7. Quantum Statistics

a. Identical particles with negligible(elhanyagolhatd) interactions:

In quantum mechanics, particles can be identical and
indistinguishable, e.g. electrons in an atom or a metal.

The intrinsic uncertainty in position and momentum therefore
demands separate consideration of distinguishable and
indistinguishable quantum particles.

Identical particles, also called indistinguishable or indiscernible particles, are particles that cannot
be distinguished from one another, even in principle.

There are two main categories of identical particles: bosons, which can share_quantum states, and
fermions, which do not share quantum states due to the Pauli exclusion principle. Examples of
bosons are_photons, gluons, phonons, helium-4 nuclei and all_ mesons. Examples of fermions are
electrons, neutrinos, quarks, protons, neutrons, and_helium-3 nuclei.

The fact that particles can be identical has important consequences in_statistical mechanics.
Calculations in statistical mechanics rely on_probabilistic arguments. As a result, identical particles
exhibit markedly different statistical behavior from distinguishable particles.

Vegyunk egy azonos részecskékbol (pl. elektronok) allé rendszert. Két azonos részecske
esetén a sajatérték-probléma megoldhato, és ha feleseréljuk egymassal a két részecskét, ak-
kor a sajatértékek nem valtoznak, tehat a ¥ hullamfuggvények kozotti eltérést csak egy
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allandoval valo szorzas jelentheti. Tegyik fel, hogy ez az allandé (a°) legyen a= = 1, azaz
letezik egy szimmetrikus és egy antissmimmetrikus hullamfiggvény-par. A részecske megfi-
gyelések azonban csak U*W-tol fugenek.

Ez azt jelenti, hogy a részecskék felcserélése nem valtoztat a mérés eredményén, ami a
klasszikus fizikdhoz képest egy Iényeges k1l [Bnbség. Abban ugyanis minden egyes
részecske"t[Brténetét" egymastodl fliggetlenTil végigkisérhetj[lik, am a kvantummechanikaban
ez nincs igy.

A mennyiben két részecske hullamfuggvenye atlapolodott, dgy a két részecske mar megkulonboztet-
hetetlen lesz. A természetben kétféle részecske létezik: bozonok és fermionok. A bozonok
allapotfuggveény szimmetrikus, és a spinkvantumszamuk egész szam (0,£1), mig a fermio-
nok allapotfuggvénye antiszimmetrikus, és spinkvantumszamuk % Fermionok kozé tartoznak
példaul az elektronok, mig a bozonok kozé a fotonok.

b. Micro state and macro state in quantum statistics: closed system.

A statisztikus fizika, ahol N db részecske (elektron) viselkedését irjuk le.

Tegyllk fel, hogy egy rendszer hullamfliiggveny W , akkor a rendszer W mikroallapotban van.
Altaldban viszont az energiaszintek elfajuldak, tehat egy E energiaszinten t[dbb k [{il (Bnb 328
hullamfldiggvény, igy mikrodllapot van.

Egy testben az elektronok kil Cdnb[dz6 energidkon helyezkednek el. Igy az N(E) jel [dlés

a rendszer makrodllapotait adja meg. Az energiasajatértékeket En-nel, a mikrodllapotok
szamat Zn-nel, az elektronpopuldcidkat pedig Nn-nel jel [31j k.

Altaldnosan elmondhatd, hogy zart rendszer eseten az elektronok szdma és a rendszer
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A zart rendszerre a kovetkezok 1gazak:
A zart rendszerben minden mikroallapot egyforman valdszinm.
- A zart rendszer " gyorsan” konvergal a legvalosziniibb makroallapothoz. Ez az egyvensuly

- A makroallapot valosziniisége ardanyos az 6t megvalosito mikroallapotok szaméaval.

c. Thermodynamic probability for bosons, fermions and large classical molecules.

Az egy makroallapotot megvaldsitdé mikroallapotok szama a makroallapot termodinamikai
valdszinilisége. Az 6sszes makrodllapot koziil pedig az valosul meg, amelyiknek legnagyobb a
termodinamikai valoszintisége.

A fermionok mikroallapotainak szamat a Fermi-Dirac statisztika irjale. A Z mikorallapotban
N db fermiont (fi) féleképpen lehet. Egy makroallapotot realizalé mikroallapotok szama:
N;(E;). Ebbal a statisztikat a
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kifejezés adja meg, ami tulajdonképpen egy 1smétlés nélkuli kombinacio.

A bozonok makroallapotait eloallito mikroallapotok szamat a Bose-Einstein statisztika
irja le. Az N1, Na, ... Nj, ... eloszlast megvalasito mikroallapotok szamat egy 1smétléses kom-
binacio irja le, amely a kovetkezo:
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A megkulonboztetheto testek statisztikajat a Maxwell-Boltzmann statisztika irja le, ezt
szokas klasszikus statisztikanak 1s nevezni:
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d. Thermal equilibrium: the most probable macro state

Ha egy rendszert magara hagyunk, a megfigyelések szerint elegendden hosszi 1do utan a
makroszkopikug allapotjelz0k mar nem valtoznak: beall a termodinamikat egyensiily (TDE).



Az egyensiily fogalma mind a koznvelvben, mind pedig a fizikaban idealizacio: mindkét
esetben a koriilottiink lévo, allanddan valtozd vilag valamilven kiilonleges, az ellentétes
hatasok kioltasat jelento allapotat jelenti; folvamatok esetében pedig — az elobbick kavet-
keztében — azok valtozatlan, idofiiggetlen jellegét. Az egvensilynak nagvon sok fajtaja
lehet: gondolhatunk példaul az erck egvensilvara, pénziigyi vagy politikai egvensilyra,
vagy a kémiail folvamatok egyvensiilyara. Statisztikus fizikaban alapveto fogalom a ter-
modinamikai egyensily: egyv magara hagvott makroszkopikus rendszer hosszi ido utan
termodinamikai egvensiilyba keriil, vagyis az azt jellemzd (makroszkopikus) mennyiségek
idofiiggetlenné valnak.

Ez a definicid természetesen idealizacio, hiszen valodi fizikal rendszerek esetén az 1do-
fiiggetlenségnek csak egy megfelelo idoskalan és kozelito jelleggel van értelme. Képzeljiink
el példaul egv esésze forrd teat, amiben elkeveriink egv csepp tejet! A tej elkeveredése
masodpercek alatt bekovetkezik, de a forrd tea tovabbra is kavarog a csészében. Egy
pere alatt leall a folvadék makroszkopikus aramlasa, koriilbelill egy dra alatt pedig le-
hil a szoba hémérsékletére. Ha mdég tovabb varunk, akkor azt tapasztaljuk, hogv a
tea homérscéklete ingadozik a szoba homérsékletével a napszakok szerint, majd a napok
skalajan a tea elparolog. A tea allapota tehat folytonosan valtozik, mégis, a hiilés egyes
pillanataiban valamilven értelemben egyensilyban van (mérheto és jo kozelitéssel allanda

a homérscklete, térfogata sth.).
e. The Fermi-Dirac, the Bose Einstein and the Maxwell Boltzmann statistics

The expected number of particles in an energy state / for B-E statistics is

g (6,‘) = Ewéjﬁ

with & > u and where 1; is the number of particles in state /, g; is the degeneracy of state /, & is the energy of the ith state, p is the chemical potential, k is the Boltzmann

constant, and T is absolute temperature. For comparison, the average number of fermions with energy €; given by Fermi—Dirac particle-energy distribution has a similar form,
Gi
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The expected number of particles with energy £; for Maxwell-Boltzmann statistics is {N:} where:
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f. Electron gas in a large “box”: population density functions of the Fermi-Dirac statistics

4.4. Az elektronok makroallapota

Vegvunk eloszor a legegyszeriibb esetet, amikons T=0K, és tegyuk fel. hogy az energia-
szint alacsonvabban van, mint a Fermi szint, tehat F < Ep. Ekkor a eleketronok szamat,
amelyekre teljesul az elobbi feltétel az
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osszefuggés adja meg. Ennek tudataban pedig ki tudjuk szamolni, hogy mennyi electron
van az E és E+dE energiaszintek kozott:
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Most pedig tekintsuk azt az esetet, amikor a hdmérséklet nem abszohit nulla fok. Ekkor
a fenti osszefugoes valtozik
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majd, ha felhasznaljuk, hogy Ey = %}' akkor a kifejezésunket a kovekezo alakban 1s
irhatjuk:
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A fent defimalt p suruséghiggvényt mas alakokban is irhatjuk. A Fermi-Dhrac statisz-
tikanak ezen kiviil két masik siiriiséghigevénye van. Az egyik az elektronok eloszlasat adja
meg a sebességkomponensek figgvényében, azaz
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mig a masik a v és v+dv kozé eso sebességil elektronok szamat adja meg:
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Ezekbol pedig lathato, hogy a makroallapotok szama nem mas, mint a mikroallapotok
siriségenek és a betoltés valoszinuségének a szorzata, ahol a betoltés valosziniisége a Fermi-
fuggvény, mig a mikroallapotok suriiségét haromféle modon 1s megadhatjuk.



