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P.A.M. DiƌaĐ’s „ďƌa” aŶd „ket” Notation 

Information we can know about a state      

In quantum physics a physical state is represented by a  

state vector in a complex vector space, called Hilbert space.  

We call the state vector a „ket”, and denote it by   
(This state ket is postulated to contain complete information about 

the physical state.  Everything we are allowed to ask about the 

state is contained in the ket.) 

   
Two kets can be added, and can be multiplied by a 

complex number, and the result is also a ket 

   
Null ket if  0   
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and , with  0, represent the same physical state.    
(Only the „direction” in vector space is of significance. We are 

dealing with rays rather than vectors .) 

The state space of quantum physics is the Hilbert space 

,a b H ; complex numbera b c a    H H

The dimension of the vector space depends on the physical system 

(Spin :  2; Finite dim.: n; Bounded:  countable infinite;  

Free:  continuously infinite) 

Observable is represented by a linear operator 

The operator acts on the ket from left, and maps a ket on a ket.  

 ˆ ˆa a  A A H
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ˆIn general  ,but there are such ketsa c a A

( ) ( ) ( )ˆ ˆn n n
na a a n a n    A A

(1) (2) (n), ,..., ,... 1 , 2 ,..., "eigen-kets"a a a n
(1) (2) (n)

1 2
ˆ, ,..., ,... , ,..., eigenvalues of operaotna a a a a a A

In an N-dimensional vector space  

every ket can be expressed as  

n
n

a c n
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DiƌaĐ’s „ďƌa”-spaĐe  aŶd „ket”-space 

Ket   a Bra   a a a 

The „ďƌa”-spaĐe is the „dual ǀeĐtoƌ spaĐe” of the ket-space  

Eigen-kets and their dual eigen-bras 

   n n

 ,t r  ,r t    
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Definition of the scalar product of a bra and a ket 

The Hilbert space is a linear vector space  over the complex numbers, 

in which the scalar product of the elements  exist.  

number (in general complex), for which b a b a a b
 

real number;  0; If 0  null keta a a a a a a   
To kets are orthogonal  

if    0a b a b 
Normalized ket:  

1
a a

a a
 1a a 

SĐalaƌ pƌoduĐt is a „bracket” 
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Bra         Ket                Bra-ket                     Operator 

Âb a b a

Linear Operators  

 ˆ ˆ ˆ
a b a bc a c b c a c b  X X X

State vectors 

of a physical system 
Scalar product 

Hamiltonian 

Observables 

†ˆ ˆIf then they are self-adjoint (Hermitian)X X

 ,t r ,r t  d
V

V  
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ˆ ˆés in general are not duala aX X

†ˆ ˆis the adjoint of  X   X
†ˆ ˆif   and are duala aX X

†ˆ ˆIf then they are self-adjoint (Hermitian)X X

Products of Operators ˆ ˆ ˆ ˆIn general ;XY YX † † †ˆ ˆ ˆ ˆ ;XY Y X

‚Outeƌ’ pƌoduĐt  a b
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Matrix representation of kets bras and operators 

In quantum physics the mathematical representation 

of observables are linear self-adjoint operators 

Lemma 1. Eigenvalues of self-adjoint operators  are  

real numbers.  The eigen-kets belonging to different 

eigenvalues are orthogonal. 

( )ˆ nn a n A

1 , 2 ,..., ,..."eigen kets"n 
(1) (2) (n) ˆ, ,..., ,...eigenvalues ofa a a A

nmn m 
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Lemma 2. Eigen-kets constitute a complete orthonormal 

basis. 

n
n

a c n ( )nc n a

n

a n n a
n

n n  1

n

a a a n n a  2

n

n a
22

If    is normalized, then 1n
n n

a c n a  
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Projection operator ( )
ˆ

na
n n 

( ) ( )
ˆ

n na a
a n n a c n   ( )

ˆˆ 1 (Completeness)na
n

 
If  N  is the dimension of the space of kets,  

the representation of operator  X 

1 1

1 1

ˆ ˆ ˆ ˆ
N N

n m

N N

m n

n n m m

m m n n

 

 

            


 


X X X X

X

2   number;  is a row vector;   

  is a column vector  

m n N m

n

X
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ˆ ˆ ˆ1 1 1 2 ... 1

ˆ ˆ ˆ2 1 2 2 ... 2ˆ
... ... ...

ˆ ˆ ˆ1 2 ...

N

N

N N N N

        

X X X

X X X
X

X X X

ˆb a X

n

a n n a
n

b n n b
1 1

2 2
; ;

... ...

a b

a b
a b

N a N b

                      
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Bra         Ket                Bra-ket                     Operator 

Âb a b a
State vectors 

of a physical system 
Scalar product Hamiltonian 

Observables  ,t r ,r t  d
V

V  
1 2 ...b b b N b

     
1

2

...

a

a
a

N a

        

1

2
1 2 ...

...

b a

a

a
b b N b

N a

  


          

ˆ ˆ ˆ1 1 1 2 ... 1

ˆ ˆ ˆ2 1 2 2 ... 2ˆ
... ... ...

ˆ ˆ ˆ1 2 ...

N

N

N N N N

        

A A A

A A A
A

A A A
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Observables – physical quantities which can be measured 

A „stƌoŶg” ŵeasuƌeŵeŶt alǁays Đauses the systeŵ to juŵp 
into an eigen-state of the dynamical variable that is being 

measured.   
Before the measurement  

n

a n n a
After the measurement  a  n

For example, a silver atom spin orientation will change into either  

orz zS S  when subjected to a Stern-Gerlach 

apparatus of type SGz 

Measurement, in general, changes the state. The only 

exception is when the state is already in one of the 

eigen-states of the observable being measured.  

n  n
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aProbability that             goes into state  n

22

nc n a
Expectation value of a measurement 

ˆ ˆa aA A

n
n

a c n
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Quantum Mechanics in Dirac Notation 

Introduction 
Let us consider a quantum system described by a  

Hamiltonian              independent of time. 0Ĥ
Eigen-values and eigen-states of            

are  denoted by  
0Ĥ 1 2, ,..., ,...

1 , 2 ,..., ,...
nE E E

n

Suppose at  t = 0 the system is  

in its most general state  
(0) n

n

c n 
AĐĐoƌdiŶg to the SĐhƌödiŶgeƌ eƋuatioŶ  
the system at a later time is in the state  

j
( )

nE
t

n
n

t c e n 
The probability of finding the system  

in state   2
( ) ( )P t t  
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Thus the probability that the system has made a transition from  

the state                  to the state           between times 0 and t   (0) 
2

(0) ( ) ( )P t t    
In particular, if the system is initially prepared in the eigenstate       , 

it is given in any later time  t   by the state vector   

n

j
( )

nE
t

t e n 
The probability of finding it later in a state                             , is then 

zero    

,m m n
2 2

( ) ( ) 0n mP t m t m n   
E.g. the electron of a hydrogen atom initially in state                  

would remain indefinitely in this state   if the atom were not 

coupled to the exterior environment.  

. .n l m
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Exterior interactions of various origins: 

-- Interaction of an atom with external oscillating 

    electromagnetic field (classical) 

    (sinusoidal time-dependent external effect) 

-- Collisions of an atom with ions, atoms, electrons 

    (impulsive time-dependent external effect) 

-- Coupling to quantized electromagnetic field (photon  

    absorption, spontaneous and stimulated photon emission) 

In general, the future of the state vector describing 

the system  cannot be calculated exactly for all time.  

Exact expressions can be given for the  

transition probabilities 
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Transition between discrete levels induced by 

a time-dependent perturbation 

We consider a system described  

by a Hamiltonian 
 0

ˆ ˆ
IH H H t 

0
ˆ

nH n E n
         is independent of time, its eigenvalues and eigenstates 

 

 being denoted by 

0Ĥ

 and nE n

 IH t                is an interaction term.  

and it is assumed that  I n mn H m E E 
The coupling                will be capable of inducing transitions 

between different eigenstates of   

 IH t

0Ĥ

( ) ?n mP t  Supposing, for simplicity, that the energy 

levels are non-degenerate.  
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 IH tTwo simple                    examples 

0
ˆ1. An atom  of   interacts with an incident classical 

electromagnetic wave of which the electric field at the 

position of the stationary atom is 

H

   cost t  E E

   
             To a good approximation, the interaction of the atom 

and the field can be given in terms of electric dipole coupling

ˆ ˆ ; where the electric dipole of the atom is 

ˆ ˆ (Here  is th

IH t t

q q

  


D E

D r e electric charge, and    the radius vector 

between the nucleus and its valence electron).  

r
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0

2. We consider a stationary atom "A", of which is described 

ˆthe hamiltonian , and we suppose that another particle 

"B" passes in the neighborhood of "A". 

H

 
The interaction potential depends on the 

ˆdistance between A and B:  V ( ) ,

it depends on time.

R t thus

Before the collision the 

state of atom  A   is   n

There is a possibility that 

after the collision the state

changes to  m
      If the energies before and 

after the collision are the same:

     ELASTIC COLLISION

                 Otherwise:

     INELASTIC COLLISION

A
B

b impact parameter 
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Perturbation Theory 

 0
ˆ ˆ

IH H H t  ˆ  nH n E n
I n mn H m E E 

   'ˆ ;

1
I IH t H t





Weak interaction: 

 
 is a real, diemnsionless parameter, much 

smaller than unity, which characterizes the 

ˆrelative strenghts of the interaction IH t



(In the two examples,  is proportional (i) to the amplitude of the 

incident electric field, (ii)  is a function of the impact parameter ) b




1 is valid if the electric field is weak,

or the impact parameter is large.

 
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SĐhƌödiŶgeƌ eƋuatioŶ:       '
0

d ˆj
d It H H t t
t
   

Expanding               in the basis of eigen-states of             we get  t 0Ĥ

  j
( )

nE
t

n
n

t c t e n 

       
     

'
0

j'

d ˆj
d

n

I

E
t

k I n
n

k t k H t k H t t
t

E k t k H t n c t e

   
  

  
  

We project on the eigen-state         of         ,  

and use the identity 

k 0Ĥ 1
n

n n 

         j j j'd
j =

d

k k nE E E
t t t

k k k k k I n
n

E c t c t e E c t e k H t n c t e
t

       
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       j'd
j =

d

k nE E
t

k I n
n

c t k H t n e c t
t




No approximation having been made this far! 

Possibly infinite system of ordinary differential equations 

The coefficients              depend on     ( )nc t 
Perturbation theory consists of developing              as 

a power series of  

( )nc t
     0 1 2 2( ) ...k k k kc t c t c t c t    

Substituting this series we can collect together the 

same order in  
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Oder 0  0d
j =0

d kc t
t

Oder 1        j1 ' 0d
j =

d

k nE E
t

k I n
n

c t k H t n e c t
t




Oder r        j' 1d
j =

d

k nE E
tr r

k I n
n

c t k H t n e c t
t





This system of equations can be solved iteratively. 

The zeroes order terms are already known: they are 

the constants determined by the initial state of the 

system . On substituting these terms, the first order 

solutions for                                       can be found.  

And so on.   

 1 ; 1,2,3,...kc t k 
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