdnak is nevezni:

NI N
Wy B — WHZZ T

4.3.1. Fermionok egyensiilyi allapota

A fermionok egyensilyi dllapotara belathatjuk, hogy a legvaldsziniibb makroédllapotban
lesz az egyensuly. Induljunk ki a Fermi-Dirac statisztikabol, vegyilik annak természetes alapt
logaritmusat, hiszen az eredeti statisztika maximuma ugyanott lesz, ahol a logaritmusanak
maximuma. Ekkor, ha alkalmazzuk a logaritmus azonossagait, a kovetkezot kapjuk:

Inwpp = Z(ln Zi'—In(Z; — N;)! —In N;!).

1

Miel6tt azonban tovabbmennénk, hasznaljuk fel a Stirling-kozelitést, miszerint

n n
- ()
e
ha n elég nagy. Ebbol pedig kovetkezik, hogy

n
Inn!l=nln—=nlnn—n~nlnn.
e
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Ezt helyettesitve a statisztika logaritmuasba az

osszefiiggéshez jutunk. A fiiggvénynek pedig azt a maximumat keressiik, amely eleget tesz
az allandésagi feltételeknek, azaz annak, hogy a zart rendszer 0sszenergidja és elektronjainak
szama allando.

Vezessiik be o és f paramétereket a kovetkezoképpen:

lnwzlnw—i—oz(N—ZNi) +B(E0—ZN1~E¢>.

Ekkor, ha alkalmazzuk a Lagrange-multiplikdtor modszerét, a szélsoérték-probléma meg-
oldasa:

N lnw+a<N - ZN) —|—B<E0 — ZNE) =0,i=1,2,..
amibol pedig kovetkezik, hogy
ON. Inw—a—-pE;=0,i=1,2,...
A statisztika logaritmusdnak N; szerinti parcialis derivaltjai a kovetkezok:
0 1 In(Z; — N;) —In N,
nw = IN{4; — V) — N1V,
ON;
és az egyenletiink egzakt formajaban:
7. — N,
In = L —a—BE =0
n N a—pf

alakot olti.
Ebbol, ha kifejezziik N;-t, azt kapjuk, hogy

NFD _ _ L4
i eat+BE; +1 ’
4.3.2. Fermi-fiuggvény

Az eddigiek ismeretében meghatarozhatjuk a Fermi-fiiggvényt is. Vezessiik be az alabbi
jeloléseket:

1
P =%t
Er
o =——
kT’



ahol k, a Boltzmann-allandd, melynek értéke 1.38-107231%2 T az abszolit h6mérséklet,
és Er a Fermi (energia)szint. Ezekkel a jelolésekkel élve az N;-re vonatkozé fiiggvényiink a
kovetkezo:

Z; 1
NP — ™ z—
? €a+ﬁEi + 1 E; EF + 1

és ez a Fermi-fiiggvény. Amennyiben abszolit 0K -en vagyunk, gy a fliggvény két értéket

vehet fel:
1 ha E < Er

Jr-o(E) = { 0 hakE>Ep

4.4. Az elektronok makroallapota

Vegyiink el6szor a legegyszeriibb esetet, amikoris T=0K, és tegytik fel, hogy az energia-
szint alacsonyabban van, mint a Fermi szint, tehat £ < Fr. Ekkor az elektronok szamat -
amelyekre teljesiil az elobbi feltétel - az

1
N(E) = na® = E—QE%

osszefiiggés adja meg. FEnnek tudataban pedig ki tudjuk szamolni, hogy mennyi elektron
van az E és E+dFE energiaszintek kozott:

N ,
AN = N(E + dB) - N(B) = D ap - ~_EdE.
dE= aE;

Most pedig tekintsiik azt az esetet, amikor a hémérséklet nem abszolit nulla fok. Ekkor
a fenti Osszefliggés valtozik

o
dN:p(E)dE: 7-‘-3 E—EF2 dE,
2FEZ e *m +1
majd, ha felhasznaljuk, hogy Fy, = 22, akkor a Kkifejezésiinket a kovekezo alakban is

irhatjuk:

3 1

IN — A7V (2m)2 _ 572 JE.
B3
e T +1

A fent definidlt p sturtségfiiggvényt mas alakokban is irhatjuk. A Fermi-Dirac statisz-
tikanak ezen kiviil két masik stiriségfiiggvénye van. Az egyik az elektronok eloszldsat adja
meg a sebességkomponensek fliggvényében, azaz

my\3 1
P (U, vy, vy dvgdvydo, = 2‘/(%) 55— dvzdv,dv.,
e kT +1
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mig a masik a v és v+dv kozé eso sebességli elektronok szamat adja meg:
3 1
dN = p(v)dv = 87TV<%) 1)2de.
e 7 +1

Ezekbol pedig lathaté, hogy a makroallapotok szama nem més, mint a mikroallapotok
stiriségének és a betoltés valdszinliségének a szorzata, ahol a betoltés valdszintisége a Fermi-
fiiggvény, mig a mikrodllapotok stirtiségét haromféle modon is megadhatjuk.

4.5. Sommerfeld-féle kadmodell

Vegyiink egy idedlis vezetét. A vezetének a vezetési és a vegyérték sdvja kozel van
egyméashoz (vagy mar épp atlapolédik), és valencia savjat betoltik az elektronok. Tegyiik
fel, hogy abszolit nulla fokon vagyunk. Ekkor a kadmodell megmutatja, hogy az elektro-
nok legnagyobb megtalaldsi valdoszinlisége, tehat a p maximuma a Fermi szintnél lesz, és
oddig a valencia sav also energiajatél egészen a Fermi szintig novekedni fog a megtaldlasi
valészintiség, viszont a Fermi szint feletti energiaszinteken nem lesz egyaltaldn elektron.

Most tegyiik fel, hogy nem abszolit nulla fokon vagyunk, tehat 7" > 0. Ekkor azonban
észrevehetjiik, hogy a strliségfliggvény torzul, és nem csak, hogy maximuma nem a Fermi
szint kozelében lesz, de ezen energiaszint feletti energidkon is képes elhelyezkedni az elektron.

Sommerfeld-féle kadmodell esetén a vezeték Fermi szintje T = 0 esetén kiszamolhato, a
kovetkezo formulaval:

h? /3n\3
E :_(_ .
Fo 8m 77)

Szigetelok esetében azonban a valenciasav és a vezetési sav kozotti "rés”, dgynevezett
"gap” jelentos, igy az elektronok nem tudnak ”felugrani” a vezetési savba, ezért nem vezetnek
a szigetelok. Szigetelok esetén is meghatarozhaté a Fermi szint, mégpedig a vezeto és a
valenciasav energiaszintjének szamtani atlagaként:

_ E.+E,
e

7

Ep

Kilépési munkanak nevezziik azt az W munkat, mely egy elektron a fémbdl a vdkuumba
torténo eltavolitasahoz sziikséges. A kilépési munkat az elektronok a fémbdl valo kireptiléstik
soran végzik a pozitiv tobblettoltés és az elektronok koézott levd vonzasi erdk ellen. Ezenkiviil
a W munka az el6zoleg kirepiilt és az éppen kirepiil6o elektron kozott fenndlld taszito erok
ellen is végzbdik, melyek a fém feliilete koriil ” elektronfelhét” hoznak létre. A kilépési munka
a fém kémiai természetétdl és a feliiletének allapotatodl fligg. A kilépési munka a fém Fermi
szintje (Er) és a vdkuumszint (Ep) kozotti energiatavolsag. Elektronvolt (eV) egységben
adjak meg.

4.6. Termikus elektronemisszio

Adott egy fém, amelyet kiils6é forrdassal melegitiink. Ekkor egy bizonyos idé utan a
fémfeliiletrdl ki fognak 1épni elektronok, ha teljesitik az ehhez sziikséges feltételt. Eloszor
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is tegyiik fel, hogy a fémfeliilet hatara z tengelyre merdleges, és valasszunk ki ezen egy
egységnyi feliiletet. Ahhoz, hogy az elektron kilépjen a fémbdl a kovetkezonek kell teljestilnie:
L
— > F
2mv = g,

Ezt egy méasodperc alatt a fémben 1évo Osszes v, sebességkomponenssel rendelkezo elekt-
ronok koziil azok érik el, amelyek egy v, hosszisagu hasab belsejében vannak.
A feliiletegységen id6egységenként kilépd elektronok szamat jeloljiik Ji-vel és

Jt Ne. (].8)

Az elektronok kilépése a Sommerfeld-féle kadmodell alapjan torténik. Az elektronok
szama egy egységnyi térfogatban

2m?3 1
ANy_y = o dv,dvydu.,
h e *t +1
mig v, térfogatban
2m3 1
dN, = v, TZ E, dvgdvu,dv,
he o=t +1

Ezek utan felirhatjuk a feliiletegységen idoegység alatt kilépé elektronok szaméat az

4k? -
/ / / dvzdvydvm _ 2N - PEGEE
VB oo € kT h’3

Ezt pedig (18)-ba behelyettesithetjiik és megkapjuk a Richardson-Dushman formuléat:

Ark%me Ep-Ep
Jy = —B 727
B3

4.6.1. A katdd mikodése

A katéd is termikus elektronemissziéra épiil. A fémet (példaul wolframszal) kiilsé ener-
giabefektetéssel melegitjiik, amely hatdsara elektronokat emittal. Altaldban egy eszkozben
anoddal egyiitt "szerepel”, amely a kibocsatott elektronokat abszorpciéval ”befogadja”. A
legtobb vakuumcsoben ezt alkalmazzak.

A katéd melegitheté kozvetlentil, vagy kozvetetten. Elobbi esetben példaul egy wolf-
ramszal a filamentum, és ez kozvetleniil forrésodik, és ”1ovi” ki magabdl az elektronokat,
mig utébbi esetben a filamentum nem maga a katod, az csak felhevitett allapotban melegiti
a katodot, ami ezaltal "kilovi” az elektronokat. Utébbi mellett szol, hogy itt szeparalva van
az elektromos potencial a vakuum cs6tol.

4.7. Kontakt potencial

Mlessziink 6ssze két, nem azonos fémet, legyen ez A és B. Ekkor azt vessziik észre, hogy
fesziiltségkiilonbség jon létre a két fém kozott. Ennek magyarazata az, hogy a savelmélet
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szerint a vezetoknek vagy a valencia, illetve vezetési savja csak részben betoltott, vagy az,
hogy a ketto atlapolodik. Mindkét esetben iires helyek vannak a savokban. A fémek esetében
ezek az elektronok (a vezetési sav elektronjai) képesek elmozdulni. A két érintkezé fém elekt-
ronjainak allapotai eltérnek egymastol, tovabba a szabad elektronok (vegyértékelektronok)
szama is kiilonbozik a fémekben, tehat az elektronkoncentracio is.

Mivel a kozos hatar az elektronok szamara atjarhato, ezért a nagyobb energiaszintii elekt-
ronokat tartalmazé fémbdl iddegység alatt tobb elektron jut at, mint amennyi ellenkezo
irdnybdl érkezik, ezért viszonylag rovid idon beliil beall egy egyensily, amikoris mindkét
fémben azonos lesz az elektronkoncentracio.

Emiatt az elektronvandorlds miatt mérheté potencialkiilonbség a fém két vége kozott. Az
értéke erdsen homérsékletfiiggo, és a két fémnek azonos homérsékletiinek kell lennie.

4.8. Sajatvezetési félvezetok

A sajatvezetési félvezetOket szokds szerkezeti, vagy intrinsic félvezetonek is hivni. Jel-
legzetességiik, hogy T=0 esetén nincsenek ugyan elektronok a vezetési savban, de amint
melegitjiik a fémet mar lesznek, azonban ezek a valenciasavbdl jonnek, tehat maguk mogott
"lyukakat” hagynak.

Nagyszamu vezetési savbeli elektron és nagyszamu valencia savbeli lyuk makro allapota
hasonlo a vezetok vezetési savbeli allapotahoz.

A lyukak ”virtualis” részecskék pozitiv toltéssel és ”effektiv” tomeggel.

Az elektronallapotok stiriiségét a vezetési savban a kovetkezo kifejezéssel tudjuk szamolni:

gn(E) = ———F——VE - Eco = E — Eco,

mig a lyukallapotok stirtiségét a valencia a savban a kovetkezdvel:

w\w

47TV(2meff

47TV(2meff )2
gp(E) EVO Evo - F

Ez lényegében azt jelenti, hogy minél inkabb tavolodunk vezetési sav legkisebb, illetve a
valencia sav legmagasabb energiaszintjétol, igy novekszik az elektronok megtaldlasi valoszintiisége.
Az elektronpopulacié striiségét a vezetési savban megadhatjuk a kovetkezoképp:

n = / gn(E)f(B)dE = Kn \/EV0 —E——7——dE = Nee 7",

Ec e & +1

ahol
m(KT)? 2(27rm§}fkT)%
2 h3 '
Ezek utan pedig meghatarozzuk a lyukpopulacidt a valenciasavban. ElGszor is nézziik,
hogy a lyukra vonatkozo6 valdszintiség mennyi:

N. =K,

e kT +1 ekT +1



ebbdl pedig a lyukstriistiég a vegyérték savban:

Ey _
p=K / VB, — F———dE = NVeEVkTEF

+1
és
(p) 3
kT3 2mm 2/ kT2
Ny = K, ”(2 Syl Z‘; )

4.8.1. Toltés-neutralitas elve és a Fermi-szint

Sajatvezetésti félvezetokben érvényes a toltés-neutralitas elve, vagyis pontosan annyi
elektron van a vezetési savban, mint amennyi lyuk a valencia savban. Ennek magyarazata,
hogy az Gsszes elektron a valencia savbol "ugrott fel” a vezetési savba, ezért maga mogott
minden elektron 1-1 ”lyukat” hagyott, tehat szamuknak megegyezének kell lennie.

Ebbol pedig levezethejiik az intrinsic félvezeték Fermi-szintjét, hiszen

n= Nce% =p= NVeEVkTEF
Osszunk le a kapott kifejezésben, hogy a kovetkezd Gsszefiiggésre jussunk:

NV Ep—Ec Ey—Ep

— = kT kT

Ne
Ezutan vegyiik mindkét oldal természetes alapui logaritmusat
NV EF — EC EV - EF
Ne kT kT 7

és fejezziik ki az Fr Fermi szintet:

(p)

Ev + E¢ +§k:T1n Meir
I .

Ny By + Ec
Ep=—Y17¢ —k:Tl Ve
F 2 No 2

(n)
Meyy

Végezetiil pedig hatdrozzuk meg a negativ toltéshordozdk (elektronok) szamét:
E~—E
=+/NcNye~ %kTV_

4.9. Adalékolt félvezeto anyagok

Az el6bbiekben megismert intrinsic (mésnéven sajdtvezetésil) anyagok mellett van egy
masik tipusa a félvezetéknek, az adalékolt félvezeték. Adalékolassal ugyanis névelheto a
vezetése az adott anyagnak. Adalékolas alatt azt értjilkk, mikor az anyag kristalyracsaban
1évé néhény atomot olyan atomra cseréliink, amelynek a valenciasdvjaban tobb/kevesebb
elektron van, mint az eredetinek.

Amennyiben a hozzaadott atom vegyértéksavjaban tobb elektron van, mint a kristalyracs
tobbi atomjanak vegyértéksavjaban, akkor n-tipusu vezetésrdl, forditott esetben pedig p-
tipusurol beszéliink.
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Az el6z6 alfejezetben kiszamoltuk a sajat vezetési félvezetok Fermi-szintjét. Adalékolassal
ez a szint a vezetési sav (n-tipusi), illet6leg a valencia sav (p-tipusi) felé tolhaté el. Elobbi
esetben donorszintnek, mig utébbi esetben akceptorszintnek is nevezhetjiik ezt a szintet.
Ugyanis n-tipusi adalékoldskor azok az elektronok, amelyek " feleslegesként” maradnak (t&bb
az elektron, mint amennyinek lennie kéne) a tiltott savba helyezkednek el, mégpedig kozel
a vezetési savhoz, és ezért kis energiaval is felgerjeszthetoek a vezetési savba, mig p-tipus
esetében "lyukakat” (elektronhidnyos helyeket) taldlhatunk a valencia savban (hisz kevés az
elektron a "megszokotthoz” képest), és ezeket a helyeket betolthetik az érkezd elektronok.

Fontos megjegyezni, hogy ebben az esetben a toltés-neutralitas elve kissé valtozik. Ugyanis
ezesetben nem csak a negativ toltéshordozok és ”lyukak” szamardl szol az egyenloség, hanem
figyelembe kell venni, hogy mekkora mennyiségli atomot adalékoltunk az eredeti anyagunkba,
tovabba az akceptor és donor atomokbdl szarmazo negativ toltéshordozokat, illetve ”lyuka-
kat”.

Mindezek mellett kiilon kell vizsgalnunk az n-tipusi és a p-tipusi vezetok toltés-neutralitdsat.

Amennyiben p-tipusi adalékolt félvezetorol beszéliink, gy az elektronok megtalalasi
valdszintisége - az intrinsictdl eltéréen - nem egyenl6é nagysagu a vezetési és valencia savban,
hanem az utobbiban nagyobb, mig n-tipusi vezetés esetén a vezetési savban nagyobb az
elektronok megtalaldsi valészintisége.

A p- és n-tipusu félvezetck kozti kiilonbségeket az alabbi tablazat tartalmazza:

n-tipus - p-tipus
Ny = P+ Ng — ng Toltés-neutralitas elve Np + Mg = Dp
Ep = B¢ + kgT'ln gt Fermi-szint Ep = By + kgTIn 3¢
Ny, ~ Ny Tobbségi toltéshordozo Py = N,
NN Ey-Ec - . L, J NN Ec-Ey -
pn = =% Ce BT = 2B | Kisebbségi toltéshordoz6 | n, = =G—e FT = =
d n £y Erere a DPp

np = n;p; = NoNye BT ~ CT3e *5T

4.9.1. Kontakt potencial adalékolt félvezetdk esetén

Amennyiben Osszeérintiink egy p-, illetve n-tipusi adalékolt félvezetét, ugy koztik is
kontaktpotencidl 1ép fel, ahogy a 4.7. fejezetben mar lattuk. Ezesetben azonban termikus
egyensuly beélltakor a két kilonb6z6 anyag Fermi-szintje kiegyenlitodik.

Altalanossdgban elmondhatjuk tehdat, hogy a termikus egyensilyban 1évé p-n didda,
n-p-n, illetve p-n-p atmenetit bipoléaris tranzisztor Fermi-szintje is kiegyenlitodik, habar
osszeérintéskor a Fermi-szintek nincsenek egyhelyen, és csak a kontaktpotencidl miatti toltésvandorlassal
all be az egyenstly.

4.10. Toltéshordozék mozgatasa kiils6 elektromos térrel

A kiils6 elektromos tér erejének nagysagat a

F=¢qE
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egyenlettel adhatjuk meg. Amennyiben szeretnék felirni a Newton-féle mozgédsegyenletet
az anyagbeli elektronra, ugy a kovetkezot kapjuk:

dv
Fhess + Friss = me
ahol a csak kiils6 erokre vonatkozo egyenlet:
dv
Friss = Meffektiv™,

s Megrertsy a2 elektron effektiv tomege.

Az erémentes térben mozgd, méasnéven szabad elektronok effektiv tomege megegyzik az
elektron ”"rendes” tomegével. A szabad elektron csoportsebessége megegyezik az elektron,
mint részecske sebességével, ebbdl felirhatjuk a kovetkezot:

_dw  2mdE
YTk T h dk
ahol kihasznaltuk, hogy
E=nhf,
illetve
w=2nf.
Ezek utan, ha felirjuk, hogy
dE 2 _dFE
o pp= 2
at T h dk

vagyis, hogy az elektromos erotér nagysaganak idobeli megvaltozasa megegyezik az elekt-
ronra haté erd és az elektron sebességének szorzataval, tovabba felhasznéljuk, hogy

dE  dE dk
dt  dk dt’
akkor az elobbiek értelmében kifejezhetjiik az eré nagysagat:
_ hdk
S omdt’

Ezek utan irjuk fel az elektron gyorsuldsat:

dv B 21 d <dE) B 21 d’E dk
dt  hdt\dk/ h dk? dt’

Hasznaljuk fel a Newton-mozgasegyenletet, amibdl tudjuk, hogy a gyorsulas megegyezik
az er0 és a tomeg hanyadosaval. Helyettesitsiik a gyorsulasra és erore az elobb kiszamolt

képleteinket, és fejezziik ki az effektiv tomeget. Azt kapjuk, hogy

A °F
Meffektiv = WW
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4.11. A félvezetok toltéshordozoinak dinamikaja

A félvezetOkben nagy szamu elektron mozog, az egymas kozti kolcsonhatasukat pedig
elhanyagolhatjuk. A félvezetokben 1év6 aramlasokat a vezetési sav elektronjainak és a pozitiv
toltéstinek titulalt fiktiv részecskék, mésnéven lyukak mozgasaval irhatjuk le.

A részecskék aramlasa lehet kiilsO tér hatdsara létrejovo, és lehet toltéshordozok kon-
centraciégradiense altal hajtott. El&bbit vezetési (sodrédasi) dramnak nevezziik, mig utébbit
diffizioés aramnak.

Altaldnos tényként tudjuk, hogy minden anyag az egyensuly felé torekszik, és a benne
16v6 véltozasok addig mennek végbe (spontan, kiilsé erék hatdsa nélkiil) mig az egyensily
be nem all. Azonban, ha kimozditjuk az egyensulybdl az anyagot, akkor az ezutan igyekszik
visszadllni az egyensilyi allapot felé, ezt nevezziik relaxacionak.

4.11.1. Gerjesztés és rekombinacio

Elektron-lyuk parokat 1étrehozhatunk tigy, ha egy-egy elektront gerjesztiink egy magasabb
energiaszintre (azaz a vezetési savba gerjesztjiik), ekkor egy ”lyukat” hagy maga mogott.

Az elektron-lyuk parok azonban képesek rekombindlédni, azaz a valencia savban 1évo
"lyukat” egy elektron betélteni. A rekombindcié soran a vegyérték sdvba (le)ugréd elektron
fotont bocsathat ki, ezt hivjak sugarzasos rekombinaciénak.

4.11.2. Differencialis Ohm-torvény a félvezetokben

Tegyiik fel, hogy az adott félvezetdre elektromos teret kapcsolunk. Ekkor a lyukak a
térerdsség irdnydba, mig az elektronok azzal ellentétes irdanyba sodrodnak.

Altalanos megfigyelés, hogy a fellépd aramstriiség aranyos a sodrédo elektronok sebességének
varhaté értékével, vagyis

J, = en(v.),

ahol e az elektron toltése, mig n a félvezet6 (szabad) elektronjainak szama. Tovébba a
vezetOképesség

I (V)
Op = — =en )
E| |E

A legutolsé egyenlet jobboldalan szereplé hanyadost nevezziik mozgékonysagnak, és

B (Ve)
ST

A mozgékonysaggal kifejezve a vezetoképesség és az aramsuriség:

On = €Nfiy,

J, =enu, E.
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Az elébbiekben felirt egyenletek a negativ toltéshordézkra (elektron) vonatkoznak, de
ugyanezeket felirhatjuk a ”lyukakra” is:

Op = €EPHp
J, = epu,E.
Egy adott félvezeto fajlagos vezetoképessége a fiktiv pozitiv részecskékre és elektronokra
vonatkozo6 vezetések Osszege, tehat
o = e(npin + ppy)-
Mindezeket felhasznélva a differencalis Ohm-torvényt tehat irhatjuk a kévetkezoképp is:
J =0E = e(np, + puy) E = enoiE,

ahol

- M1y F Nape
="
ny + No

Tovabbi eltérések lehetnek a kiilonbozo félvezetok kozott, ezt a kovetkezo tablazat tartal-
mazza:
szerkezeti (intrinsic) ‘ n-tipusu ‘ p-tipusi
o; = eni(fin + fp) ‘ On = €Nplin ‘ Op = EPplp

Sajat vezetési félvezetoben tudjuk, hogy

3
27T-Wleffektivk:BT‘) 2 AL

bi =Ny = 2( 72 e 25T,
amivel a tablazatban megadott képletet felirhatjuk a kévetkezo alakban is:
27Tme e ivk T 3 __AE
o = eni(fin + 1) = 26( th;t . ) *(in + pp)e a7

4.11.3. Gunn-effektus

Bizonyos anyagokra, ha kiilso elektromos teret kapcsolunk, és azt noveljik, akkor azt ta-
pasztalhatjuk, hogy a sodrédé elektronok mobilitasa csokken, ahogy noveljiik az elektromos
térerosséget. A két-kimenetli eszk6zok, melyek ilyen anyaghdl késziilnek képesek a mikro-
hullamu oszcillaciéra, melynek frekvenciajat nem a befoglalé halézat, hanem az eszkézben
1év6 anyag sajatossaga hatarozza meg. Ezt az effektust hivjuk Gunn-effektusnak, felfedezoje,
J. B. Gunn utén, aki 1963-ban észlelte a jelenséget. Azota mar létezik Gunn-didda is, ami
ezen az elven miikodik.

4.11.4. Transzportot leiré dinamikai egyenletek

A vezetési daramot létrehozo sodrédast kiilsé tér generdlja, az el6bbiekben bemutatott
médon. Azonban a diffiziot a pozitiv fiktiv részecskék és a negativ toltéshordozok véltozasa
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altal indukalt koncentraciégradiens hajtja, altalanosan felirhaté az elektronokra vonatkozd
diffuzids kifejezés:

J,=—D,gradn,
illetve a ”lyukakra” vonatkozo:
J, = D,gradp.

Az el6z0 két kifejezésben szereplo n és p fiiggvények helytol és idotol fliggnek, ahogy azt
a félvezetoknél mar lathattuk.
Mindezek ismeretében felirhatjuk a teljes aramsiirtisége(ke)t:

J, =enu,E + eD,gradn
J, = epu,E — eD,gradp.

4.12. Az anyagok és az elektromagneses tér kolcsonhatasa

A termikus egyensiily bedllta utan az atomi rendszerek a kérnyezetiikkel fény kibocsatasaval,
vagy elnyelésével vannak kapcsolatban. Elobbit emisszionak hivjuk, utobbit abszorpciénak
nevezzilk. Kétféle foton emissziot ismertink: spontan és stimuldlt.

4.12.1. Emisszi6 és abszorpcio

Tegyiik fel, hogy egy atom elnyel egy ”érkezé” fotont. Ekkor egy elektronja magasabb
energiaszintli palyara ugrik. Ezt egyébként egy (spontdn) emisszi6 is kovetheti.

A spontan emisszi6 sordn egy (mar gerjesztett) elektron ”leugrik” egy alacsonyabb ener-
giaszintl palyara, mikozben fotont bocsajt ki.

Azonban elofordulhat az is, hogy egy gerjesztett elektron elnyel még egy fotont, azonban a
varakozasokkal ellentétben nem feljebb ugrik egy még magasabb energiaju orbitalra, hanem
alacsonyabb energiaju palyara ugrik. Ez az ugynevezett stimulalt, vagy masnéven indukalt
foton emisszi6. Fontos megjegyezni, hogy ebben az esetben a fotonok koherensek, azaz térben
és idoben teljesen megegyezoek.

4.13. Atomok termikus egyensilyban

Az atomokra termikus egyensulyban igaz, hogy az abszorpcidk és emisszidok szama egyenld.
A fotonok a Bose-Einstein statisztikat kovetik (hiszen bozonok), a frekvencajuk fiiggvényében
felirt stirtiségfliiggvény pedig a kovetkezo:

3
p(f) = Smhy !

Ezutan pedig felirhatjuk az Einstein-féle abszorpciok

BlQNlp(f)7
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spontan emissziok
_hf
AN2 = ANle kBT,
és stimulalt emissziok

_ b
By1Nop(f) = BayNie *57 p(f)

szamara vonatkozd Osszefliggéseket. Az atomok, mint megkiilonboztetheté részecskék
Maxwell-Boltzmann statisztikat kovetnek. Azaz, felhasznalva az el6z6 harom egyenloséget,
tudjuk, hogy

_h s
Biap(f) = Ae *8T + Boje *87 p(f),

~—

és, ha ezutdn rendezziik a fenti egyenletet p(f)-re, azt kapjuk, hogy

<1

p(f) =

Biae*sT — By

Mivel a fotonok a fentiekben meghatarozott Bose-Einstein statisztikat kovetik, ezért a
két statisztikanak meg kell egyeznie, azaz

By =By =B (19)
egyenletet figyelembe véve
A Sthf3
B &

A (19)-et megnézve észrevehetjiik, hogy az abszorpcié és a stimulalt emisszié ”szimmet-
rikus”.

4.14. Meérnoki alkalmazasok

A fentiekben bemutatott fizikai jelenségeket a mérnoki tudoményokban napjainkban egyre
gyakrabban és jobban alkalmazzak.

4.14.1. A LASER és MASER

Az els6 LASER (Light Amplification by Stimulated Emission of Radiation) rubin szilardtest
laser volt, méghozzd haromszinti. Ez utébbi azt jelenti, hogy a legmagasabb (egyébként
sdvszeril) energiapalyardl az elektronok spontén emissziéval ”sszedllnak” (diszkrét energia-
szintre), majd stimuldlt emisszi6val alacsonyabb energiaszintre ugranak.

Az emisszi6 utan a kibocsatott energia a kristalyban marad, felmelegiti azt, majd el-
kezd vibralni. Ezutan az elektronok még lentebbi energiaszintre ugranak spontan emisszio
kiséretében, és ezzel sugarzast bocsatanak ki. A sugarzas hulldmhossza a lathato fény tar-
tomanyaba esik, innen ered a névben a ”Light” tag.
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Ezen kivill 1étezik MASER (Microwave Amplification by Stimulated Emission of Radia-
tion) is, amely hasonléan miikodik, mint a LASER, de a kisugarzott nyaldb a mikrohulldmi
tartoméanyba esik.

A haromszintli LASER/MASER mellett van négyszinti is, amikor a harmadik lépésben
kicsit nagyobb energiaszintre "esnek” az elektronok, mig onnan ”egytitt” spontan emisszidval
ugranak tovabb egy - mar ismét - savszerli energiapalyara.
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