

11. Photons in a Cavity – Creation and Annihilation Operators
 a. The electromagnetic field in vacuum
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 b. The Hamilton operator and the Number operator. The number states (Fock states) in a cavity
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 c. Heisenberg and Schrödinger representation in Quantum Physics
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 d. The Coherent state 
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e. The Photomultiplier

 f. Photon number statistics.Signal to noise ratio in coherent and thermal streams
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 g. Photon momentum. Heisenberg relation between a photon’s position and the direction of its momentum 
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h. Time localized photon’s wave-pocket (polychromatic). Transition of a single photon through a beam-splitter
 i. Radiation pressure of a photon 
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j. Polarization and spin of a photon 
[image: ]
[image: ][image: ]
[image: ]
[image: ]
[image: ]
[image: ]

image7.png
We can express the position and momenturm operators
by the new operators as
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The Hamilton operator
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The energy levels of the harmonic oscillator are determined by
the eigenvalues of the operator

N=4a'a called “number operator”.
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We denote the eigenvalues and (normalized) eigenkets of N =3"a

by n, |n) Letus caleuiate (1| N|n) = (n]a"a[n)
N|ny=n]n) ("\N\">=<"'M n

[.a,s(]
R =(n-1)

In other words, if |n) isan eigenstate of N with eigenvalue 1

then i|n> is an eigenstate of N with eigenvalue 17 — |

ilm=Cla=1)>[Cf =n>C=h
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Many states are possible quantum mechanically in an
electromagnetic cavity mode. Nearly all of these are
quite different from the fields we are used to classically.

The Number States

‘The eigenstates n, of the Hamiltonian would seem to be
the most obvious quantum mechanically. These states
correspond to a specific number n, photons in the mode,
and are known as the number states or Fock states.

‘They are not only eigenstates of the Hamiltonian operator,
but also, obviously, eigenstates of the number operator.
Their properties are, however, can be different from the
classical properties we might expect.
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‘The expectation values of the electric and magnetic field
amplitudes are both zero for any number state.

(ol )= [ s,

:JJ%sxnh(Jm(n“n‘+I)—«ﬁ(n‘|n‘—l)):

B, =

[m).|m, =1),|m, ~1) are all orthogonal, being different eigenstates
of the same Hermitian operator.
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‘The reader might think it very odd that there may be energy in
this mode, but yet there appears to be no field. Itis not correct
that there is no field in the mode, it is just that the average value
of the mode amplitude is zero. This can be explained if we
presume that the phase of the field is quite undetermined in
such a number state.

Any given measurement is quite likely to result in a finite amplitude
for the electric or magnetic field in the mode, but, because of the
possibility of the mode amplitude being positive or negative, the
average s zero.




image13.png
Representation of time dependence —
Schradinger and Heisenberg representations

So far, in discussing the states of the electromagnetic field
mode, from a quantum mechanical point of view we have been
dealing with the solutions to the time-independent Schradinger

equation for the mode. ﬁ',,,> = Ell//>

Explicitly, for the eigenstates of our electromagnetic mode,

we have N 1
i) =to, (3o, )

However, the time-dependent generalized Schrodinger
equation should be s valid also, i.e.,

2
fify)=jn
|v)=sn=lv)
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Here we will explicitly operate in the Schrodinger picture, adding
the time dependence to the states, and choosing the operators
(specifically the creation and annihilation operators) to be time-
independent.

With the Schrodinger approach to describing time-dependence

- jhmlt(%+n1]/h 71[%#-1}»11
e e "‘A>’

‘The superposition of number states, as the general solution of
the time dependent Schrodinger equation

)= Sene P
)
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Coherent State

In the time dependent solution the expectation values of the
electric and magnetic fields are not zero any more. Let us
denote the expectation value of the number of photons in a
‘mode by 7[

The electric and magnetic fields do not have precise values,
just as the position did not have precise values before in the
mechanical harmonic oscillator. As the average number of
photons 77

increases, the relative variation in the values of the electric
and magnetic fields decreases (though the absolute value of
the variation actually increases), and the behavior resembles a
classical pair of oscillating electric and magnetic fields ever
more closely.
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There is a very important superposition state, called
“coherent state”

a Poisson statistical distribution with mean value 77

and standard deviation /17
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Note-that,n the coherent:state the number-of-photonsin-the-modeds not-
determined. The-coefficents e, tellus-the:probabiy-that-we-willind- 71,
Shotonsin-the modef e make-a-measurement.Thisumber snow found-tobe-
distributed:according- o- - Poisson- distrbution. It is: i fact: the-case that the-
staistics ofthe- umber-of- photons-in-an-oscilating “cassica’ cectromagnetic
fieldare-Poissonian-For-example,fone-puts: photodetectorinaaser-beam, one-
il measure-a-Poissonian distrbution-of the-arriva ates.of the photons,an ffect
knownasshotnoise.

Note: that the- coherent: state-is:not- an- egenstate: of- any- operator-
representing;a:physicaly-observable-quantity.In-fact the-coherent states are-the-
eigenstates-of-the- annihilation- operator,- .- The-annihlation- operator-is-not-a:
Hermiton operator.§
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Photon statistics:
Coherent and Thermal light

P(n)= T
n

An=+fii
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Photon number states or Fock states

1. Introduce creation and destruction operators

(] bl (2] b

H=1/2(F* +0*%*)=hola*a+1/2)= ho(i+1/2)

2. Fock states is cigen states of cnergy operator. V. Fock
Therfore a photon ia the single excitation of oscilltor (mode) 1300 1o,

E.:hn{n+%]

3. Simple math with operators:
a'|my=a=|n+1)
aln)=+n|n—1)
o)=lo)
a*a|n)=na’|n—1)=n|n)
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The position and momentum of a particle cannot be simultaneously measured with
arbitrarily high precision. There is a minimum for the product of the uncertainties of these
two measurements. There is likewise a minimum for the product of the uncertainties of the
cnergy and time.

AXAp >
AEAt >

[SIE ST

This is not a statement about the inaccuracy of measurement instruments, nor a reflection
on the quality of experimental methods: it arises from the wave properties inherent in the
quantum mechanical description of nafure. Even with perfect instruments and technique.
the uncertainty is inherent in the nafure of things.
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3 Radiation

Virtually all the inform ation we get in astronomy comes Lo us as electromag-
netic radiation (radio, infrared, visible, UV, X-ray, or gamma ray), in other

words as photons.
3.1 Photon description of light
3.1.1 Photons

Light (or any EM radiation) comes in discrete particles called photons. The

basic principles are
o they move in siraight lines at the speed of light ¢,

o they carry energy £ and momentum p (cach photon has some particular

energy ),

o they arc conserved in number, ezcepl if emitted or absorbed by a

charged particle (e.g. the electron in an atom).
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Each photon’s £ and p are related by
E=pe.
Note that pis the magnitude of the 3-vector momentum p

r=lpl
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Polarization states [ edit]
Linear polarization | edit ]
Main article: Linear polarization

The wave is linearly polarized (or plane polarized) when the phase angles @, Cty are equal,

ol
o =a, % a.

This represents a wave with phase c polarized at an angle ) with respect to the x axis. In that case the Jones
Vector can be written

) = () exp i)
sin @
The state vectors for linear polarization in x or y are special cases of this state vector.

If unit vectors are defined such that

<)

and

w* ()

then the linearly polarized polarization state can be written in the "x-y basis" as
[¢)) = cosfexp (ia) |2} + sinf exp (i) [y) = Yulz) + Pyly).
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Circular polarization [ edit ]
Main article: Circular polarization

Ifthe phase angles (t and Oty differs by exactly 77 /2 and the x amplitude equals the y amplitude the wave is circulary polarized. The Jones vector then becomes
) = —=( L) e o)
VZ\E

Wwhere the plus sign indicates right circular polarization and the minus sign indicates left circular polarization. In the case of circular polarization, the electric field vector of con
magnitude rotates in the x-y plane.

If unit vectors are defined such that

then an arbitrary polarization state can written in the 'R-L basis’ as

¥) = ¥r|R) + | L)

where
vr=(R|Y) =

and

cosfexp(ia) — isin 0 exp(iay))
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1
Yy = (L|Y) = 7 cosfexp(ia,) + isinfdexp(ia,)).
‘We can see that
L= Jyrl* + [l

Elliptical polarization [ edit ]
Main article: Eliptical polarization

The general case in which the electric field rotates in the x-y plane and has variable magnitude is called elliptical polarization. The state vector is given by
) (1[/,) _ (cos 0 exp (m,))
T \¥,/)  \sinfexp(iay) )
Geometric visualization of an arbitrary polarization state | et ]

To get an understanding of what a polarization state looks like, one can observe the orbit that is made f the polarization state is multiplied by a phase factor of giet and then
having the real parts of its components interpreted as x and y coordinates respectively. That is:

x(t) m(emw) { (w)]
= . =R =R .

(o) = (Reece)) = » = (0r)] = me=on

If only the traced out shape and the direction of the rotation of (x(), }(1)) is considered when interpreting the polarization state, i.e. only
M) = {(2(0), w(®)) | vt}

(where x(7) and y(?) are defined as above) and whether it is overall more right circularly or left circularly polarized (i.e. whether |y > |y | or vice versa), it can be seen that the
physical interpretation will be the same even f the state is multiplied by an arbitrary phase factor. since

M(e®)) = M([v), « €R
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and the direction of rotation will remain the same. In other words, there is no physical difference between two polarization states [3) and ™™ 1)), between which only a phas
factor differs.

It can be seen that for a linearly polarized state. M will be  line in the xy plane, with length 2 and its middle in the origin, and whose slope equals to tan(6). For a circularly
polarized state, M will be a circle with radius 1/\2 and with the midde in the origin
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‘Angular momentum and spin [edit |

Similarly for the spin angular momentum

1 Nh
L==E(vnlP e P) = T (1 0al* = |00 )
w Vv
where Ec is field strength. This implies that the spin angular momentum of the photon is.
2 >
(lwn = v ?) -
the quantum interpretation of this expression is that the photon has a probabilty of | 1y, ‘7 of having a spin angular momentum of f; and a probabilty of | 47, ‘7 of having a spin

‘angular momentum of ;. We can therefore think of the spin angular momentum of the photon being quantized as wel as the energy. The angular momentum of classical light
has been verified.””! Photons have only been observed to have spin angular momenta of 4 [ctation nesded]

Spin operator [ edit]

The spin of the photon s defined as the coefficient of ; in the spin angular momentum calculation. A photon has spin 1if itis in the | ) state and -1 if it is in the | L) state. The.
spin operator is defined as the outer product

& def 0 —i

s imm-mu= () 5)-
The eigenvectors of the spin operator are | R) and| L) with eigenvalues 1 and -1, respectively.
The expected value of a spin measurement on a photon is then

2y — 2 2

WIS) =l ¥R = [vs]*.
An operator S has been associated with an observable quantity, the spin angular momentum. The eigenvalues of the operator are the allowed observable values. This has been
demonsirated for spin angular momentum, but it is in general true for any observable quantiy.
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We can write the circularly polarized states as

Is)
where s=1 for | R) and s=-1 for| L). An arbitrary state can be writtenlcisrcaton needec)
W)=Y asexp(io; —isf)|s)
s=1

where

s=11

Spin and angular momentum operators in differential form | it |

When the state is written in spin notation, the spin operator can be writtenlc/srficaton nesdecl

& a
S“‘”aig
& a
t —
Sy— ~i5g

The eigenvectors of the differential spin operator are
exp (i —is6) |s).

To see this note

Suexp (iay — is0) |s) — z(%exp (i, — is0)[s) = s [exp (iag — is0) |s)] .
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The spin angular momentum operator is

S,
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The Electromagnetic Field (EMAG) in Vacuum
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The Electromagnetic Field (EMAG) in Vacuum
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M(r,l):%%A(r,l), EC, A, B(rr) = VxA(n1).
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The electric and magnetic energies stored in a mode
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The time-domain dynamics of a cavity mode
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‘The Lagrangian of a cavity mode

L =E,-E,,=
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We have shown that the electromagneticfield for 3 given
mad can be described in a manner anslogous
o3 harmrnic oscilator.

We have siso shown tha the electromsgnetic energy of 3
mode depends on the rumber of photons i the mode. The
umber of photons corresponds exactly t the quantum
umber for the corresponding harmonic ascllator stae.
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“The caviyinteracs with s enviranment by absorbin or miting
Photons, thus changing the number o phetons n the caviy:

I orde to simpliy the mathematica desrption of the
cavity dynamics, e introduce two new operaors.

AT Theretin* o roising aperotorwincrese the
a nmber of phoons i he caviy b o,

A the “anniniation*or“louering" perato il decresse
a e number o prtons by ne

First e ntroduce these new operators
forthe simple quantum mecharical harmonic oscltor:

i position operator f=x-
p Momentum apersor
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Let us define a (non-Hermitian) operator

and its adjoint




