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(i) Given an atom  

prepared at a given time 

in a particular initial state i
0 initialt t0

ˆ  nH n E n

(ii) And the atom is subjected from this  

time onwards              to an external  

interaction 
0t t ˆ

IH t 0
ˆ ˆ

IH H H t 
(iii) What state the atom is at any later moment of time? 

(iv) What is the probability of finding the atom in another  

state at a time                ? 0t T
0 0( )t t t i    ( )

nE
j t

n
n

t t c t e n   
  0

d ˆ ˆj ( ) ( )
d It H H t t
t
  

  2 2

0 0 0(ni nt t T P c t T n t T      

i



kk
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i n

E

0E 

1E
iE

nE

E

0E 

1E
iE

nE

0initialt t 0t t T 

 ˆ
IH t

k

Discrete-to-discrete  transition  

Discrete-to-continuous   

transition  

Collision-type transitions 

 ˆ ˆ ( )IH t W f t  t
( )f t

t
( )f t
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0

We consider a stationary atom "A", of which is described 

ˆthe hamiltonian , and we suppose that another particle 

"B" passes in the neighborhood of "A". 

H

 
 

The interaction potential depends on the 

ˆdistance between A and B:  ( ) ,

ˆ ˆthus  it depends on time. ( ) ( ) ( ),

V R t

V R t W R f t
Before the collision the 

state of atom  A   is   n

There is a possibility that 

after the collision the state

changes to  m
      If the energies before and 

after the collision are the same:

     ELASTIC COLLISION

                 Otherwise:

     INELASTIC COLLISION

A
B

b impact parameter 
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0
ˆAn atom  of   interacts with an incident classical 

electromagnetic wave of which the electric field at the 

position of the stationary atom is 

H

   cost t  E E

   
             To a good approximation, the interaction of the atom 

and the field can be given in terms of electric dipole coupling

ˆ ˆ ; where the electric dipole of the atom is 

ˆ ˆ (Here  is th

IH t t

q q

  


D E

D r e electric charge, and    the radius vector 

between the nucleus and its valence electron).  

r

Sinusoidal -type  interaction 
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Perturbation Theory 

 0
ˆ ˆ

IH H H t  0
ˆ  nH n E n

I n mn H m E E 
   'ˆ ;

1
I IH t H t





Weak interaction: 

 
 is a real, diemnsionless parameter, much 

smaller than unity, which characterizes the 

ˆrelative strenghts of the interaction IH t



(In the two examples,  is proportional (i) to the amplitude of the 

incident electric field, (ii)  is a function of the impact parameter ) b




1 is valid if the electric field is weak,

or the impact parameter is large.

 
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“ĐhƌödiŶgeƌ eƋuatioŶ:       '
0

d ˆj
d It H H t t
t
   

Expanding               in the basis of eigen-states of             we get  t 0Ĥ

  j
( )

nE
t

n
n

t c t e n 

       
     

'
0

j'

d ˆj
d

n

I

E
t

k I n
n

k t k H t k H t t
t

E k t k H t n c t e

   
  

  
  

We project on the eigen-state         of         ,  

and use the identity 

k 0Ĥ 1
n

n n 

         j j j'd
j =

d

k k nE E E
t t t

k k k k k I n
n

E c t c t e E c t e k H t n c t e
t

       
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       j'd
j =

d

k nE E
t

k I n
n

c t k H t n e c t
t




No approximation having been made this far! 

Possibly infinite system of ordinary differential equations 

The coefficients              depend on     ( )nc t 
Perturbation theory consists of developing              as 

a power series of  

( )nc t
     0 1 2 2( ) ...k k k kc t c t c t c t    

Substituting this series we can collect together the 

same order in  
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Oder 0  0d
j =0

d kc t
t

Oder 1        j1 ' 0d
j =

d

k nE E
t

k I n
n

c t k H t n e c t
t




Oder r        j' 1d
j =

d

k nE E
tr r

k I n
n

c t k H t n e c t
t





This system of equations can be solved iteratively. 

The zero order terms are already known: they are the 

constants determined by the initial state of the 

system . On substituting these terms, the first order 

solutions for                                       can be found.  

And so on.   

 1 ; 1,2,3,...kc t k 
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Perturbation of the Stationary States 

 

 

 

• Let us assume that the ͚uŶiǀeƌse͛ is a closed quantum-

mechanical system with known stationary eigenvalues 

and eigenstates 

 

 

 The stationary state Hamiltonian is 0Ĥ

0 0 0
0

ˆ
n n nE  H

0 0 0 0 0 0
1 2 1 2, , , ,... and , , , ,...,n nE E E   

and the external electromagnetic field is weak 

compared to the internal forces    0 0
ˆ ˆ ˆ ˆ .n n n nE      H H H V

22  Sept  2014 
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The ͞peƌtuƌďed͟  sǇsteŵ  
(stationary + weak  electromagnetic field)    0 0

ˆ ˆ ˆ ˆ .n n n nE      H H H V 0 1 
0

ˆ ˆ ˆ ˆ, where , if 0.    H V H H

The perturbed problem is 

 

 

   0 0
ˆ ˆ ˆ ˆ .n n n nE      H H H V

    If the perturbation operator does not depend 

on tiŵe, ǁe Đall the pƌoďleŵ ͚tiŵe-

iŶdepeŶdeŶt͛ peƌtuƌďatioŶ, if  it does, ͚tiŵe-

depeŶdeŶt͛ peƌtuƌďatioŶ.   

22  Sept  2014 
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Time-independent perturbation  

of stationary states 

Let us expand the unknowns into a series of  

 

 

2
0 1 2

2
0 1 2

;

;E E E E

     
 

   
   

  
  

2
0 0 1 2

2 2
0 1 2 0 1 2

ˆ ˆ ,

, ,E E E

     
      

    
      

H V

   0 0
ˆ ˆ ˆ ˆ .n n n nE      H H H V

22  Sept  2014 
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   
   

2
0 0 0 1 0 0 2 1

2
0 0 0 1 1 0 0 2 1 1 2 0

ˆ ˆ ˆ ˆ ...

...E E E E E E

      
       

     
      
H H V H V

0
0 0 0 0

1
0 1 0 0 1 1 0

2
0 2 1 0 2 1 1 2 0

ˆ ,

ˆ ˆ ,

ˆ ˆ .

E

E E

E E E

  
    
     

 
   
    

H

H V

H V

͚)eƌo-oƌdeƌ͛ appƌoǆiŵatioŶ of the solutioŶ ;the uŶpeƌtuƌďedͿ  
 

0
0 0, .mE E m 

22  Sept  2014 
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First order approximation of the solution 

 0 0
1 1 1 .n m

n n

E n n V m E n n E m    
MultiplǇ it fƌoŵ left ďǇ ͚ket͛ 

 

 

 

k

0 0
1 1 1

ˆ
k m k kmk m E k k m E E        V

0 0
0

ˆ ,m m mmE E m m E V   V

0 0

ˆ
.

k m m k

k m
m k

E E



   V

22  Sept  2014 
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͚“eĐoŶd-oƌdeƌ͛ appƌoǆiŵatioŶ ;ŵutatis ŵutaŶdisͿ 
 2

0
0 0

,
mn

m mm
n m m n

V
E E V

E E
   

    
 

0 0

20 0 0 0 0 0

2

20 02
.

k m

k m m k

k n mn mm k m

n m m n m kk m m k

k m

k m m k

V
m k

E E

V V V V
k

E E E E E E

V
m

E E








  
       










22  Sept  2014 



16 Csurgay Árpád Phys II 2014 

     In conclusion, first order approximation of 

perturbed eigenvalues and eigenstates: 

  

 

 

 

 

 

 

 

 

 

 

 

0
1

0
2

0
3

0

,

,

, ,

,n

E

E

E

E

0
1 1

0
2 2

0
3 3

0

ˆ1 1 ,

ˆ2 2 ,

ˆ3 3 , ,

ˆ ,n n

E E

E E

E E

E E n n

 
 
 
 

V

V

V

V

1 , 2 , 3 ,..., ,...n

1 0 0
1 1

2 0 0
2 2

3 0 0
3 3

0 0

ˆ 1
1 ,

ˆ 2
2 ,

ˆ 3
3 ,

ˆ
,

k k

k k

k k

n
k n n k

k
k

E E

k
k

E E

k
k

E E

k n
n k

E E














  
  
  
  






V

V

V

V
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     Start with the eigenvalues and the complete 

orthonormal set of eigenfunctions generated by 

the nonperturbed problem. The perturbation 

operator  V  is given.  For the solution of  a 

perturbation problem we have to calculate 

elements of the matrix  

 

 

ˆ ˆ ˆ1 1 1 2 1 3

ˆ ˆ ˆ2 1 2 2 2 3
.

ˆ ˆ ˆ3 1 3 2 3 3

       

V V V

V V V

V V V

    Every element is an integral on the configuration space 

 

 
1

Conf .space

ˆ ˆ d ...d .n m fn m q q  V V

22  Sept  2014 
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Example 1: A particle moves in a one-dimensional potential 
box with  a small  potential dip.  

• Treat the potential dip as a perturbation to a regular box. Find 
the first order approach of the energy of the ground state. 

pot

for 0, and

0 for 0

x x
V

x

     
2

0 2 0
2

2 π
; ( ) sin

8n n

h n
E n x x

m
 

'
pot

for 0, and

for 0 / 2

0 for / 2

x x

V b x

x

       

0x  x
b

2
x 

x

22  Sept  2014 
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The first order approach  

of the energy of the ground 

state: 

   
 

0 0 0
0 0 0 0

/2 /2
0 0 2
0 0

0 0

/2 /2
2

0 0

1 1 ( ) ( ) ( )d

2 π
( ) ( )d sin d

2 π 2π
sin d 1 cos d ,

E E x x x x

x
x b x x b x

x b x
b x x

 
 

 




   
       

             


 
 

V V

2
0

0 0 2

h
1 1 .

8 2

b
E E

m
   V

22  Sept  2014 
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Problems  
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1. An electron is confined in the ground state in a one 

dimensional box  of     

        a. Calculate the ground state and the first excited 

state  energy of the electron.  

        b. Calculate the average force on the walls of the 

box when  the electron is in the ground state.  

0.1nma 

2
2

2
1,2,...

8n

h
E n n

ma

1 2 138 eV; 4 152 eV;

/ ; n n n

E E E

F a EH H
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11
12 / 7.6 10 eV/m 760 eV/nmF E a

0

0

n n n n

n n n n

E E
a

E E
a a a

H H

H H

d 0n n n n n nE x E dx
a a a

H H

/ / /n na E a F E aH
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2.   Applying  first order perturbation theory, calculate 

the energy of the first three states for a one-

dimensional potential box of width  a,  which has been 

perturbed with a linear potential according to the 

figure. Calculate the perturbed ground-state energy 

and the ground-state eigen-function.  

a
0V
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3. A charged particle is bound in a harmonic oscillator 

of  potential             .  The system is placed into a  

 

 static  external electric field         . 

        Calculate the shift of the energy of the ground 

state up to order  two.    

21

2
kx

E


