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Two-state atom in sinusoidal electromagnetic field
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Diagonalization of a 2x2 Hermitian Matrix
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It represents a Hermitian

Hyy+Hy, = Tr(H)
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Figenvalues of H

1 1
E, = (Hy+ H12)+E\/(H11_ H,,)? +4lH,[
1 1
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Comments
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General study of a two-state system
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Consequences of the interaction (coupling, perturbation)

E, and E, are no longer the possible energies of the system
|0,) and |, ) are no longer stationary states
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Static Aspect: Effect of Interaction on the Stationary States
Eigen-states and eigen-values
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— + =
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Dynamical Aspect: Oscillation between two Unperturbed States
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Jh—\z// )= [If|0+v(/)

:{Vszll VI\:—/lzz}_Cz((i))_ ‘%>’E+ ‘W_>,E_

() Wa=W,=0

d| c(t)
"l e (t)

E E
wO)=Alw.)+uly)  |w®)=1e " |y ue " |y)
This enables us to obtain Cl(t) and c, (t) by projecting ‘l//(t)>
onto ‘1> and ‘2>

The system oscillates between the two unperturbed states

1) and [2)
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Let the system be in ‘1> at t= 0. ‘W(O)> = ‘1>
Calculate the probability of finding the system in state ‘2> at time t

Let us expand the initial state on the ‘W+>,‘W_> basis
o) =\1>=ej¢’2{cosg\c//+>—sing\w>}
E, _E_
)6 cose . )-sne )|

The probability amplitude of finding the system at t in the state ‘2>
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Rabi formula — Rabi Oscillation
(Isaak Rabi, Nobel Prize 1944)

Fiz (t) —

. . , E.-E
P,(t) Oscillates over time with a frequency of g, = n
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Rabi Oscillations:
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Figure 1.1. Evolutfion of the two-level afom with
confinuous sinusoidal radiarion incident upon Ir —
The Rabi atom. Population moves from one level
to anorther until all atoms are in the excired srare
and then back again. Wirh passing fime this
pattern repears sinusoidally.
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NMR Quantum Computers

A nearly ideal physical system that can be used as
guantum computer is a single molecule, in which
nuclear spins of individual atoms represent “qu-bits”.

IBM’s 7 qubit
-Quantum Computer

Energy

Magnetic Field
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Using nuclear magnetic resonance (NMR) techniques,
the spins can be manipulated, initialized and measured.

The quantum behavior of the spins can be exploited
to perform quantum computation; for example, the carbon
and hydrogen nuclei in a chloroform molecule represent two qubits.
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Applying a radio-frequency pulse to the hydrogen
nucleus addresses that qubit, and causes it to rotate
from a | 0> state to a superposition state.



Energy

Register : Multispin state: WY = ‘ 001010111. >

Put the spins in a strong enough magnetic field,
and then let them cool down, ¥ =|0000000..

-
llluminate the spins with radiation that is tuned to

the resonant frequency connecting the lower,
spin-down state with the upper spin-up state.
® Assuming that only one of the spins is

Magnetic Field
in resonance, it will switch.

Using nuclear magnetic resonance (NMR) techniques, these
spins can be manipulated, initialized and measured.

A nearly ideal physical system that can be used
as quantum computer is a single molecule,
in which nuclear spins of individual atoms represent “qubits”.



