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3.9.2. A mérés várható értéke: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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4.14.Mérnöki alkalmazások . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.14.1. A LASER és MASER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3



1. Klasszikus mechanika

1.1. SI mértékegységrendszer

A mértékegységrendszer néhány (7), nemzetközileg elfogadott mértékegységen, illetve a
10 különböző hatványain alapul.

1.1.1. Mértékegység

A 7 mértékegység a következő:

1. Hosszúság, amit méterben mérünk. Jele: l, mértékegysége: m.

2. Tömeg, amit kilogrammban mérünk. Jele: m, mértékegysége: kg.

3. Idő, amit secundumban mérünk. Jele: t, mértékegysége: s.

4. Elektromos áramerősség, amit amperben mérünk. Jele: I, mértékegysége: A.

5. Abszolút hőmérséklet, amit kelvinben mérünk. Jele: T, mértékegysége: K.

6. Anyagmennyiség, amit mólban mérünk. Jele: n, mértékegysége: mol.

7. Fényerősség, amit kandelában mérünk. Jele: Iv, mértékegysége: cd.

Egy méter annak az útnak a hosszúsága, amit a fény vákuumban 1
299792458

másodperc
alatt tesz meg.

A kilogramm az 1889. évben, a tömeg nemzetközi etalonjának Párizsban elfogadott, és
ma a Nemzetközi Súly- és Mértékügyi Hivatalban, Sèvres-ben őrzött platina-iridium henger
tömege.

A másodperc az alapállapotú cézium-133 atom két hiperfinom energiaszintje közötti
átmenetnek megfelelő sugárzás 9192631770 periódusának időtartama.

Az amper olyan állandó villamosáram erőssége, amely két egyenes, párhuzamos, végtelen
hosszúságú, elhanyagolhatóan kicsiny kör keresztmetszetű és egymástól 1 méter távolságra
lévő, vákuumban elhelyezkedő vezetőben fenntartva, e két vezető között méterenként 2·10−7

N erőt hozna létre.
A kelvin a v́ız hármaspontjának termodinamikai hőmérsékéletének 276.13-ad része.
A mól annak a rendszernek az anyagmennyisége, amely annyi elemi egységet tartalmaz,

mint ahány atom van 0.012 kilogramm szén-12-ben. A mól alkalmazásakor meg kell határozni
az elemi egység fajtáját; ez atom, molekula, ion, elektron, más részecske vagy ilyen részecskék
meghatározott csoportja lehet.

A kandela az a fényforrás erőssége adott irányban, amely 540·1012 Hz frekvenciájú mono-
kromatikus fényt bocsát ki és sugárerőssége ebben az irányban 683-ad watt per szteradian.

1.1.2. Prefixumok

Az SI mértékegységrendszer prefixumait az alábbi táblázat tartalmazza:
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1. ábra.

Az MKSA-rendszer a Méter-Kilogramm-Secundum-Amper mozaikszóból ered.

1.2. Tér, idő, test, erő. Newton-törvények

A klasszikus fizika négy alapvető alapfogalma a homogén idő, a homogén és izotrop geo-
metriai tér, a tömeggel rendelkező test és végül a testek közötti kölcsönhatást léıró erő.

Newton ezért azt hitte, hogy az összes test elemi - oszthatatlan - részeskékből áll, és
ezeket erők mozgatják. A klasszikus mechanikában az m tömegű testek mozgását F erő
hatására a Newton-törvények ı́rják le. Az első törvény szerint erőmentes térben (F=0) a
test konstans v=v0 sebességgel mozog. A második törvény szerint a test lendületének (p)
időegységenkénti megváltozása arányos az erővel, tehát

dp

dt
= F, (1)

ahol p = mv és elfogadjuk ḱısérleti tényként, hogy

m =
m0

√

1− v2

c2

,

ahol m0 a test nyugalmi (tehetetlen) tömege, c pedig a fény vákuumbeli sebessége és ≈
3·108m

s
.

Amennyiben eltekintünk a relativitáselmélettől, úgy az (1) a következőképpen módosul:

m0
dv

dt
= F.

A harmadik tétel pedig kimondja, hogy az akció és a rákövetkező reakció ellentétes irányú,
azonos nagyságú, azaz, ha két test között ható erő F12 illetve F21, akkor teljesülnie kell, hogy

F12 = −F21.
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1.3. Homogén, sztatikus erőtér

Amennyiben egy erőtér homogén és sztatikus, az azt jelenti, hogy a tér minden pontjában
az erőtér nagysága konstans és az időben ez nem változik.

A legegyszerűbb példákkal a pontszerű testek mozgásaiban találkozhatunk, például a
”haj́ıtások”. Legyen F = -mgk, ahol k a z tengely irányába mutató egységvektor, g pedig
a gravitációs gyorsulás (≈9,81m

s2
). Ekkor feĺırható a következő egyenlet (nem relativisztikus

esetben):

m
d2r(t)

dt2
= F = −mgk. (2)

Ezt koordinátánként is feĺırhatjuk:

ẍ = 0

ÿ = 0

z̈ = −g.

Ekkor, ha megoldjuk a fenti differenciálegyenleteket (kétszeres integrálással t0 és t határokkal),
a következőket kapjuk:

x = v0x(t− t0) + r0x

y = v0y(t− t0) + r0y

z = −1

2
g(t− t0)

2 + v0z(t− t0) + r0z.

Ebből pedig feĺırhatjuk (2) teljes megoldását:

r(t) = −1

2
gk(t− t0)

2 + v0(t− t0) + r0.

Általánosan megjegyezhető, hogy amennyiben ismerünk egy homogén, sztatikus erőteret,
akkor a mozgás pályájának x,y,z koordinátáját meghatározhatjuk 3 darab másodrendű,
(in)homogén, állandóegyütthatós differenciálegyenlet megoldásaiként, és ebből alkotott vek-
tor lesz a mozgás pályája.

1.4. Lorentz-erőtörvény

Mindig és mindenütt az a tapasztalat, hogy elektromos töltés körül elektomos erőtér van,
melynek jele: E ([E ] = V

m
). Két töltés egymásra a Coulomb-erővel hat, amely a következő:

Fc =
1

4πε0

q1q2

r2
r

r
,

ahol q1,q2 (mindkettő As-ban) a két töltés nagysága, r pedig az ellentétes töltés irányába
mutató vektor, melynek nagysága megegyezik a két töltés közötti távolsággal, ε0 pedig a
vákuum permittivitása, értéke:

ε0 = 8.85 · 10−12 As

V m
.
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Mindig és mindenütt az a tapasztalat, hogy az elektromos áram (mozgó töltés) körül
mágneses erőtér van, melynek jele: B ([B ] = V s

m2 ). A mágneses tér egy mozgó töltésre erővel
hat, melynek nagysága:

F = q(v×B),

ahol q a töltés nagysága, és v a töltés sebessége.

1.4.1. Elektromágneses erőtér

Amennyiben a töltött részecskét elektromágneses erőtérbe tesszük, a testre ható erő a
következőképpen számolható:

F = qE+ q(v×B).

Töltött részecske mozgása elektromágneses térben:

dp

dt
= qE+ q(v×B),

azonban, ha a sebesség sokkal kisebb, mint a fénysebesség, úgy az egyenlet a következőre
redukálódik:

m
dv

dt
= qE+ q(v×B).

1.5. Az elektromágneses tér munkája

Mozogjon egy m tömegű, q töltésű részecske a vizsgált t1-től t2-ig terjedő intervallumban
P1 és P2 pontok között egy pályán. Számı́tsuk ki a munkát, amit az erőtér végez:

W =

∫ P2

P1

Fdr = q

∫ P2

P1

Edr+ q

∫ P2

P1

v×Bdr =

∫ P2

P1

m
dv

dt
dr. (3)

Végezzük el a következő átalaḱıtást:

dr =
dr

dt
dt = vdt,

majd ezt helyetteśıtük a (3) egyenletbe:
∫ P2

P1

m
dv

dt
dr =

∫ P2

P1

mv
dv

dt
dt =

∫ v2

v1

mvdv =
1

2
mv22 −

1

2
mv21.

Most pedig tekintsük a (3) egyenlet másik oldalát:

q

∫ P2

P1

Edr+ q

∫ P2

P1

v×Bdr = q

∫ P2

P1

Edr, (4)

hiszen a v×B vektor merőleges dr vektorra, mert az elmozdulásvektor párhuzamos a
sebességvektorral, és v×B pedig merőleges a sebességre (és mágneses indukcióra), mint
vektorra.
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Ebből levonhatunk egy nagyon egyszerű következményt, nevezetesen azt, hogy a mágneses
erőtér munkát nem végez, a sebesség nagyságát nem tudja változtatni, csak az irányát.

Most tegyük fel, hogy E(r) sztatikus erőtér, mert akkor előálĺıtható egy skalártér negat́ıv
gradienseként:

E(r) = −gradU(r). (5)

Ezt behelyetteśıtve (4)-be, a következőt kapjuk:

q

∫ P2

P1

Edr = −q

∫ P2

P1

gradUdr = q(U1 − U2).

a (3)-ban léırt egyenlőség miatt tehát:

1

2
mv22 −

1

2
mv21 = q(U1 − U2),

amit átrendezve megkapjuk, hogy

1

2
mv21 + qU1 =

1

2
mv22 + qU2.

Tehát kimondhatjuk azt a következményt, hogy sztatikus, konzervat́ıv erőtér esetén a
test összenergiája minden pillanatban egyenlő a kinetikus és potenciális energiák összegével,
tehát az energia megmarad.

1.6. Részecske gyorśıtása

A fenti (nem relativisztikus esetben) levezetett egyenlet a következőképp módosul, ha
nem tekintünk el a relativitáselmélettől:

mc2 −m0c
2 = q(U2 − U1). (6)

1.6.1. A részecske tömegének növelése

Relativisztikus esetben, amikor tetszőleges sebességet tekinthetünk, akkor a testek tömege
a sebesség növelésével nő.

Tegyük fel, hogy egy részecskét nyugalmi helyzetből szeretnénk valamilyen U feszültséggel
gyorśıtani, hogy a részecske m0 nyugalmi tömege a k -szorosára növekedjen. Tekintsük a
következő egyenletet:

km0c
2 −m0c

2 = qU.

Rendezzük át az egyenletet, és fejezzük ki U -t:

U =
(k − 1)m0c

2

q
.
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1.6.2. A részecske sebessége tetszőlegesen nagy U gyorśıtófeszültség esetén

Tegyük fel, hogy az előbbi részecskénket valamilyen U - tetszőleges - feszültséggel gyorśıtjuk,
és szeretnénk megtudni a végsebességét. Ekkor (6)-ba behelyetteśıtve a relativisztikus tömeget,
azt kapjuk, hogy:

mc2 −m0c
2 =

m0
√

1− v2

c2

−m0c
2 = qU.

Rendezzük át v -re a kifejezést:

v = c

√

1− 1

(1 + qU

m0c2
)2
.

1.6.3. A részecskék nyugalmi energiája

Egy adott q töltésű részecske nyugalmi energiáját a következő képlettel lehet kiszámolni:

Enyugalmi = m0c
2.

Mielőtt meghatároznánk a fontosabb részecskék (elektron, proton, neutron) nyugalmi
energiáját, előbb be kell vezetnünk egy új fajta energiaegységet, az elektronvoltot (eV).

Az elektronvolt pontosan megegyezik egy elektron töltésénék és 1V potenciál szorzatának,
tehát

1eV = 1e · 1V = 1.6 · 10−19V As(Ws).

Az elektron tömege 9.1·10−31 kg, tehát a nyugalmi energiája:

Enyugalmi = 9.1 · 10−31(3 · 108)2 = 8.19 · 10−14Ws = 5.11 · 105eV.

A neutron és proton nyugalmi energiája ebből egyszerű arányként határozható meg, hiszen
a tömegarányok a következők

mn

me

=
1.67 · 10−27

9.1 · 10−31
= 1.83 · 10(3) ≈ mp

me

Ebből pedig már kiszámolható a proton és neutron nyugalmi energiája:

Ep,nyugalmi =
mp

me

0.511 · 105 = 938.2MeV.

A neutron nyugalmi energiája megközeĺıtőleg ugyanennyi, ugyanis tömegükben csak a
harmadik tizedesjegytől van különbség.

1.7. Töltött részecske pályája sztatikus elektromágneses térben

A töltött részecskére az elektromágneses erőtér erőt gyakorol, és ezáltal ”mozgatja”. A
mágneses erőtér a sebesség nagyságát ugyan megváltoztatni nem tudja, de irányát igen.
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1.7.1. Részecske mozgása homogén, sztatikus elektromos erőtérben

Az egyik legegyszerűbb elektromágneses erőtér, mikor nincs jelen mágneses térerősség,
csak elektromos.

Tegyük fel, hogy E = (Ex, Ey, Ez), ésB = 0. Továbbá tegyük fel, hogy v0 = vx0i+vy0j+vz0k,
és r0 = rx0i+ry0j+rz0k. Ekkor a mozgásegyenleteket feĺırva az m tömegű részecskére (nem
relativisztikus):

mẍ = qEx

mÿ = qEy

mz̈ = qEz.

Oldjuk meg a fenti differenciálegyenleteket kétszeres integrálással, majd a kapott eredmény:

x =
q

2m
Ex(t− t0)

2 + vx0(t− t0) + rx0

y =
q

2m
Ey(t− t0)

2 + vy0(t− t0) + ry0

z =
q

2m
Ez(t− t0)

2 + vz0(t− t0) + rz0

Ezt egzakt formában a következőképpen ı́rhatjuk:

r(t) =
qE

2m
(t− t0)

2 + v0(t− t0) + r0,

tehát a részecske az E és v0 vektorok által kifesźıtett śıkon lévő parabola pályán fog
mozogni.

1.7.2. Részecske mozgása homogén, sztatikus mágneses erőtérben

Tegyük fel, hogy az előző fejezetben szerepelt v0 és r0 vektorok adottak most is, és
tegyük fel, hogy B = (Bx, By, Bz), illetve E = 0. Ekkor a mozgásegyenleteket feĺırhatjuk
az m tömegű részecskére, de előbb nézzük, hogy mi lesz a teljes mozgásegyenlet (v ≪ c
feltételezéssel élve):

m
dv

dt
= q(v×B).

Láthatjuk, hogy az erő mindig merőleges a sebességre. Ez annyit jelent, hogy a tér a
sebességnek csak az irányát tudja befolyásolni, a nagyságát nem.

Szorozzuk meg a fenti összefüggést skalárisan v -vel, és ekkor a következő összefüggésre
jutunk:

m〈v, dv
dt

〉 = 〈v, q(v×B)〉 = 0.

A skalárszorzat képzése és az időbeli derivált sorrendjének ”felcserélése” esetünkben nem
változtat a lényegi következményeken, csupán egy kétszeres eredményt kapunk, azonban
egyenletrendezéssel ez eliminálható. Tehát:

dv2

dt
= 0,
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tehát v2 konstans, azaz |v| konstans.
Amennyiben pedig a sebesség abszolútértéke állandó és a ható erő állandóan merőleges a

sebességre úgy egy śıkmozgás alakul ki, mégpedig egyetlen ilyen śıkmozgás van, az egyenletes
körmozgás. A részecske tehát körpályán mozog.

A körpályán mozgó test gyorsulása

v2

r
,

innen pedig egyszerűen feĺırhatjuk a newtoni mozgásegyenletet:

m
v2

r
= qvB,

amit egy kicsit árendezve azt kapjuk, hogy

r =
mv

qB
.

Tehát a körpályán mozgó részecske pályájának a sugara arányos a részecske lendületével.

1.7.3. Részecske mozgása sztatikus, homogén, egymásra merőleges elektromos
és mágneses térben

Amennyiben a sebesség elhanyagolhatóan kicsi a fénysebességhez képest, úgy a Newton-
féle mozgásegyenletre egy állandó együtthatós, lineáris, másodrendű differenciálegyenletet
kapunk:

m
dv

dt
= q(E+ v×B),

ami megoldható, r(t) kiszámolható tetszőleges v0 és r0 esetén.
Tegyük fel, hogy az elektromos és mágneses terek egymásra merőlegesek. Ekkor a mozgás

E irányú egyenletesen gyorsuló, és a B -re merőleges śıkban elhelyezkedő ciklois mozgás
szuperpoźıciója lesz. Ennek igazolására tegyük fel, hogy a test az origóban áll, tehát v0 és
r0 is zérus.

Bontsuk fel a sebességet és az elektromos erőt B -vel párhuzamos és B -re merőleges össze-
tevőkre:

v = v‖ + v⊥

E = E‖ + E⊥

Ez esetben a mozgásegyenlet két független egyenletre ”esik szét”:

dv‖
dt

=
q

m
E‖

dv⊥
dt

=
q

m
(v⊥ ×B) +

q

m
E⊥.
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Az első egyenlet egy E irányú egyenletesen gyorsuló mozgást ı́r le, még pedig:

r‖ =
q

m
E‖

(t− t0)
2

2
.

A második esetben a részecskére ható qE⊥ erő merőleges B -re. Vegyünk fel most egy
másik koordinátarendszert, amelynek tengelyei a t = t0 időpillanatban az előző koordináta-
tengelyekkel egybeesnek, de amely a régi rendszerünkhöz képest állandó u sebességgel mozog.

Tetszőleges időpillanatban a részecske sebessége az eredeti (nyugvó) koordinátarendszerben
mérve:

v⊥ = u+ vr,

ahol u a mozgó koordinátarendszer sebessége, vr pedig a mozgó rendszerhez viszonýıtott
(tehát relat́ıv) sebesség. Majd, ha ezt behelyetteśıtjük a mozgásegyenletbe, a következőt
kapjuk:

m
d(u+ vr)

dt
= q(E‖ + u×B+ vr ×B). (7)

Most pedig az eddig határozatlan u sebességet úgy válasszuk meg, hogy a mozgás a mozgó
koordinátarendszerben a lehető legegyszerűbb legyen. Határozzuk meg úgy, hogy (7) jobb
oldalán a zárójel első két tagja nullát adjon, vagyis:

E‖ + u×B = 0.

Tehát u nagysága:

|u| = |E‖|
|B| =

E

B
,

azaz

u =
E‖ ×B

B2
.

A mozgásegyenlet a mozgó koordinátarendszerben tehát:

m
dvr

dt
= q(vr ×B),

hisz u differenciálhányadosa állandó lévén zérus.
A részecske a mozgó koordináta-rendszerben tehát úgy mozog, mintha csak mágneses

tér volna jelen. Az elektromos tér ezen koordinátarendszer transzlációs sebességén keresztül
érvényesül. A mozgó rendszerből az elektromos tér mintegy kitranszformálódott. A részecske
a mozgó koordináta-rendszerben körpályát ı́r le, ha v0r merőleges B -re, de ez a koordináta-
rendszer egyenletes transzlációs mozgást végez. A részecske pályája eredeti koordináta-
rendszerünkben tehát ciklois lesz.

1.8. Mérnöki alkalmazások

A fentebb tárgyalt mozgásokat több területen is alkalmazzák, ı́gy a katódsugárcsöves
tévénél vagy monitornál (bár ez ma már kevésbé népszerű), tömegspektográfoknál, illetve
részecskegyorśıtóknál is, csak hogy egy pár példát emĺıtsünk.
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1.8.1. Az elektrosztatikus eltéŕıtésű katódsugárcső

A katódsugárcsővel könnyen találkozhattunk egyszerűbb (és jó nagy méretű) monitorok,
illetve tévékészülékek esetén. A működését léırni egyszerű (elektronok csapódnak a fluoresz-
cens ernyőre, és ı́gy fel-felvillanó képpontokként áll össze a kép), azonban megérteni már
kicsit nehezebb.

A 2. ábrán látható, hogy egy katódról elektronok lépnek ki, amiket egy szabályozó rács és
lencse fókuszál, majd két v́ızszintesen párhuzamos, és függőlegesen párhuzamos kondenzátor
téŕıt el, mégpedig úgy, hogy a köztük lévő sztatikus elektromos tér kimozd́ıtja az eredeti
pályájáról az elektront, és ı́gy a fluoreszcens ernyő tetszőleges pontjára juttatja azt.

2. ábra.

1.8.2. A mágneses eltéŕıtésű tömegspektrográf

Az atomok szétválaszthatóak a töltésük seǵıtségével, ugyanis, ha egy részecskét belövünk
mágneses térbe, akkor az körpályára fog állni. A körpálya sugara pedig a következőképpen
számolható:

r =
mv

qB
.

Ebből láthatjuk, hogy állandó v sebesség esetén (amit gyorśıtóval tudunk biztośıtani) a
tömeg és töltés arányában a 3. ábrán látható eszköz szétválasztja a részecskéket.
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3. ábra.

1.8.3. A ciklotron

Ernest Lawrence 1930-ban alkotta meg a ciklotront. A ciklotron két darab D alakú
fémdobozból áll, amit homogén mágneses térbe helyezünk, és váltakozó feszültséget kapcso-
lunk közéjük(4. ábra). Ezzel tudunk gyorśıtani ”tetszőlegesen” egy részecskét, amelyet akár
ütköztethetünk is később.

Egy részecske körülfutási ideje nem függ a részecske energiájától vagy sebességétől:

T =
2πm

qB
,

a részecske legnagyobb (vég)sebessége:

vmax =
qBrmax

m
,

a részecske végenergiája pedig:

W =
1

2
mv2max =

1

2

r2maxq
2B2

m
.

14



4. ábra.

1.9. Anaĺıtikus mechanika

Az eddig tárgyalt vektormechanikának a hátránya, hogy minden egyes tömegpontra meg
kell határoznunk az összes rá ható erőt, hogy megoldhassuk a Newton mozgásegyenletet.

Az anaĺıtikus mechanika ezzel szemben jóval ”erősebb” léırása a klasszikus fizikának.
Először is induljunk ki a vektor mechanikából (nem relativisztikus eset):

m
dv

dt
= mr̈(t) = F.

Tegyük fel, hogy a mozgások konzervat́ıvak, tehát F -hez tartozik egy potenciál, illetve

Eössz =
1

2
mṙ(t) + Upot(r) = állandó.

Vezessük be a konfigurációs tér fogalmát. A konfigurációs tér mindig a rendszer sza-
badsági fokával megegyező számú általános koordinátákkal jellemzett absztrakt tér. Ezeket
(q1,q2,...,qf )-fel jelöljük, ahol f a rendszer szabadsági foka. Ezek időbeli deriváltja az általános
sebességkoordináták.

Az anaĺıtikus mechanikához vezessünk be további két új fogalmat:

– Lagrange-függvény

– Hatás

A Lagrange-függvény nem más, mint a kinetikus és potenciális energiák különbsége, tehát

L = Ekin − Epot.

A kinetikus energia függhet az általános hely- és sebességkoordinátáktól, a potenciális
energia azonban csak a helykoordinátáktól függ.
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A hatás a Lagrange-függvény idő szerinti integrálja:

S[r(t)] =

∫ t2

t1

Ldt.

A test tényleges pályáján a hatás minimális, esetleg maximális, de mindenképpen szélsőér-
ték, tehát

δS[r(t)] = 0.

Ezt nevezik Hamilton-elvnek, vagy másnéven a legkisebb hatás elvének.
Ennek a problémának a megoldása az Euler-Lagrange egyenletek, amelyek a következők:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0.

Ezeket h́ıvjuk Lagrange-mozgásegyenleteknek.

1.9.1. Hamilton variációs elv és Newton mozgástörvény kapcsolata

A fentiekben bemutatott módszerek is ugyanarra a mozgásegyenlet(ek)re vezet(nek) vissza,
még pedig a Newton-egyenlet(ek)re.

Tegyük fel, hogy az erőtér egy U (r(t)) potenciállal léırható, és tegyük fel, hogy a kinetikus
energia csak az általános sebességkoordinátáktól függ. Ekkor a Newton mozgásegyenlet a
következő:

mr̈ = −gradU.

Az r(t) vektort jellemezzük (q1,q2,...,qf ) általános koordinátákkal. Nézzük az alábbi kife-
jezést:

d

dt
mṙ =

d

dt

1

2
m
∂ṙ2

∂ṙ
.

Ebből pedig láthatjuk, hogy ez a Lagrange-függvény idő és általános sebességvektor sze-
rinti deriváltja. A gradU pedig a Lagrange-függvény általános helyvektor szerinti deriváltja
(azaz a potenciális energia), hiszen a kinetikus energia a feltételezésünk miatt nem függ a
helykoordinátáktól. Ezzel pedig, ha rendezzük az egyenletet a következőt kapjuk:

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0,

amiből pedig L a következő:

L = mr̈− gradU =
d

dt

1

2
m
∂ṙ2

∂ṙ
− gradU.

Ezzel pedig beláttuk, hogy a Newton egyenletek megegyeznek az Euler-Lagrange mozgáse-
gyenletekkel.
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1.9.2. Általánośıtott lendület és a Hamilton-féle kanonikus mozgásegyenletek

Az általánośıtott hely- és sebességkoordináták mellett feĺırhatjuk az általános lendületko-
ordinátákat is, a következőképpen:

pi =
∂L

∂q̇i
.

A Hamilton-féle kanonikus mozgásegyenletekhez előbb definiáljuk a Hamilton-függvényt:

H(qi, pi) =
∑

q̇ipi − L,

ahol L a Lagrange-függvény.
Ebből feĺırhatjuk a Hamilton-féle kanonikus mozgásegyenleteket, amelyek a következők:

ṗi = −∂H(qi, pi)

∂qi

q̇i =
∂H(qi, pi)

∂pi
.

Ezek alapján elmondhatjuk, hogy a rendszerhez feĺırhatunk 2f darab, elsőrendű közönséges
differenciálegyenletet is, amelyeket, ha megoldunk, már ”mindent” tudunk a rendszerről.

Fontos megjegyezni, hogy az anaĺıtikus mechanika kétféle mozgásegyenletei(Hamilton-féle
kanonikus egyenletek, Lagrange-egyenletek) és a vektormechanika Newton mozgásegyenlete(i)
teljes mértékben ekvivalensek, és egymásba átalaḱıthatóak azonos átalaḱıtásokkal.

1.9.3. Anaĺıtikus mechanika példák

Tegyük fel, hogy van egy l hosszúságú nyújthatatlan fonalunk, amelynek végén egy m
tömeg lóg. Ekkor az általános koordináta legyen az inga és a v́ızszintes tengely által bezárt
szög (ϕ). Ehhez ı́rjuk fel a kinetikus energiát

Ekin =
1

2
mv2 =

1

2
ml2ϕ̇2,

és a potenciális energiát

Epot = mgl(1− cosϕ).

Ebből feĺırható a Lagrange-függvény is:

L =
1

2
ml2ϕ̇2 −mgl(1− cosϕ).

Határozzuk meg az általános lendületkoordinátát:

p =
∂L

∂ϕ̇
= ml2ϕ̇.
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Innentől pedig feĺırhatjuk a Hamilton-függvényt:

H(qi, pi) = ml2ϕ̇2 − 1

2
ml2ϕ̇2 +mgl(1− cosϕ) =

1

2
ml2ϕ̇2 +mgl(1− cosϕ) =

ϕ̇p

2
+mgl(1− cosϕ).

Ebből pedig a Hamilton-féle kanonikus mozgásegyenletek:

ṗ = −∂H

∂ϕ
= mgl(−sinϕ)

ϕ̇ =
∂H

∂p
=

ϕ̇

2
.

Ezzel levezettük a śıkinga Hamilton-féle kanonikus mozgásegyenleteit.
Vegyünk egy, az előzőhöz hasonló śıkingát, de most egy l0 kezdeti nyújtottságú gumiszálon

lógjon az m tömeg. Ekkor a rendszer szabadsági foka kettő, szögelfordulás (ϕ), és az inga
megnyúlása (l). Ekkor feĺırhatjuk a potenciális energiát, ami a fonálban, mint ”rugóban”
tárolt potenciális energia

Epot,r =
1

2
k(l − l0)

2,

és a nehézségi erőből származó

Epot,n = mg(h+ l0 − lcosϕ)

potenciális energiák összege, és h az ingára lógatott test nyugalmi állapotban mért távolsága
a földtől.

A kinetikus energiák pedig a következőképpen alakulnak:

Ekin,r =
1

2
ml̇2,

illetve

Ekin,n =
1

2
ml2ϕ̇2.

Ebből feĺırhatjuk a Lagrange-függvényt:

L =
m

2
(l̇2 + l2ϕ̇2) +mg(lcosϕ− l0 − h)− 1

2
k(l − l0)

2 =
m

2
(l̇2 + l2ϕ̇2) +mglcosϕ− 1

2
kl2 + kll0.

A fenti egyenlet jobb oldalán a konstans tagokat elhanyagoltuk, hiszen az Euler-Lagrange
egyenletek feĺırásakor a deriválás miatt amúgy is eltűnnek.

Írjuk fel az Euler-Lagrange egyenleteket:

l̈ +
( k

m
− ϕ̇2

)

l −
(

gcosϕ+
kl0

m

)

= 0

ϕ̈+
g

l
sinϕ = 0.

Ezzel megkaptuk az inga mozgásegyenleteit.
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2. Klasszikus elektrodinamika

A klasszikus elektrodinamika kiterjeszti a klasszikus fizika alapjait, de ehhez előbb néhány
matematikai alapfogalommal kell tisztában lennünk.

2.1. Matematikai bevezető

Mindenek előtt a fejezet egyik legfontosabb operátorát definiáljuk, a nablát (∇):

∇ =
( ∂

∂x
,
∂

∂y
,
∂

∂z

)

.

2.1.1. Skalár-vektor függvény, gradiens, rotáció

A skalár-vektor függvény, más néven skalár tér a geometriai tér (és idő) minden pontjához
egy skalárt (számot) rendel. Példaként képzeljük el egy szoba hőmérsékletét vagy egy test
sűrűségét. Az azonos skalárszámú felületeket ekvipotenciálisnak nevezzük.

Skalár tér gradiensét úgy képezzük, hogy vesszük a tér minden koordináta szerinti parciális
deriváltját, és ezeket elhelyezzük egy vektorba. Fontos megjegyezni, hogy a skalár tér gradi-
ense mindig egy vektor-vektor függvény lesz.

A skalár tér gradiensének egy fontos tulajdonsága, hogy rotáció-, azaz örvénymentes, ami
annyit jelent, hogy a térben bármely zárt görbére vett vonalintegrál értéke zérus.

A rotációt egy F erőtérre rotF -fel jelöljük, és amennyiben F előáll egy f függvény gra-
dienseként, úgy F biztos, hogy rotációmentes a fentiek értelmében, és f -et potenciálnak,
pontosabban skalárpotenciálnak nevezzük.

A fentiekből tehát általánosan feĺırható, hogy

rot(gradF) = 0.

Az utolsó összefüggés általánośıtása a Poincarré-lemma.

2.1.2. Vektor-vektor függvény, divergencia, rotáció

Az előző fejezetben bemutatott vektor-vektor függvényt úgy jellemezhetjük, hogy a kon-
figurációs tér egy-egy pontjához (vektorához) egy-egy vektor tartozik, tehát egy vektorhoz
vektort rendel. Példaként elképzelhetünk elektromos vagy épp mágneses (esetleg mindkettő)
teret, ahol az erőteret minden pontban egy vektorral jellemezhetjük.

Az előbbiekben emĺıtett rotációképzés nem más, mint a vektor-vektor függvény és a ∇
operátor külső (kereszt), vagy más néven vektoriális szorzata:

rotF = ∇× F.

Az előzőhöz ”hasonló”, vektoranaĺıtikai ”eszköz” a divergenciaképzés. A divergencia meg-
adja egy vektor tér forrásosságát, tehát azt, hogy vannak-e a térnek olyan pontjai, amelyekből
az erővonalak kiindulnak (source) vagy elnyelődnek (sink).
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Amennyiben egy vektor tér előálĺıtható egy vektor-vektor függvény rotációjaként, úgy az
utóbbi függvényt vektorpotenciálnak nevezzük, az előálĺıtott vektor térre pedig mindig igaz,
hogy ennek divergenciája zérus, azaz

div(rotF) = 〈∇,∇× F〉 = 0.

Ez is a Poincarré-lemma egy speciális esete.

2.1.3. Gauss-Osztrogdradszkij és Stokes-tétel

Általánosan elmondható, hogy mind a Gauss-Osztrogradszkij, mind a Stokes-tétel az
általános Stokes-tétel következménye, de nekünk itt elég ezt a két speciális esetet vizsgálni.

A Gauss-Osztogradszkij-tétel kimondja, hogy egy vektor-vektor függvény zárt felületre
vett integrálja megegyezik a vektor tér divergenciájának zárt felület által közrezárt térfogatra
vett integráljával. Ezt szokás fluxusnak is nevezni.

Φ =

∮

A

FdA =

∫

V

divFdV.

Amennyiben a fluxus pozit́ıv, úgy a zárt térrészben forrás van, amennyiben negat́ıv, úgy
a zárt térrészben nyelő van, amennyiben pedig zérus, úgy nincs se forrás, se nyelő a zárt
térrészben.

A Stokes-tétel pedig kimondja, hogy egy vektor-vektor függvény zárt görbe mentén vett
integrálja megegyezik a vektor tér rotációjának zárt görbére kifesźıtett felületen vett in-
tegráljával.

∮

L

FdL =

∫

A

rotFdA.

Ezen két tétel jelentősége a Maxwell-egyenletek bevezetése után lesz látható.

2.1.4. Koordináta-transzformáció

A fizikai problémák esetében előfordulhat, hogy a probléma megoldását jelentősen könnýıti,
ha a ”megszokott” Descartes-koordinátákról áttérünk más koordinátákra.

Ezesetben azonban figyelnünk kell, hogy hogy térünk át, ugyanis a külső- és belsőszorzat,
rotáció, divergencia, illetve gradiens képzése jelentősen eltér a különböző koordinátarendszerekben,
és az integrálásnál is figyelni kell a transzformáció Jacobi-determinánsával való beszorzásra.

Vegyük a ”szokásos” háromdimenziós teret. Ekkor egy helyvektort az általános koor-
dinátarendszerben feĺırhatjuk a következőképpen:

r = x1e1 + x2e2 + x3e3.
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Ebből e1, e2 és e3 egységvektorok feĺırhatók:

e1 =
∂r
∂x1
∣

∣

∣

∂r
∂x1

∣

∣

∣

e2 =
∂r
∂x2
∣

∣

∣

∂r
∂x2

∣

∣

∣

e3 =
∂r
∂x3
∣

∣

∣

∂r
∂x3

∣

∣

∣

alakban.
Ekkor a dr vektort a következőképpen definiáljuk

dr = g1dx1e1 + g2dx2e2 + g3dx3e3,

ennek hossza pedig:

|dr| =
√

g21dx
2
1 + g22dx

2
2 + g23dx

2
3,

ahol g1,g2 és g3 az adott koordinátarendszerre jellemző metrika.
Adottak a következő függvények: Ψ(r) = Ψ(x1, x2, x3) és A(r) = A(a1, a2, a3), ahol

ai(r) = (x1,x2,x3), i = 1,2,3. A gradiens, divergencia, rotáció képzése a következőképpen
néz ki általános koordinátákkal:

gradΨ(r) = ∇Ψ =
1

g1

∂Ψ

∂x1

e1 +
1

g2

∂Ψ

∂x2

e2 +
1

g3

∂Ψ

∂x3

e3

divA(r) = 〈∇,A(r)〉 = 1

g1g2g3

(∂g2g3

∂x1

a1 +
∂g1g3

∂x2

a2 +
∂g1g2

∂x3

a3

)

rotA(r) = ∇×A(r) =

∣

∣

∣

∣

∣

∣

∣

∣

e1

g2g3

e2

g1g3

e3

g1g2
∂

∂x1

∂
∂x2

∂
∂x3

g1a1 g2a2 g3a3

∣

∣

∣

∣

∣

∣

∣

∣

Az alábbiakban a két fő koordinátarendszer közötti áttéréseket, illetve számolásokat
vizsgáljuk (Descartes ⇔ Gömbi).

Először is nézzük a koordinátatranszformációkat

x = rsinϑcosϕ

y = rsinϑsinϕ

z = rcosϑ,

ahol r a helyvektor nagysága, ϑ a vektor z tengellyel bezárt szöge, mı́g ϕ a helyvektor xy
śıkra vett vetületének x tengellyel bezárt szöge.
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Az inverz transzformáció pedig:

r =
√

x2 + y2 + z2

ϕ = arctan
y

x

ϑ = arctan

√

x2 + y2

z
.

Gömbi koordinátákban az egységvektorok: er, eϕ és eϑ.
Tegyük fel, hogy adottak a fent definiáltA és Ψ függvények. Descartes-koordinátarendszerben

a következőképpen definiáljuk a divergencia-, rotáció- és gradiensképzést:

gradΨ(r) =
∂Ψ

x1

i+
∂Ψ

x2

j+
∂Ψ

x3

k

divA(r) =
∂a1

∂x1

+
∂a2

∂x2

+
∂a3

∂x3

rotA(r) =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x1

∂
∂x2

∂
∂x3

a1 a2 a3

∣

∣

∣

∣

∣

∣

∣

Most pedig tekintsük ugyanezeket a függvényeket, csak most gömbi koordinátarendszerben:

gradΨ =
∂Ψ

∂r
er +

1

r

∂Ψ

∂ϑ
eϑ +

1

rsinϑ

∂Ψ

∂ϕ
eϕ

divA =
1

r2
∂r2ar

∂r
+

1

rsinϑ

∂sinϑaϑ

∂ϑ
+

1

rsinϑ

∂aϕ

∂ϕ
.

rotA(r) =

∣

∣

∣

∣

∣

∣

∣

er
r2sinϑ

eϑ
rsinϑ

eϕ
r

∂
∂x1

∂
∂x2

∂
∂x3

a1 ra2 rsinϑa3

∣

∣

∣

∣

∣

∣

∣

Ebből tehát megállaṕıthatjuk, hogy Descartes-koordináták esetén a metrika

g1 = g2 = g3 = 1,

mı́g gömbi koordináták esetén

g1 = 1

g2 = r

g3 = rsinϑ.

2.2. Maxwell-egyenletek

A klasszikus elektrodinamika legfontosabb egyenleteit James Clerk Maxwell publikálta
1865-ben. Einstein szerint Newton óta a legtermékenyebb fizikus volt Maxwell, aki az elek-
trodinamika mellett a statisztikus fizika területén is kiemelkedőt alkotott.
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2.2.1. I. Maxwell-egyenlet

Mindig és mindenütt azt tapasztaljuk, hogy az áramsűrűség és az eltolási áram maga
körül mágneses örvényeket gerjeszt. Ennek integrális alakja a következő:

∮

L

Hdl =

∫

A

(

J+
∂D

∂t

)

dA.

Tehát egy adott zárt görbe mentén a mágneses térerősség megegyezik az efölé a görbe fölé
kifesźıtett, tetszőleges felületen áthaladó áramsűrűség vektorok és eltolási áram vektorok
időegységenkénti megváltozásának összegével. Az eltolási áram vektor a nýılt (például a
kondenzátort tartalmazó) áramkörök esetében jelentős, hiszen itt az egyszerű áramsűrűség
vektor nem magyarázza az áramkör ”tökéletes” működését.

Ennek feĺırható lokális, azaz differenciális alakja is. Felhasználva az előbbiekben ismerte-
tett Stokes-tételt a törvény a következő alakot ölti:

rotH = J+
∂D

∂t
= ∇×H.

A törvényt szokás Ampere-törvénynek is nevezni.

2.2.2. II. Maxwell-egyenlet

Mindig és mindenütt azt tapasztaljuk, hogy az időben változó mágneses tér (mágneses
indukció) maga körül az elektromos térerősség örvényeit generálja. Integrális alakban:

∮

L

Edl = − ∂

∂t

∫

A

BdA.

Azaz elmondható, hogy egy adott zárt görbe mentén az elektromos térerősség megegyezik
az efölé a görbe fölé kifesźıtett, tetszőleges felületen áthaladó mágneses indukcióvektorok
időbeli deriváltjának (-1)-szeresével. Ez csupán a Faraday-féle indukciótörvény át́ırt alakja,
mely kimondja, hogy ha bármely vezető által körülfogott fluxus az időben változik, akkor
ebben a vezetékben a fluxusváltozással arányos feszültség keletkezik. Ezért szokás Faraday-
törvénynek is nevezni.

Az előző törvényhez hasonlóan ez is feĺırható differencális alakban a Stokes-féle integrál-
transzformáció felhasználásával:

rotE = −∂B

∂t
= ∇× E.

A előző törvénytől való eltérés az, hogy az elektromos térerősség örvényei a mágneses
indukcióvektorokkal balsodrású rendszert, mı́g az áramsűrűség, az eltolási áramvektor idő
szerinti deriváltja és az ezek körüli mágneses térerősség örvényei jobbsodrású rendszert al-
kotnak.
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2.2.3. III. Maxwell-egyenlet

Mindig és mindenütt azt tapasztaljuk, hogy a mágneses indukcióvektoroknak nincsenek
forrásaik, azaz

∮

A

BdA = 0.

Az eddigiekhez hasonlóan a törvény most is feĺırható differenciális alakban, ha felhasználjuk
a korábban ismertetett Gauss-Osztrogradszkij-féle integráltranszformációs tételt:

divB = 0 = 〈∇,B〉.

2.2.4. IV. Maxwell egyenlet

Mindig és mindenütt azt tapasztaljuk, hogy az elektromos eltolási vektor ”forrásai” az
elektromos töltések.

∮

A

DdA =
∑

i

Qi =

∫

V

ρdV.

Tehát egy adott zárt felületen áthaladó elektromos eltolási vektorok összessége megegyezik
a zárt felület által közrezárt térrészben lévő töltés összességével. Másképpen ezt fluxusnak
is nevezhetjük.

A törvény lokális alakja a Gauss-tétel felhasználásával:

divD = ρ = 〈∇,D〉.

A III. és IV. törvényt ”kiegésźıtő” törvényeknek is szokás h́ıvni, bár ezek is a Maxwell-
egyenletekhez tartoznak. Azért kiegésźıtő törvények, mert a II. törvénynek, ha képezzük a
divergenciáját, akkor a Poincaré-lemma szerint a divergenciája a rotációnak azonosan zérus,
ı́gy megkapjuk a divB = 0 egyenletet. Az I. törvénynek pedig szintén a divergenciaképzésvel
kapjuk egy folytonossági egyenletből a divD = ρ összefüggést.

2.2.5. Eltolási áram és az elektromos térerősség kapcsolata

AMaxwell-egyenletekben észrevehetjük, hogy az elektromágneses tér egyik ”összetevőjét”,
az elektromos teret két vektorral tudjuk léırni. Az elektromos térerősség (E ) és eltolási áram
(D) vektorokkal.

Az elsőre talán távol álló léırási módokon azonban jelentősen egyszerűśıt az alábbi egyen-
let, amely megmutatja a két jellemző közötti összefüggést:

D = εE+P. (8)

A kifejezés ebben a formájában a legáltalánosabb, de mielőtt ezt tárgyalnánk, tekintsük
a lehető legegyszerűbb esetet, amikoris az elektromos teret vákuumban tekintjük.

Ekkor a kifejezés a következőre egyszerűsödik:

D = ε0E,
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ahol ε0 a vákuum permittivitása, és

ε0 ≈ 8.854 · 10−12 As

V m
.

Amennyiben kicsit ”bonyolultabb” közeget veszünk, de még mindig egyszerű közegről
beszélünk (ezt egyszerű közegnek is h́ıvják), úgy a vákuumra értendő kifejezésben szereplő
ε0-t meg kell szoroznunk még a közegre jellemző, vákuumhoz viszonýıtott relat́ıv permitti-
vitással, tehát

D = εE,

ahol

ε = ε0εrel.

Most tegyük fel, hogy egy teljesen általános esetben vagyunk, ekkor a (8) egyenlet ı́rja le
egzaktul az eltolási áram és az elektromos térerősség kapcsolatát. Az egyenletben szereplő
P vektor az adott anyag polarizációs vektora. Vegyünk egy általános közeget V térfogattal.
Legyen A a közeg egy pontja, és legyen ∆V az ekörüli elemi térfogat. Továbbá legyen p, az
ezen a ∆V térfogatban foglalt molekulák dipólus nyomatékának eredője, akkor az A pontban
a polarizációvektor defińıció szerint

P(A) = lim
∆V→0

∆p

∆V
.

A polarizációvektor mértékegysége: [P] = As
m2 .

Első megközeĺıtésben a lineáris anyagegyenlet igaz, vagyis P = χε0E, ahol χ egy dimenzió
nélküli szám, neve dielektromos szuszceptibilitás. Vákuumban, illetve vezetőben χ = 0,
szigetelőanyagban χ > 0.

2.2.6. A mágneses térerősség és indukcióvektor kapcsolata

Az elektromos térhez hasonlóan a mágneses teret is két vektorral ı́rhatjuk le, a mágneses
térerősség (H ) és indukció (B) vektorokkal.

A közegekre vonatkozó összefüggés e két léırási mód között hasonĺıt az elektromos teréhez,
ı́gy általános esetben a következőképpen néz ki:

B = µH+M. (9)

Hasonlóan az előző fejezetben tárgyalt módhoz, most is a legegyszerűbbtől fogjuk ”feléṕıteni”
az általánosig az összefüggést.

Vákuumban a kifejezés - hasonlóan az elektromos tér esetéhez - csupán egy konstanssal
való szorzásra redukálódik a jobb oldalon

B = µ0H,

ahol µ0 a vákuum permeabilitása, és

µ0 = 1.256 · 10−6 V s

Am
.
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Amennyiben egyszerű közegeket tekintünk, úgy a kifejezésben a vákuum permeabilitását
meg kell szoroznunk - ugyancsak hasonló módon az elektromos térhez - egy relat́ıv permea-
bilitással, ami az adott közegre jellemező, tehát

B = µH,

ahol

µ = µ0µrel.

Most tekintsük a legáltalánosabb esetet, amikor a (9) összefüggés lesz igaz a mágneses
indukcióvektor és az elektromos térerősség közötti kapcsolatra. Az egyenlet M vektora az
anyagra jellemző mágnesezettség vektor. A polarizációs vektornál megismeretett körülményeket
feltételezve a mágnesezettség vektorának értéke egy A pontban defińıció szerint

M(A) = lim
∆V→0

∆m

∆V
,

ahol m az adott ∆V térfogatban a mágneses dipólnyomatékok vektori összege (másnéven
eredője). Tehát mérőszámként ez megadja az egységnyi térfogatra jutó mágneses dipólnyomatékot.
Mértékegysége: [M] = A

m
.

A mértékegység talán egy kicsit zavaró lehet, de az ellentmondás feloldása az, hogy a
mágneses térerősséget a következőképpen definiáljuk:

H =
B

µ0

−M,

amiből egyenletrendezéssel megkapjuk ugyan (9) egyenletet, de amit mi ottM -nek h́ıvunk,
az egy konstansszorosa annak, amit mi az előbbiekben levezettünk, még pedig µ0-szorosa.

2.2.7. Elektro- illetve magnetosztatika

Sztatikus esetről beszélünk, ha sem a mágneses, sem az elektromos tér nem változik az
időben, tehát ∂

∂t
→ 0, illetve, ha nem folyik áram, tehát J = 0. Ebben az esetben a négy

Maxwell-egyenlet a következőképpen módosul:

∇×H = 0

〈∇,B〉 = 0

∇× E = 0

〈∇,D〉 = ρ.

Az első két egyenlet a magnetosztatikára, mı́g a második kettő az elektrosztatikára vo-
natkozik. Az elektromos térerősség és eltolási áram vektor, illetve mágneses térerősség és
indukció vektorok közötti összefüggések változatlanok.

A fenti négy egyenletből megállaṕıthatjuk, hogy sztatikus esetben semmilyen kapcsolat
nincs a mágneses és elektromos terek között.
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2.2.8. Stacionárius terek

A stacionárius terek már egy fokkal ”komplikáltabbak”, mint a sztatikusak. Időbeni
változás még itt sincs, azonban van töltésmozgás, tehát folyik az áram, vagyis J 6= 0.

Ebben az esetben a Maxwell-egyenletek alakjai

∇×H = J

〈∇,B〉 = 0

∇×H = 0

〈∇,D〉 = ρ.

A térerősségek és eltolási áram, illetve indukció vektor közötti összefüggések továbbra is
változatlanok. Azonban ebben az esetben már be kell vezetnünk egy újabb összefüggést,
mégpedig az áramsűrűség vektorra:

J = σ(E+ Egen),

ahol Egen a generátokban tárolt elektromos térerősség, mı́g σ a fajlagos vezetőképesség,
másnéven konduktivitás. Mértékegysége: [σ] = A

Vm
. Ezt nevezik differenciális Ohm-törvénynek.

Az Ohm-törvény arról szól, hogy egy vezetőben az áramsűrűség és az elektromos térerősség
egyenesen arányos egymással. Érvényességéről fontos megjegyezni, hogy korlátozott, ugyanis
ha nő az áramsűrűség, akkor a hőmérséklet is, és lecsökken a fajlagos vezetőképesség, tehát
σ csak akkor lesz független J -től, ha a hőmérséklet állandó. Néhány anyagra (pl. félvezető
diódák) azonban még állandó hőmérsékleten sem igaz, sőt néhány anyag vezetőképessége
hűtéskor egy meghatározott hőmérséklet alatt végtelenné válik, ekkor nem szükséges térerősség
sem ahhoz, hogy áram folyjon. Ezt szupravezetésnek h́ıvjuk.

Az Ohm-törvényben szerepel továbbá a generátorok által keltett ”ideigen” tér is, ez az
Egen.

2.3. Inverz-problémák

Adott töltéselrendezésből skalárpotenciál bevezetésével határozható meg az elektrosztati-
kus erőtér. Ezt a 2.1.1 fejezetben megismertett skalárpotenciál seǵıtségével tehetjük meg.

Tegyük fel, hogy a közegünk ”egyszerű”, vagyis

D = (ε0 + κ)E = ε0εrelE = εE.

Induljunk ki a IV. Maxwell-egyenletből, vagyis

〈∇,D〉 = ρ.

Használjuk fel a 2.1.1 fejezetben ismertetett Poincaré-lemmát (hiszen az egyszerű köze-
gekre vonatkozó II. Maxwell egyenlet következménye, hogy az elektromos tér rotációmentes),
továbbá ı́rjuk át az előző egyenletet úgy, hogy E szerepeljen benne és ne D. Ezután pedig
helyetteśıtünk be a skalárpotenciál negat́ıv gradiensét ide:

−〈∇,∇U〉 = ρ

ε
,
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ahol U a skalárpotenciál.
Ekkor tudjuk, hogy ∇2 = △, tehát kapunk egy Poisson-egyenletet:

△U(r) = −ρ(r)

ε
.

Ennek az egyenletnek a megoldása

U(r) =
1

4πε

∫

V

ρ(r′)

|r− r′|dV
′.

Ezzel megadtuk a töltésekből a skalár potenciált. A térerősséget a következőképpen lehet
meghatározni a potenciálból:

E(r) = −gradU(r) =
1

4πε

∫

V

ρ(r′)r0

r2
dV ′,

ahol az r0 vektor az adott r helyvektorú pontból az r’ helyvektorú pont felé mutató
egységnyi hosszúságú vektor, r2 pedig a két pont távolságának négyzete.

Az előbbiekben megismertük a sztatikus elektromos térerőre vonatkozó inverz-problémát,
azonban a stacionárius mágneses térnek is van inverz-problémája. Mágneses térre vonatkozó
inverz probléma esetén egy adott J(r) vektorból szeretnénk meghatározni B(r)-t, tehát
stacionárius térben az áramok adottak, és a mágneses teret (pontosabban ezek örvényeit)
határozzuk meg.

Továbbra is ”egyszerű” közegeket tekintsünk, vagyis

D = εE,

illetve

B = µH,

ahol µ = µ0µrel.
Induljunk ki a I. Maxwell-egyenletből

∇×H = J.

Használjuk fel a 2.1.2-ben ismertetett Poincaré-lemmát, miszerint tudjuk, hogy B(r)
előáll egy A(r) vektorpotenciál rotációjaként (a mágneses tér forrásmentességének követ-
kezmény). Majd az előbbi Maxwell-egyenletet ı́rjuk át, hogy B szerepeljen benne H helyett,
ezután pedig - az át́ırt - egyenletbe helyetteśıtük be a vektorpotenciál rotációját, azaz azt
kaptuk, hogy

∇×∇×A = −△A = µJ,

ahol felhasználtuk, hogy

∇×∇×A = ∇〈∇,A〉 − △A,
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és ∇〈∇,A〉 = 0 választással éltünk, amely az általánosságot nem szoŕıtja meg, hiszen
A-nak csak a rotációjára vagyunk ḱıváncsiak, ám ez nem határozza meg egyértelműen vek-
torpotenciált.

Ebben az esetben pedig a J(r)-ből A(r) meghatározható:

A(r) =
µ

4π

∫

V

J(r’)

r
dV ′.

Az előző egyenletből pedig már B(r) egy egyszerű rotáció képzéssel megkapható:

B(r) = ∇× A =
µ

4π
∇×

∫

V

J(r′)

|r− r′|dV
′. (10)

2.3.1. Coulomb-törvény

Tekintsünk egy pontszerű töltést, azaz

Q =

∫

V

ρdV.

Ennek erőtere:

E(r) =
1

4πε

∫

V

ρ(r′)r0

r2
dV ′ =

Q

4πεr2
r0

Tehát a q töltésre ható erő:

F = qE =
qQ

4πεr2
r0.

Ez pedig a jól ismert Coulomb-törvény, amelyet szokás a potenciál és az elektromos tér
”szuperpoźıciójának” törvényeként is emlegetni.

2.3.2. Biot-Savart törvény

Amennyiben a (10) egyenletet egy kicsit még alaḱıtjuk

B(r) =
µ

4π
∇×

∫

V

J(r)

|r− r′|dAdl =
µI

4π

∫

L

∇× 1

r
dl =

µI

4π

∫

L

dl× r0

r2

és végeredményt pedig leosztjuk µ-vel, megkapjuk a Biot-Savart törvényt. A törvényt
vonalszerű áramok által keltett mágneses térerősség meghatározására használhatjuk, ahol a
keresztmetszet elhanyagolható a vezeték hosszához viszonýıtva.

2.4. Kirchhoff-törvények

Stacionárius (egyenáramú) áramkörökben igaz Kirchhoff-törvényeket levezethetjük a Maxwell-
egyenletekből is.
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2.4.1. I. Kirchhoff-törvény

A törvény kimondja, hogy egy adott csomópontban érvényesül a töltésmegmaradás elve,
azaz a befolyó és kifolyó áramok előjeles összege zérus. Kirchhoff I. törvényét szokás csomóponti
potenciálok törvényének is nevezni.

Induljunk ki az I. és IV.

∇×H = J+
∂D

∂t
〈∇,D〉 = ρ

Maxwell-egyenletekből. A Poincaré-lemmát felhasználva tudjuk, hogyha képezzük az I.
egyenlet divergenciáját, akkor nullát kapunk, azaz

〈∇,∇×H〉 = 〈∇,J〉+ 〈∇,
∂D

∂t
〉 = 0.

Az utolsó egyenletbe behelyetteśıtve IV. Maxwell-egyenletet azt kapjuk, hogy

〈∇,J〉+ ∂ρ

∂t
= 〈∇,J〉 = 0,

hiszen a töltéssűrűség nem változik az időben a stacioner körülmények miatt. Ekkor
felhasználva a Gauss-Osztrogradszkij tételt azt kapjuk, hogy

∮

A

JdA =
∑

k

Ik = 0.

2.4.2. II. Kirchhoff-törvény

A törvény kimondja, hogy egy zárt hurok mentén a feszültségesések összege zérus. Szokás
hurokáramok törvényének is nevezni.

Induljunk ki a II. Maxwell-egyenletből:

∇× E = 0,

amit át́ırhatunk a Stokes-tétel seǵıtségével az alábbi formára:
∫

A

∇× EdA =

∮

L

Edl = 0,

illetve a

J = σ(E+ Egen)

egyenletekből. Rendezzük át az utolsó egyenletet E -re:

E =
J

σ
− Egen,
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majd ezt helyetteśıtsük be a(z át́ırt) Maxwell-egyenlet jobb oldalába

∮

L

Edl =

∮

L

(

J

σ
− Egen

)

dl = 0.

Alaḱıtsuk át az utolsó egyenletet úgy, hogy az integrandusban az első tagot szorozzuk
eggyel a következőképp:

∮

L

(

JA

Aσ
− Egen

)

dl = I

∮

L

1

Aσ
dl−

∮

L

Egen dl = 0,

amit pedig, ha egy általános hálózat tetszés szerinti zárt körére veszünk, akkor Kirchhoff
II. törvényére jutunk:

∑

k

IkRik −
∑

k

Ugenk
= 0.

Az utolsó egyenletet átrendezve megkapjuk a k. indexű tagra vonatkozó klasszikus Ohm-
törvényt, hiszen a k. indexű generátor által szolgáltatott villamos térerősség vonalmenti
integrálja megegyezik a hálózatba juttatott külső potenciál értékével.

Az integrális alakban szereplő 1
Aσ

kifejezés tehát ellenállás (Ω) dimenziójú.

2.5. Mozgó, pontszerű töltések elektromágneses tere

A valóságban az elektromágneses tér létrehozói a töltések és az áramok. Általuk közeli
és távoli elektromágneses tér jöhet létre, ám fontos különbség e két tér között, hogy a közeli
nagysága 1

r2
-esen, mı́g a távolié 1

r
-rel csökken.

Sztatikus töltéseknek csak közeli elektromos, sztatikus áramoknak csak közeli mágneses
tere van.

2.5.1. Állandó sebességgel mozgó töltés

Adott egy töltés, amely állandó sebességgel mozog (v = állandó, akár zérus). Ekkor a
töltésnek csak közeli elektromos és mágneses tere van.

A ρ(r,t) töltéssűrűség-függvényt a következőképpen definiáljuk:

ρ(r, t) = qδ(r− vqt),

ahol delta egy háromdimenzióüs Dirac-delta függvény. Ez esetben a elektromágenes teret
léıró elektromos térerősség és mágneses indukcióvektorok a következőképpen számolhatók:

E =
1

4πε0
q

r− vt

|r− vt|3

B =
µ0

4π
q
v× r0

r2
.

Amennyiben a töltés álló helyzetben van, úgy megkapjuk a már jól ismert Coulomb-
törvényt, illetve azt, hogy álló töltés körül nincsenek mágneses indukcióvonalak, ugyanis a
mágneses tér örvényeit az áram, vagyis a mozgó töltés hozza létre.
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2.5.2. Gyorsuló töltés

A gyorsuló töltésnek a közeli téren ḱıvül van egy másik, úgynevezett távoli vagy sugárzó
tere is. Ez esetben a vektorpotenciál a következőképpen néz ki

A =
µ0

4π

q

r
ṙq

(

t− r

c

)

.

Ebből kiszámolhatjuk a mágneses és elektromos térerősség vektorait:

H =

√
ε0µ0

4π

q

r

(

r̈q

(

t− r

c

)

× r0

)

E =
qµ0

4π

1

r

(

r̈q

(

t− r

c

)

× r0

)

× r0.

Jól látható, hogy amennyiben a gyorsulás zérus, azaz a töltés sebessége állandó, úgy mind
az elektromos, mind a mágneses térerősség is zérus.

A mágneses és elektromos tér egymásra merőleges, és mindkettő nagysága arányos a
töltéstől való távolság reciprokával.

2.6. Dipólus és multipólus elektrosztatikus tere

A pontszerű töltés elektrosztatikus tere mellett (amit a Coulomb-törvénnyel meghatározhatunk)
a gyakorlatban nagy jelentősége van a dipólusok, illetve multipólusok terének is.

2.6.1. Dipólus

A dipólus két, ellenkező előjelű, azonos nagyságú töltésből áll, melyek nagyon közel vannak
egymáshoz.

5. ábra.

Hozzunk egy +Q és egy -Q töltést egymáshoz nagyon közel az 5. ábrán látható módon,
akkor a tetszőleges P pontban a potenciálérték a következő:

U(P ) =
1

4πε0

(Q

r+
− Q

r−

)

=
Q

4πε0

( 1

r+
− 1

r−

)

=
Q

4πε0

( 1

|r− + l| −
1

|r−|
)

,
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ahol r+ és r− a pozit́ıv, illetve negat́ıv töltésből a P pontban mutató vektorok.
A gradiens defińıciója szerint

1

|r− + l| −
1

|r−|
≈ 〈l, gradD

1

r
〉,

ha az |l| ≪ |r|. A D index azt mutatja, hogy a gradiensképzéskor a D pont koordinátáit
kell változóknak tekintenünk. Ezt behelyetteśıtve a potenciált megadó kifejezésbe:

U(P ) ≈ Q

4πε0
〈l, gradD

1

r
〉.

Amennyiben a két pontot nagyon közel visszük egymáshoz, úgy a P pontbeli potenciál
értéke zérushoz közeĺıt. Növeljük Q értékét úgy, hogy Ql = p szorzat állandó maradjon. A
p és l vektorok defińıció szerint a negat́ıv töltésből a pozit́ıvba mutatnak. Ekkor a potenciál
értéke is állandó marad, kiváltképpen a potenciált egyre pontosabban adja meg az utolsó
összefüggés.

Tehát a dipólus potenciálja

U =
1

4πε0
〈p, gradD

1

r
〉.

Azonban, ha most nem a dipólus koordinátái szerint differenciálunk, hanem a P pont
koordinátái szerint, és a

gradD
1

r
= −gradP

1

r

összefüggést figyelembe vesszük, akkor a

U = −
4πε0

〈p, gradP
1

r
〉 = − p

4πε0

∂

∂z

1

r
.

egyenletre jutunk.
A dipólus potenciálja át́ırható az

U =
1

4πε0

〈p, r0〉
r2

=
1

4πε0

pcosϑ

r2
.

alakra.
A potenciál ezek után negat́ıv gradiensképzéssel egyszerűen meghatározható gömbi koor-

dinátákban:

Er = −∂U

∂r
=

1

2πε0

〈p, r0〉
r3

=
1

2πε0

pcosϑ

r3

Eϑ = −1

r

∂U

∂ϑ
=

1

4πε0

psinϑ

r3
=

1

4πε0

|r0 × p|
r3

Eϕ = 0,

amit feĺırhatunk vektoregyenletben is:

E =
1

4πε0

[

〈2〈p, r0〉
r3

, r0〉+
r0 × (r0 × p)

r3

]

=
1

4πε0

[

〈2〈p, r0〉
r3

, r0〉 −
p

r3

]

.
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2.6.2. Multipólus

Az általános multipólusokon belül a legegyszerűbbek az axiális multipólusok, mi most
csak ezekkel fogunk foglalkozni. A dipólust úgy kaptuk meg, hogy két, ellentétes előjelű
pontszerű töltéseket, másnéven monopólusokat vagy nulladrendű multipólusokat l -lel eltol-
tunk egymáshoz képest. Vizsgáljuk most meg azt az esetet, ha egy dipólust eltolunk m

vektorral, és ellenkezőleg iránýıtjuk, és ennek a két dipólusnak figyeljük egyszerre a terét.
Ezt az elrendezést h́ıvják egyébként (axiális) kvadrupólusnak, vagy másnéven másodrendű
multipólusnak. Az elrendezést a 6. ábra szemlélteti.

6. ábra.

Az első dipólus potenciálját már egyszer meghatároztuk

U+(1) = − 1

4πε0
〈p, gradP

1

r+
〉 = − lQ

4πε0

∂

∂z

1

r+
,

ahol U+(1) azt jelöli, hogy ez a referencia iránynak tekintett ”pozit́ıv”, és elsőrendű mo-
nopólus, vagyis dipólus. Azonban a második dipólus potenciálját a

U−(1) =
lQ

4πε0

∂

∂z

1

r−

összefüggés adja meg. Az eredő axiális kvadrupólus potenciálja e kettő szuperpoźıciója,
tehát

U (2) = U+(1) + U−(1) =
lQ

4πε0

∂

∂z

( 1

r−
− 1

r+

)

.

Viszont tudjuk, hogy

1

r−
− 1

r+
= − 1

|r− +m| −
1

|r−|
≈ −〈m, gradD

1

r
〉 = 〈m, gradP

1

r
〉 = m

∂

∂z

1

r
,

és ezzel a potenciál értéke a következőképpen változik:

U (2) =
lQ

4πε0

∂2

∂z2
1

r
.
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Csökkentsük most l és m távolságokat minden határon túl, és közben növeljük Q-t, hogy a
2mlQ = p(2) szorzat állandó maradjon. A p(2) momentumú axiális kvadrupólus potenciáljára
tehát azt kaptuk, hogy

U (2) =
p(2)

4πε0

1

2

∂2

∂z2
1

r
.

A kettes szorzó bevonásának célja itt nem látszik, de célszerű és későbbiekben majd
világossá válik a szerepe.

Írjuk fel a kvadrupólus potenciálját gömbi koordinátákában is:

U (2) = U+(1) + U−(1) =
lQ

4πε0

(cosϑ+

r2+
− cosϑ−

r2−

)

,

viszont

cosϑ+

r2+
− cosϑ−

r2−
≈ −〈m, gradP

cosϑ

r2
〉.

A grad cosϑ
r2

komponensei gömbi koordináta-rendszerben

gradr
cosϑ

r2
=

∂

∂r

cosϑ

r2
= −2cosϑ

r3

gradϑ
cosϑ

r2
=

1

r

∂

∂ϑ

cosϑ

r2
= −sinϑ

r3

gradϕ
cosϑ

r2
= 0,

mı́g az m vektor ugyanebben a koordináta-rendszerben

mr = mcosϑ

mϑ = −msinϑ

mϕ = 0

alakot ölti. Ebből pedig feĺırhatjuk a potenciált a gömbi koordinátarendszerben:

U (2) =
mlQ

4πε0

3

r3

(

cos2ϑ− 1

3

)

=
p(2)

4πε0

3

2r3

(

cos2ϑ− 1

3

)

.

Most, hogy megállaṕıtottuk a másodrendű multipólust, minden adott, hogy egy n-ed
rendű, axiális multipólus potenciálját meghatározzuk. Az előbbiek értelmében tehát két
ellenkező előjellel vett kvadrupólusból kapjuk az oktopólust. Ennek potenciálját Descartes-
koordinátákkal

U (3) = − p(3)

4πε0

1

3!

∂3

∂z3
1

r
,

mı́g gömbi koordinátákkal

U (3) =
p(3)

4πε0

1

2r4
(5cos3ϑ− 3cosϑ),
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ahol p(3) = 3p(2)m3, és p
(2) azon kvadrupólusok nyomatéka, amelyek egymástólm3 távolságra

való eltolásából és előjelváltoztatásából kaptuk az oktopólust.
Ezek után pedig már láthatjuk, hogy az n-ed rendű multipólus képzésének szabálya

Descartes-koordinátákkal, illetve gömbi koordinátákkal a következő:

U (n)(x, y, z) = (−1)n
p(n)

4πε0

1

n!

∂n

∂zn
1

r

U (n)(r, ϑ) =
p(n)

4πε

1

rn+1
Pn(cosϑ),

ahol p(n) = ip(n−1)mn, Pn(cosϑ) pedig a cosϑ változó n-ed fokú polinómja, az úgynevezett
Legendre-polinóm.

Fontos megjegyezni, hogy az előbbiekben levezetett potenciálok csak az axiális mul-
tipólusokra érvényesek, a teljesen általános multipólusokra nem. A defińıció célszerűségét a
következő fejezetben fogjuk belátni, amikor vonaltöltés potenciálját fogjuk meghatározni.

A különböző multipólusok tulajdonságait a következő táblázat tartalmazza:

7. ábra.

2.7. Vonalszerű és felületi töltések erőtere

Amennyiben nem csak monopólusokból összerakott multipólusok potenciálját vizsgáljuk,
hanem folytonos töltésekét, úgy beszélhetünk vonalszerű és felületi töltések erőteréről.
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2.7.1. Vonaltöltés potenciálja

Határozzuk meg a tér egy P pontjában a z tengely mentén ξ = -l és ξ = +l között
folytonosan eloszló q(ξ) vonaltöltés potenciálját. Az elrendezést a 8. ábra szemlélteti.

8. ábra.

A (0,ξ) pont környezetében kiválasztott dξ szakaszon helyet foglaló töltés

dQ = q(ξ)dξ,

és ennek potenciálja

dU =
q(ξ)

4πε0rPQ

dξ,

azaz a teljes potenciál

U =
1

4πε0

∫ +l

−l

q(ξ)

rPQ

dξ.

Legyen a P pont rögźıtett, ahogy a 8.ábra mutatja. Ekkor rPQ értéke az

rPQ =
√

x2 + y2 + (z − ξ)2 (11)

kifejezésnek megfelelően csak ξ-től függ.
Tekintsük az f(ξ) = 1

rPQ
függvényt, amely az f(0) = 1

r
pontban Taylor-sorba fejthető és

f(ξ) =
∞
∑

i=0

∂if(ξ)
∂ξi

∣

∣

∣

ξ=0

i!
ξi.

A (11)-ből következik, hogy

∂

∂ξ

1

rPQ

= − ∂

∂z

1

rPQ

,
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tehát

f(ξ) =
1

rPQ

=
∞
∑

i=0

ξi
(−1)i

i!

∂i

∂zi
1

r
.

Ezek után tehát feĺırhatjuk a P pontbeli potenciált a sorfejtés felhasználásával:

U(P ) =
1

4πε0

∞
∑

i=0

[

(−1)i
1

i!

( ∂i

∂zi
1

r

)

∫ +l

−l

qξidξ

]

Ebből láthatjuk, hogy egy tetszőleges vonaltöltés első közeĺıtésre egy monopólusnak,
második megközeĺıtésre egy dipólusnak, harmadik megközĺıtésre pedig egy kvadrupólusnak
felel meg, és ı́gy tovább. A Taylor-sor tagjai a magasabb rendű multipólusok hatását adják
meg. Többek között ezért volt benne a kvadrupólus momentumában a 2-es szorzó, ugyanis
az a Taylor-sor konvergenciája miatti faktorálásból ered.

Amennyiben pontszerű töltések szerepelnek, úgy az általános momentumra az alábbi
kifejezést kapjuk:

p(n) =
∑

i

Qiz
n
i .

Azonban a z tengelyen folytonosan eloszló vonaltöltés potenciálját más módon is sorba
lehet fejteni. Legyen a 8. ábra szerint

r2PQ = r2 + ξ2 − 2rξcosϑ.

Ezért a potenciál

U(P ) =
1

4πε0

∫ +l

−l

1

rPQ

q(ξ)dξ =
1

4πε0

∫ −l

+l

1

r

[

1 +
(ξ

r

)2

− 2
ξ

r
cosϑ

]− 1

2

q(ξ)dξ.

Az r > l > ξ értékre 1
rPQ

binomiális sorba fejthető:

1

rPQ

=
1

r

[

1 +
(ξ

r

)2

− 2
ξ

r
cosϑ

]− 1

2

=
∞
∑

i=0

Pi(cosϑ)
1

ri+1
ξi,

ahol Pi polinomok defińıciószerűen a Legendre-polinomok. Ezek kiadódnak, ha a sorba-
fejtést 1

r
növekvő hatványai szerint rendezzük. A potenciál tehát:

U =
1

4πε0

∞
∑

i=0

[

1

ri+1
Pi(cosϑ)

∫ +l

−l

q(ξ)ξidξ

]

.

A potenciált ı́gy most is a különböző multipólus-nyomatékokkal fejezzük ki, ám most
gömbi koordinátákkal.
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2.7.2. Felületi töltés potenciálja

Legyen az A felület ρ(r) változó felületi töltéssűrűséggel ellátva. Egy dA felületelemen a
ρdA pontszerűnek tekinthető töltéselem potenciálja

dU =
1

4πε0

ρdA

r
.

Itt r a dA felületelem és a P pont közötti távolság, ahol keressük a potenciált. Így tehát
a felületi töltés potenciálját megadja az

U =
1

4πε0

∫

A

ρdA

r

összefüggés.
A potenciál ugyanazt az értéket adja, akármelyik oldalról is közeĺıtjük meg a felületet.

Másképpen ezt úgy fogalmazhatjuk meg, hogy a potenciál folytonosan megy át egy ρ felületi
töltéssűrűséggel ellátott felületen. A potenciál normális menti deriváltja azonban ”ugrik”.

9. ábra.

A fenti ábrán látható zárt felületre, és az általa körülhatárolt térfogatra, ha alkalmazzuk
a Gauss-Osztrogradszkij tételt, akkor azt kapjuk, hogy

ρdA = −ε0

( ∂U

∂n2

+
∂U

∂n1

)

= −ε0

[

(∂U

∂n

)

2
−
(∂U

∂n

)

2

]

dA.

Tehát azt kaptuk, hogy

(∂U

∂n

)

1
=

ρ

ε0
+
(∂U

∂n

)

2

2.8. Elektromágneses energia

2.8.1. Az elektromágneses tér energia- és lendülethordozója

Az elektromágneses tereket a Maxwell-egyenletek kieléǵıtően léırják. Azonban vizsgáljuk
meg, hogy az egyenletek hogy kapcsolódnak a fizika többi ágához.

Először is definiáljuk az energiasűrűség (w) fogalmát, amelyet egyszerű közegekben a

w =
1

2
〈E,D〉+ 1

2
〈B,H〉 = 1

2
ε〈E,E〉+ 1

2
µ〈H,H〉
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összefüggés definiál. Mértékegysége [w] = Ws
m3 = V As

m3 .
Ezen felül pedig a mozgó töltésre ható erőt a Lorentz-erővel

F = qE+ q(v×B)

ı́rhatjuk le.
Az összenergia egy térfogatban megegyezik a mágneses és elektromos energiák összegével,

vagyis az energiasűrűség térfogati integrálájával, azaz
∫

v

1

2
ε〈E,E〉+ 1

2
µ〈H,H〉dV.

2.8.2. Véges térfogatú elektromágneses tér energiája, energiamegmaradás

A zárt, véges V térfogatú térrészre igaz az a tétel, miszerint a V -beli generátorok által
termelt teljeśıtmény megegyezik a V -ben tárolt egységnyi idő alatti energianövekedés, a V -
ben hővé alakuló teljeśıtmény, és az A felületen V -ből kilépő sugárzó teljeśıtmény összegével.
Ez formailag a következő alakot ölti:

∫

V

〈Egen,J〉dV =
∂

∂t

∫

V

(

1

2
µ〈H,H〉+ 1

2
ε〈E,E〉

)

dV +

∫

V

〈J,J〉
σ

dV +

∮

A

E×HdA.

A fenti tételt egyszerűen bebizonýıthatjuk. Induljunk ki az I. és a II. Maxwell-egyenlet
általános alakjából. Az első egyenletet szorozzuk meg -E -vel skalárisan, a másodikat pedig
szorozzuk meg H -val, szintén skalárisan. A kapott eredményeket adjuk össze egymással, és
azt kapjuk, hogy

〈H,∇× E〉 − 〈E,∇×H〉 = −〈H,
∂B

∂t
〉 − 〈E, ∂D

∂t
〉 − 〈E,J〉.

Majd alkalmazzuk a bal oldalra azt az összefüggést, hogy div(E×H) = 〈H, rotE〉-〈E, rotH〉,
illetve integráljuk az adott V térfogaton a kifejezés mindkét oldalát, akkor az

∫

V

div(E×H)dV = −
∫

V

(

〈H,
∂B

∂t
〉+ 〈E, ∂D

∂t
〉
)

dV −
∫

V

〈E,J〉dV

kifejezéshez jutunk. Ezután, ha felhasználjuk a differenciális Ohm-törvényt a jobb ol-
dal utolsó tagjára, illetve a Gauss-Osztrogradszkij tételt a bal oldalra, akkor a következő
egyenletre jutunk:

∮

A

(E×H)dA = −
∫

V

(

〈H,
∂B

∂t
〉+ 〈E, ∂D

∂t
〉
)

dV −
∫

V

〈J,J〉
σ

dV +

∫

V

〈Egen,J〉dV.

Ezt az egyenletet rendezzük

−
∫

V

(

〈H,
∂B

∂t
〉+ 〈E, ∂D

∂t
〉
)

dV =

∮

A

(E×H)dA+

∫

V

〈J,J〉
σ

dV −
∫

V

〈Egen,J〉dV, (12)
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és amit kapunk, azt úgy értelmezhetjük, mint az energia megmaradásának tételét. Az
egyenlet bal oldalának átalaḱıtásával

∫

V

(

〈H,
∂B

∂t
〉+ 〈E, ∂D

∂t
〉
)

dV =
∂

∂t

∫

V

1

2
ε〈E,E〉+ 1

2
µ〈H,H〉dV,

láthatjuk, hogy ez nem más, mint a közrezárt térfogatban foglalt elektromágneses energia
időegység alatti változása. Ezt behelyetteśıtve (12)-be, és átrendezve az egyenletet megkap-
juk a tétel álĺıtását, de ezt most nem tesszük meg, mert ı́gy a fizikai háttér jobban látszik.
Ugyanis, ha vesszük (12)-t, akkor az egyenlet jobb oldalán azt láthatjuk, hogy a tér elekt-
romágneses energiája minek a hatására változik meg.

A térfogatba zárt elektromágneses energia csökken időegység alatt, hiszen a vezetésbeli
áram a vezetőn áthaladva Joule-hőt fejleszt. A hővé disszipált teljeśıtményt a jobb oldal
középső tagja ı́rja le.

Csökken az energia akkor is, ha az áram a generátorok által fejlesztett térerősség ellen fo-
lyik, hiszen ekkor a jobb oldal utolsó tagja negat́ıv lesz, és az integrál előtti (-1)-szeres szorzó
az energia csökkenését idézi elő. Azonban, ha az áram egyirányba folyik a generátorok által
gerjesztett erőtér irányával, akkor a generátorok végeznek munkát, és ı́gy az elektromágneses
energia nőni fog. A generátorok által leadott teljeśıtmény a jobb oldal utolsó tagjában jelenik
meg.

Azonban ezen energiaátalakulások mellett van a jobb oldalon egy harmadik tag is, ami
nem más, mint a térrészt lezáró A zárt felületen sugárzás formájában kilépő energia. Ezt
Poynting-vektornak nevezzük, és S -sel jelöljük, továbbá igaz rá a következő összefüggés:

S = E×H.

Tehát általánosan elmondhatjuk, hogy a sugárzást léıró vektor merőleges mind az elekt-
romos, mind a mágneses térerősségre. Ahol a Poynting-vektor nem nulla, ott az energia
áramlik, még stacionárius esetben is. Ennek magyarázata, hogy az energia mindig a dielekt-
rikumban terjed.

2.9. A Maxwell-egyenletek megoldásának egyértelműsége

Ha egy zárt V térfogatban a kezdeti feltételek, és a zárt térrész A határfelületén a
határfeltételek adottak, vagyis

1. a V térfogat minden pontjában az E, D, H, B vektorok adottak a t = t0 időpillanatban
(kezdeti feltételek)

2. a V térfogatban a generátorok adottak a t > t0-ra

3. a határoló felület A minden pontjában vagy a tangenciális elektromos vagy mágneses
térerő adott t > t0-ra (határfeltételek)

akkor a térrész belsejében a Maxwell-egyenletek megoldása mindenütt létezik, és egyértelmű,
azaz E, D, H, B kiszámı́tható minden t > t0-ra. Ennek bizonýıtása nem nehéz.

Tegyük fel, hogy a Maxwell-egyenleteknek van két olyan megoldása, amelyek ugyanazokat
a kezdeti és határfeltételeket eléǵıtik ki. Legyenek ezek E’ és H’, illetve E” és H”. Ekkor
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a Maxwell-egyenletek linearitásából következik, hogy e két megoldás különbsége is szintén
megoldás lesz, tehát

E0 = E′ − E′′

H0 = H′ −H′′

is megoldások, azaz kieléǵıtik a Maxwell-egyenleteket, és eleget tesznek a kezdeti és
határfeltételeknek, tehát az elektromágneses energiamegmaradás törvényének is, vagyis igaz
rájuk, hogy

− ∂

∂t

∫

V

(1

2
ε〈E0,E0〉+

1

2
µ〈H0,H0〉

)

dV =

∫

V

〈J,J〉
σ

dV,

ugyanis a generátorok mindkét esetben azonosak, tehát a generátokból adódó teljeśıtményt
megadó tag a megoldások különbségére zérus, illetve a Poynting-vektor felületi integrálja is
nulla, hiszen sugárzás sem lehet az A-n, mivel vagy az E vagy H tangenciális komponense
nulla, tehát azt kaptuk, hogy a kifejezés értéke pozit́ıv, hiszen a disszipált teljeśıtmény csak
pozit́ıv lehet. Mivel a kezdeti időpillanatban az összes energia nulla, hiszen azonos kezdeti
értékekből indultunk, ezért az összes energia később sem válhat negat́ıvvá, vagyis

E′ = E′′

H′ = H′′.

Ezzel beláttuk a Maxwell-egyenletek megoldásának egyértelműségét egy zárt térrészben,
adott feltételek mellet.

2.10. A retardált potenciál

Amennyiben szeretnénk megoldani a Maxwell-egyenleteket hullámtanilag, úgy be kell
vezetnünk a retardált potenciálok fogalmát. A retardált késleltetettet jelent, ami fizikailag
annyit tesz, hogy egy adott pontban, ha megváltoztatjuk az elektromágneses erőteret, akkor
egy attól távolabbi pontban a változtatás hatása késleltetve fog megjelenni.

Ehhez előbb tekintsünk a Maxwell-egyenletekre egy eddigiektől különböző megviláǵıtásban:

∇×B(r, t) = µ0J(r, t) +
1

c2
∂E(r, t)

∂t

∇× E(r, t) = −∂B(r, t)

∂t
〈∇,B(r, t)〉 = 0.

〈∇,E(r, t)〉 = 1

ε0
ρ(r, t)

Ekkor induljunk ki abból, hogy B feĺırható egy A vektorpotenciál rotációjaként, tehát
B helyére helyetteśıthetünk ∇×A-t a II. Maxwell-egyenletbe és, ha ezt nullára rendezzük,
akkor a következő összefüggéshez jutunk:

∇×
(

E+
∂A

∂t

)

= 0,
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ahol pedig a Poincaré-lemmát felhasználva tudjuk, hogyha egy vektortér rotációja azono-
san zérus, akkor ez a vektortér előáll egy skalárpotenciál negat́ıv gradienseként, tehát:

E+
∂A

∂t
= −∇φ(r, t).

Az utolsó egyenletet átrendezve E-re azt kapjuk, hogy

E = −∇φ− ∂A

∂t
.

Ekkor tehát kapunk egy szoros összefüggést a potenciálok és az E és B terek között:
(

A
φ

)

⇔
(

B
E

)

:

(

B
E

)

=

(

∇×A
−∇φ− ∂A

∂t

)

.

Ezek után először helyetteśıtsünk be az I. majd a IV. Maxwell-egyenletbe, vagyis

∇×∇×A = ∇〈∇,A〉 − △A = µ0J+
1

c2

∂
(

−∇φ− ∂A
∂t

)

∂t
, (13)

illetve

−〈∇,∇φ〉 − ∂

∂t
〈∇,A〉 = 1

ε0
ρ. (14)

Ahhoz, hogy (13) és (14) egyenleteket megoldjuk, válasszuk ”mértéknek” a Lorenz-mértéket,
azaz

〈∇,A〉+ 1

c2
∂φ

∂t
= 0,

amiből egyenesen következik, hogy

〈∇,A〉 = − 1

c2
∂φ

∂t
.

Ezt behelyetteśıtve (13) és (14) egyenletekbe a következőket kapjuk:

△A− 1

c2
∂2A

∂2t
= −µ0J,

és

△φ− 1

c2
∂2φ

∂2t
= − ρ

ε0
.

Ezek megoldásai pedig rendre

A(r) =
µ0

4π

∫

J(r′, t− |r−r
′|

c
)

|r− r′| dV ′,

és

φ(r) =
1

4ε0π

∫

ρ(r′, t− |r−r
′|

c
)

|r− r′| dV ′.

Felhasználva a potenciálok és az erőterek közötti összefüggést, az elektromágneses erőtér
a retardált potenciálokból már könnyen számolható.
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2.11. Maxwell-egyenletek harmonikus időfüggés esetén. Frekven-
ciatartomány. Komplex amplitúdók

Egyszerű közegekben, harmonikus monokromatikus (szinuszos) időfüggések esetén beve-
zethetjük a komplex amplitúdókat. Ezek előnye, hogy sokkal könnyebb velük számolni, mint
egy szinuszos kifejezéssel, hátránya, hogy a komplex tartományra ”ugrunk”.

Időtartományban a Maxwell-egyenletekben szereplő mennyiségek r -től és t-től is függnek,
mı́g frekvenciatartományban ugyanezek csak a helytől függnek, ugyanis a gerjesztést állandó
frekvencián tekintjük.

A frekvenciatartományban a Maxwell-egyenletek a következőképp alakulnak:

∇×H = J+ jωD

∇× E = −jωB

〈∇,B〉 = 0

〈∇,D〉 = ρ

A Maxwell-egyenletek ”maradéka”, azaz a Lorentz-erőt léıró, az áramsűrűségre vonat-
kozó, illetve a D ⇔ E és B ⇔ H közötti összefüggések változatlanok maradnak egyszerű
közegekben.

Az idő- és frekvenciatartomány közötti átmenetet az alábbi összefüggés adja meg:

u(r, t) = Ucos(ωt+ φ) = ℜ
{

U(r)ejφejωt
}

,

ahol a komplex amplitúdó az

U(r)ejφ.

2.12. Az elektromágneses hullámok

Az elektromágneses hullámok egyenleteit (egyszerű közegekben, időtartományban) meg-
határozhatjuk a Maxwell-egyenletekből, mégpedig a következő két feltétel mellett:

ρ = 0

J = 0.

Ekkor a Maxwell egyenletek a következőképpen egyszerűsödnek:

∇×H =
∂D

∂t

∇× E = −∂B

∂t
〈∇,B〉 = 0

〈∇,D〉 = 0.
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Írjuk át az első egyenletet a következőképp:

∇×B = µ
∂εE

∂t
.

Tekintsük most a második egyenletet, és képezzük mindkét oldal rotációját:

∇×∇× E = − ∂

∂t
∇×B,

ahova, ha behelyetteśıtjük az első egyenlet át́ırását, azt kapjuk, hogy

∇×∇× E = −△E = −µε
∂2E

∂t2
,

ahol a kifejezés közepe és bal oldala közötti egyenlőséget a következő összefüggés ı́rja le
(kiegésźıtve a feltételezéseink mellett érvényes IV. Maxwell-egyenlettel):

∇×∇× E = ∇〈∇,E〉 − △E = −△E.

Amennyiben az előbb végzett átalaḱıtásokat elvégezzük ”ford́ıtott szereposztással”, úgy
megkapjuk ugyanezt az egyenletet, B-re vonatkozóan:

△B = µε
∂2B

∂t2
.

A fenti két hullámegyenletet h́ıvjuk az elektromágneses tér hullámegyenleteinek. Fontos
megjegyezni, hogy a két megoldás (E, B) nem biztos, hogy összetartozóak!

2.12.1. Hullámegyenletek a frekvenciatartományba

A fent bemutatott hullámegyenleteket természetesen le lehet ı́rni a ”komplex amplitúdók”
világában is:

△E = −ω2εµE

△B = −ω2εµB.

2.12.2. A fény, mint elektromágneses hullám

1864-ben Maxwell egyenleteiből levezette, hogy léteznie kell olyan elektromágneses hullámnak,
amelynek sebessége a stacionáriusan mérhető ε0-ból és µ0-ból kiszámı́tható, tehát

v =
1√
ε0µ0

.

Maxwell korában már ismert volt a fény terjedési sebessége, amely Fizeau 1849-es pon-
tośıtása értelmében

c = 300000
km

s
.

Amennyiben kiszámoljuk a fenti, v -t megadó kifejezést, azt kapjuk, hogy

v = 3 · 108m
s
,

azaz ebből Maxwell arra következtetett, hogy a fény elektromágneses hullám.
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2.13. Śıkhullámok

A hullámegyenletek legegyszerűbb megoldásai a śıkhullámok (egyszerű közegekben), eh-
hez a következő feltételeket kell teljeśıteni az elektromágneses hullámnak:

∂E

∂x
=

∂E

∂y
=

∂B

∂x
=

∂B

∂y
= 0

Tekintsük a következő (frekvencia tartományban lévő) egyenletet:

∇× E(r) = −jωB(r),

ha pedig az egyenlet bal oldalán szereplő rotációképzést elvégezzük a következő egyenlőségre
jutunk:

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣

∣

∣

∣

∣

∣

= −jω(Bxi+Byj+Bzk)

itt pedig tagonként egyenlőséggel kapunk három egyenletet:

∂Ey

∂z
= jωBx,

∂Ex

∂z
= −jωBy, 0 = −jωBz.

Hasonlóan vizsgáljuk meg a következő összefüggést is:

∇× B

µ
= jωεE.

Ismét végezzük el az egyenlet bal oldalán szereplő rotációképzést
∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

Bx By Bz

∣

∣

∣

∣

∣

∣

= jωεµ(Exi+ Eyj+ Ezk),

amiből pedig tagonkénti egyenlőséggel a következő adódik:

−∂By

∂z
= jωµεEx,

∂Bx

∂z
= jωµεEy, 0 = jωµεEz.

Jól látható, hogy Ez = Bz = 0. Továbbá a két, tagonként vett egyenlőség összeha-
sonĺıtásával kapunk két másodrendű, homogén, közönséges differenciál egyenletet:

∂2Ex

∂z2
+ ω2µεEx = 0,

illetve

∂2Bx

∂z2
+ ω2µεBx = 0.

Ezek megoldása rendre

Ex = E+
x e

−jβz + E−
x e

jβz,

46



és

Bx = B+
x e

−jβz +B−
x e

jβz,

amit célszerű a mágneses térerősségekkel megegyező koordinátával megadni, azaz

Hx = H+
x e

−jβz +H−
x e

jβz,

ahol β = ω
√
µε.

Most, hogy Ex-et és Hx-et ismerjük, használjuk fel ismét a tagonkénti egyenlőséggel
léırt egyenleteinket, amik seǵıtségével meghatározhatjuk az y-hoz tartozó koordinátáit is
a térerősségeknek:

∂Ex

∂z
= −jωµHy,

amiből pedig megkapjuk, hogy

Hy =
E+

x

η
e−jβz − E−

x

η
ejβz.

Teljesen hasonló módon

∂Hx

∂z
= −jωεEy,

amiből pedig azonnal következik, hogy

Ey = ηH+
x e

−jβz − ηH−
x e

jβz.

A fenti átalaḱıtásokban kihasználtuk, hogy a hullámellenálásra (karakterisztikus impe-
dancia) vonatkozó összefüggés a következő:

η =
ωµ

β
=

ωµ

ω
√
µε

=

√
µ0√
ε0

√

µrel

εrel
= 120π

√

µrel

εrel
.

Amiből pedig látható, hogy a vákuum hullámellenállása η = 120π ≈ 377Ω.
Össześıtve tehát az śıkhullámok általános megoldása:

E(z) =
(

E+
x e

−jβz + E−
x e

jβz
)

i+
(

E+
y e

−jβz − E−
y e

jβz
)

j

H(z) =
(E+

x

η
e−jβz − E−

x

η
ejβz

)

i+
(E+

y

η
e−jβz −

E−
y

η
ejβz

)

j

2.13.1. Śıkhullámok terjedése különböző közegekben

A śıkhullámok esetében a fent levezetett egyenletek akkor és csak akkor érvényesek, ha
vákuumban terjed a hullám. Amint más közegekről beszélünk (vezetők belsejében), akkor
már a közeget jellemezhetjük úgy, hogy veszteségmentes vagy veszteséges, attól függően,
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hogy a vezetés(σ) értéke mekkora. Továbbá jωε0 kifejezés σ + jωε összefüggésé bonyolódik.
Ekkor a fent bemutatott Maxwell-egyenleteket ki kell egésźıteni a következőkkel:

γ = jβ = jω
√
εµ → γ = jω

√

µ
(

ε− j
σ

ω

)

,

ahol γ a terjedési együttható vagy másnéven tényező, amit úgy kapunk meg, ha az ima-
ginárius egységgel szorozzuk a β-t. A karakterisztikus impedancia is változik közegben:

η =

√

µ

ε
→ η =

√

µ

ε− j σ
ω

.

Kiszámolható az admittancia (Y(jω)) és impedancia (Z(jω)) hányadosának négyzetgyökeként
is.

Látható, hogy σ = 0 esetén visszakapjuk a vákuumra vonatkozó egyenleteket, tehát a
vákuum veszteségmentes (egyszerű) közeg. Amennyiben azonban σ 6= 0, úgy a śıkhullámok
egyenletei jelentősen nem változnak, csupán a β, azaz

β = ω

√

µ
(

ε− j
σ

ω

)

,

illetve a fent emĺıtett karakterisztikus impedancia.
A śıkhullámok, ha két közeg határoló felületéhez érnek, akkor három dolog történhet

velük:

– Egy részben áthaladnak, részben visszaverődnek

– Veszteségmentesen áthaladnak, nem verődnek vissza egyáltalán

– Teljesen visszaverődnek

2.14. Távvezetékek

A távvezeték reprezentálható áramköri elemként is. Vegyünk a vezetékből egy dx, egységnyi
hosszúságú szakaszt. Ezt jellemezhetjük valamilyen Y (admittancia) és Z (impedancia)
értékekkel. Az adott egységnyi vezetékelemben, a bemeneti áramot jelölje I(x), beme-
neti feszültséget jelölje U(x), és a kimeneti áramot, illetve feszültséget jelölje I(x)+dI(x)
és U(x)+dU(x). Ekkor a következő egyenletek érvényesek lesznek:

−dU(x) = ZdxI(x),

illetve

−dI(x) = Y dxU(x).
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2.14.1. Táv́ıróegyenletek

Rendezzük az utolsó két egyenletet, ekkor kapunk két elsőrendű, homogén, lineáris diffe-
renciálegyenletből álló rendszert

−dU(x)

dx
= ZI(x)

−dI(x)

dx
= Y U(x)

Ezek a táv́ıróegyenletek ezen egyenletek megoldásai a következők:

U(x) = U+e−jβx + U−ejβx,

illetve

I(x) = I+e−jβx + I−ejβx.

A terjedési tényező itt

γ = α + jβ =
√
ZY ,

ahol az α a csillaṕıtás mértéke.
A ”hullámellenállás” pedig

η =

√

Z

Y
.

Fontos megjegyezni azonban, hogy a fenti összefüggések csak ideális vezető esetén értendő,
azaz, ha a generátor belső ellenállását és a fogyasztó ellenállását zérusnak tekintjük (viszont
ekkor nincs csillaṕıtás!).

Ha a hosszegységre eső impedanciát áramköri ekvivalensként egy induktivitással, az ugyan-
erre az egységre eső admittanciát pedig áramköri ekvivalensként egy kapacitással helyet-
teśıtjük, akkor megkapjuk az ideális, veszteségmentes távvezetéket.

2.14.2. Hullámterjedés és reflexió távvezetékekben

Eddig ideális távvezetékekről beszéltünk, amelyet úgy is modellezhetünk, mint egy ge-
nerátor, és egy fogyasztó áramköre, ahol a generátor belső ellenállása és a fogyasztó impe-
danciája is nulla (vagy végtelen hosszú vezetékről beszélünk, de ez fizikailag és mérnökileg
nem releváns).

Azonban, ha véges hosszú vezetéket lezárunk egy tetszőleges impedanciával, akkor három
eset lehetséges:

A) A lezáró impedancia véges, de nem nulla.

B) A ”lezáró impedancia” azonosan zérus.

C) A lezáró impedancia értéke végtelen. (Tehát szakadással helyetteśıtjük).
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A) Ha a lezáró impedancia (fogyasztó) véges, de nem nulla, akkor az elektromágneses
hullám, amint eléri a fogyasztót, reflektálódik a reflexiós tényező (Γ) függvényében, amely
megadja, hogy a beeső hullámok mekkora hányada reflektálódik. A reflexiós tényező az
alábbi képetből számolható:

Γ =
Z − Z0

Z + Z0

.

A hullámellenállás csak akkor adja meg a vezeték tetszőleges pontjában mért feszültség és
áram viszonyát, ha abban a vezetékben csak egyirányú hullám halad. Ez vagy végtelen
vezetékben fordulhat elő, vagy, ha a lezáró impedanciát pontosan a hullámellenállással
megegyező értékűnek választjuk. Ekkor a generátor által közölt teljes energia a lezáró el-
lenállásban emésztődik fel.

B) Ebben az esetben a reflexiós tényező értéke -1, a feszültség ellenkező fázisban, az áram
pedig azonos fázisban verődik vissza. Az eredő feszültség és az áramerősség állóhullámot
alkot, tehát az amplitúdó eloszlása a vezetékben szinuszos, és ezen eloszlás csúcspontjai és
zérusai az időben állandóak maradnak.

C) Ezesetben a vezetéket egy kondezátorral zárjuk le. A B)-hez hasonlóan itt is állóhullámot
kapunk, de észrevehetjük azt, hogy egy x=d hellyel arrébb ”toltuk” a feszültségmaximumát,
ami annyit tesz, mintha a vezetéket ”meghosszabb́ıtottuk” volna, a B)-ben tárgyalt ve-
zetékhez képest.

2.15. A śıkhullámok refrakciója. Snellius-Descartes törvény és Fresnel-
egyenletek

Előfordulhat, hogyha egy határoló felületre érkezik egy elektromágneses hullám, és transz-
mittálódik, akkor nem az eredeti terjedési irányában halad tovább, hanem elhajlik, idegen
szóval refraktálódik.

Az érkező elektromágneses hullám beesési merőlegessel bezárt beesési, illetve transzmittált
hullám által szintén a merőlegessel bezárt szögek közötti összefüggést adja meg a Snellius-
Descartes törvény, miszerint

sinϑi

sinϑt

=
βi

βt

=

√
ε1µ1√
ε2µ2

Majd, ha a beesési, és továbbhaladó hullámokat felbontjuk a határoló réteggel párhuzamos
és arra merőleges összetevőkre, és mindkettőre külön-külön feĺırjuk a reflexiós(Γ) és transz-
missziós(T ) koefficienst, akkor a következőket kapjuk:

Γ‖ =
Êr

‖m

Êi
‖m

=
η2cosϑt − η1cosϑi

η1cosϑi + η2cosϑt

T‖ =
Êt

‖m

Êi
‖m

=
2η2cosϑi

η1cosϑi + η2cosϑt

,
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illetve

Γ⊥ =
Êr

⊥m

Êi
⊥m

=
η2cosϑi − η1cosϑt

η1cosϑt + η2cosϑi

T⊥ =
Êt

⊥m

Êi
⊥m

=
2η2cosϑi

η1cosϑt + η2cosϑi

,

ahol

η1 =

√

µ1

ε1

η2 =

√

µ2

ε2

Ezek pedig az úgynevezett Fresnel-egyenletek, amelyeket tehát a Snellius-Descartes törvényből
vezettünk le.
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3. Kvantummechanika

A klasszikus fizika minden, amit Max Planck 1900. december 14-ei fekete testről szóló
cikkje előtt tudtunk a világról. Innentől számtjuk a kvantummechanika korát.

3.1. Az anyagok kettős természete

A fényről sokáig azt hitték, hogy részecske, ám Maxwell merész kijelentése, miszerint a
fény elektromágneses hullám (ami egyébként levezethető a Maxwell-egyenletekből) egy új
problémakört nyitott meg.

3.1.1. A foton, mint ”kettős természet”

Arthur Holly Compton 1922-ben röntgen (x-ray) kvantumokat ütköztetett elektronokkal.
Az ütközés során a röntgen-kvantum az álló elektront meglöki, kinetikus energiát ad át, a
fénykvantum energiát vesźıt és szóródik. (10. ábra)

10. ábra.

Az energia megmaradása:

hf +m0c
2 = hf ′ +

m0
√

1− v2

c2

c2,

ahol h a Planck-állandó és

h = 6.626 · 10−34Js.

A momentum megmaradása:

hf

c
=

hf ′

c
cosϑ+mvcosφ.

A fénykvantum (”foton”) energiája:

hf ′ =
hf

1 + hf

m0c2
(1− cosϑ)

,
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illetve hullámhossza az ütközés után:

∆λ =
c

f ′ −
c

f
=

h

m0c
(1− cosϑ).

Ennek ḱısérleti igazolásaWilson-chamber -ben (ködkamra) történt. A részecsketrajektóriák
nagy pontossággal igazolták a fénykvantum részecske szerű viselkedését.

A fény egy elektromágneses hullám, tehát inferferenciát mutat (Young ḱısérlet, 11. ábra).
Azonban a fény részecske is, mert ütközéskor testként viselkedik (Compton-szóródás, 10.
ábra).

11. ábra.

Amennyiben a fény hullám, akkor frekvenciája, terjedési sebessége és hullámhossza van,
azaz frekvenciája és hullámszám-vektora van: (ω, k). Azonban, ha a fény részecske, akkor
energiája és momentuma van: (E, p). Mivel a fény mindkét tulajdonsággal rendelkezik, ezért
azt mondjuk, hogy a fény ”kettős-természetű” (angolul: wavicle. A megnevezés Richard
Feynmantól származik). Ugyanaz a foton az egyik ḱısérletben részecskeként, a másikban
hullámként viselkedik.

Mint hullám, elmondható róla, hogy

ω = 2πf,

és

k =
2π

λ
n,

ahol n a hullám terjedési irányával megegyező egységnyi hosszú normálvektor.
Az alábbi két egyenlet teremt kapcsolatot a részecske és hullám természet között:

E = ℏω = hf,

illetve

p = ℏk =
h

λ
n,

ahol ℏ a redukált Planck-állandó, azaz:

ℏ =
h

2π
.
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3.1.2. Az elektron hullámtermészete

Sir Joseph John Thomson katódsugárcső ḱısérletéből kiderült, hogy az atomok nem oszt-
hatatlanok, továbbá az is kiderült, hogy elektronokra ”bontható” az atom. Ekkor részecskének
gondolták még az elektront, és ezen természete vitán felül állt. Azonban 1924-ben Louis de
Broglie felvetette, hogy - a fényhez hasonlóan - az elektronnak is van hullámtermészete. Az
eleinte abszurd ötlet 3 évvel később realitássá vált, ugyanis kimutatták, hogy kristályrácson
áthaladva az elektron is ugyanolyan elhajlásképet mutat, mint a szerkezetileg hasonló optikai
rácson áthaladó fény. Claus Jönsson, svéd fizikus elvégezte a Young-féle két rés ḱısérletet is
az elektronnal, és teljesen azonos elhajlásképet kapott, mint amit Young is kapott 1799-ben.

De Broglie azt feltételezte, hogy az elektron-hullám csoportsebessége megegyezik az elekt-
ron, mint részecske sebességével, a hullámhossza pedig - hasonlóan a fotonhoz - ford́ıtottan
arányos a lendületével, azaz

λ =
h

p
,

és

p = mv = ℏk =
h

2π

2π

λ

Továbbá de Broglie szerint az atomi elektronpályák hossza mindig a hullámhossz egész
számú többszöröse (12. ábra):

mvnrn = n
h

2π
,

ahol n = 1, 2,... lehet. Most tekintsük az előző két egyenletet, és fejezzük ki a kerületet
a hullámhosszal:

2rnπ = nλ.

12. ábra.

Látható, hogyha körpályának képzeljük el az elektronpályát, akkor tényleg megegyeznek
a kerületek a hullámhossz egészszámú többszöröseivel.
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A hullámtermészet ḱısérleti igazolása (két rés ḱısérlet) teljesen egyérteműen bebizonýıtotta,
hogy az elektron nem csak részecske természetű, hisz, amennyiben ”golyók” lennének az
elektronok, úgy a réseken áthaladó elektronok képe megegyezett volna az egyik résen áthaladó
és a másik résen áthaladó golyók képének összegével, ám nem ezt tapasztalták, tehát valahol
interferenciának kellett keletkeznie, ami viszont a hullám sajátos tulajdonsága.

Az elektronra is igazak a fotonra feĺırt összefüggések a hullám (ω, k)- és részecsketermészet
(E,p) között:

E = hf =
h

2π
ω = ℏω

p =
h

λ
n =

h

2π
k = ℏk.

Fontos megjegyezni, hogy nem csak az elektronnak és a fotonnak van hullámtermészete,
hanem mindennek. Ezt a tényt protonok, neutronok, He atom és C60 molekula esetén
ḱısérletileg is bebizonýıtották.

3.2. A fekete test sugárzása

Általános tapasztalat, hogy minden gáz, folyadék és szilárd anyag -273 Kelvinnél maga-
sabb hőmérsékleten elektromágneses hullámokat sugároz, másnéven sugárzást emittál.

A minden sugárzást elnyelő (abszorbeáló), úgy nevezett fekete test (13. ábra) sugárzása
független a sugárzó test anyagától, illetve alakjától.

13. ábra.

Azért nyel el minden sugárzást, mert a fényforrás csak egy nagyon kis résen tud bejutni
a test belsejébe, és ott a folyamatos visszaverődésekkor energiát vesźıt, és matematikailag
nagyon kicsiny az esélye, hogy a hullám bármikor pontosan úgy érkezzen a réshez, ahogy
befele érkezett, tehát pongyolán megfogalmazva ”sosem jön ki”.

A ḱısérletekben rögźıtett hőmérsékleten mérték a felületegységen (vagy hullámhosszon)
hullámhosszegységre eső kisugárzott intenzitást, amit S(λ,T)-vel jelölünk. A mérések után
a következő görbét kapták:
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14. ábra.

A mérésekkel kapcsolatban több megfigyelés, illetve törvény született

1. Wien-törvény

2. Stefan-Boltzmann-törvény

3. Planck-törvény

Wien megfigyelése, vagy törvénye kimondja, hogy a görbe maximumhelyének és a hőmérsékletnek
(amin a ḱısérletet elvégezték) szorzata állandó, és

λmaxT = 2.898 · 10−3mK.

Stefan-Boltzmann-törvény azt mondja ki, hogy a felületegységen sugárzott összteljeśıtmény
az abszolút hőmérséklet negyedik hatványával nő, tehát

P (T )

A
= σT 4 =

∫∞
0

S(λ, T )dλ

A
,

ahol a paraméter értéke

σ = 5.6705 · 10−8 W

m2K4

Planck a méréseket próbálta zárt alakban léırni. Tudták, hogy az ideális fekete test,
minden sźınt tökéletesen elnyel, és minden sźınt sugároz. Az intenzitás csak a hőmérséklettől
függ, a test alakjától, illetve anyagától nem.

Planck talált rá egy formulát, amely egyszerű, és csupán egyetlen paramétertől függ,
amelyet a mért görbékre való illesztéssel határozott meg, ez a Planck állandó.

Feltette, hogy a sugárzást az üregben lévő ”oszcillátorok”, az üreg rezonáns módusai
nyelték el, és sugározták vissza a kis nýıláson át.

Adott T hőmérsékleten, egyensúlyban, minden szabadságfokra 1
2
kT energia jut, ahol

k a Boltzmann-állandó. A módusok száma a frekvencia négyzetével arányosan nő, ez az
ultraibolya paradox.
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A mérésekkel egyező formula azonban egy komoly ”gondra” mutatott rá, ugyanis csak úgy
sikerült megegyeznie a mérésekkel, hogy Planck feltette, hogy az oszcillátorok csak ”kvantált”
energiájúak lehetnek, mégpedig

E = nh, n = 0, 1, 2..

Ezek után pedig a formula:

S(λ, T ) =
2πhc

λ5

1

e
hc

λkBT − 1
.

3.3. Fényelektromos jelenség

Amennyiben egy monokromatikus fénnyel viláǵıtunk meg egy fémfelületet, akkor a fémfelületből
elektronok lépnek ki, ez a fényelektromos jelenség. Ezeket az elektronokat h́ıvjuk ”fotoelekt-
ronoknak”. (15. ábra).

Monokromatikusnak h́ıvunk minden olyan hullámot, amelynek a frekvenciája állandó.

15. ábra.

Megfigyelhető, hogy a kilépő elektronok maximális energiája nem függ a megviláǵıtó fény
intezitázástól, csupán a frekvenciájától (sźınétől). A fény intenzitásának növelésével azonban
a kilépő elektronok száma növekszik (16. ábra).
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16. ábra.

Észrevehetjük azt is, hogy a fékező feszültség növelésével az anódra eljutó elektronok
száma csökken, illetve, ha a feszültség eléri a zárófeszültség értékét (és meghaladja azt),
akkor nem ér el egyetlen elektron sem a katódról az anódra (17. ábra).

17. ábra.

Ez a zárófeszültség a megviláǵıtó fény frekvenciájával lineárisan változik (18. ábra).

18. ábra.

Az elektromágneses śıkhullám ”energiacsomagokban” terjed, és az f frekvenciájú csomag
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energiája:

E = hf.

A fény c sebességgel repülő hf energiájú ”részecskeként” ütközik a fémfelületbe, amennyi-
ben pedig van elég energiája, úgy behatol és kiüt egy elektront. Az energia megmaradása:

hf ≥ 1

2
mv2 + EW ,

ahol EW az elektron ”kilépési” munkája, a jobb oldal másik tagja pedig a kilépő elektron
kinetikus energiája.

Záró feszültség esetén ez a következőképpen módosul:

qeUr =
1

2
mv2max = hf − EW .

Einstein szerint a fény fotoelektromos hatása miatt a fény részecskeként működik, tehát
sugárzás ”tűsugárzás”, azaz hullámcsomagokban terjed, és a fenti összefüggések igazak rá.
Ezt egyébként Selényi Pál cáfolta meg, aki bebizonýıtotta, hogy a fény sugárzása gömb-
sugárzás.

3.4. Az atommag

1911-ben Ernest Rutherford felfedezte az atommagot. Rutherford ḱısérletileg bebizonýıtotta,
hogy az atomban lévő pozit́ıv töltés egy kis magban koncentrálódik, melynek átmérője
nagyjából 10−5nm, ı́gy 10000 -szer kisebb, mint az atom átmérője, vagyis 0.1nm, azaz 1Å
(Ångström). A ḱısérletet az alábbi ábra szemlélteti:

19. ábra.

A ḱısérletben radioakt́ıv He atomból ”nyert” sugarakkal bombázott egy aranyfóliát. A
lemez köré pedig ernyőket tett, hogy vizsgálja a becsapódó részecskéket. Azt vette észre,
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hogy a részecskéknek 98%-a akadálytalan áthaladt a fólián, mı́g 2% jelentősen elhajlott.
Továbbá a részecsék 0.01%-a visszaverődött.

Ez alapján négy dolgot foglmazhatunk meg:

1. Az atomban van egy pici atommag. Az atommag térfogata 10−15-ed része az egész atom
térfogatának

2. Majdnem a teljes atomtömeg az atommagban koncentrálódik

3. Az atommag töltése pozit́ıv. Az elektronok negat́ıv töltése neutralizálja az atomot.

4. Az elektronok az atommag körüli üres térben keringenek.

3.5. Bohr-féle atommodell

A fizikusok közül Bohr volt az első, aki ”teljes” atommodellt éṕıtett, mégpedig a legegy-
szerűbb atomra, a hidrogénre. Bohr szerint az atom egy klasszikus, a Naprendszerünkhöz
hasonló, ”planetáris” rendszer, azaz

1

4πε

e2

r2n
= m

v2n
rn

,

viszont a pályák perdülete

mvnrn = n
h

2π
, n = 1, 2, ...

Az atom foton abszorpció, illetve emisszió során kibocsát, vagy elnyel fotont, ı́gy egy
elektronja eggyel alacsonyabb, vagy magasabb energiaszintre ugrik, vagyis

hf = En2 − En1.

Hidrogén atom esetén a pályák sugarai, illetve energiái:

rn =
h2ε0

πme2
n2

En =
me4

8ε0h2

1

n2
.

Ennek bizonýıtása teljesen mechanikus. Induljunk ki az első posztulátumból, vagyis abból,
hogy az atom planetáris rendszer, majd ezt alaḱıtsuk a következők szerint:

mvnrn = n
h

2π
=
(mv2n

rn

)r2n
vn

=
( 1

4πε0

e2

r2n

)r2n
vn

=
e2

4πε0

1

vn
.

Most pedig ı́rjuk fel a kapott eredményt

n
h

2π
=

e2

4πε0

1

vn
,
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amiből kifejezve vn-t

vn =
e2

2ε0h

1

n
.

Most fejezzük ki a perdületből

mvnrn = n
h

2π

a pálya sugarát. Ekkor azt kapjuk, hogy

rn =
nh

2πmvn
=

nh

2πm e2

2ε0h
1
n

=
h2ε0

πme2
n2.

Ezekből az eredményekből pedig, ha feĺırjuk a hidrogén atom összenergiáját, ami a kine-
tikus és potenciális energiák összege, akkor a következő összefüggésre jutunk:

E = Ekin + Epot =
1

2
mv2n −

e2

4πε0rn
=

me4

8ε20h
2

1

n2
− me4

4ε0h2

1

n2
= − me4

8ε20h
2

1

n2
.

3.6. Vonalas spektrum

A newtoni, illetve maxwelli fizikából ismerjük, hogy az atommag körüli gyorsulva mozgó
töltés, vagyis elektron sugároz, mint egy körantenna. Azonban, ha a körmozgást végző elekt-
ron energiát vesźıtene, úgy fokozatosan közelednie kéne az atommaghoz, mı́g végül bele nem
zuhanna. A sugározva keringő elektron által kisugárzott energia frekvenciája folytonosan
változik tehát.

A ḱısérletek viszont azt mutatják, hogy az atomok (tiszta gázok) sugárzásának spektruma
”vonalas”, tehát diszkrét frekvenciákon megy végbe a sugárzás. Amennyiben pedig az atom
eléri a legkisebb energiája, úgy nevezett ”ground state” állapotot, akkor megszűnik sugározni.
Stacionárius sajátállapotokban az elektron nem sugároz. Ez is egy jelentős lépés volt a
klasszikus fizikától a kvantumfizikáig.

3.7. Schrödinger-egyenlet

Erwin Schrödinger által megalkotott egyenlet sok választ adott az addigi nyitott kérdésekre
a kvantummechanikában. Célja az volt, hogy egy hullámfüggvénnyel léırja az elektront.

Az elektron hullámszerűen (is) viselkedik, és interferenciát mutat (ami szuperpoźıció-
szerű), ezért a hullámfüggvény lineáris. A hullámfüggvény a térbeli változásokat köti össze
az időbeli változásokkal.

Adott egy részecske (elektron), ennek vanme tömege és qe töltése. Továbbá potenciáljával
adott egy erőtér, amelyben mozog az elektron. Ekkor a következő egyenletet nevezzük
időfüggő Schrödinger-egyenletnek:

HΨ = jℏ
∂Ψ

∂t
.
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Ψ az elektron hullámfüggvénye (igazából az egyenlet ismeretlene), és H a Hamilton-
operátor, ami az elektron összenergiája, tehát:

H = − ℏ
2

2m
△+ Epot,

ahol

Ekin

k2 =
ℏ
2

2m
.

hiszen

p = ℏk

és
p2 = (m0v)

2. (15)

3.7.1. A Schrödinger-egyenlet megoldása változók szétválasztásával

A fenti egyenletet a változók szétválasztása módszerével oldhatjuk meg. Ugyan ez egy
erős, de működő feltételezés, hisz azt jelenti, hogy a Ψ(r,t) függvény feĺırható egy időtől
függő, helytől nem, illetve egy helytől függő, időtől nem függő tag szorzataként, vagyis

Ψ(r, t) = Ψ(r)φ(t).

Ezt most helyetteśıtsük vissza az időfüggetlen egyenletbe, és használjuk fel a Hamilton-
operátorra vonatkozó összefüggést:

φHΨ =
(

− ℏ
2

2m
△+ Vpot

)

Ψφ = jℏΨ
dφ

dt
.

Az egyenlet bal oldalán azért emeltük ki a csak időtől függő φ tagot, mert amiatt,
hogy csak az időtől függ, a Hamilton-operátor szempontjából csak egy konstans, és lineáris
operátorként a konstans szorzó kihozható az operátor elé.

Ezek után, ha osztjuk az utolsó egynletet Ψ-vel és φ-vel, akkor a következő egyenletre
jutunk:

jℏ
1

φ

dφ

dt
=

1

Ψ
HΨ.

Az egyenlet egyenlő lesz egy konstanssal, hiszen egy csak időtől függő, és egy csak helytől
függő függvény akkor lesz egyenlő egymással, ha azok azonosan egyenlőek valamilyen kons-
tanssal.

Így tehát az eredeti időfüggő Schrödinger-egyenletünk két, már jóval könnyebb, és kezel-
hetőbb egyenletre esik szét:

jℏ
1

φ

dφ

dt
= E,
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illetve

1

Ψ
HΨ = E.

Az előbbi egyenletet kicsit rendezve azt kapjuk, hogy

dφ

dt
= −j

E

ℏ
φ,

aminek a megoldása:

φ(t) = e−j E
ℏ
t.

Amegoldásban a C konstanstól eltekintünk, azt a teljes megoldásnál fogjuk meghatározni.

3.7.2. Az időfüggetlen Schrödinger-egyenlet

A másik egyszerűśıtett egyenletet pedig átrendezve

HΨ = EΨ.

Ez tehát az időfüggetlen Schrödinger-egyenlet. Ehhez az egyenlethez anaĺıtikus módon is
eljuthatunk, ha egy sima Helmholtz-féle hullámegyenletből indulunk ki, amely a következő
alakú:

∇2Ψ = −k2Ψ,

ahol ∇2 = △.
A Ψ(r, t) függvényre mindig igaz az alábbi összefüggés:

∫

V

Ψ∗ΨdV = 1,

hiszen a

Ψ∗Ψ = |Ψ|2

jelentése valósźınűség, és V pedig az adott konfigurációs tér, ı́gy hát annak a valósźınűségnek,
hogy a konfigurációs térben van az elektron egynek kell lennie.

A Ψ hullámfüggvény jellemzi a rendszert, és egy komplex értékű függvény, tehát Ψ∗

függvény ennek konjugáltja.

3.8. A kvantummechnika Scrödinger-féle posztulátumai

Schrödinger posztulátumai a következők:

1. A fizikai rendszer állapota a hullámfüggvény (Ψ). A hullámfüggvény a konfigurációs
tér q1, q2, q3, ..., qf koordinátáitól és az időtől függő, egyértékű, komplex függvény, mely
folytonos és anaĺıtikus.
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2. Annak a valósźınűsége, hogy a részecskét a konfigurációs tér egy dV térfogatában
találjuk

ΨΨ∗dV,

amiből pedig következik, hogy
∫

R
ΨΨ∗dV = 1,

azaz Ψ négyzetesen integrálható függvénye a konfigurációs tér változóinak.

3. Minden megfigyelhető L mennyiséghez egy L operátor rendelünk. Amennyiben egy
makroszkopikus műszerrel mérjük az L fizikai mennyiséget, akkor a mérés eredménye
mindig a L operátor egyik sajátértéke lesz, ahol

LΨ = λΨ.

4. Amennyiben a fizikai rendszer állapot Ψ és L mennyiséget mérjük L adott operátorral,
akkor a mérés várható értéke

〈L〉 =
∫

V

Ψ∗LΨdV,

szórása pedig

∆L =
√

〈L2〉+ 〈L〉2.

5. A zárt rendszer hullámfüggvénye az időfüggő Schrödinger-egyenlet szerint fejlődik:

HΨ = jℏ
∂Ψ

∂t

3.9. A posztulátumok következményei

A fenti Schrödinger-posztulátumoknak két következményét tárgyaljuk a fejezetben:

– Heisenberg-féle határozatlansági reláció

– Ehrenfest-tétel

Azonban mielőtt ezeket diszkutálnánk, előbb vizsgáljuk meg a kvantummechanikai méréseket.

3.9.1. Kvantummechanikai mérés

Minden megfigyelhető fizikai mennyiséghez (L) egy operátort rendelünk, legyen ez L.
Amennyiben egy makroszkopikus műszerrel mérjük ezt a mennyiséget, azt tapasztaljuk, hogy
a mérés eredménye mindig, és minden körülmények között az L operátor egyik sajátértéke
lesz

LΨ = λΨ,
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ahol λ az L operátor sajátértéke.
Fontos megjegyezni, hogy a klasszikus dinamikai mennyiségek a hely és lendület koor-

dináták függvényei:

– Kinetikus energia:

Ekin =
1

2
m〈v,v〉 = 1

2m
p.

– Perdület:

L = r× p.

– Energia:

E = Ekin + Epot =
n
∑

i=1

1

2mi

〈pi,pi〉+ Epot

Úgy rendelünk operátorokat dinamikai mennyiségekhez, hogy a klasszikus kifejezésekbe
behelyetteśıtjük a hely és a lendület operátorait.

Az alábbiakban pár példát találhatunk:

1. Helykoordináta:

x → x : xΨ = xΨ.

2. Lendület:

px = mẋ → p = −jℏ
∂

∂x
→ p = −jℏ∇ → pΨ = −jℏ∇Ψ.

3. Perdület:

L = r× p = −jℏ(r×∇).

4. Összenergia:

E = Ekin + Epot → H = − ℏ
2

2m
△+ Epot.

A negyedik pontban bemutatott H operátor a Hamilton-operátor.

3.9.2. A mérés várható értéke:

Ha a fizikai rendszer állapota Ψ, és az L mennyiséget figyeljük, mely az L operátorral
ı́rható le, akkor L várható értéke a következő:

〈L〉 =
∫

V

Ψ∗LΨdV.
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3.9.3. A mérés szórása

A fenti feltételek adottak, tehát a rendszer állapota ugyancsak Ψ és L mennyiséget fi-
gyeljük, akkor ennek szórása - melyet ∆L-el jelölünk - megegyezik a következővel:

∆L =
√

〈L2〉 − 〈L〉2.

3.9.4. A várható érték időbeli függése

Vegyük az előbb emĺıtett feltételeket tehát Ψ, L legyen adott. Vizsgáljuk a várható érték
időbeni változását, és azt tapasztaljuk, hogy

d〈L〉
dt

=
j

ℏ

∫

V

Ψ∗(HL− LH)ΨdV.

Ennek bizonýıtása nem nehéz. Induljunk ki a várható érték defińıciójából:

〈L〉 =
∫

V

Ψ∗LΨdV,

majd vegyük mindkét oldal időszerinti deriváltját:

d〈L〉
dt

=

∫

V

∂Ψ∗

∂t
LΨ+Ψ∗L

∂Ψ

∂t
dV.

Ekkor a Schrödinger-egyenletet felhasználva azt kapjuk, hogy

∂Ψ

∂t
= − j

ℏ
HΨ,

illetve

∂Ψ∗

∂t
=

j

ℏ
(HΨ)∗,

amit visszahelyetteśıtve a várható értékről szóló egyenletbe és kihasználva, hogy az operátorok
lineárisak:

d〈L〉
dt

=
j

ℏ

∫

V

Ψ∗(HL− LH)ΨdV,

ahol felhasználtuk, hogy

(HΨ)∗ = Ψ∗H∗ = Ψ∗H.

Az integrandusban található operátorszorzatok különbségét úgy h́ıvjuk, hogy kommutátor,
és jelölése [A,B], ahol A és B lineáris operátorok. Amennyiben

[A,B] = AB−BA = 0,

úgy a két operátor kommutál, tehát a szorzásban, ha felcseréljük őket egymással, nem
változtatunk az eredményen.

Egy mérés várható értéke akkor marad állandó az időben, ha a mérendő L mennyiség L

operátora kommutál a H Hamilton-operátorral.
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3.9.5. Ehrenfest-tétel

A tétel kimondja, hogy a lendület várható értékének idő szerinti deriváltja egyenlő az erő
várható értékével.

Ennek bizonýıtása mechanikus. Vegyük egy részecske lendületének p operátorát, és
tegyük fel, hogy az erőtér a potenciáljával adott. Ekkor az előbb bemutatott összefüggés
a lendület várható értékének változására a következő:

d〈p〉
dt

=
j

ℏ

∫

V

Ψ∗[H,p]ΨdV

Mivel ismerjük a Hamilton-operátort

H = − ℏ
2

2m
△+ Epot,

és a lendület operátorát

p = −jℏ∇,

ezért kiszámı́thatjuk a [H, p] -t:

[H,p] = −ℏ

j
∇Epot.

Ezután, ha ezt visszahelyetteśıtjük az lendület várható értékének változásáról szóló egyen-
letbe, azt kapjuk, hogy:

d〈p〉
dt

=
j

ℏ

∫

V

Ψ∗(−ℏ

j
∇Epot)ΨdV =

∫

V

Ψ∗(−∇Epot)ΨdV = 〈−∇Epot〉 = 〈F 〉.

Ez egy elég szoros kapcsolat a Newton-mozgásegyenlettel.

3.9.6. Heisenberg-féle határozatlansági reláció

Vegyünk egy L és egy M fizikai mennyiséget, rendre L és M operátorokkal. Vegyük
továbbá ezek kommutátorát, [L, M] -et. Ezt a két mennyiséget most egyszerre figyeljük
meg.

A két mennyiség egyidejű megfigyelésének szórása eleget tesz a következő egyenlőtlenségnek:

∆L∆M ≥
∣

∣

∣

∣

∣

1

2

∫

V

Ψ∗[L,M]ΨdV

∣

∣

∣

∣

∣

.

Ez a Heisenberg-féle határozatlansági reláció, mely kimondja, hogy ha két fizikai mennyiség
operátorai nem cserélhetők fel, akkor a két mennyiség egyidejű megfigyelése pontosságának
objekt́ıv korlátja van.

Ez azt jelenti, hogyha az egyik mennyiség szórását csökkentjük, akkor a másik mennyiség
szórása növekedni fog, és ford́ıtva.

Amennyiben a két fizikai mennyiség operátorai kommutálnak, úgy nincs korlátja a meg-
figyelés pontosságának.
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3.9.7. A hely és lendület együttes mérésének pontossági korlátja

Vegyünk egy helykoordinátát (x ), és az azonos irányú px lendületkoordinátát. Számoljuk
ki először a hely (x ) és lendület (p) operátorok hatását a Ψ hullámfüggvényre:

(pxx− xpx)Ψ(x, y, z) =
ℏ

j

( ∂

∂x
(xΨ)− x

∂Ψ

∂x

)

.

Ebből pedig látható, hogy

[px,x] =
ℏ

j
.

Ezek után, ha helyetteśıtünk az eredeti egyenletbe, azt kapjuk, hogy

∆x∆px ≥
∣

∣

∣

∣

∣

1

2

∫

V

Ψ∗[px,x]ΨdV

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2

∫

V

Ψ∗ℏ

j
ΨdV

∣

∣

∣

∣

∣

=
ℏ

2

∣

∣

∣

∣

∣

∫

V

Ψ∗ΨdV

∣

∣

∣

∣

∣

=
ℏ

2

Tehát a helykoordináta és a vele azonos irányú lendületkoordináta mérésének pontosságára
vonatkozó reláció a következő:

∆x∆px ≥ ℏ

2
=

h

4π
.

3.10. Az elektron spektruma

Alapvetően kétféle elektron létezik, kötött és szabad elektron. A kötött (például egy
potenciáldobozba zárt elektron) egy állóhullám, mı́g a szabad elektron hullámcsomagként
viselkedik.

A hullámfüggvény meghatározásához meg kell oldanunk a Schrödinger-egyenletet. Először
az egyszerűbb esettel foglalkozzunk, vagyis amikor az elektron kötött. A doboz, mint erőtér
a következő potenciállal ı́rható le

Epot(x) =

{

0 ha x ∈ (0,a)
∞ különben

Ekkor a változók szétválasztása miatt tudjuk, hogy

Ψ(x, t) = Ψ(x)φ(t)

és

φ(t) = e−j E
ℏ
t.

Az időfüggetlen Schrödinger-egyenlet a doboz belsejében a következő:

− ℏ
2

2m

∂2Ψ

∂x2
= EΨ.

Ennek a megoldása

Ψ = Asin(kx) + Bcos(kx).
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A peremfeltételek (Ψ(0) = Ψ(a) = 0) felhasználásval meghatározhatjuk a konstansokat

Ψ(0) = 0 = B,

illetve

Ψ(a) = Asin(ka) → k =
nπ

a
, n = 1, 2, ...

Ekkor a Ψn feĺırható a következőképp:

Ψn = Ansin(knx),

ahol

kn =
nπ

a
.

Ezután a φ és Ψ függvények szorzataként előáll a Ψ(x, t) hullámfüggvény:

Ψ(x, t) = Ansin(
nπ

a
x)e−j E

ℏ
t.

An-t úgy határozzuk meg, hogy a hullámfüggvény abszolútértékének konfigurációs téren
vett integrálja egyet kell adjon:
∫ a

0

A2sin2
(nπ

a
x
)

dx =
A2

2

∫ a

0

1− cos
(2nπ

a
x
)

dx =
A2

2

[

x− a
sin(2nπ

a
x)

2nπ

]a

0
=

A2

2
a = 1.

Az egyenletet rendezve pedig megkapjuk az A együtthatót:

A =

√

2

a
.

Tehát a Ψn(x,t) megoldás:

Ψn(x, t) =

{ √

2
a
sin(nπ

a
x)e−j E

ℏ
t. ha x ∈ (0,a)

0 különben

3.10.1. A dobozba zárt elektron megengedett energiái

Az energiát feĺırhatjuk úgy, mint a kinetikus és potenciális energia összegeként:

E = Ekin + Epot.

Mivel a dobozban a potenciális energia zérus, ezért az elektron lehetséges energiaszintjei
meg fognak egyezni az elektron kinetikus energiáival, azaz:

En = Enkin
=

ℏ
2k2

2m
=

h2

8ma2
n2, n = 1, 2, ...

A legkisebb energiaszint n=1 esetén van

E1 =
h2

8ma2
, (16)

és a további kvantált energiák ennek n2-szeresei.
Magától értetődően az n. energiaszinthez az n. hullámfüggvény tartozik.
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3.10.2. Háromdimenziós dobozba zárt elektron hullámfüggvényei és energiaértékei

A Ψ hullámfüggvény meghatározásához meg kell oldanunk a Schrödinger-egyenletet, amit
továbbra is a változók szétválasztása módszerrel tehetünk meg legkönyebben, hisz ekkor
tudjuk, hogy

Ψ(r, t) = Ψ(r)φ(t),

és

φ(t) = e−j E
ℏ
t.

Mielőtt azonban rátérnék a Ψ(r) meghatározására, adjuk meg a konfigurációs téren a
potenciált:

Epot(r) =

{

0 ha x ∈ (0,a), y ∈ (0,b), z ∈ (0,c)
∞ különben

Innetől csak az időfüggetlen Schrödinger-egyenletet kell megoldanunk, ami a következő:

HΨ = − ℏ
2

2m
△Ψ = EΨ.

Ekkor továbbra is a változók szétválasztása módszerét használva feĺırhatjuk Ψ(r)-t a
következő szorzatalakban:

Ψ(r) = Ψ1(x)Ψ2(y)Ψ3(z).

Amennyiben erre elvégezzük a második differenciálképzést, azt kapjuk, hogy

△(Ψ1(x)Ψ2(y)Ψ3(z)) = Ψ2(y)Ψ3(z)
d2Ψ1(x)

dx2
+Ψ1(x)Ψ3(z)

d2Ψ2(y)

dy2
+Ψ1(x)Ψ2(y)

d2Ψ3(z)

d2z
.

Ezek után, ha a kapott időfüggetlen Schrödinger-egyenletbe behelyetteśıtjük az imént
kapott kifejezést, és végigosztunk Ψ1(x)Ψ2(y)Ψ3(z)-el, illetve rendezzük az egyenletet, akkor
azt kapjuk, hogy

1

Ψ1(x)

d2Ψ1(x)

dx2
+

1

Ψ2(y)

d2Ψ2(y)

dy2
+

1

Ψ3(z)

d2Ψ3(z)

dz2
= −2m

ℏ2
E.

Ezután bontsuk az E -t három összetevőre

E = E1 + E2 + E3,

és akkor kaptunk 3 különálló, egy-dimenziós, időfüggetlen Schrödinger-egyenletet

d2Ψ1(x)

dx2
= −2m

ℏ2
E1Ψ1(x)

d2Ψ2(y)

dy2
= −2m

ℏ2
E2Ψ2(y)

d2Ψ3(z)

dz2
= −2m

ℏ2
E3Ψ3(z)
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Ezen egyeletek megoldása(i) rendre:

Ψ1(x) = Asin
(n1π

a
x
)

, n1 = 1, 2, ...

Ψ2(y) = Bsin
(n2π

b
y
)

, n2 = 1, 2, ...

Ψ3(z) = Csin
(n3π

c
z
)

, n3 = 1, 2, ...

Tehát ebből feĺırhatjuk ezek szorzatával a Ψ(r)-t:

Ψ(r) = Ψ1(x)Ψ2(y)Ψ3(z) = Dsin
(n1π

a
x
)

sin
(n2π

b
y
)

sin
(n3π

c
z
)

.

D meghatározása a következő egyenletből történik:

D2

∫ a

0

∫ b

0

∫ c

0

sin2
(n1π

a
x
)

sin2
(n2π

b
y
)

sin2
(n3π

c
z
)

dzdydx = 1.

Mivel az integrandus változók szerint rendezhető (hiszen szeparábilisen elvégezhető a
hármas integrál külön-külön, de nem szorzatonként feĺırva), ı́gy az integrál kiszámı́tása meg-
egyezik azzal, mintha 3 integrál szorzataként ı́rnánk fel, amikből az egyik:

∫ a

0

sin2
(n1π

a
x
)

dx =
1

2

∫ a

0

1− cos
(2n1π

a
x
)

dx =
1

2

[

x− a
sin(2nπ

a
x)

2nπ

]a

0
=

1

2
a,

és ezt felhasználva, és tudván azt, hogy a másik két integrál is teljesen hasonló ehhez, azt
kapjuk, hogy:

∫ b

0

sin2
(n2π

b
y
)

dy =
1

2
b

illetve
∫ c

0

sin2
(n3π

c
z
)

dz =
1

2
c.

Ekkor mivel tudjuk, hogy a teljes integrál az előző három integrál szorzata, ezért azt
kapjuk ezeket behelyetteśıtve, hogy:

D21

8
abc = 1,

amiből megkapjuk a D-t a

D =

√

8

abc

alakban.
Mindezek után tehát a háromdimenziós dobozba zárt elektron hullámfüggvénye(i):

Ψn1n2n3
(r, t) =

√

8

abc
sin
(n1π

a
x
)

sin
(n2π

b
y
)

sin
(n3π

c
z
)

e−j
En1n2n3

ℏ
t,
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ahol

En1n2n3
= E1 + E2 + E3 =

h2

8m

(n2
1

a2
+

n2
2

b2
+

n2
3

c2

)

az elektron megengedett energiaértékei.
A hullámfüggvény csak a dobozban egyezik meg a kiszámolttal, a dobozon ḱıvül természetesen

azonosan zérus.

3.10.3. Elfajuló stacionárius sajátállapotok

Tegyük fel, hogy a=b=c (tehát a doboz szimmetrikus, méghozzá egy kocka). Ekkor az
energiaértékek ı́gy alakulnak:

En1n2n3
= E1 + E2 + E3 =

h2

8ma2
(n2

1 + n2
2 + n2

3).

Az elektron állapotát a sajátfüggvény határozza meg. Ez esetben azonban egynél több
sajátfüggvény is tartozhat egy energiaszinthez (sajátértékhez). A fent emĺıtett konfigurációs
téren

– a ”ground-state” állapot E1 energiájához (1,1,1) kvantumszámú sajátfüggvény tartozik,

– a következő E2 = 2E1 energiaszinthez három sajátfüggvény tartozik: (2,1,1), (1,2,1),
(1,1,2),

– ...

– az E6 = 14
3
E1 energiaszinthez hat különböző sajátfüggvény tartozik: (1,2,3),(1,3,2),

(2,1,3), (2,3,1),(3,1,2), (3,2,1).

Amennyiben az elektronra mágneses tér is hat (ez szinte mindig ı́gy van), akkor minden
(n1, n2, n3) kvantumszám hármashoz még két különböző ”spin-kvantumszámú” sajátfüggvény
tartozik +1

2
és −1

2
:

Ψ+ 1

2

= Ψn1n2n3
Ψs

(

+
1

2

)

,

illetve

Ψ− 1

2

= Ψn1n2n3
Ψs

(

− 1

2

)

Így minden energiaszinthez kétszer annyi sajátállapot tartozik.
Ezek alapján a Ψ sajátfüggvényekből a spektrum kiszámı́tható, ha Fourier-transzformáljuk

a hullámfüggvényeket.
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3.10.4. Több elektron a dobozban

Tegyük fel, hogy ezután nem csak egy elektront vizsgálunk a dobozban, hanem ”bedo-
bunk” egy másikat is. Akkor a már megismertetett energiaszintek egyikére fog kerülni, és
hullámfüggvénye olyan lesz, hogy ne egyezzen a már vele azonos energiaszinten lévő elektron
hullámfüggvényével (amennyiben van vele azonos energiaszinten lévő elektron).

Az elektronok a Hund-szabály és Pauli-elv szerint próbálnak rendeződni, tehát nincs két
olyan elektron, amelynek a hullámfüggvénye megegyezik, és törekednek a minimális energia-
szintre való helyezkedésre, továbbá igyekeznek párośıtatlanul maradni.

3.10.5. Szabad elektron. A hullámcsomag

Vegyünk egy erőmentes teret - tehát ne ”zárjuk be” az elektront egy dobozba, vagy
gömbbe, vagy bármilyen más zárt térrészbe, és ne hassunk rá semmilyen erővel. Ekkor a
Schrödinger-egyenlet az alábbi formát ölti:

− ℏ
2

2m

d2

dx2
Ψ = EΨ.

Ezt átrendezve azt kapjuk, hogy

d2Ψ

dx2
= −2mE

ℏ2
Ψ = −k2Ψ,

ahol

k =
1

ℏ

√
2mE,

tehát

Ek =
ℏ
2

2m
k2.

A Schrödinger-egyenlet megoldásai:

Ψk = Ake
jkx.

A Ψ(x,t)-t megkaphatjuk, ha kiszámoljuk az alábbi integrált:

Ψ(x, t) =

∫ ∞

−∞
Ake

j

(

kx−E
ℏ
t

)

dk,

Ez lesz a szabad elektron hullámfüggvénye.
Az Ak hullámcsomag meghatározható a következőképp is:

A(k, t) =
1

2π

∫ ∞

−∞
Ψ(x, t)e

−j

(

kx−E
ℏ
t

)

dx.

Vegyük észre, hogy Ak és Ψ egymásnak Fourier-transzformáltjai!
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3.10.6. Hullámcsomag a helykoordinátákkal és lendületkoordinátákkal

Tegyük fel, hogy a hullámfüggvényünk az alábbi alakú (t=0 pillanatban):

Ψ(r, 0) =

{

1√
a
ej

p0
ℏ
x ha x ∈ (−a

2
,a
2
)

0 különben

Amennyiben ezt a függvényt Fourier-transzformáljuk, megkapjuk az A(k,t) realizációt.
Ekkor, felhasználjuk, hogy

p = ℏk → k =
p

ℏ
,

és ezt helyetteśıtve egy csak lendülettől (és időtől) függő hullámcsomagot kapunk.
A hely- és lendületkoordinátákkal megadott hullámcsomagot a Fourier-transzformáció

köti össze. Figyelni kell azonban a lendületkoordinátákkal adott reprezentációból helykoor-
dinátákra való áttérésnél, ugyanis

dp = ℏdk → dk =
dp

ℏ
,

továbbá arra is, hogy a helyetteśıtési integrálás miatt a momentum szerinti integráláskor
az integrálási határok is változnak

−a

2
< x <

a

2
→ p0 −

ℏ

a
< p < p0 +

ℏ

a

Amennyiben ∆x = a
2
és ∆p = ℏ

a
választással élünk, akkor megkapjuk a Heisenberg-féle

határozatlansági relációt a hely és momentumkoordináták operátora esetében:

∆x∆p =
ℏ

2
(17)

A hullámcsomagot különböző hullámszámú (lendületű) komponensekből álĺıtjuk össze.

3.11. Hidrogén és hidrogénszerű atomok

Egy pozit́ıv töltésű atommag környezetében az egy-elektron problémának egzakt, anaĺıtikus
megoldása van. Az elektron az atommag gömbszimmetrikus Coulomb erőtrében mozog, tehát
a potenciál itt

Epot = qeU = − Ze2

4πε0

1

r
.

A Schrödinger-egyenlet ı́gy a következőképpen alakul:

∆Ψ +
2m

ℏ2

(

E +
Ze2

4πε0r

)

Ψ = 0.
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Az E -re és Ψ-re vonatkozó sajátérték problémát most tekintsük gömbi koordinátákkal,
mivel

∆Ψ = ∆r +
1

r2
∆ϑ,ϕ,

ahol

∆r =
1

r2
∂

∂r

(

r2
∂

∂r

)

illetve

1

r2
∆ϑ,ϕ =

1

sinϑ

∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+
1

sin2ϑ

∂2

∂ϕ2
.

Így pedig Ψ redukálható három darab közönséges differenciálegyenlet szorzatára, azaz

Ψ(r, ϑ, ϕ) = R(r)Φ(ϕ)ϑ(ϑ).

Ezek után pedig a három különálló differenciálegyenlet a következő:

1

ϑ

d2ϑ

dϕ2
= −m2

1

ϑ
sinϑ

d

dϑ

(

sinϑ
dϑ

dϑ

)

+ λsin2ϑ = m2

1

r2
d

dr

(

r2
dR

dr

)

+
[2m

ℏ2
r2
(

E +
Ze2

4πε0r

)

− λ

r2

]

R = 0.

Ezek megoldásai rendre

Φm(ϕ) = ejmϕ

ϑm
l (ϑ) = Pm

l (cosϑ)

Rnl(ρ) = Anle
−ρ(2ρ)lL2l+1

n+1 (2ρ),

ahol

ρ =
Zr

a0
,

és

a0 =
ε0h

2

πme2
∼= 0.0528nm.

Az n. energiaszint

En = − mZ2e4

8ε0h2n2
, n = 1, 2, ..

Ezekből tehát a teljes hullámfüggvény, azaz a Schrödinger-egyenlet megoldása:

Ψnlm(r, ϑ, ϕ) = Ae−p(2ρ)lL2l+1
n+1 (2ρ)P

m(cosϑ)ejmϕ.
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A konstans meghatározható az alábbi formulával:

A

∫ ∞

0

r2

[

∫ π

0

sinϑ

(

∫ 2π

0

Ψ∗
nlmΨnlmdϕ

)]

dr = 1

Egy n atomszámhoz

n−1
∑

l=0

(2l + 1) = n2

különböző sajátfüggvény tartozik, mert l 0-tól n-ig vehet fel értékeket, mı́gm 2l+1 értéket
vehet fel, hiszen |m| ≤ l.

Ezen ḱıvül minden n,l,m kvantumszám-hármashoz két-két spin kvantumszám is tartozik

Ψ+ 1

2

= ΨnlmΨ
(

+
1

2

)

Ψ− 1

2

= ΨnlmΨ
(

− 1

2

)

.

Így tehát az összes lehetőséget még dupláznunk kell, azaz összesen 2n2 a lehetséges
sajátállapotok száma 1-1 energiaszinthez.

3.12. A testek kvantummechanikája

A testek atommagokból és elektronokból épülnek fel. Ahhoz, hogy ezeket általánosan tud-
juk vizsgálni, előbb az egy-eletkron problémát kell megoldanunk több atommag esetén. Ezt
úgy tudjuk, hogy képzeletben ”kiszivattyúzzuk” az elektronokat az anyagból, majd egyesével
tesszük azokat vissza, ı́gy elérve az egyensúlyi állapotot.

Az atomoknak diszkrét energia szintjei vannak, de ezek felhasadnak s,p,d,f pályákra,
amelyeket az elektronok fokozatosan be tudnak tölteni. Amennyiben egy kristály N darab Z
rendszámú atomból épül fel, akkor e kettő szorzata adja meg a kristyálban lévő elektronok
számát. Fontos azonban megjegyezni, hogy T=0K -en igaz csak, hogy minden energiaszint
a Fermi-szintnek megfelelően van betöltve, egyébként ez nem igaz. Amint nem abszolút
nulla hőmérsékleten vagyunk, úgy az elektronok a Fermi-Dirac statisztika szerint töltik be
az elektronpályákat.

”Soft-matter”-ről, vagyis ”lágytestről” akkor beszélhetünk, ha egy anyag könnyen változtatja
formáját, fizikai tulajdonságait például hőingadozásra, vagy hőközlésre. Ezek általában
folyékony anyagok, folyékony kristályok, membránok stb. A testek másik nagy halmaza
a szilárdtestek.
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4. Statisztikus és szilárdtest fizika

Mint az előző fejezet végén láthattuk a való életben, és a mérnöki gyakorlatban nem
csupán egy-elekton problémák vannak, nem potenciáldoboz van, és nem egyszerű körülmény.
Ezek léırását nagyban seǵıti a statisztikus fizika, ahol N db részecske (elektron) viselkedését
ı́rjuk le.

4.1. Mikro- és makroállapotok

Tegyük fel, hogy egy rendszer hullámfüggvény Ψ, akkor a rendszer Ψ mikroállapotban van.
Általában viszont az energiaszintek elfajulóak, tehát egy E energiaszinten több különböző
hullámfüggvény, ı́gy mikroállapot van.

Egy testben az elektronok különböző energiákon helyezkednek el. Így az N(E) jelölés
a rendszer markoállapotait adja meg. Az energia-sajátértékeket En-nel, a mikroállapotok
számát Zn-nel, az elektronpopulációkat pedig Nn-nel jelöljük.

Általánosan elmondható, hogy zárt rendszer esetén az elektronok száma és a rendszer
összenergiája állandó, vagyis

∑

i

Ni = N

∑

i

NiEi = E0.

4.2. A statisztikus fizika posztulátumai

A zárt rendszerre a következők igazak:

– Minden mikroállapot egyformán valósźınű.

– A rendszer ”gyorsan” konvergál a legvalósźınűbb makroállapothoz. Ez az egyensúly.

– A makroállapot valósźınűsége arányos az őt megvalóśıtó mikroállapotok számával.

4.3. Fermionok, bozonok és megkülönböztethető testek

Először is nézzük, hogy a fermionok, bozonok és a megkülönböztethető testek között mi
az eltérés.

Vegyünk egy azonos részecskékből (pl. elektronok) álló rendszert. Két azonos részecske
esetén a sajátérték-probléma megoldható, és ha felcseréljük egymással a két részecskét, ak-
kor a sajátértékek nem változnak, tehát a Ψ hullámfüggvények közötti eltérést csak egy
állandóval való szorzás jelentheti. Tegyük fel, hogy ez az állandó a2, és legyen a2=1, azaz
létezik egy szimmetrikus és egy antiszimmetrikus hullámfüggvény-pár, hiszen a1=1, illetve
a2=-1. A részecske megfigyelései azonban csak Ψ∗Ψ-től függnek.

Ez azt jelenti, hogy a részecskék felcserélése nem változtat a mérés eredményén, ami a
klasszikus fizikához képest egy lényeges különbség. Abban ugyanis minden egyes részecske
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”történetét” egymástól függetlenül végigḱısérhetjük, ám a kvantummechanikában ez nincs
ı́gy.

Amennyiben két részecske hullámfüggvénye átlapolódott, úgy a két részecske már megkü-
lönböztethetetlen lesz. A természetben kétféle részecske létezik: bozonok és fermionok. A
bozonok állapotfüggvénye szimmetrikus, és a spinkvantumszámuk egész szám (0,±1 ), mı́g a
fermionok állapotfüggvénye antiszimmetrikus, és spinkvantumszámuk ±1

2
. Fermionok közé

tartoznak például az elektronok, mı́g a bozonok közé a fotonok.
Ezek után pedig nézzük meg, hogy a bozonok, fermionok és megkülönböztethetetlen testek

makroállapotait előálĺıtó mikroállapotok számát hogy kaphatjuk meg
A fermionok mikroállapotainak számát a Fermi-Dirac statisztika ı́rja le. A Z mikorállapot-

ban N db fermion
(

Z

N

)

féleképpen lehet. Egy makroállapotot realizáló mikroállapotok száma:
Ni(Ei). Ebből a statisztikát a

wFD =
∏

i

(

Z

N

)

=
∏

i

Zi!

Ni!(Zi −Ni)!

kifejezés adja meg, ami tulajdonképpen egy ismétlés nélküli kombináció.
A bozonok makroállapotait előálĺıtó mikroállapotok számát a Bose-Einstein statisztika

ı́rja le. Az N1, N2, ..., Ni, ... eloszlást megvalóśıtó mikroállapotok számát egy ismétléses kom-
bináció ı́rja le, amely a következő:

wBE =
∏

i

(

Ni + Zi − 1

Ni

)

=
∏

i

(Ni + Zi − 1)

Ni!(Zi − 1)!
.

A megkülönböztethető testek statisztikáját a Maxwell-Boltzmann statisztika ı́rja le, ezt
szokás klasszikus statisztikának is nevezni:

wMB =
N !
∏

i Ni!

∏

i

ZNI

i .

4.3.1. Fermionok egyensúlyi állapota

A fermionok egyensúlyi állapotára beláthatjuk, hogy a legvalósźınűbb makroállapotban
lesz az egyensúly. Induljunk ki a Fermi-Dirac statisztikából, vegyük annak természetes alapú
logaritmusát, hiszen az eredeti statisztika maximuma ugyanott lesz, ahol a logaritmusának
maximuma. Ekkor, ha alkalmazzuk a logaritmus azonosságait, a következőt kapjuk:

lnwFD =
∑

i

(lnZi!− ln (Zi −Ni)!− lnNi!).

Mielőtt azonban továbbmennénk, használjuk fel a Stirling-közeĺıtést, miszerint

n! ∼
(n

e

)n

,

ha n elég nagy. Ebből pedig következik, hogy

lnn! ≈ n ln
n

e
= n lnn− n ≈ n lnn.
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Ezt helyetteśıtve a statisztika logaritmuásba az

lnwFD =
∑

i

(

Zi lnZi − (Zi −Ni) ln (Zi −Ni)−Ni lnNi

)

összefüggéshez jutunk. A függvénynek pedig azt a maximumát keressük, amely eleget tesz
az állandósági feltételeknek, azaz annak, hogy a zárt rendszer összenergiája és elektronjainak
száma állandó.

Vezessük be α és β paramétereket a következőképpen:

lnw = lnw + α

(

N −
∑

i

Ni

)

+ β

(

E0 −
∑

i

NiEi

)

.

Ekkor, ha alkalmazzuk a Lagrange-multiplikátor módszerét, a szélsőérték-probléma meg-
oldása:

∂

∂Ni

[

lnw + α

(

N −
∑

i

Ni

)

+ β

(

E0 −
∑

i

NiEi

)]

= 0, i = 1, 2, ...

amiből pedig következik, hogy

∂

∂Ni

lnw − α− βEi = 0, i = 1, 2, ...

A statisztika logaritmusának Ni szerinti parciális deriváltjai a következők:

∂

∂Ni

lnw = ln (Zi −Ni)− lnNi,

és az egyenletünk egzakt formájában:

ln
Zi −Ni

Ni

− α− βEi = 0

alakot ölti.
Ebből, ha kifejezzük Ni-t, azt kapjuk, hogy

NFD
i =

Zi

eα+βEi + 1
.

4.3.2. Fermi-függvény

Az eddigiek ismeretében meghatározhatjuk a Fermi-függvényt is. Vezessük be az alábbi
jelöléseket:

β =
1

kbT

α = − EF

kbT
,
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ahol kb a Boltzmann-állandó, melynek értéke 1.38·10−23Ws
K
, T az abszolút hőmérséklet,

és EF a Fermi (energia)szint. Ezekkel a jelölésekkel élve az Ni-re vonatkozó függvényünk a
következő:

NFD
i =

Zi

eα+βEi + 1
= Zi

1

e
Ei−EF

kT + 1
,

és ez a Fermi-függvény. Amennyiben abszolút 0K -en vagyunk, úgy a függvény két értéket
vehet fel:

fT=0(E) =

{

1 ha E < EF

0 ha E > EF

.

4.4. Az elektronok makroállapota

Vegyünk először a legegyszerűbb esetet, amikoris T=0K, és tegyük fel, hogy az energia-
szint alacsonyabban van, mint a Fermi szint, tehát E < EF . Ekkor az elektronok számát -
amelyekre teljesül az előbbi feltétel - az

N(E) = na3 =
π

3

1

E
3

2

0

E
3

2

összefüggés adja meg. Ennek tudatában pedig ki tudjuk számolni, hogy mennyi elektron
van az E és E+dE energiaszintek között:

dN = N(E + dE)−N(E) =
dN

dE
dE =

π

2E
3

2

0

E
1

2dE.

Most pedig tekintsük azt az esetet, amikor a hőmérséklet nem abszolút nulla fok. Ekkor
a fenti összefüggés változik

dN = ρ(E)dE =
π

2E
3

2

0

E
1

2

e
E−EF

kT + 1
dE,

majd, ha felhasználjuk, hogy E0 = h2

8ma2
, akkor a kifejezésünket a kövekező alakban is

ı́rhatjuk:

dN =
4πV (2m)

3

2

h3

E
1

2

e
E−EF

kT + 1
dE.

A fent definiált ρ sűrűségfüggvényt más alakokban is ı́rhatjuk. A Fermi-Dirac statisz-
tikának ezen ḱıvül két másik sűrűségfüggvénye van. Az egyik az elektronok eloszlását adja
meg a sebességkomponensek függvényében, azaz

ρ(vx, vy, vz)dvxdvydvz = 2V
(m

h

)3 1

e
E−EF

kT + 1
dvxdvydvz,
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mı́g a másik a v és v+dv közé eső sebességű elektronok számát adja meg:

dN = ρ(v)dv = 8πV
(m

h

)3

v2
1

e
E−EF

kT + 1
dv.

Ezekből pedig látható, hogy a makroállapotok száma nem más, mint a mikroállapotok
sűrűségének és a betöltés valósźınűségének a szorzata, ahol a betöltés valósźınűsége a Fermi-
függvény, mı́g a mikroállapotok sűrűségét háromféle módon is megadhatjuk.

4.5. Sommerfeld-féle kádmodell

Vegyünk egy ideális vezetőt. A vezetőnek a vezetési és a vegyérték sávja közel van
egymáshoz (vagy már épp átlapolódik), és valencia sávját betöltik az elektronok. Tegyük
fel, hogy abszolút nulla fokon vagyunk. Ekkor a kádmodell megmutatja, hogy az elektro-
nok legnagyobb megtalálási valósźınűsége, tehát a ρ maximuma a Fermi szintnél lesz, és
odáig a valencia sáv alsó energiájától egészen a Fermi szintig növekedni fog a megtalálási
valósźınűség, viszont a Fermi szint feletti energiaszinteken nem lesz egyáltalán elektron.

Most tegyük fel, hogy nem abszolút nulla fokon vagyunk, tehát T > 0. Ekkor azonban
észrevehetjük, hogy a sűrűségfüggvény torzul, és nem csak, hogy maximuma nem a Fermi
szint közelében lesz, de ezen energiaszint feletti energiákon is képes elhelyezkedni az elektron.

Sommerfeld-féle kádmodell esetén a vezetők Fermi szintje T = 0 esetén kiszámolható, a
következő formulával:

EF0 =
h2

8m

(3n

π

)
2

3

.

Szigetelők esetében azonban a valenciasáv és a vezetési sáv közötti ”rés”, úgynevezett
”gap” jelentős, ı́gy az elektronok nem tudnak ”felugrani” a vezetési sávba, ezért nem vezetnek
a szigetelők. Szigetelők esetén is meghatározható a Fermi szint, mégpedig a vezető és a
valenciasáv energiaszintjének számtani átlagaként:

EF =
Ec + Ev

2
.

Kilépési munkának nevezzük azt az W munkát, mely egy elektron a fémből a vákuumba
történő eltávoĺıtásához szükséges. A kilépési munkát az elektronok a fémből való kirepülésük
során végzik a pozit́ıv többlettöltés és az elektronok között levő vonzási erők ellen. Ezenḱıvül
a W munka az előzőleg kirepült és az éppen kirepülő elektron között fennálló tasźıtó erők
ellen is végződik, melyek a fém felülete körül ”elektronfelhőt” hoznak létre. A kilépési munka
a fém kémiai természetétől és a felületének állapotától függ. A kilépési munka a fém Fermi
szintje (EF ) és a vákuumszint (EB) közötti energiatávolság. Elektronvolt (eV) egységben
adják meg.

4.6. Termikus elektronemisszió

Adott egy fém, amelyet külső forrással meleǵıtünk. Ekkor egy bizonyos idő után a
fémfelületről ki fognak lépni elektronok, ha teljeśıtik az ehhez szükséges feltételt. Először
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is tegyük fel, hogy a fémfelület határa x tengelyre merőleges, és válasszunk ki ezen egy
egységnyi felületet. Ahhoz, hogy az elektron kilépjen a fémből a következőnek kell teljesülnie:

1

2
mv2 ≥ EB,

Ezt egy másodperc alatt a fémben lévő összes vx sebességkomponenssel rendelkező elekt-
ronok közül azok érik el, amelyek egy vx hosszúságú hasáb belsejében vannak.

A felületegységen időegységenként kilépő elektronok számát jelöljük Jt-vel és

Jt = Ne. (18)

Az elektronok kilépése a Sommerfeld-féle kádmodell alapján történik. Az elektronok
száma egy egységnyi térfogatban

dNV=1 =
2m3

h3

1

e
E−EF

kT + 1
dvxdvydvz,

mı́g vx térfogatban

dNx = vx
2m3

h3

1

e
E−EF

kT + 1
dvxdvydvz

Ezek után feĺırhatjuk a felületegységen időegység alatt kilépő elektronok számát az

N =
2m3

h3

∫ ∞

vxB

∫ ∞

−∞

∫ ∞

−∞

vx

e
E−EF

kT + 1
dvzdvydvx =

4πk2
Bm

h3
T 2e−

EB−EF
kT .

Ezt pedig (18)-ba behelyetteśıthetjük és megkapjuk a Richardson-Dushman formulát:

Jt =
4πk2

Bme

h3
T 2e−

EB−EF
kT .

4.6.1. A katód működése

A katód is termikus elektronemisszióra épül. A fémet (például wolframszál) külső ener-

giabefektetéssel meleǵıtjük, amely hatására elektronokat emittál. Általában egy eszközben
anóddal együtt ”szerepel”, amely a kibocsátott elektronokat abszorpcióval ”befogadja”. A
legtöbb vákuumcsőben ezt alkalmazzák.

A katód meleǵıthető közvetlenül, vagy közvetetten. Előbbi esetben például egy wolf-
ramszál a filamentum, és ez közvetlenül forrósodik, és ”lövi” ki magából az elektronokat,
mı́g utóbbi esetben a filamentum nem maga a katód, az csak felhev́ıtett állapotban meleǵıti
a katódot, ami ezáltal ”kilövi” az elektronokat. Utóbbi mellett szól, hogy itt szeparálva van
az elektromos potenciál a vákuum csőtől.

4.7. Kontakt potenciál

Illesszünk össze két, nem azonos fémet, legyen ez A és B. Ekkor azt vesszük észre, hogy
feszültségkülönbség jön létre a két fém között. Ennek magyarázata az, hogy a sávelmélet
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szerint a vezetőknek vagy a valencia, illetve vezetési sávja csak részben betöltött, vagy az,
hogy a kettő átlapolódik. Mindkét esetben üres helyek vannak a sávokban. A fémek esetében
ezek az elektronok (a vezetési sáv elektronjai) képesek elmozdulni. A két érintkező fém elekt-
ronjainak állapotai eltérnek egymástól, továbbá a szabad elektronok (vegyértékelektronok)
száma is különbözik a fémekben, tehát az elektronkoncentráció is.

Mivel a közös határ az elektronok számára átjárható, ezért a nagyobb energiaszintű elekt-
ronokat tartalmazó fémből időegység alatt több elektron jut át, mint amennyi ellenkező
irányból érkezik, ezért viszonylag rövid időn belül beáll egy egyensúly, amikoris mindkét
fémben azonos lesz az elektronkoncentráció.

Emiatt az elektronvándorlás miatt mérhető potenciálkülönbség a fém két vége között. Az
értéke erősen hőmérsékletfüggő, és a két fémnek azonos hőmérsékletűnek kell lennie.

4.8. Sajátvezetésű félvezetők

A sajátvezetésű félvezetőket szokás szerkezeti, vagy intrinsic félvezetőnek is h́ıvni. Jel-
legzetességük, hogy T=0 esetén nincsenek ugyan elektronok a vezetési sávban, de amint
meleǵıtjük a fémet már lesznek, azonban ezek a valenciasávból jönnek, tehát maguk mögött
”lyukakat” hagynak.

Nagyszámú vezetési sávbeli elektron és nagyszámú valencia sávbeli lyuk makro állapota
hasonló a vezetők vezetési sávbeli állapotához.

A lyukak ”virtuális” részecskék pozit́ıv töltéssel és ”effekt́ıv” tömeggel.
Az elektronállapotok sűrűségét a vezetési sávban a következő kifejezéssel tudjuk számolni:

gn(E) =
4πV (2m

(n)
eff )

3

2

h3

√

E − EC0 = Kn

√

E − EC0,

mı́g a lyukállapotok sűrűségét a valencia a sávban a következővel:

gp(E) =
4πV (2m

(p)
eff )

3

2

h3

√

EV 0 − E = Kp

√

EV 0 − E

Ez lényegében azt jelenti, hogy minél inkább távolodunk vezetési sáv legkisebb, illetve a
valencia sáv legmagasabb energiaszintjétől, úgy növekszik az elektronok megtalálási valósźınűsége.

Az elektronpopuláció sűrűségét a vezetési sávban megadhatjuk a következőképp:

n =

∫ ∞

EC

gn(E)f(E)dE = Kn

∫ ∞

EC

√

EV 0 − E
1

e
E−EF

kT + 1
dE ∼= NCe

EF−EC
kT ,

ahol

Nc = Kn

√

π(kT )3

2
= 2

(2πm
(n)
effkT )

3

2

h3
.

Ezek után pedig meghatározzuk a lyukpopulációt a valenciasávban. Először is nézzük,
hogy a lyukra vonatkozó valósźınűség mennyi:

fp(E) = 1− f(E) = 1− 1

e
E−EF

kT + 1
=

1

e
EF−E

kT + 1
,
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ebből pedig a lyuksűrűsűég a vegyérték sávban:

p = Kp

∫ EV

−∞

√

EV − E
1

e
EF−E

kT + 1
dE ∼= NV e

EV −EF
kT

és

NV = Kp

√

π(kT )3

2
= 2

(2πm
(p)
effkT )

3

2

h3

4.8.1. Töltés-neutralitás elve és a Fermi-szint

Sajátvezetésű félvezetőkben érvényes a töltés-neutralitás elve, vagyis pontosan annyi
elektron van a vezetési sávban, mint amennyi lyuk a valencia sávban. Ennek magyarázata,
hogy az összes elektron a valencia sávból ”ugrott fel” a vezetési sávba, ezért maga mögött
minden elektron 1-1 ”lyukat” hagyott, tehát számuknak megegyezőnek kell lennie.

Ebből pedig levezethejük az intrinsic félvezetők Fermi-szintjét, hiszen

n = NCe
EF−EC

kT = p = NV e
EV −EF

kT .

Osszunk le a kapott kifejezésben, hogy a következő összefüggésre jussunk:

NV

NC

= e
EF−EC

kT
−EV −EF

kT .

Ezután vegyük mindkét oldal természetes alapú logaritmusát

ln
NV

NC

=
EF − EC

kT
− EV − EF

kT
,

és fejezzük ki az EF Fermi szintet:

EF =
EV + EC

2
+

1

2
kT ln

NV

NC

=
EV + EC

2
+

3

4
kT ln

m
(p)
eff

m
(n)
eff

.

Végezetül pedig határozzuk meg a negat́ıv töltéshordozók (elektronok) számát:

ni =
√

NCNV e
−EC−EV

2kT .

4.9. Adalékolt félvezető anyagok

Az előbbiekben megismert intrinsic (másnéven sajátvezetésű) anyagok mellett van egy
másik t́ıpusa a félvezetőknek, az adalékolt félvezetők. Adalékolással ugyanis növelhető a
vezetése az adott anyagnak. Adalékolás alatt azt értjük, mikor az anyag kristályrácsában
lévő néhány atomot olyan atomra cserélünk, amelynek a valenciasávjában több/kevesebb
elektron van, mint az eredetinek.

Amennyiben a hozzáadott atom vegyértéksávjában több elektron van, mint a kristályrács
többi atomjának vegyértéksávjában, akkor n-t́ıpusú vezetésről, ford́ıtott esetben pedig p-
t́ıpusúról beszélünk.
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Az előző alfejezetben kiszámoltuk a saját vezetésű félvezetők Fermi-szintjét. Adalékolással
ez a szint a vezetési sáv (n-t́ıpusú), illetőleg a valencia sáv (p-t́ıpusú) felé tolható el. Előbbi
esetben donorszintnek, mı́g utóbbi esetben akceptorszintnek is nevezhetjük ezt a szintet.
Ugyanis n-t́ıpusú adalékoláskor azok az elektronok, amelyek ”feleslegesként” maradnak (több
az elektron, mint amennyinek lennie kéne) a tiltott sávba helyezkednek el, mégpedig közel
a vezetési sávhoz, és ezért kis energiával is felgerjeszthetőek a vezetési sávba, mı́g p-t́ıpus
esetében ”lyukakat” (elektronhiányos helyeket) találhatunk a valencia sávban (hisz kevés az
elektron a ”megszokotthoz” képest), és ezeket a helyeket betölthetik az érkező elektronok.

Fontos megjegyezni, hogy ebben az esetben a töltés-neutralitás elve kissé változik. Ugyanis
ezesetben nem csak a negat́ıv töltéshordozók és ”lyukak” számáról szól az egyenlőség, hanem
figyelembe kell venni, hogy mekkora mennyiségű atomot adalékoltunk az eredeti anyagunkba,
továbbá az akceptor és donor atomokból származó negat́ıv töltéshordozókat, illetve ”lyuka-
kat”.

Mindezek mellett külön kell vizsgálnunk az n-t́ıpusú és a p-t́ıpusú vezetők töltés-neutralitását.
Amennyiben p-t́ıpusú adalékolt félvezetőről beszélünk, úgy az elektronok megtalálási

valósźınűsége - az intrinsictől eltérően - nem egyenlő nagyságú a vezetési és valencia sávban,
hanem az utóbbiban nagyobb, mı́g n-t́ıpusú vezetés esetén a vezetési sávban nagyobb az
elektronok megtalálási valósźınűsége.

A p- és n-t́ıpusú félvezetők közti különbségeket az alábbi táblázat tartalmazza:

n-t́ıpus - p-t́ıpus
nn = pn +Nd − nd Töltés-neutralitás elve np + na = pp

EF = EC + kBT ln Nd

NC
Fermi-szint EF = EV + kBT ln NV

Na

nn ≈ Nd Többségi töltéshordozó pp ≈ Na

pn = NCNV

Nd
e

EV −EC
kBT = nipi

nn
Kisebbségi töltéshordozó np =

NCNV

Na
e

EC−EV
kBT = nipi

pp

np = nipi = NCNV e
EV −EC

kBT ∼ CT 3e
EV −EC

kBT

4.9.1. Kontakt potenciál adalékolt félvezetők esetén

Amennyiben összeérintünk egy p-, illetve n-t́ıpusú adalékolt félvezetőt, úgy köztük is
kontaktpotenciál lép fel, ahogy a 4.7. fejezetben már láttuk. Ezesetben azonban termikus
egyensúly beálltakor a két különböző anyag Fermi-szintje kiegyenĺıtődik.

Általánosságban elmondhatjuk tehát, hogy a termikus egyensúlyban lévő p-n dióda,
n-p-n, illetve p-n-p átmenetű bipoláris tranzisztor Fermi-szintje is kiegyenĺıtődik, habár
összeérintéskor a Fermi-szintek nincsenek egyhelyen, és csak a kontaktpotenciál miatti töltésvándorlással
áll be az egyensúly.

4.10. Töltéshordozók mozgatása külső elektromos térrel

A külső elektromos tér erejének nagyságát a

F = qE
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egyenlettel adhatjuk meg. Amennyiben szeretnék feĺırni a Newton-féle mozgásegyenletet
az anyagbeli elektronra, úgy a következőt kapjuk:

Fbelső + Fkülső = m
dv

dt
,

ahol a csak külső erőkre vonatkozó egyenlet:

Fkülső = meffekt́ıv
dv

dt
,

és meffekt́ıv az elektron effekt́ıv tömege.
Az erőmentes térben mozgó, másnéven szabad elektronok effekt́ıv tömege megegyzik az

elektron ”rendes” tömegével. A szabad elektron csoportsebessége megegyezik az elektron,
mint részecske sebességével, ebből feĺırhatjuk a következőt:

v =
dω

dk
=

2π

h

dE

dk
,

ahol kihasználtuk, hogy

E = hf,

illetve

ω = 2πf.

Ezek után, ha feĺırjuk, hogy

dE

dt
= Fv =

2π

h
F
dE

dk
,

vagyis, hogy az elektromos erőtér nagyságának időbeli megváltozása megegyezik az elekt-
ronra ható erő és az elektron sebességének szorzatával, továbbá felhasználjuk, hogy

dE

dt
=

dE

dk

dk

dt
,

akkor az előbbiek értelmében kifejezhetjük az erő nagyságát:

F =
h

2π

dk

dt
.

Ezek után ı́rjuk fel az elektron gyorsulását:

dv

dt
=

2π

h

d

dt

(dE

dk

)

=
2π

h

d2E

dk2

dk

dt
.

Használjuk fel a Newton-mozgásegyenletet, amiből tudjuk, hogy a gyorsulás megegyezik
az erő és a tömeg hányadosával. Helyetteśıtsük a gyorsulásra és erőre az előbb kiszámolt
képleteinket, és fejezzük ki az effekt́ıv tömeget. Azt kapjuk, hogy

meffekt́ıv =
4π2

h2

d2E

dk2
.
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4.11. A félvezetők töltéshordozóinak dinamikája

A félvezetőkben nagy számú elektron mozog, az egymás közti kölcsönhatásukat pedig
elhanyagolhatjuk. A félvezetőkben lévő áramlásokat a vezetési sáv elektronjainak és a pozit́ıv
töltésűnek titulált fikt́ıv részecskék, másnéven lyukak mozgásával ı́rhatjuk le.

A részecskék áramlása lehet külső tér hatására létrejövő, és lehet töltéshordozók kon-
centrációgradiense által hajtott. Előbbit vezetési (sodródási) áramnak nevezzük, mı́g utóbbit
diffúziós áramnak.

Általános tényként tudjuk, hogy minden anyag az egyensúly felé törekszik, és a benne
lévő változások addig mennek végbe (spontán, külső erők hatása nélkül) mı́g az egyensúly
be nem áll. Azonban, ha kimozd́ıtjuk az egyensúlyból az anyagot, akkor az ezután igyekszik
visszaállni az egyensúlyi állapot felé, ezt nevezzük relaxációnak.

4.11.1. Gerjesztés és rekombináció

Elektron-lyuk párokat létrehozhatunk úgy, ha egy-egy elektront gerjesztünk egy magasabb
energiaszintre (azaz a vezetési sávba gerjesztjük), ekkor egy ”lyukat” hagy maga mögött.

Az elektron-lyuk párok azonban képesek rekombinálódni, azaz a valencia sávban lévő
”lyukat” egy elektron betölteni. A rekombináció során a vegyérték sávba (le)ugró elektron
fotont bocsáthat ki, ezt h́ıvják sugárzásos rekombinációnak.

4.11.2. Differenciális Ohm-törvény a félvezetőkben

Tegyük fel, hogy az adott félvezetőre elektromos teret kapcsolunk. Ekkor a lyukak a
térerősség irányába, mı́g az elektronok azzal ellentétes irányba sodródnak.

Általános megfigyelés, hogy a fellépő áramsűrűség arányos a sodródó elektronok sebességének
várható értékével, vagyis

Jn = en〈ve〉,

ahol e az elektron töltése, mı́g n a félvezető (szabad) elektronjainak száma. Továbbá a
vezetőképesség

σn =
Jn

|E| = en
〈ve〉
|E| .

A legutolsó egyenlet jobboldalán szereplő hányadost nevezzük mozgékonyságnak, és

µn =
〈ve〉
|E| .

A mozgékonysággal kifejezve a vezetőképesség és az áramsűrűség:

σn = enµn

Jn = enµnE.
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Az előbbiekben feĺırt egyenletek a negat́ıv töltéshordózkra (elektron) vonatkoznak, de
ugyanezeket feĺırhatjuk a ”lyukakra” is:

σp = epµp

Jp = epµpE.

Egy adott félvezető fajlagos vezetőképessége a fikt́ıv pozit́ıv részecskékre és elektronokra
vonatkozó vezetések összege, tehát

σ = e(nµn + pµp).

Mindezeket felhasználva a differencális Ohm-törvényt tehát ı́rhatjuk a következőképp is:

J = σE = e(nµn + pµp)E = en0µ̃E,

ahol

µ̃ =
n1µ1 + n2µ2

n1 + n2

.

További eltérések lehetnek a különböző félvezetők között, ezt a következő táblázat tartal-
mazza:

szerkezeti (intrinsic) n-t́ıpusú p-t́ıpusú
σi = eni(µn + µp) σn = ennµn σp = eppµp

Saját vezetésű félvezetőben tudjuk, hogy

pi = ni = 2
(2πmeffekt́ıvkBT

h2

)
3

2

e
− ∆E

2kBT ,

amivel a táblázatban megadott képletet feĺırhatjuk a következő alakban is:

σi = eni(µn + µp) = 2e
(2πmeffekt́ıvkBT

h2

)
3

2

(µn + µp)e
− ∆E

2kBT .

4.11.3. Gunn-effektus

Bizonyos anyagokra, ha külső elektromos teret kapcsolunk, és azt növeljük, akkor azt ta-
pasztalhatjuk, hogy a sodródó elektronok mobilitása csökken, ahogy növeljük az elektromos
térerősséget. A két-kimenetű eszközök, melyek ilyen anyagból készülnek képesek a mikro-
hullámú oszcillációra, melynek frekvenciáját nem a befoglaló hálózat, hanem az eszközben
lévő anyag sajátossága határozza meg. Ezt az effektust h́ıvjuk Gunn-effektusnak, felfedezője,
J. B. Gunn után, aki 1963-ban észlelte a jelenséget. Azóta már létezik Gunn-dióda is, ami
ezen az elven működik.

4.11.4. Transzportot léıró dinamikai egyenletek

A vezetési áramot létrehozó sodródást külső tér generálja, az előbbiekben bemutatott
módon. Azonban a diffúziót a pozit́ıv fikt́ıv részecskék és a negat́ıv töltéshordozók változása
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által indukált koncentrációgradiens hajtja, általánosan feĺırható az elektronokra vonatkozó
diffúziós kifejezés:

Jn = −Dngradn,

illetve a ”lyukakra” vonatkozó:

Jp = Dpgradp.

Az előző két kifejezésben szereplő n és p függvények helytől és időtől függnek, ahogy azt
a félvezetőknél már láthattuk.

Mindezek ismeretében feĺırhatjuk a teljes áramsűrűsége(ke)t:

Jn = enµnE+ eDngradn

Jn = epµpE− eDpgradp.

4.12. Az anyagok és az elektromágneses tér kölcsönhatása

A termikus egyensúly beállta után az atomi rendszerek a környezetükkel fény kibocsátásával,
vagy elnyelésével vannak kapcsolatban. Előbbit emissziónak h́ıvjuk, utóbbit abszorpciónak
nevezzük. Kétféle foton emissziót ismerünk: spontán és stimulált.

4.12.1. Emisszió és abszorpció

Tegyük fel, hogy egy atom elnyel egy ”érkező” fotont. Ekkor egy elektronja magasabb
energiaszintű pályára ugrik. Ezt egyébként egy (spontán) emisszió is követheti.

A spontán emisszió során egy (már gerjesztett) elektron ”leugrik” egy alacsonyabb ener-
giaszintű pályára, miközben fotont bocsájt ki.

Azonban előfordulhat az is, hogy egy gerjesztett elektron elnyel még egy fotont, azonban a
várakozásokkal ellentétben nem feljebb ugrik egy még magasabb energiájú orbitálra, hanem
alacsonyabb energiájú pályára ugrik. Ez az úgynevezett stimulált, vagy másnéven indukált
foton emisszió. Fontos megjegyezni, hogy ebben az esetben a fotonok koherensek, azaz térben
és időben teljesen megegyezőek.

4.13. Atomok termikus egyensúlyban

Az atomokra termikus egyensúlyban igaz, hogy az abszorpciók és emissziók száma egyenlő.
A fotonok a Bose-Einstein statisztikát követik (hiszen bozonok), a frekvencájuk függvényében
feĺırt sűrűségfüggvény pedig a következő:

ρ(f) =
8πhf 3

c3
1

e
hf

kBT − 1
.

Ezután pedig feĺırhatjuk az Einstein-féle abszorpciók

B12N1ρ(f),
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spontán emissziók

AN2 = AN1e
− hf

kBT ,

és stimulált emissziók

B21N2ρ(f) = B21N1e
− hf

kBT ρ(f)

számára vonatkozó összefüggéseket. Az atomok, mint megkülönböztethető részecskék
Maxwell-Boltzmann statisztikát követnek. Azaz, felhasználva az előző három egyenlőséget,
tudjuk, hogy

B12ρ(f) = Ae
− hf

kBT +B21e
− hf

kBT ρ(f),

és, ha ezután rendezzük a fenti egyenletet ρ(f)-re, azt kapjuk, hogy

ρ(f) =
A

B12e
hf

kBT − B21

.

Mivel a fotonok a fentiekben meghatározott Bose-Einstein statisztikát követik, ezért a
két statisztikának meg kell egyeznie, azaz

B12 = B21 = B (19)

egyenletet figyelembe véve

A

B
=

8πhf 3

c3
.

A (19)-et megnézve észrevehetjük, hogy az abszorpció és a stimulált emisszió ”szimmet-
rikus”.

4.14. Mérnöki alkalmazások

A fentiekben bemutatott fizikai jelenségeket a mérnöki tudományokban napjainkban egyre
gyakrabban és jobban alkalmazzák.

4.14.1. A LASER és MASER

Az első LASER (Light Amplification by Stimulated Emission of Radiation) rubin szilárdtest
laser volt, méghozzá háromszintű. Ez utóbbi azt jelenti, hogy a legmagasabb (egyébként
sávszerű) energiapályáról az elektronok spontán emisszióval ”összeállnak” (diszkrét energia-
szintre), majd stimulált emisszióval alacsonyabb energiaszintre ugranak.

Az emisszió után a kibocsátott energia a kristályban marad, felmeleǵıti azt, majd el-
kezd vibrálni. Ezután az elektronok még lentebbi energiaszintre ugranak spontán emisszió
ḱıséretében, és ezzel sugárzást bocsátanak ki. A sugárzás hullámhossza a látható fény tar-
tományába esik, innen ered a névben a ”Light” tag.
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Ezen ḱıvül létezik MASER (Microwave Amplification by Stimulated Emission of Radia-
tion) is, amely hasonlóan működik, mint a LASER, de a kisugárzott nyaláb a mikrohullámú
tartományba esik.

A háromszintű LASER/MASER mellett van négyszintű is, amikor a harmadik lépésben
kicsit nagyobb energiaszintre ”esnek” az elektronok, mı́g onnan ”együtt” spontán emisszióval
ugranak tovább egy - már ismét - sávszerű energiapályára.
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