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Two-state atom in sinusoidal electromagnetic field 
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Diagonalization of a 2x2 Hermitian Matrix  
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Eigenvalues of  Ĥ
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General study of a two-state system  
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Static Aspect: Effect of Interaction on the Stationary States  

Eigen-states and eigen-values 

1 2In the , basis the 

matrix representing the system 

  1 11 12
0

21 2 22

ˆ ˆ ˆ E W W
H H W

W E W

      
Diagonalization 

   
   

2 2

1 11 2 22 1 11 2 22 12

2 2

1 11 2 22 1 11 2 22 12

1 1
4

2 2
1 1

4
2 2

E E W E W E W E W W

E E W E W E W E W W





        
        

21 j
21 21

1 11 2 22

2
tan with  0 ; with   0 < 2

W
W W e

E W E W
          

j /2 j /2
1 2

j /2 j /2
1 2

cos sin
2 2

sin cos
2 2

e e

e e

 

 

   
   





 
  



25  Sept  2014 Csurgay Árpád Phys II 2014 9 

Dynamical Aspect: Oscillation between two Unperturbed States     1 2( ) 1 2t c t c t  
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Let the system be in             at  t =  0.  1 (0) 1 
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Rabi Oscillations: 



15 Phys II  13  Csurgay Arpad 

0,0

 10
2

1 
1,0

 10
2

1 Pure entangled state 

12 Novemberr 2012 



16 Phys II  13  Csurgay Arpad 

NMR Quantum Computers 

A nearly ideal physical system that can be used as  

quantum computer is a single molecule, in which  

nuclear spiŶs of iŶdiǀidual atoŵs represeŶt ͞qu-bits .͟  

 IBM’s 7 qubit 

-Quantum Computer 

12 Novemberr 2012 
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Using nuclear magnetic resonance (NMR) techniques,  

the spins can be manipulated, initialized and measured.  

Applying a radio-frequency pulse to the hydrogen  

nucleus addresses that qubit, and causes it to rotate  

from a |0> state to a superposition state. 

      The quantum  behavior of the spins can be exploited 

to perform quantum computation; for example, the carbon  

and hydrogen nuclei in a chloroform molecule represent two qubits.  

0,0 1,0

12 Novemberr 2012 
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Register : Multispin state : ...001010111
Put the spins in a strong enough magnetic field, 

and then let them cool down.  ...0000000
       Illuminate the spins with radiation that is tuned to 

 the resonant frequency connecting the lower,  

spin-down state with the upper spin-up state.  

Assuming that only one of the spins is 

 in resonance, it will switch.  

A nearly ideal physical system that can be used  

as quantum computer is a single molecule,  

iŶ ǁhich Ŷuclear spiŶs of iŶdiǀidual atoŵs represeŶt ͞qubits .͟  

Using nuclear magnetic resonance (NMR) techniques, these  

spins can be manipulated,  initialized and measured.  

12 Novemberr 2012 


