5. Hydrogen-like atoms. The Periodic Table of Elements
a. Electron in a hydrogen-like atom. Principal, orbital, magnetic and spin quantum numbers.
elöző év 26 dia
b. Features of the atomic wave functions. Energy eigen-values and orbitals
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c. The Hydrogen atom. Degenerate energy eigen-values and orthonormal eigen-ket orbitals.
Z=20-ig az atomok „hidrogénszerűek”
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Egy pozitív töltésű atommag környezetében az egy-elektron problémának egzakt analitikus megoldása van. Az elektron az atommag gömbszimmetrikus Coulomb terében mozog.
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Time-independent Perturbation Theory

Degenerate Case
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This is just a matrix eigen-equation. It generally has eigenvectors
and eigenvalues. This degenerate perturbation calculation has
therefore reduced to a special case of the finite basis subset model
(or finite matrix model). In this case, the finite basis we choose is the
set of r degenerate eigen-functions corresponding to a particular
unperturbed energy eigenvalue En

The solution of the equation will give a set of r first-order corrections
to the energy. Each associated with a particular new eigenvector that
is a linear combination of the degenerate basis functions. All of these
new eigenvectors are orthogonal to one another. To the extent that
the energies are different from one another, the perturbation has
“Mifted the degeneracy”.
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8.1 Wavefunction Operator
The simplest situation we could consider would be a wave-function operator
where we have a single particle. Then we can propose an operator

W(r)=2b,0,(r),

where @ (l’) (k=1,2.3....) are some complete set for describing functions of
space. Suppose for example that we had a situation where the single particle of

interest here was in state m, i.e., the state with wave-function ?, (r) . We can

also write this state as |.4.01 ,lm,()n,...> = b:n |0> where |0) means the state
with no fermions present in any single-particle state.

W(1)]-.0,,1,.,0,.,..) =\ (r)b}, |0) = X ¢, (r)b b7, |0). Now we use

J
the anticommutation relation \I/(r)‘_._ol,lm,on)...) = Z% (r)(é‘/m 76;1% )|0>
J

b] ‘0> =0 is an attempt to annihilate a particle that is not there results in a null
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result. Hence we have \]\I(l)|0 1 On,...> =9, (l‘)|0> This operator has

1> m>
successfully extracted the amplitude ¢ (r) as we would hope for a system in
m

single-particle state m.

Note, that, just as for the empty state we encountered with bosons, the
empty state O for fermions is a perfectly well-defined state of the system. It is one
of the possible basis states for a multi-fermion system. In Hilbert space, it is a
vector of unit length, just like any other basis state. It does not have zero length.
We can also see by a simple extension of the above algebra that, if the particle is
initially not in a specific single-particle state, but in a linear superposition, i.e.
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(l‘)|l//s) (ch(pk ‘0> which has now extracted the linear

superposition of wave-functions we would have desired.
The next more complex case is to propose a wave-function operator for a two-

fermion state: \il(l'l,l'Z \/_ anb](pj l'l)(pn (l‘z) (The ]/\/5 term is to

ensure normalization of the final result.)

An operator, operating on a state with two different single-particle states
occupied, leads to a linear combination of products of wave-functions that is
correctly antisymmetric with respect to exchange of these two particles, i.e., if this
operator acts on a state that has one fermion in single-particle state k and an
identical fermion in single-particle state m, i.e., the state

blb|0)-

u”/(rl,rz>|...,1,,>...>1.w...>:%Wr,)wm( 1)~ 0:(1,)0,(1,)]0)

We can propose to extend such wavefunction operators to larger numbers of
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particles, postulating

W (r,n,..1y) J— Z b,.b,b,0, (1), (r,)...0,(1y)

with the expectation that these operators will also extract the correct sum of
permutations.
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Degenerate Cases

In “degenerate” cases there is more than one eigenket
associated with a given eigenvalue.

Often perturbations, e.g an electric field, will remove the
degeneracy, making some of the states have different energies,
and defining the distinct eigenfunctions uniquely.




