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How electrons behave in magnetic field?

Stern Gerlach Experiment
Electron possesses magnetic ,spin” — which is ,,quantized”

For electrons spin can only take on two values:
up T or down

One can measure spin along any axis, spin will be found
aligned or anti-alighed with the axis you measure along.

Spin along orthogonal axes obeys
Heisenberg uncertainty principle:

SS,2hl2;, sS,2hl2; sS,2n/2

y“z =
State of definite spin in x direction -
50/50 superposition of up and down in z direction
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Stern-Gerlach Experiment

Classical
prediction
What was Silver atoms
actually observed
A
l\ Furnace
‘\\

Inhomogeneous
magnetic field

Ag: 1s2 282 2p6 3s2 3p6 452 3d10 4pb 4d10 5g

—_—

Number of electrons 46 + 1 =47
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Put atoms in inhomogeneous magnetic field pointing in
z direction — split in two groups — spin up and spin down

RN

R R R R

What if | take just atom went up, and send them
through anothereentical magnetic field — What happens?

EEEEEEE
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All go up (+2)




Second Experiment: What if | take just atoms that went up, and
send them through a magnetic field pointed in the x direction
— perpendicular to first field (pointing into the screen)?

Half go into the screen (+x), half go out of the screen (—x)



Third Experiment: Take just the atoms that went in +x direction in
second experiment, and send them through a third magnetic field,
pointed in the z direction?

Half go up (+z), half go down (-2z).



Beam of
magnets
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Glass
plate

aroms
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S-fi=1h

Oven A 0 [s.a=_1p
— —
+ l h _ 1‘ h Two state quantum system
2 ’ 2 Spin +z, Spin —z



Oven —) 7 —

Analogy: Polarized Light
(Classical)

Two dimensional abstract vector space
with complex coefficients



P.A.M. Dirac’s , bra” and , ket” Notation

Information we can know about a state

In quantum physics a physical state is represented by a
state vector in a complex vector space, called Hilbert space.

We call the state vector a ,ket”, and denote it by ‘0{>

(This state ket is postulated to contain complete information about
the physical state. Everything we are allowed to ask about the
state is contained in the ket.)

Two kets can be added, and can be multiplied by a
complex number, and the result is also a ket

a)+|B)=]y)  Ala)=|a)A
Null ket A|la)if A1=0
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la)andA|a) , with 2 = 0O, represent the same physical ¢

(Only the ,direction” in vector space is of significance. We are
dealing with rays rather than vectors .)

The state space of quantum physics is the Hilbert space
a),

The dimension of the vector space depends on the physical system
(Spin : 2; Finite dim.: n; Bounded: countable infinite;
Free: continuously infinite)

b)e & |a)+|b)=|c)e #; i|la)e# Acomplex numbe

Observable is represented by a linear operator

The operator acts on the ket from left, and maps a ket on a ket.

N A

A-(|a))- A

a>e§‘£

16 Sept 2014 Csurgay Arpad Phys 11 2014 13



In generalA|a) = c-|a) ,but there are such }
Ala®)=a®.|a®)
‘a(1)> ,‘a(2)> , ‘ a‘”)> ..."eigen-kets
a® a® ...a®™ . .eigenvalues of operabt

In an N-dimensional vector space
every ket can be expressed as

EREY
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Dirac’s ,bra”-space and ,ket”-space
Ket |a) Bra (a ‘v" a> = <a\
The ,bra”-space is the ,,dual vector space” of the ket-space

Rules of duality ‘a> ~ <a‘; ‘a> +‘b> ~ <a‘ + <b‘;

c,|a)+¢|b) = c.(al+c (b

Eigen-kets and their dual eigen-bras

[a”)) = 12"}
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The Hilbert space is a linear vector space over the complex numbers,
in which the scalar product of the elements exist.

Definition of the scalar product of a bra and a ket
(b|a) = number (in general complex), for which|a) = (a|b)’
Scalar product is a , bracket”
(a|a)=real number;(ala)> 0; Ifala)= 6>(a| null ke
To kets are orthogonal
a) L|b) if (a|b)=0

Normalized ket:

1

\é>=¢<a‘a>\a> —(ala)=1




Bra Ket Bra-ket Operator

N

bl lay  blay A

Operators )A(,?,Z,... A,é,é,...
X=Y if X|a)=Yl|a) for V|a)

null operator if X|a)= 0 forv|

N N

a)
X+Y=Y+X; >2+(Y+z) (x \?) +7
Linear Operators

X (c,|a)+c,[b))=

N

X|a)+c,X|b)




Va\

An operator acts on a bra from right,
(a| X
and maps a bra on a bra.
X |a) és(a|X are not dt

N

X' is the adjoint of X if X|a)and (a|X" are due

If X =X"then they are self-adjoint (Hermitia
Products of Operators In general XY =YX
() 5 a(2)-(i)2-

a))=(XY) (BIX(¥)=({blX)¥

,Outer’ product a> <b‘

Vo

a>:>A<\? a); (b|XY =
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Associative rules of products
Legal and illegal products between kets, bras and operators

(Jay(b])|c)=|a)({b|c)); (b|c) complex number>|a)(b|c) ke
But ((b|c))-|a) would be illegal(b|(|cH=})
X =|a){b| > X" =[b)(a|
(a]-(X|b)) =((a] X}-|b) (a|X|b)

brax ket brax ket

Two sides are equal, thus we can introduce a more concise notation

(a]-(X[b))=((a] X)-|b) = (a

N

%|b)
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For a self-adjoint (Hermitian) operator
(b
(b|X|a)=(b|-(X|a)) =[ ((a]X")-b) | =(a|X"|b)

A

X|a)=(a

A

X |b)’




Matrix representation of kets bras and operators
In quantum physics the mathematical representation
of observables are linear self-adjoint operators

Lemma 1. Eigenvalues of self-adjoint operators are
real numbers. The eigen-kets belonging to different

eigenvalues are orthogonal.
Ala®)=a™.la™) a®a?,..a",. eigenvalues ok

‘a‘1)>,‘a(2)>,...,‘a(”)> .."eigen- ket

(a)|a1) = 5

J
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Lemma 2. Eigen-kets constitute a complete orthonormal

basis.
a)= Y 3
n
_ (n) (n) (n) mMl=-1
S[a)(afa)  Tla")e
a>‘2

ala)= (a3
a)

n
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a(n)> o < (M

(" > <a(n)

Jla) =5fa”

If |a) is normalized, ther} |c,| = ZKa(n)




a(n)><a(n)

Projection operator A, w =

[\a(”) ‘a> -

a(n)><a(n)

a)=c,, [a”) > A, =1 (Completenes:

If N isthe dimension of the space of kets,
the representation of operator X

X=X X= (ZN: a™)(a® jX(ZN:‘a(m)><a(m) U -
n=1 m=1
:ii‘amxa(m) X[a®)(a®
m=1 n=1
<a‘m) ‘X a‘”)> N2 number;<a(m) ‘ is a row vector:

a‘”)> is a column vector



&)=

n

b)=2.

<a(1"5(‘a(1)> <a(1)‘>A(‘a(2)>
<a(2)‘>A<‘a(l’> <a(2)‘5<‘a‘2)>

<a(N)‘>2‘a(1’> <a(N)‘>2‘a(2)>

b) = X|a)

[

a(n)><a(n) b>

(" > <a(n)

a) = (2 |a) ;

<a(1) Y

<a(2) Y

<a(N)‘>A<‘a(N)>




Observables — physical quantities which can be measured
A ,,strong” measurement always causes the system to jump

into an eigen-state of the dynamical variable that is being
measured.
a)

Before the measurement | &) = Z‘ a(n)><a(”)
n
After the measurement \a} E— ‘a(”)>

For example, a silver atom spin orientation will change into either
|SZ +> or |SZ —> when subjected to a Stern-Gerlach
apparatus of type SGz

Measurement, in general, changes the state. The only

exception is when the state is already in one of the

eigen-states of the observable being measured.
‘a(“)> —_—> ‘a(n)>
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Probability that ‘a} goes into state ‘a‘”)>
" =|(aaf
=Ha ’‘|a

Expectation value of a measurement

<A> =(a|Ala)

c

n

A
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X)=X:|xX) |a=[
Measurement of the position

Position X

The detector clicks if the object is at the position,
thus its state is X'> ‘ a> N X'>

a) = ji X')(X'|@)dx' — measuremenb
N I B X)(x|a)dx ~ ‘{x’

X'-Al2
Xr> <Xr

(ala)=] (a

The wave-function of physical state |a) s <X’ a> =V, (X')

)l (),

a)dx' =1

Momentum The operator of momentumis p_, = _jh
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