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The Postulates of “ĐhƌödiŶgeƌ s͛ QuaŶtuŵ Wave MeĐhaŶiĐs 

Postulate 1.  (P.1)  Information we can know about a state      

The state of a system is fully described by its state-function   

(wave-function)  (q1, q2, ..., qf, t), which is bounded, single- 

valued, continuous, and continuously differentiable function  

of the configuration-space-coordinates (q1, q2, ..., qf) and of time t .  

Postulate 2.  (P.2)  Interpretation of the wave-function 

The probability that the system in state  can be found in the  
volume-element dV  of the configuration space is  *dV .  

From this it follows that 

 
V

V 1d* i.e.     is square-integrable. 
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Postulate 3.  (P.3) Observables  

There is a linear operator L assigned to every observable  

(measurable dynamical variable) L.    

 If we perform a ͞stƌoŶg͟ ŵeasuƌeŵeŶts on the system then the  

oďseƌvaďle s͛ values of L are the   eigen-values of operator L   

The rules of the operator assignment are as follows: 

a) The operators of the space coordinates are   

multiplication by the coordinate : ˆ ;i iqq ˆ  r r

b)   The operator assigned to the momentum: ˆ j  p
c) We assign operators to dynamical variables which are  

     functions of the space coordinates moments by substituting  

    the operators of the space coordinates and moments into 

            the functions: 

ˆ L
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Postulate  4.  (P.4)   The outcome of strong measurements 

If the state of a physical system is  , and we observe the  

dynamic observable L  with operator  L, then the expectation 

 value and deviation of  L are: 

ˆ d
V

L V   L 22 LLΔL 
Postulate 5.  (P.5)   Time-evolution of the wave-function  

In a closed system the wave-function evolves in time according 
to the time-depeŶdeŶt “ĐhƌödiŶgeƌ eƋuatioŶ: 

ˆj
t

   H
( From the initial sate-function            

we can determine the future of  

  the wave-function              

 for t >t0  ).  

0t
t

34 2 34 26.625 10 Ws ; / 2 1.05 10 Wsh h
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Consequences of the Postulates 

1. Total energy E h      E
j tj te e   

2. Momentum  p k
h

p k   

Frequency, period in time 

Wavelength, period in space 

ϯ. EleĐtƌoŶs aƌe eitheƌ ͚ďouŶded͛ oƌ ͚fƌee͛ 

15  Sept  2014 

͞BouŶded͟ eleĐtƌoŶ 

Discrete energy spectrum 

„Fƌee͟ eleĐtƌoŶ 

Continuous energy spectrum 

1 2, ,..., ,...nE E E

Orbitals 

Standing waves 

 E k Wave pocket  

j )
d

E
(kx t

ψ(x,t) A(k)e k
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3. The Expectation Value of Measurements Change in Time 

d j ˆ ˆ ˆ ˆ
d

L

t
  HL LH

ˆ ˆ ˆ ˆ ˆ ˆ    HL LH H,L

„Coŵŵutatoƌ͟ of  ˆ ˆand H L

Ehrenfest theorem pot

ˆd d

d d

p
V

t t

     p

pot
ˆ V F

ϰ. HeiseŶďeƌg s͛ ‘elatioŶ  
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The Single Electron Problem  

Configuration space 
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Time-depeŶdeŶt “ĐhƌödiŶgeƌ EƋuatioŶ     , ˆj ,
t

t
t

  
r

rH

Time-independent  “ĐhƌödiŶgeƌ EƋuatioŶ  

   ˆ E  r rH

Energy eigenvalues  1 2, , ... , ,...nE E E

Eigen-functions      1 2, ,..., ,...n  r r r

Stationary eigen-states 

(No radiation)      1 2

1 2, ,..., ,...
nEE E

j t j t j t

ne e e    
r r r

EƌviŶ  “ĐhƌödiŶgeƌ, Quantisierung als Eigenwert Problem, 1926 



15  Sept  2014 Csurgay Árpád Phys II 2014 12 

One-dimensional Single Electron Examples  
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CUPS – Consortium of Upper-level Physics Software 

CUPSQM  

– BOUND1D  

– LATICE1D 

Energy eigenvalues  

Eigen-functions 

Probabilities 
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Single Electron in a three-dimensional cubic box 

;͞ďig ďoǆ ,͟ ͞loŶg ďoǆ ,͟ ͞sŵall ďoǆ͟Ϳ 
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The admitted energies of the electron in the box: 
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If  c = b = a , then there are even more degeneracies 
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The state is determined by the eigen-function 

In case of a cubic box (n1, n2, n3)  quantum numbers specify the 

eigen-values (energies) 

The null-point energy, E1 , belongs to quantum numbers  (1, 1, 1).  
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Next energy level is E2 = 2E1 . There are three dufferent states 

which belong to   E2: (2, 1, 1), (1, 2, 1) and (1, 1, 2)  
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Third energy level is E3=3E1, the fourth is E4=(11/3)E1.  

Three states belong to E3  and  E4 -hez..   

The energy level  E5= 4E1   is not degenerate (2, 2, 2).  

To the energy level  E6=(14/3)E1 belong six stationary eigenstates: 

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),(3, 1, 2), (3, 2, 1)   

Quantum numbers:   (n1, n2, n3)  

There is a fourth quantum number which belongs to spin of  

the electron:   s=;ϭ/ϮͿ  „spiŶ ƋuaŶtuŵ Ŷuŵďeƌ .͟  
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There are two         states which belong to the null-point energy  E1 

    To  E2 = 2E1, E3=3E1 , E4=(11/3)E1  six, and to energy level  

E6=(14/3)E1 12 different stationary states  
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Hydrogen atom 
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Up to Z=20 atoms are ‚hydrogen-like͛ 
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