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Stern Gerlach Experiment 

How electrons behave in magnetic field? 

Electron possesses magnetic „spin” – ǁhiĐh is „ƋuaŶtized” 

For electrons spin can only take on two values: 

up ↑ or down ↓ 

One can measure spin along any axis, spin will be found 
aligned or anti-aligned with the axis you measure along. 

Spin along orthogonal axes obeys  

Heisenberg uncertainty principle:  

/ 2; / 2; / 2x z y z x ys s s s s s  
State of defiŶite spiŶ iŶ  ǆ  diƌeĐtioŶ →  

50/50 superposition  of up and down in  z  direction 
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Stern-Gerlach Experiment 

Ag: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 5s1 

Number of electrons 46 1 + = 47 



April 1  2014 Csurgay Árpád 13_IT & MB Fiz I 2014 4 



Put atoms in inhomogeneous magnetic field pointing in  

z direction – split in two groups – spin up and spin down 

z 

What if I take just atoms that went up, and send them  

through another, identical magnetic field – What happens? 

All go up (+z) 

z 



x 

Second Experiment: What if I take just atoms that went up, and  

send them through a magnetic field pointed in the x direction  

– perpendicular to first field (pointing into the screen)? 

Half go into the screen (+x), half go out of the screen (–x) 

z 



x 

Third Experiment: Take just the atoms that went in +x direction in  

second experiment, and send them through a third magnetic field, 

pointed in the z direction? 

Half go up (+z), half go down (–z). 

z 

z 
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Two state quantum system 

           Spin +z,  Spin – z  

1 1
;

2 2
 
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Analogy: Polarized Light 

(Classical) 

Two dimensional abstract vector space  

with complex coefficients 
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P.A.M. DiƌaĐ’s „ďƌa” aŶd „ket” Notation 

Information we can know about a state      

In quantum physics a physical state is represented by a  

state vector in a complex vector space, called Hilbert space.  

We call the state vector a „ket”, and denote it by   
(This state ket is postulated to contain complete information about 

the physical state.  Everything we are allowed to ask about the 

state is contained in the ket.) 

   
Two kets can be added, and can be multiplied by a 

complex number, and the result is also a ket 

   
Null ket if  0   
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and , with  0, represent the same physical state.    
(Only the „direction” in vector space is of significance. We are 

dealing with rays rather than vectors .) 

The state space of quantum physics is the Hilbert space 

,a b H ; complex numbera b c a    H H

The dimension of the vector space depends on the physical system 

(Spin :  2; Finite dim.: n; Bounded:  countable infinite;  

Free:  continuously infinite) 

Observable is represented by a linear operator 

The operator acts on the ket from left, and maps a ket on a ket.  

 ˆ ˆa a  A A H
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ˆIn general  ,but there are such ketsa c a A

( ) ( ) ( )ˆ n n na a a A

(1) (2) (n), ,..., ,..."eigen-kets"a a a

(1) (2) (n) ˆ, ,..., ,...eigenvalues of operaota a a A

In an N-dimensional vector space  

every ket can be expressed as  

( )n
n

n

a c a
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DiƌaĐ’s „ďƌa”-spaĐe  aŶd „ket”-space 

Ket   a Bra   a a a 
The „ďƌa”-spaĐe is the „dual ǀeĐtoƌ spaĐe” of the ket-space  

Rules of duality ; ;

a b a b

a a a b a b

c a c b c a c b 
   

  
Eigen-kets and their dual eigen-bras 

   (n) (n)a a
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Definition of the scalar product of a bra and a ket 

The Hilbert space is a linear vector space  over the complex numbers, 

in which the scalar product of the elements  exist.  

number (in general complex), for which b a b a a b
 

real number;  0; If 0  null keta a a a a a a   
To kets are orthogonal  

if    0a b a b 
Normalized ket:  

1
a a

a a
 1a a 

SĐalaƌ pƌoduĐt is a „bracket” 
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Operators  ˆ ˆ ˆ .X,Y,Z, .. ˆ ˆˆA,B,C, ...

ˆ ˆ ˆ ˆif    for  a a a  X Y X Y

ˆnull operator if  0 for  a a X

Bra         Ket           Bra-ket        Operator 

Âb a b a

   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;       X Y Y X X Y Z X Y Z

Linear Operators  

 ˆ ˆ ˆ
a b a bc a c b c a c b  X X X
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An operator acts on a bra from right,  

and maps a bra on a bra.  
ˆa X

ˆ ˆés in general are not duala aX X
†ˆ ˆis the adjoint of  X   X †ˆ ˆif   and are duala aX X

†ˆ ˆIf then they are self-adjoint (Hermitian)X X

Products of Operators ˆ ˆ ˆ ˆIn general ;XY YX

 † † †ˆ ˆ ˆ ˆ ;XY Y X    ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ X YZ XY Z XYZ

       ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;a a a b b b   X Y XY XY XY X Y X Y

‚Outeƌ’ pƌoduĐt  a b
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Associative rules of products 

Legal and illegal products between kets, bras and operators    ;   complex number keta b c a b c b c a b c 
   But   would be illegal  b c a b c a

†ˆ ˆa b b a  X X   ˆ ˆa b a b

bra ket bra ket

  
 

X X

Two sides are equal, thus we can introduce a more concise notation 

a bX

   ˆ ˆ ˆa b a b a b   X X X
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For a self-adjoint (Hermitian) operator 

ˆ ˆb a a b
X X

   † †b a b a a b a b
       X X X X
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Matrix representation of kets bras and operators 

In quantum physics the mathematical representation 

of observables are linear self-adjoint operators 

Lemma 1. Eigenvalues of self-adjoint operators  are  

real numbers.  The eigen-kets belonging to different 

eigenvalues are orthogonal. 

( ) ( ) ( )ˆ n n na a a A
(1) (2) (n), ,..., ,..."eigen kets"a a a 

(1) (2) (n) ˆ, ,..., ,...eigenvalues ofa a a A

   i j
ija a 
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Lemma 2. Eigen-kets constitute a complete orthonormal 

basis. 

( ) ( )n n

n

a c a ( ) ( )n nc a a
( ) ( )n n

n

a a a a ( ) ( )n n

n

a a  1

( ) ( )n n

n

a a a a a a  2
( )n

n

a a
22 ( )If    is normalized, then 1n

n
n n

a c a a  
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Projection operator ( )

( ) ( )ˆ
n

n n

a
a a 

( ) ( )

( ) ( ) ( )ˆ
n n

n n n

a a
a a a a c a   ( )

ˆˆ 1 (Completeness)na
n

 
If  N  is the dimension of the space of kets,  

the representation of operator  X 

( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( )

1 1

ˆ ˆ ˆ ˆ
N N

n n m m

n m

N N
m m n n

m n

a a a a

a a a a

 

 

            


 


X X X X

X

( ) ( ) 2 ( )

( )

  number;  is a row vector;   

  is a column vector  

m n m

n

a a N a

a

X
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(1) (1) (1) (2) (1) ( )

(2) (1) (2) (2) (2) ( )

( ) (1) ( ) (2) ( ) ( )

ˆ ˆ ˆ...

ˆ ˆ ˆ...ˆ
... ... ...

ˆ ˆ ˆ...

N

N

N N N N

a a a a a a

a a a a a a

a a a a a a

         

X X X

X X X
X

X X X

ˆb a X

( ) ( )n n

n

a a a a
( ) ( )n n

n

b a a b
(1) (1)

(2) (2)

( ) ( )

; ;
... ...
N N

a a a b

a a a b
a b

a a a b

                         



16  Sept  2014 Csurgay Árpád Phys II 2014 25 

Observables – physical quantities which can be measured 

A „stƌoŶg” ŵeasuƌeŵeŶt alǁaǇs Đauses the sǇsteŵ to juŵp 
into an eigen-state of the dynamical variable that is being 

measured.   
Before the measurement  

( ) ( )n n

n

a a a a
After the measurement  a  ( )na

For example, a silver atom spin orientation will change into either  

orz zS S  when subjected to a Stern-Gerlach 

apparatus of type SGz 

Measurement, in general, changes the state. The only 

exception is when the state is already in one of the 

eigen-states of the observable being measured.  

( )na  ( )na
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aProbability that             goes into state  
( )na

22 ( )n
nc a a

Expectation value of a measurement 

ˆ ˆa aA A
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Position x x x   x da x x a x

    

Measurement of the position 

The  detector clicks if the object is at the position, 

thus its state is  x a x

/2 2

Δ /2

d measurement

d (d )
x

x

a x x a x

x x a x x a x







    
     




d 1a a a x x a x

    

aThe  wave-function of physical state           is   ax a x 
Momentum  The operator of momentum is    j

x


  xp
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