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P.A.M. Dirac’s , bra” and , ket” Notation

Information we can know about a state

In quantum physics a physical state is represented by a
state vector in a complex vector space, called Hilbert space.

We call the state vector a , ket”, and denote it by ‘W>

(This state ket is postulated to contain complete information about
the physical state. Everything we are allowed to ask about the
state is contained in the ket.)

Two kets can be added, and can be multiplied by a
complex number, and the result is also a ket

a)+|B)=ly)  Ala)=|a)A
Null ket A|la)if A1=0
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la)andA|a) , with 2 = 0O, represent the same physical ¢

(Only the ,direction” in vector space is of significance. We are
dealing with rays rather than vectors .)

The state space of quantum physics is the Hilbert space
a),

The dimension of the vector space depends on the physical system
(Spin : 2; Finite dim.: n; Bounded: countable infinite;
Free: continuously infinite)

b)e & |a)+|b)=|c)e #; i|la)e# Acomplex numbe

Observable is represented by a linear operator

The operator acts on the ket from left, and maps a ket on a ket.

N A

A-(|a))- A

a>e§‘£
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n generalA|a)#c-|a) ,but there are such

A a(n)>:a(n). a(n)> 5 A n>:an-\n>
a®),la®),...]a™) ,..—>]3| 2 ,.[n) “eigen-ket
a® a? . ..a" .>aa,.a eigenvalues of operdot

In an N-dimensional vector space
every ket can be expressed as

)= 3G In)
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Dirac’s ,bra”-space and , ket”-space
Ket |a) Bra (a V|a) < (a]
w(r,t) w(r,t) Wy

The ,bra”-space is the ,,dual vector space” of the ket-space

Eigen-kets and their dual eigen-bras
{Imj < {(nl}
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The Hilbert space is a linear vector space over the complex numbers,
in which the scalar product of the elements exist.

Definition of the scalar product of a bra and a ket
(b|a) = number (in general complex), for which|a) = (a|b)’
Scalar product is a , bracket”
(a|a)=real number;(ala)> 0; Ifala)= 6>(a| null ke
To kets are orthogonal
a) L|b) if (a|b)=0

Normalized ket:

1

\é>=¢<a‘a>\a> —(ala)=1




Bra Ket Bra-ket Operator

N

bl lay (b A

State vectors Hamiltonian
. Scalar product
of a physical system Observables

v (rt) w(rt)  Jytpadv

Linear Operators

N

X(c,|a)+c,|b))=c.X|a)+c,X

b)

If X =X"then they are self-adjoint (Hermitia



N

X a> és(a X in general are not du

N

X' is the adjointof X if X X' are due

a)and (a

If X =X"then they are self-adjoint (Hermitia

Products of Operators In general XY =YX

(XV) =¥,
,Outer’ product \a) <b‘
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Matrix representation of kets bras and operators

In quantum physics the mathematical representation
of observables are linear self-adjoint operators

Lemma 1. Eigenvalues of self-adjoint operators are
real numbers. The eigen-kets belonging to different
eigenvalues are orthogonal.

N

A

2)

ny=a™ |n) a a® ... a" .. eigenvalues ok

1,|2),...n) ,..."eiger ket

nm

(njm)=¢
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Lemma 2. Eigen-kets constitute a complete orthonormal
basis.

\a>:zn:cn\n> ¢ = (n|a)
2)=2|m){nla) > |n)(n]=1

n

ala)= (2 ZInynla) = Zfola)f

n

‘2

If |a) is normalized, ther) || = > |(n|a)
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Projection operator A =|n)(n

A . |a)=|n)(na)=c_, |n) > A, =1 (Completenes:

If N isthe dimension of the space of kets,
the representation of operator X

~X %= Sn(n jA(ing:
=iimmV|

m=1 n=1

(m|X|n) N* number;(m| is a row vector;
|

n> is a column vector



UX[D (X3 .

(2x]9 (24x]2 ..

(1X|N)
( 3X|N)

(NIX[D) (N[X[2) ... (N|X|N)




Bra Ket

bl ay

State vectors

of a physical system

W*(r’t) W(rit)
(1a)
< (2 ] - @
|(N[a) |
bla)-
(1a)
(2/a)

:[<1|b>* (2b) ... <N|b>*]

It//* 37\Y

V

Bra-ket
(ba)

Scalar product

(WAID (1A]2

(2A1D (2A[2

(N[A[D) (N|A[2)

Operator

N

A

Hamiltonian
Observables

.. (N]A|IN)

(AN
. { 2A|N)




Observables — physical quantities which can be measured
A ,,strong” measurement always causes the system to jump

into an eigen-state of the dynamical variable that is being
measured.

Before the measurement ‘a> - Z‘ n> <n‘ a>
After the measurement ‘a> — \n}

For example, a silver atom spin orientation will change into either
|SZ +> or |SZ —> when subjected to a Stern-Gerlach
apparatus of type SGz

Measurement, in general, changes the state. The only
exception is when the state is already in one of the
eigen-states of the observable being measured.

n = [
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)= e,

Probability that ‘ a> goes into state ‘ n)

e[ =[(nfa)f

Expectation value of a measurement

<A> =(a|Ala)

A
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Quantum Mechanics in Dirac Notation

Introduction
Let us consider a quantum system described by a

Hamiltonian H o independent of time.
Eigen-values and eigen-states of I:I0 El’ EZ"“’EH e
are denoted by ‘1>, 2> ,___\n> .

Suppose at t =0 the system is ‘l//(0)> _ ZC ‘ n>
in its most general state o "

E
According to the Schrddinger equation B -
the system at a later time is in the state ‘l/j(t» - Zn:C”e ‘n>

The probability of finding the system

in state ‘(p> Pgo (t) = ‘<¢‘W(t)>‘2
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Thus the probability that the system has made a transition from
the state |y(0)) tothestate |p) betweentimesOandt

P o0 ® =|(0]w ()]

In particular, if the system is initially prepared in the eigenstate ‘ ﬂ>,
it is given in any later time t by the state vector

_jEn
v®)=e" |n)
The probability of finding it later in a state \m), M#%=N ,isthen
zZero 5 5
Prsn® =[(mly @) =|(mn)|"=0

E.g. the electron of a hydrogen atom initially in state \n.l .m>
would remain indefinitely in this state if the atom were not
coupled to the exterior environment.
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Exterior interactions of various origins:

-- Interaction of an atom with external oscillating
electromagnetic field (classical)
(sinusoidal time-dependent external effect)

-- Collisions of an atom with ions, atoms, electrons
(impulsive time-dependent external effect)

-- Coupling to quantized electromagnetic field (photon
absorption, spontaneous and stimulated photon emission)

In general, the future of the state vector describing
the system cannot be calculated exactly for all time.

Exact expressions can be given for the
transition probabilities
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Transition between discrete levels induced by
a time-dependent perturbation

N N

W . .
e con5|c.ier a system described H=H,+H, (t)
by a Hamiltonian

N

H, is independent of time, its eigenvalues and eigenstates

N

being denoted by Ej, and‘n> Hy

n)=E,|n)

H,.(t) isaninteraction term.
anoll i(t i)s assumed that <n‘ H, ‘m> << ‘En B Em‘

The coupling H| (t) will be capable of inducing transitions
between different eigenstates of |:|o

P (t) __ » Supposing, for simplicity, that the energy
n—m ~ " levels are non-degenerate.
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Two simple H,(t) examples

1. An atom of H, interacts with an incident classi
electromagnetic wave of which the electric field at
position of the stationary atom is

E(t)=Ecodq ot +¢)

To a good approximationetimteraction of the ator
and the field can be given in terms of electric dipole coup

N

H, (t)=-D-E(t); where the electric dipole of the atom i

D =qof (Hereq is tle electric charge, and  the radius vet
between the nucleus and its valence electron).
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2. We consider a stationary atom "A", of which is descri

the hamiltonian:l0 , and we suppose that another partit

1 of "A".
P
mpact paTamete The interaction potential depends on
B‘:*J—_ ........................... distance between A and B:[R t | thus
T’ K it depends on time.
Before the collision the There Is a possibility tha
state of atom A is\n> after the collision the st
changes to|m)
If the energies before an
after the collision are the sar Otherwise:
ELASTIC COLLISION INELASTIC COLLISION
18 Sept 2014
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Perturbation Theory

N N N

H=H,+H,(t) H

n)=E,|n)

Weak interaction: <n\H, ‘m> <<‘En_Em‘

H, (t) _H I' (t); A Is a real, diemnsionless parameter, m

smaller than unity, which characterizes |
A<<1

relative strenghts of the interactibh (t)

(In the two examples] Is proportional (i) to the amplitude of tt
incident electric field, (i1 Is a function of the impact parambte

A <<1is valid if the electric field is wes
or the impact parameter is large.
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Schrodinger equation: jh%\w(t» =(Ho+AH; (t))|w (1))

Expanding‘w(t» in the basis of eigen-states of I-AIO we get

40), ZC Je ' |n)

We project on the elgen-statq > of HO ) Z\ n><n\ =1
and use the identity "

2 (o (1) = (K ol (1) .2 (k[ (1) (1)) =
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Jh (:k lZ(k\ n>ejT c,(t)

No apprOX|mat|on having been made this far!
Possibly infinite system of ordinary differential equations
The coefficients C (t) dependon /A

Perturbation theory consists of developing C,(t) as
a power series of

¢ (t) =c/ (t)+ Ac (t)+ A7 (1) +...

Substituting this series we can collect together the
same orderin
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oder1 jpd AZ(k\ (Dln)e (1)

Oder r Jh (G (V=22 (K[H, (H)]n)e e G(t)

This system of equations can be solved iteratively.
The zeroes order terms are already known: they are
the constants determined by the initial state of the
system . On substituting these terms, the first order

solutions for Ci(t); k=1,2,3,.. can be found.
And so on.
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