

9. Conductors, Insulators (Metals and Dielectrics) 
a. The effective electron mass in solid-state matter. Single electron dynamics in solid state 

b. The ‘Effective Mass Schrödinger Equation” 
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c. Occupation of the bands by electrons at T = 0 in conductors and insulators. The Fermi level of conductors .
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d. The Sommerfeld model of metals. The Richardson-Dushman theory of thermal electron emission, The contact potential at metal-metal junctions.
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4.8. Sajitvezetésii félvezetSk

A sajtvezetésii félvezetdket szokis szerkezeti, vagy intrinsic félvezetének is hivni. Jel-
legzetességiik, hogy T=0 esetén nicsenck ugyan elektronok a vezetési savban, de amint
‘melegitjiik a fémet mér lesznek, azonban ezek a valenciasavbdl jonnek, tehdt maguk
“lyukakat” hagynak.

Nagyszémii vezetési sivbeli elektron és nagyszamii valencia savbeli lyuk makro dllapota.
hasonld a vezetdk vezetési sivbeli dllapotihoz.

A lyukak "virtudlis” részecskék pozitiv téltéssel ds "effectiv” tomeggel.

Az elektronallapotok siirfiségét a vezetési sivban a kivetkezd kifejezéssel tudjuk szdmolni:

47V (2m{))}
au(5) = VG r o B,

mig a lyukallapotok siirfiségét a valencia a sévban a kbvetkezével:

4nV(2m®),)%
9n(E) = —(m 17) VEw-E=KEw-E

Exz lényegében azt jelenti, hogy minél inkdbb tévolodunk vezetési sév legkisebb, illetve a
valencia sév legmagasabb energiaszintjétél, gy névekszik az elektronok megtaldlisi val
Az elektronpopulcid siiriiségét a vezetési sivban megadhatjuk a kivetkezsképp:

e e 1 Ep=
e _ TEldp e NS
[ ommae=x, [* /Ay B = o 5,
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Ezek utdn pedig meghatérozzuk a lyukpopuldciét a valenciasivban. Eldszor is nézziik,
hogy a lyukra vonatkozd valésziniisége mennyi:

f(E)=1-f(E)=
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ebbdl pedig a lyuksﬁn’ixi\'iég a vegyénék sévban:

By~ Egg b= Ny
41
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Ny =K, Y0
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4.8.1. Toltés-neutralitis elve és a Fermi-szint

Sajétvezetésii félvezetokben érvényes a toltésneutralitds elve, vagyis pontosan annyi
elektron van a vezetési sivban, mint amennyi lyuk a valencia
hogy az ésszes elektron a valencia sivbl "ugrott fel” a vezetési savbe, ezért maga
‘minden elektron 1-1 lyukat hagyott, tehit szimuknak megegyezénck kell lennie.

Ebbél pedig levezethejiik az intrinsic félvezeték Fermi-szintjét, hiszen

n= NeeZ5° = p= Ny,

Osszunk le a kapott kifejezésben, hogy a kivetkez dsszefiiggésre jussunk:
My _ EegEc s
Ne .
Ezutédn vegyiik mindkét oldal természetes alapi logaritmusat
N _Ee—Ec_Ev-Er
Ne TR
és fejerziik ki az Ey Fermi szintet:
)
E Ev + E ]
pe=ButEe —kﬂn viFe §kT|n Z
2 N ),

Végezetiil pedig hatéirozuk meg a negativ tltéshordozok (elektronok) szémt:

NoNye 25~
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4.5. Sommerfeld-féle kadmodell

Vegyiink egy idedlis vezetét. A vezetének a vezetési és a nemvezetési sivia kizel van
egymiishoz (vagy mér épp étlapolédik), és valenciasdvjdt betdltik az elektronok. Tegyiik fel,
hogy abszoliit nulla fokon vagyunk. Ekkor a kidmodell megmutatja, hogy az elektronok
legnagyobh megtaldlisi inisége, tehdt a p maximuma a Fermi szintnél lesz, és oddig a
valenciasdv alsg energidjatol egészen a Fermi szintig névekedni fog a megtaldlisi valésziniiség,
viszont a Fermi szint feletti energiaszinteken nem éri el az elektron.

Most tegyiik fel, hogy nem abszolit nulla fokon vagyunk, teht T > 0. Ekkor azonban
észrevehetjiik, hogy a siiriiségfiiggvény torzul, és nem csak, hogy maximuma nem a Fermi
int kézelében lesz, de ezen energiaszint feletti energidkon is képes elhelyezkedni az elektron.
Sommerfeld-féle kidmodell esctén a vezetdk Fermi szintje T = 0 esetén kiszamolhatd, a
Kévetkezd formuléval:

“gap” jelentés, igy az elektronok nem tudnak "felugrani” a vezetési savba, ezért nem vezetnek

a szigeteldk. Szigeteldk esetén is meghatdrozhat a Fermi szint, mégpedig a vezetd és a
valenciasdv energiaszintjének szamtani dtlagaként:
Ee
Ej= ';E'A

Kilépési munksnak nevezziik azt az W munkit, mely egy elektron a fémbl a vékuumba,
térténd eltdvolitisahoz szitkséges. A kilépési munkit az elektronok a fémbél vals kirepiilésiik
soréin végzik a pozitiv tobblettdltés és az elektronok kizitt levé vonzisi erdk ellen. Ezenkiviil
az W munka az elézdleg kirepiilt elektronok és a kirepiil elektron kézdtt fenndllé taszito
exdk ellen is végzédik, melyek a fém feliilete kiiriil elektron ,felht” hoznak létre. A kilépési
munka a fém kémiai természetété] és a feliileténck dllapotatd] figs. A kilépési munka a
fém Fermi szintje(Er) és a vikuumszint(Eg) kéziitti energiatévolsig. Elektron-volt (eV)
egységben adjik meg.
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4.6. Termikus elektronemisszié

Adott egy fém, amelyet kiils forrdssal melegitiink. Ekkor egy bizonyos id3 utdn a
fémfeliiletrdl ki fognak 1épni elektronok, ha teljesitik az ehhez sziikséges feltételt. Elsszor
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is tegyiik fel, hogy a fémfeliilet hatéra o tengelyre merdleges, és vilassamk ki ezen egy
egységnyi feliiletet. Ahhoz, hogy az elektron kilépjen a fémbél a kivetkezének kell teljesiilnie:
1
5 > Es.
Ezt egy misodperc alatt a fémben 16v8 sszes v, sehességkomponenssel rendelkezé elekt-
ronok kéziil azok érik el, amelyek egy v, hossaisigii hasdb belsejében vannak.
A feliiletegységen idegységenként kiléps elektronok szamit jeldljiik J-vel és
Ji=Ne. (18)
Az elektronok kilépése a Sommerfeld-féle kidmodell alapjdn torténik. Az elektronok
széma gy egységnyi térfogatban

w1
ANy = 2 —dv,duyd,
B CEE
mig v, térfogatban
w1
AN, = v g —dududu,
BB g1
Ezek utén felithatjuk a feliletegységen iddegység alatt Kiléps elektronok szdmat az

R P A
oap =0 S T E 41




image12.png
Ezt pedig (18)-ba behelyettesithetjiik és megkapjuk a Richardson-Dushman formuldt:

2 Ep=Eg
dmkime,, esee

s

Je
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4.7. Kontakt potencial

Tllessziink dssze két, nem azonos fémet, legyen ez A és B. Ekkor azt vessziik észre, hogy
fesziiltségkilonbség jon létre a két fém kozott. Ennck magyarézata az, hogy a sivelmélet
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szerint a vezetdknek vagy a valencia, illetve vezetési sdva esak részben betdltott, vagy az,
hogy a kettd dtlapoldik. Mindkét esetben fires helyek vannak a sivokban. A fémek esetében
ezek az elektronok (a vezetési sav elektronjai) képesek elmozdulni. A két érintkezd fém elekt-
ronjainak dllapotai eltérnek egymdstdl, tovabb a szabad clektronok (vegyértékelektronok)
szima is kiilénbézik a fémekben, tehit az elektronkoncentrcié is.

Mivel a kzds hatéir az elektronok szdmra dtjdrhatd, ezért a nagyobb energiaszintsi elekt-
ronokat tartalmazé fémbél iddegység alatt tobb elektron jut &t, mint amemnyi ellenkezd
irénybol érkezik, ezért viszonylag rovid iddn beliil bedll egy egyensiily, amikoris mindkét
fémben azonos lesz az elektronkoncentrécid.

Emiatt az elektronvéndorlds miatt mérheté potencidlkiilonbség a fém két vége kiziitt. Az
értéke erdsen himérsékletfiiggd, és a két fomnek azonos himérsékletiinek kell lennie.
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3.2 The Effective Mass Theorem

We shall now present the Effective Mass theorem, which s central to the consideration of
the electrical and optical properties of solids. An elementary proof of the theorem will be
given here for a simple but important case, namely the non—degenerate band which can be
identified with the corresponding atomie state. The theorem will be discussed from & more
advanced point of view which considers also the case of degenerate bands in the following
courses in the physics of solids sequence.

For many practical situations we find a solid in the presence of some perturbing field
(e.g-. an externally applied electric field, or the perturbation created by an impurity atom or
acrystal defect). The perturbation may be cither time—dependent or time-independent. We
will show here that under many commeon circumstances this perturbation can be treated in
the effective mass approximation whereby the periodic potential is replaced by an effective
Hamiltonian based on the E(F) relations for the perfect crystal.

To derive the effective mass theorem, we start with the time—dependent Schrodinger
equation

(’l‘tn+'H’)d),.(r‘,t)=iﬁM. (3.19)

We then substitute the expansion for the wave packet

(i) = [ PEAO () (3.20)
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into Schrddinger’s equation and make use of the Bloch solution

Hoe P (7) = En(R)e P (7) (321)
to obtain:

(Ho+ (7= PIEE) + M A (O i (7) = (00 (7.1)/00)
(22)
=il [ kA () T (7).

1t follows from Bloch’s theorem that Ey(F) is a periodic function in the reciprocal lattice.
We can therefore expand Ey (F) in a Fourier series in the direct lattice

E(F) = Y B R (323)
Re

where the f, are lattice vectors. Now consider the differential operator E,(—iV) formed
by replacing K by —iV .
En(—iV) =Y Epe €Y. (3.24)
"
Consider the effect of E,(~iV) on an arbitrary function /(7). Since ¥ can be expanded
in a Taylor series, we obtain
RS [+ RV 4 YR D)D) 110
=1+ B VS () + B ReaResmlom I+ - (3:25)

=f(F+ Ry).
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Thus the effect of Ey(~iV) on a Bloch state is
En(—i9)0ns) = 3 Euebua7+ R) = Y B ™ Re70,(7) = B, (Bynn(7) - (3.26)
w w
since from Bloch’s theorem
G+ Fr) = R [e'?f’u..(f)]. (327)
Substitution of - .
En(=iV)¢nk(7) = En(K)éni(7) (3.28)
from Eq. 3.26 into Schrdinger’s equation (Eq. 3.22) vields:
Jaw [E,.Hﬁ) +W]Aﬂk(z)e"=ﬂ..(f) =[E,.(46) +w] [ Ak 0 () (329

S0 that ~
[E,Hﬁ) +n‘]w,.(r‘,z) =B (330)
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This result is called the effective mass theorem. We observe that the original crystal
Hailtonian p/2m + V/(7) does not appear in this equation. It has instead been replaced
by an effective Hamiltonian which is an operator formed from the solution E(F) for the
perfect crystal in which we replace & by —iV. For example, for the free electron (V'(7)

Ep(~iV) — - ";Zz. (3:31)





